
Archival, anonymization and presentation of
HTCondor logs with GlideinMonitor

Marco Mambelli1,*, Mirica Yancey2, and Thomas Hein3
1Fermilab, MS120, PO Box 500, Batavia, IL, USA
2Valparaiso University, Valparaiso, IN, USA
3University of Illinois at Chicago, Chicago, IL (USA)

Abstract. GlideinWMS is a pilot framework to provide uniform and
reliable HTCondor clusters using heterogeneous and unreliable resources.
The Glideins are pilot jobs that are sent to the selected nodes, test them, set
them up as desired by the user jobs, and ultimately start an HTCondor
schedd to join an elastic pool. These Glideins collect information that is
very useful to evaluate the health and efficiency of the worker nodes and
invaluable to troubleshoot when something goes wrong. This data,
including local stats, the results of all the tests, and the HTCondor log files,
is packed and sent to the GlideinWMS Factory. To access this
information, developers and troubleshooters must exchange emails with
Factory operators and dig manually into files. Furthermore, these files
contain also information like email and IP addresses, and user IDs, that we
want to protect and limit access to. GlideinMonitor is a Web application to
make these logs more accessible and useful: it organizes the logs in an
efficient compressed archive; it allows to search, unpack, and inspect them,
all in a convenient and secure Web interface; via plugins like the log
anonymizer, it can redact protected information preserving the parts useful
for troubleshooting.

1 Introduction
The primary objective of this paper is to describe the GlideinMonitor system and to

show its utility in a Glidein-based distributed High Throughput Computing (dHTC) system.
In this work, we first provide some background information about the GlideinWMS [1]

system and the the information it collects; secondly we describe GlideinMonitor [2] and
explain how it simplifies the activities of software developers and GlideinWMS operators;
and finally we show how the system can complain with restrictive privacy policies and still
allow the work of troubleshooters and developers.

GlideinWMS is a Glidein-based Workload Management System leveraging HTCondor.
It is an overlay system: at the upper layer it provides to the users reliable and uniform
virtual clusters, green in Fig. 1. These are HTCondor pools with Machines matching what
the users need. Different pools serve different users communities, a.k.a VOs (Virtual
Organizations). Underneath, GlideinWMS submits Glideins to unreliable heterogeneous

* Corresponding author: marcom@fnal.gov

FERMILAB-CONF-21-060-SCD

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the
U.S. Department of Energy, Office of Science, Office of High Energy Physics.

resources leveraging again HTCondor, this time for scheduling and job control. The
Glideins, aka pilot jobs, are mainly properly configured HTCondor jobs that become
HTCondor Machines for the virtual cluster after starting an HTCondor schedd daemon. The
remaining components of the system are the Factory and the Frontend. The Factory knows
how to submit Glideins to the resources: it supports many different resource types, from
clusters to Grid sites, to commercial Clouds, it has a list of trusted and tested sites, and it
knows what to expect from each one and the correct parameters to use when submitting
Glideins. The Frontend monitors the user requests, selects the best resources to provide the
virtual cluster for the users and requests the Factory to submit Glideins to those resources.

Fig. 1. GlideinWMS overlay system.

The system is transparent to the users. It isolates them from the handling and the
management of the sites: testing and adding new sites or new types of sites, or sites being
down. It protects them from many host failures: the Glidein can run multiple tests to
validate a host and discard it if unreliable or unfit for the user jobs. The same Glidein can
be reused for multiple jobs and run them one after the other or in parallel. Any Glidein
failure before starting the user job is not affecting the users. Anyway, these failures,
together with the stats about the nodes and the results of all the tests are important to
evaluate the health of the sites and improve the system. Each Glidein collects the job
environment, measurements of the resources received, the result of standard and user
requested tests, the HTCondor logs, and statistics about the user jobs executed. All this
information is compressed, packed, and sent back to the Factory that submitted the Glidein
using the Glidein standard output and standard error that HTCondor transfers back.

The information collected can then be used by Factory operators to tune the
configuration or validate new sites, by Site system administrators to fix problems with their
resources, by VO operators to tune the Frontend configuration or to resolve authentication
issues, and by developers to fix bugs and optimize the code.

Out of all these people, only Factory operators have access to the Glidein logs.
Everyone else must request from them a copy of the desired files, usually exchanging
emails. And in normal deployments where multiple Frontends talk to multiple Factories,
finding the right log files can become a lengthy process. The Factory installation contains
tools to process the log files, e.g. to extract the HTCondor log files. Last but not least, many
of these files contain protected information about the jobs or the submitters, like user IDs,
email addresses or IP addresses. Sometimes we may even be required by law to do so. All

these are obstacles that limit or delay the access to information and result in additional work
and longer times to troubleshoot and solve problems.

GlideinMonitor and the Anonymization filter aim to eliminate these obstacles.
The remaining of this paper is organized as follows. Section 2 describes the

architecture, the features of GlideinMonitor and how these benefit the development and
operations of the GlideinWMS system. Background on log anonymization and the
anonymization plugin are presented in Section 3, and the paper is concluded in Section 4. In
the next sections Glidein logs are also called Job logs: pilot job is a generic term for the
Glidein and there will be no confusion as user jobs are not considered.

2 GlideinMonitor
GlideinMonitor provides a way for GlideinWMS operations teams to fetch, retain and
distribute Glidein log files and allows users to easily search and inspect them.
GlideinMonitor has two components as shown in Figure 2: a log files indexing system, the
"Indexer", and a Web server which provides an interface to search, retrieve and inspect
Glidein logs. Each component can be installed on the same host, or on a separate host, or
as microservice, as long as all can share a common database and access the same file
system where the log archives are stored.

Fig. 2. GlideinMonitor architecture.

2.1 Indexer

The Indexer handles the Glidein logs files provided by one or more GlideinWSM Factories:
it extracts indexing information, filters their content as desired, generates compressed
archives, and updates the common database. The indexer runs periodically to capture new
job logs.

All Glideins transfer back to their Factory their standard output and standard error files.
Both files contain useful debugging information including the environment the Glidein ran
in, the Glidein and HTCondor configuration, and all HTCondor logs. The Factory can copy,
e.g. via rsync, the two files of each Glidein (".out" and ".err" files) to GlideinMonitor's
intake directory. This allows the Factory to maintain its arbitrary retention policies for the
log files and delete them as needed without worrying for troubleshooting needs. The
indexer classifies all new files, extracts indexing information, and stores the indexes in a
database and the files, one compressed file per Glidein, in a structured archive. The indexer
also triggers all the filters. Filtered files can be stored in a new archive. Files can be
expunged from the initial archive if not needed.

Each archive is a hierarchical file system structure where logs of Glideins requested by
different users or submitted by different Factories are separated to ease access control. Each
file in the archive contains one version of all the log files from one Glidein compressed
together. The database contains tags and metadata to ease the search of the log files in the
archives.

A filter is an executable that given one version of the Glidein logs produces a new
version. Some filters are provided in the software distribution, it is easy to add new ones. A
filter can operate on the Glidein stdout and stderr or also on the included files, like the
HTCondor logs. For the latter, the Indexer will take care of extracting all the files before
running the filter and recombining them afterwards. The Indexer also orchestrates the
filters. Its configuration determines which filters run in parallel, which are daisy chained,
and which versions of the log files to save in an archive.

2.2 Web server

The Web server is an authenticated Web dashboard for users to interact with. The
dashboard can serve multiple versions of the log archive, e.g. raw and filtered log files,
each version only to the users that are authorized to view it. Once an archive is selected, the
dashboard allows for searching for jobs in a table based format. Specific queries, such as
providing a date-time range and selecting which Entries the user is interested in, can be
performed to limit the jobs displayed in the index page visible in Figure 3a.

Fig. 3. Log views in the Web Server (3a, left, index. 3b, right, Glidein logs).

Once a particular job has been selected, the Job view page, in Figure 3b, will provide
general information about that Glidein such as the Entry it ran at, the originating Factory,
the creation time, and more. Links are also provided to either view or download all the
HTCondor log files embedded in the Glidein stderr and the full Glidein logs from the
archive. The Job view page uses client side scripting to download the archived Glidein logs,
and unpack and serve them. The web browser extracts locally the Glideins log files, parses
the extracted log files, and even extracts and parses the hashed HTCondor logs within them.
This improves responsiveness and reduces the load on the Web server, which only sends
the archived job file as it sits on the disk. This allows also to take advantage of Web proxies
close to the client to reduce the network load and reverse proxies to improve the server
scalability.

The Web dashboard is powered by a RESTful API that other applications can use as
well. A client can request a Glidein logs list providing constraints like the ones in the
dashboard page, it can request the job view information, or it can download a compressed
log file bundle from the archive. Responses are in JSON, except when the raw log files
bundles are requested.

3 Log Anonymization
Within the complex system of distributed computing environments offered by
GlideinWMS, it is crucial for the operators and developers to be able to gather and share
statistics from log data and failures. Whenever storing and even more when sharing
information is important to follow the guidelines of Privacy-Preserving Data Publishing
(PPDP), to respect the users' privacy and to comply with regulations like Europe's GDPR
(General Data Protection Regulation). A plug-in applying automated log anonymization
techniques would allow GlideinMonitor to store the anonymized Glidein log files and share
them with troubleshooters and developers.

3.1 Research

Different factors can affect the design of an anonymization model: there are several privacy
models, reversible vs. irreversible techniques, and different code models.

First we compared reversible vs irreversible anonymization. Reversible anonymization
allows for the recovery of data, often through a hashed lookup table. This ensures that it is
capable of protecting data while upholding the most data use. Contrary to this, irreversible
anonymization permanently changes the data so that it is unavailable for recovery - even by
the original administrator. It ensures the permanent loss of data which upholds the most
data protection but less data use than reversible anonymization. Ultimately, the user and
host identifiers that we plan to remove from the Glidein logs are of limited to no use for
troubleshooting and support. Furthermore we could keep an archive with more limited
access with the original logs. So we decided to use irreversible anonymization to ensure the
most protection possible and to reduce the development effort.

Secondly, we examined several privacy models such as k-Anonymity, l-Diversity and t-
Closeness. k-Anonymity is basically the suppression or generalization of data by either
omitting data or by increasing the range of data to obscure its exact value. Similarly, l-
Diversity reduces the specificness of data but to a greater extent than k-Anonymity, by
eliminating data, grouping similar categories of data or further generalizing data values and
groups. t-Closeness is a more refined version of l-Diversity that focuses on the distance
between two attributes and the “distribution of sensitive attributes within each quasi-
identifier group" [3, 4]. Ultimately we decided on k-Anonymity for its simplicity of design
and implementation. It is weak against background knowledge attacks but with a robust
design we believe we can cover for that weakness easily.

Finally, we looked into two different possible code models for recognizing the data:
Named Entity Recognition and regular expressions. Named Entity Recognition allows for
the recognition of data by predefined categories and it is able to learn and be trained into
further specifics. Regular Expressions allows for the recognition of data by patterns and is
supported by most coding languages. Named Entity Recognition is more complex and
regular expressions are sufficient to recognize the elements that we want to remove from
the Glidein logs. They are easier to customize and will require less time to implement.

3.2 Implementation

The goal is to develop a filter that would automatically and accurately identify each users'
identifying piece of information from a variety of file types, redact that information, and
save the filtered log files for GlideinMonitor to archive and serve.

We analyzed and annotated a wide sample of different log file types from a variety of
jobs to find the common denominators for when user data was revealed or referenced. We

then began developing a regex script for IP addresses that found the pattern for IPv4 and
IPv6 addresses and did an in-line replacement for each instance of the user’s IP address.

This first version was performing an inline replacement cycling through all the lines of
all the files. A scalability test revealed this solution as clunky, time-consuming and
vulnerable to leaving partially anonymized logs. So, we switched to reading the whole file
into memory, and using a faster regex-identifying method and bulk replace before writing
the output. This solution is faster and removes the possibility of partially anonymized log
files. The increased memory use is limited because the log files are relatively small.

Afterwards, we focused on identifying and removing general user information like
email addresses and user IDs. The resulting new script has several methods to
accommodate for the different patterns and log file types. Each method searches for a
specific identifier, isolates the information on that line, and then stripps the user
information.

Finally the script was added to GlideinMonitor as a plug-in filter and tested with the
whole system.

3.3 Testing

The log anonymization plug in is an irreversible filter based on k-Anonymity and uses
regular expressions for the location of important user data. It is capable of locating user
data such as IP addresses, usernames, full names, and other identifiers. It lets
GlideinMonitor unpack the Glidein logs (stdout and stderr files) and filers all the resulting
HTCondor and Glidein logs. The filter was tested on a wide sample of Glidein logs from
two VOs, including both successful and failed jobs, and the rules were general enough to
anonymize all the files.

4 Conclusion
GlideinMonitor is a very useful tool to archive and share Glidein logs and, with its
anonymization plug-in, it makes possible to do so and also follow the guidelines of Privacy-
Preserving Data Publishing, and comply with regulations like GDPR. GlideinWMS
provisions millions of Glideins every day, each running multiple jobs, serving many
different VOs. It uses a handful of Factories and a dozen of Frontends submitting Glideins
to a few hundreds of resources. This means that there are many different institutions and
organizations involved, each operating part of the infrastructure. Glidein logs are useful to
understand most problems, whether they are caused by the computing resources, the
network, the software, the service configuration or user jobs. Normally a troubleshooter
asks via email or via a ticket the Factory operators for the log files, an operator must search
for them, and the troubleshooter receives, unpacks, and inspects them. To resolve a problem
multiple requests may be involved, after troubleshooting actions, and each loop may take
days if operators and troubleshooters are in different time zones. All this is simplified with
GlideinMonitor and anonymized logs: the troubleshooter or developer can directly search
and retrieve the log files without involving the Factory operators and GlideinMonitor is also
preprocessing the files, giving direct access to the useful troubleshooting information. The
result is a faster process involving less human labor.

Future work could involve a more precise classification and anonymization of the
information in the log files, distinguishing Personal Information Identifiers (PII), Quasi
Identifier (QI), Sensitive Attributes (SA), and Non-sensitive Attributes. This would allow
more useful data without compromising or even improving privacy, e.g. preserving some IP
addresses that disclose no user information and can be useful for troubleshooting. Another
interesting development would be to analyze how robust is the current anonymization

against linkage attacks, where the attacker combines the GlideinMonitor data with other
sources or background knowledge to identify a user.

This work was done under the GlideinWMS project and the TARGET and SIST internship programs
at Fermilab. This manuscript has been authored by Fermi Research Alliance, LLC under Contract
No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High
Energy Physics

References
1. M. Mambelli, P. Mhashilkar, D. Box, I. Sfiligoi, D. Strain, et al, (2020)

glideinWMS/glideinwms. Zenodo. http://doi.org/10.5281/zenodo.130967
2. M. Mambelli, T. Hein, GlideinMonitor https://github.com/glideinWMS/glideinmonitor

United States. doi:10.2172/1605567
3. J. Vasa, P. Modi, Review of Different Privacy Preserving Techniques in PPDP, IJETT,

59, 5 (2018)
4. K. Rajendran, M. Jayabalan, M. E. Rana, A Study on k-anonymity, l-diversity, and t-

closeness Techniques focusing Medical Data, IJCSNS, 17, 12 (2017)

