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Abstract. Full detector simulation is known to consume a large proportion of
computing resources available to the LHC experiments, and reducing time con-
sumed by simulation will allow for more profound physics studies. There are
many avenues to exploit, and in this work we investigate those that do not re-
quire changes in the GEANT4 simulation suite. In this study, several factors
affecting the full GEANT4 simulation execution time are investigated. A broad
range of configurations has been tested to ensure consistency of physical results.
The effect of a single dynamic library GEANT4 build type has been investigated
and the impact of different primary particles at different energies has been eval-
vated using GDML and GeoModel geometries. Some configurations have an
impact on the physics results and are, therefore, excluded from further analysis.
Usage of the single dynamic library is shown to increase execution time and
does not represent a viable option for optimization. Lastly, the static build type
is confirmed as the most effective method to reduce the simulation execution
time.

1 Introduction

Particle physics has an ambitious experimental program for the coming decades: during the
High-Luminosity Large Hadron Collider (HL-LHC) phase, scheduled to begin data taking in
2027, events will be collected at very high rates. The rate foreseen for the ATLAS experiment
is 10 kHz, approximately ten times more than during previous runs [1, 2].

In addition to the experimental challenges of collecting, storing and analysing such a large
volume of data, a comparable amount of Monte Carlo (MC) simulated data will be required in
order to prevent simulation-dominated systematic uncertainties [3]. Currently, approximately
half of the MC events in ATLAS are produced with full simulations, i.e. using the GEANT4
simulation toolkit [4]. The remaining MC events are instead produced with fast simulations,
which adopt a parameterized approach.

At present, detector simulation accounts for almost 40% of the CPU hours consumed by
the ATLAS experiment (see Fig. 1 in [3]). However, for many analyses, the scarce availability
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of MC events is still a limiting factor. The reduction of the time spent on simulations is, thus,
a priority, and an active R&D program aimed at optimizing the GEANT4 CPU requirements
is ongoing in ATLAS. As summarized in Fig. 1, the R&D program considers three different
scenarios [3]:

o Baseline: this is the model for the LHC Run 3, starting in 2022. The events will be equally
distributed between full GEANT4 and fast simulations. The latter, in particular, will be
used for parameterized calorimeter response;

e Conservative R&D: the fraction of events produced with fast simulations is expected to
increase significantly (up to 75%) throughout the HL-LHC phase (Run4 and Run5);

o Aggressive R&D: 90% of the events are assumed to be produced with fast simulations
over the same period of time.
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Figure 1: Projected CPU requirements for ATLAS between 2020 and 2034 based on 2020
assessment. The solid black lines represent a projection of the computing availability assum-
ing a yearly budget increase of +10% and +20%. The empty circles show the projection of
what the computing needs will be if the experiment would keep the same computing model
as in Run 2. The filled triangles refer to the conservative and aggressive R&D scenarios.
The empty triangles indicate the conservative R&D scenario under the assumption of the
LHC reaching an average of 200 proton-proton interactions per bunch crossing in Run4 and
beyond (2028-2030) [3].

The full simulation requires around five times more computing resources than the fast
simulation, that will be the preferred choice for Run 4 and beyond. Nevertheless, the use
of the full simulation will remain unavoidable for certain detectors and will be required to
tune the fast simulation [3]. It is, therefore, extremely important to continue the GEANT4
optimization in order to ensure unbiased physics results while minimizing the computational
footprint.

The aim of this study is to investigate different methods to reduce the full simulation
execution time without sacrificing the quality of the simulated data and without altering the
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existing source code [5]. A broad range of build-time configurations has been tested in order
to perform a consistency check to ensure the independence of physics results from compiler-
specific options. Moreover, the impact of different build types and of different primary parti-
cles on the simulation execution time has been investigated.

2 Methods

All the calculations presented in this paper are based on a standalone GEANT4 simulation [6].
This study is articulated in three main parts:

1. Validation to ensure that physics results (energy deposition is used as a metric) are not
affected by compiler-specific options. This was carried out on a broad range of com-
pilers, GCC 4.9.4, 6.2.0 and 8.3.0, Clang and ICC, and build-time configurations, in-
cluding Link-Time Optimization (LTO), Ofast and native architecture instructions [7].
Calculations were carried out on a CERN standalone machine and the Aurora cluster at
Lund University (Table 1) with a single-thread GEANT4 10.5.0 installation. Negative
pions at 50 GeV were used as primary particles. For these tests, a GDML geome-
try comprising the full inner detector, the LAr hadronic and tile calorimeters, the EM
barrel and the muon spectrometer has been used. This geometry does not contain a
definition for the electromagnetic calorimeter endcap (EMEC).

2. In order to evaluate the impact of using a single dynamic library on the simulation ex-
ecution time, multiple runs of the standalone simulations have been performed, each
with 2500 50 GeV negative pions as primary particles. The code was built against
GEANT4 10.5.0 on a CERN standalone machine (see Table 1) with GCC 6.2.0 and
8.2.0 compiler versions, four optimization levels and was executed with 4 threads.
To build the single dynamic GEANT4 library for these tests, the CMake structure
has been modified. The new flag BUILD_SINGLE_LIB was added; it is an optional
flag and it must be enabled in addition to the standard BUILD_SHARED_LIBS and
BUILD_STATIC_LIBS flags. This allows the choice of which build type should be
used for the single library [8]. For these tests, the same GDML geometry file was used.

3. To estimate the impact of different particles on the simulation execution time, a first
preliminary study has been carried out using the same GDML geometry; protons, pos-
itive/negative pions and geantinos, the massless virtual particles available in GEANT4,
were chosen as primary particles. For each of them, two energies were considered:
10 and 20 GeV; for each run 5000 primaries were generated. All simulations were
performed on the Aurora cluster at Lund University and full nodes were reserved with
the exclusive option (see Table 1). The code was built against GEANT4 10.6.2 and
GCC 8.2.0.

In addition, in order to include the effect of the EMEC on the simulation execution
time, a second, more complete geometry definition was adopted. Support for the
GeoModel representation of the ATLAS geometry has been added to the standalone
simulation [9, 10]. The impact of different primary particles, namely charged pions and
protons, at different energies (10, 20 and 50 GeV) has been evaluated. The simulations
were run with 5000 primary particles on a CERN standalone machine (Table 1) and
built with GCC 8.2.0 against GEANT4 10.6.2. For both geometry configurations, the
standard static and a multi-library dynamic GEANT4 build types have been tested. The
reference physics list used is FTFP_BERT, the current Geant4 default physics list [11].
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Table 1: Computing resources

CERN standalone machine Compute node on Lund University cluster
CPU 2% Intel Xeon E5-2630 v3 2.40GHz 2x Intel Xeon E5-2650 v3 2.30GHz
Architecture 64 bit Haswell x86_64 64 bit Haswell x86_64
N. of cores 16 20
Threads per core 2 1
Cache 20 MB (L1: 64 KB, L2: 256 KB, L3: 20 MB) 25 MB (L1: 64 KB, L2: 256 KB, L3: 25 MB)
RAM 64 GB 128 GB
Filesystem XFS IBM General Parallel File System (GPFS)
Operating system CentOS 7 CentOS 7

3 Results and discussion
3.1 Physics validation

The analysis of the average energy deposition per event in all parts of the detector including
active and non-active material, carried out with 5 different compilers, revealed that the results
are not always compiler-independent, and the observed differences can be ascribed to the
following causes (Fig. 2) [12]:

e use of unsafe math optimizations (-Ofast, ICC compiler or native architecture instruc-
tions);

e use of compilers from the Clang family or older versions of GCC (such as 4.9.4), that
produce different energy depositions and different random numbers sequences, despite the
use of a fixed random seed. The CLHEP implementation of the Mersenne Twister algo-
rithm is used in the benchmark simulation [13]. Further studies are ongoing to assess the
reproducibility of random sequences.

The observed deviations in energy deposition suggest the need to exclude the aforemen-
tioned cases and to limit the rest of the studies presented to two GCC versions, namely 6.2.0
and 8.2.0, and to four optimization flags, -0Os, -01, -02, -03.
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Figure 2: Energy depositions per event in the full detector in two of the configurations re-
sulting in differences in the average energy deposition. GCC 4.9.4, Dynamic linking, -02 is
used as a reference. The average energy per event is ug = 42.92 +0.03 GeV (left, GCC 8.2.0,
static linking,-Ofast, native architecture instructions, and LTO) and ug = 43.04 = 0.03 GeV
(right, Clang, dynamic linking, -02). The GDML geometry (see Sec. 2) was used.
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3.2 Studies with the single dynamic library

In Fig. 3, a comparison of the execution time between three different build types is shown:
static, dynamic (default multi-library configuration) and single dynamic library. For all cases,
differences in performance are expressed as a relative percentage with respect to the reference
case: multi-library, GCC 8.2.0 with -02 optimization. For each of the studied configurations
the benchmark simulation was run 5 times. Average values are presented and in all cases,
standard deviations are of the order of 2%.

For both compiler versions, the single-library approach exhibits an increase of ~ 10% in
execution time. This effect seems to be counter-intuitive, but could be explained by consid-
ering how shared libraries call and load objects in memory and how the interaction between
GEANT4 core libraries and user application is structured. Each call to a function in a dy-
namic library takes advantage of a trampoline which reads the memory address of the called
method from a lookup table and passes it to the calling function. This results in an increased
number of calls and jumps, which eventually slows down the simulation execution [14].

As found in previous studies [5], different optimization flags do not have a significant
impact on the simulation times.
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Figure 3: Comparison of the execution times between three different build types: static,
dynamic (default multi-library configuration) and dynamic single library.

3.3 Impact of different particles

In order to investigate the impact that static and dynamic builds have on interactions of dif-
ferent complexity, several primary particles (protons and charged pions) of different energies
(10, 20 and 50 GeV) have been considered. The average results are summarized in Table 2
and Table 3; the former were obtained from the GDML geometry (without EMEC), whereas
the latter were produced with the complete ATLAS geometry.

For all the primary particles analyzed, a decrease in the simulation execution time is ob-
served for the static build, when compared to the dynamic case. This improvement is increas-
ingly pronounced as the complexity of the interactions grows. Considering the geantinos, a
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5% decrease in time was observed (Table 2). The speed-up rises to 6% in the case of 50 GeV
protons tested with the full ATLAS geometry (Table 3) and exceeds 10% in case of 20 GeV
protons tested with GDML geometry (Table 2).

The static build shows a tendency to be less sensitive to the type of primary particles
used. For example, in simulations run at 20 GeV with dynamically linked libraries, the
proton exhibited an average 4.5% increase in the simulation time with respect to the pions.
This percentage decreases to about 3.6% in the static case.

For energies of 20 and 50 GeV, computations with protons show a longer execution time.
Following the cumulative distribution function [15], the proton undergoes more ionization
processes in the medium it traverses. Additionally, based on the particles stopping power
plots [16], the energy loss of the pion is larger than the proton’s at these energies. Thus, the
extra ionization processes simulated for the proton, not only due to its higher probability of
interaction, but also longer distances travelled before absorption, are the primary cause for
the increase in execution time.

For both build types and both geometries, differences in the results for positive and neg-
ative pions are consistent with the slightly larger interaction cross section of the negative
particle at the considered energy [16].

Pure propagation, tested using geantinos, has a negligible impact on the running time
which in all cases is ~3 s per run.

Table 2: Execution times per run for p, 7* and geantinos at 10, 20 and 50 GeV, tested with
static and dynamic GEANT4 builds. The GDML geometry (without EMEC) is used with
5000 primary particles [17].

Particle type Simulation time (s) Decrease w.r.t. protons (%) Increase w.r.t. static case (%)

Dynamic library (10 GeV, 20 runs)

p 601 +9 — 9.9
- 594 + 10 1.1 10.4
at 577 +5 4.2 9.6
Geantino 3.0+0.1 1.99 x 10* 5.6
Static library (10 GeV, 20 runs)
p 546 + 6 — —
- 538 +8 1.5 —
at 526 +4 3.9 —
Geantino 3.2+0.1 1.7 x 10* —
Dynamic library (20 GeV, 100 runs)
p 1130 + 14 — 10.5
- 1083 + 19 4.3 9.4
at 1079 = 18 4.7 9.7
Geantino 3.1+0.1 3.64 x 10* 4.7
Static library (20 GeV, 100 runs)
p 1023 £ 12 — —
- 990 + 14 3.3 —
at 983 + 12 4 —
Geantino 3.0+0.1 3.4 x10* —
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Table 3: Execution times per run for p and 7* at 10, 20 and 50 GeV, tested with static and
dynamic GEANT4 builds. The GeoModel geometry (including EMEC) is used with 5000
primary particles.

Particle Simulation time (s) Decrease w.r.t. protons (%) Increase w.r.t. static case (%)

Dynamic library (10 GeV, 45 runs)

14 647 +9 — 6.2

- 657 +9 -1.5 6.3

at 640 + 10 1.1 7.0
Static library (10 GeV, 45 runs)

p 609 + 10 — —

- 618 +9 -1.5 —

at 598 +7 1.8 —

Dynamic library (20 GeV, 45 runs)

p 1212+ 13 — 6.5

- 1209 + 18 0.2 6.7

at 1181 + 14 2.6 6.1
Static library (20 GeV, 45 runs)

p 1138 + 11 — —

- 1133+ 14 04 —

at 1113+ 13 2.2 —

Dynamic library (50 GeV, 45 runs)

p 2797 + 46 — 6.1

- 2752 + 40 1.6 6.9

nt 2715 + 39 3.0 6.9
Static library (50 GeV, 45 runs)

)4 2636 + 30 — —

n 2573 +28 2.4 —

at 2539 + 37 3.8 —

4 Conclusions and outlook

Several factors can significantly affect the full GEANT4 simulations execution times. This
study has shown that unsafe math optimizations as well as certain compilers, namely the
Clang family and older GCC versions, may have a negative impact on the quality of the
physics results.

Tests with the single dynamic library resulted in a ~ 10% increase in the execution time,
and this can be ascribed to the trampoline/lookup table mechanism of dynamic linking. This
new build type, tested here for the first time, is, thus, not recommended as a viable choice for
improving the time performance of the full simulations.

All the investigations carried out with the static build type with the GDML geometry
(without EMEC) have shown a gain of about 10% with respect to the reference multi-library
dynamic case. Evaluations with the GeoModel geometry, representing the full ATLAS de-
tector (including EMEC), resulted in a smaller gain of about 7%. Despite this reduction in
gain with the full geometry, the static build is confirmed as the most effective technique for
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optimizing the full simulations execution time. It is, therefore, advisable to expand the inves-
tigations on this build type by evaluating the performance of a single static library combined
with the full GeoModel geometry. Eventually, these studies should also be integrated and
tested in the environment of the Athena framework.
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