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Abstract. The High Luminosity Large Hadron Collider (HL-LHC) at CERN
will involve a significant increase in complexity and sheer size of data with
respect to the current LHC experimental complex. Hence, the task of recon-
structing the particle trajectories will become more involved due to the num-
ber of simultaneous collisions and the resulting increased detector occupancy.
Aiming to identify the particle paths, machine learning techniques such as graph
neural networks are being explored in the HEP.TrkX project and its successor,
the Exa.TrkX project. Both show promising results and reduce the combinato-
rial nature of the problem. Previous results of our team have demonstrated the
successful attempt of applying quantum graph neural networks to reconstruct
the particle track based on the hits of the detector. A higher overall accuracy
is gained by representing the training data in a meaningful way within an em-
bedded space. That has been included in the Exa.TrkX project by applying a
classical MLP. Consequently, pairs of hits belonging to different trajectories are
pushed apart while those belonging to the same ones stay close together. We
explore the applicability of variational quantum circuits that include a relatively
low number of qubits applicable to NISQ devices within the task of embedding
and show preliminary results.

1 Introduction

With the start of the High Luminosity LHC (HL-LHC), there will be many more simultaneous
collisions (pile-up) leading to ambiguities and making the task of reconstructing the particle
tracks highly complex [1]. To explore how (classical) machine learning techniques can tackle
this task, the TrackML challenge has been launched on Kaggle [2]. The TrackML data set
consists of more than 8,000 simulated collision events. Since its release, the data set has
become an important benchmark for particle tracking algorithms. Graph neural networks, as
novel approaches to track reconstruction, are applied within the HEP.TrkX project [3] and
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its update, the Exa.TrkX project [4]. In both of these projects, the graph neural network has
the general structure of iteratively applying a node and an edge network. The edge and node
information can either take doublets or triplets of nodes into account. An important part in the
data processing pipeline of the Exa.TrkX project forms the embedding of the detector mea-
surement data. A feed-forward neural network with hidden layers – referred to as Multi-Layer
Perceptron or MLP – acts as a non-linear projection onto a higher-dimensional embedding
space. Hits belonging to the same trajectory are embedded close together, while those be-
longing to different trajectories are embedded far apart. This step improves the performance
within the classification task. This work explores hybrid quantum-classical networks for em-
bedding the simulated detector measurements of the TrackML dataset. It builds up on the
promising approach of using quantum graph neural networks [5], [6], as well as the projects
using classical neural networks which are mentioned above [3], [4], [7]. Several quantum cir-
cuit configurations have been explored that extend or replace parts of the classical MLP used
within the Exa.TrkX project. The quantum-classical version utilizes the exponential size of
the Hilbert space and explores the effects of entanglement on the embedding and inference
tasks across different sized classical networks that aim to optimize the representation within
several quantum circuits. The quantum circuits used are chosen to have possible applications
on noisy intermediate-scale quantum (NISQ) devices [8]. Hence, the circuits build up on a
low number of qubits and quantum gates.

2 Quantum Gates and Quantum Circuits

This section provides a short overview on how quantum computing can be included within
classical neural networks. Each qubit in a gate-based quantum circuit is initialized in the |0〉
state, pointing upwards in the Bloch sphere representation. Quantum gates can be applied on
a single or multiple qubits that can get entangled. In the following, we will use for example
RX gates to encode classical parameters, i.e., angles θ. Those values are for example given
by the classical MLP output x̂i, as shown in Fig. 2. They act on a general quantum state
|Ψ〉 = α|0〉 + β|1〉 as follows [9]:

Rx(θ)|Ψ〉 = exp (−i
θ

2
σx)|Ψ〉 =

(
cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

)
·
(
α
β

)
. (1)

Here, σx represents the respective Pauli matrix and X the rotational axis. The gates applied
on the different qubits in a quantum circuit are designed in a reversible way, meaning the
output of the gate fully determines its input. There is no loss of information in a noiseless
quantum circuit. Gates with variable parameters can either encode incoming classical infor-
mation (IQC), here in form of angle-encoding, or exhibit trainable parameters (PQC). In this
case, gates exhibiting a variable parameter are initialized at random and optimized during the
training procedure, similarly to classical weights in a neural network. In addition, a quantum
circuit can include hidden dimensions consisting of additional qubits that do not encode input
information. They can be entangled with any other qubit. Gates with trainable parameters
may be applied on the hidden dimensions to expand the number of free parameters in the cir-
cuit. To convert back to a classical output, we compute the expectation value with respect to
the σz-operator. Practically, this value is estimated numerically by evaluating the circuit for
nshots = 1000, as it is standard in Pennylane [10] and thus inferring the probabilities trough
the wave-function collapse.
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cuit. To convert back to a classical output, we compute the expectation value with respect to
the σz-operator. Practically, this value is estimated numerically by evaluating the circuit for
nshots = 1000, as it is standard in Pennylane [10] and thus inferring the probabilities trough
the wave-function collapse.

3 The data set

The network has been trained on the TrackML data set which is publicly available [11]. The
task is to classify the 3-dimensional hits in order to identify the trajectories of the single
particles involved in the collision. The figure below (Fig. 1) displays how the hits, displayed
as dots, are connected by edges and form trajectories. True trajectories are displayed in blue
and false ones in red. Due to training time restrictions only a part of the TrackML data set
has been processed to doublets in the same way as in the Exa.TrkX project, setting a cut at
pT = 1. 10,000 doublets have been generated and are used for training the hybrid quantum-
classical network (8,000 for training, 2,000 for validation). This is a relatively small number
of samples to have a reasonable training time when working with quantum circuits. In further
tests, more samples should be used for training. For the train-validation data split, the data has
been shuffled and thus randomly assigned to one of the data sets to guarantee an expressive
validation procedure. By observing the behaviour of the training and validation losses, over-
fitting can be seen and prevented. The validation loss is more informative than the actual
training loss because the performance is evaluated on a separate, independent part of the
data that is not involved in the optimization procedure. Hence, only the validation loss is
presented.
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Figure 1: Illustration of the particle track reconstruction task. The black dots represent the simulated detector hits
which are connected to trajectories. True edges are displayed in blue, false ones in red [5].

4 Hybrid Architecture

The architecture follows two different approaches that extend the classical MLP used for
embedding by the Exa.TrkX project [4]. Both approaches follow the general structure as
presented in Fig. 2 with different quantum circuits (QC) and various numbers of classical
hidden layers (nlayers). In the first approach, the classical MLP is combined with different
quantum circuits, which act as a function, i.e., the output from the previous classical part is
encoded using rotational gates, as described above. Hence, the output layer of the classical
MLP projects onto the number of parameters nparams of the quantum circuits. Depending on
the respective circuit, a certain degree of entanglement is present across the qubits. Quantum
circuits that exhibit different metric values with respect to entanglement, expressibility and
varying numbers of parameters [12] have been used to explore how those differences influ-
ence the training behavior of the whole network. The second approach using the quantum
feature map follows again the same general structure as described in figure 2. The output
of the classical MLP is encoded using rotational gates. Furthermore, this version includes
trainable parameters within the quantum circuit. As before, the last classical network layer
projects the output of the quantum circuit (nmeas.) onto the preferred embedding dimension
that is smaller or equal to nmeas..
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Figure 2: Illustration of the general structure of the hybrid quantum-classical MLP. The displayed quantum circuit
(QC) acts as a placeholder for the quantum circuit architectures presented below. The QC encodes the incoming
classical input x̂i and can include trainable parameters θ.

4.1 The classical MLP

The classical MLP used in the Exa.TrkX project [4] has hidden layers of the dimension of
nlayers × 512, where 512 is the number of neurons per layer and nlayers = 10. There are addi-
tional input and output layers. The Exa.TrkX project uses an embedding/output dimension
of 8. The classical embedding version performs well and forms a successful pre-processing
step, which improves the performance of the classification GNN. The aim is to explore how
incorporating quantum circuits changes the training behaviour and how the reduction of clas-
sical MLP layers within this hybrid model performs in simulations.

4.2 Quantum Circuit approach

The general architecture can be seen in Fig. 2. For this first approach nlayers is set to 10 and
the quantum circuits from Fig. 3 act as an encoding function. The 3-dimensional input data
from the TrackML data set is embedded into a 4-dimensional space. Due to the long training
time for the simulation of the quantum circuit, only 4 and 8 qubit quantum circuits have been
used. This limits the embedding space dimension for this 4-qubit circuit (dim(�̂z) = 4) to
dim(�z) = 4. For better comparison, the same embedding dimension was kept also for the
8 qubit circuits, where dim(�̂z) = 8. The last classical layer is kept in all tests for the same
reason. The circuits should be later extended to use more than 8 qubits and thus make an
embedding into a higher dimensional space possible.
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Figure 3: The 4-qubit quantum circuits [12] that have been used within the general architecture (Fig.2). Each of
the (conditional-) rotational gates can encode incoming classical information as angles on the respective qubit (as in
equation 1). Moreover, the displayed 2-qubit gates, i.e., the conditional rotational and the CNOT gates, can entangle
the two qubits they are applied on.
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Figure 3: The 4-qubit quantum circuits [12] that have been used within the general architecture (Fig.2). Each of
the (conditional-) rotational gates can encode incoming classical information as angles on the respective qubit (as in
equation 1). Moreover, the displayed 2-qubit gates, i.e., the conditional rotational and the CNOT gates, can entangle
the two qubits they are applied on.

The different quantum circuits displayed in Fig. 3 have been used as QC in the hybrid MLP
architecture displayed in Fig. 2. Those four circuits have been chosen due to their differences
with respect to entanglement and expressibility as depicted in [12]. Entanglement is measured
using the Meyer-Wallach entanglement measure [13], [12]:

Q(|ψ〉) = 4
n

n∑
j=1

D(ι j(0)|ψ〉, ι j(1)|ψ〉) (2)

with D(|u〉, |v〉) = 1
2
∑

i, j |uiv j − u jvi|2 and ι j(b)|b1, ..., b j, ..., bn〉 = δb,b j |b1, ..., b j−1, b j+1, ..., bn〉.
Thus, the entanglement value for a given quantum circuit is defined as:

Ent =
1
|S |
∑
θ j∈S
Q(ψθ j ), (3)

where S = {θ j} is given as the ensemble of sampled circuit parameter vectors. The ex-
pressibility of the circuits is measured as the Kullback-Leibler-divergence (DKL) between the
estimated probability distribution of the fidelities F of the respective quantum circuit and the
one of Haar random state [12]:

Expr = DKL(P̂PQC(F, θ)||PHaar(F)). (4)

Another relevant metric that should be tested in future studies is for example the Fisher in-
formation spectrum [14]. The (conditional) rotational gates in Fig. 3 encode the output of
the classical MLP as angles, i.e. the output of the MLP is optimized in a way to learn the
encoding on the qubits within the given quantum circuit structure. Thus, the quantum circuit
acts as a function: QCid : Rnparam. −→ Rnmeas. for id ∈ {5, 7, 11, 14} and projects the input to
the number of measurements in the circuit. There is a further classical down-projection layer
applied that makes it possible to embed into a lower-dimensional embedding space (i.e., for
the 8-qubit circuit). The layer is kept for all versions to make them comparable.

4.3 Quantum Feature Map approach

The second approach includes a quantum circuit with trainable parameters. The initial ar-
chitecture of the quantum circuit was adapted from [15]. The overall structure of the hybrid
network follows again Fig. 2. In this version, the output of the classical MLP is encoded
repeatedly using rotational gates. In between, entangling gates are applied that include opti-
mizable parameters. Various numbers of hidden dimensions can be included. To keep the size
of the circuit as small as possible, only one hidden dimension was used for testing purposes.
The hidden dimension, here, is a single qubit that is not used for encoding or decoding but
is entangled with other non-hidden dimensions and includes trainable parameters in the form
of variable angles of rotational gates. Furthermore, this approach can be extended to more
qubits and hence encode more input parameters as well as include more trainable parameters,
i.e., within the hidden dimensions. The quantum feature map (QFM) circuit is displayed in
Fig. 4 and exhibits 74 parameters. The RX gates encode the input of the 4-dimensional pre-
vious layers and the remaining parameters are variable and hence randomly initialized and
optimized during training. Just like before, each qubit is initialized in the |0〉 state. The first 4
qubits are the ones measured at the end of the quantum circuit, the 5th one forms the hidden
dimension of the circuit. In Fig. 4, it is visible how the input (IQC) is repeatedly applied in
every iteration. This encoding is done via rotational gates:

|Ψi〉 = RX(x̂i)|0〉, for 1 ≤ i ≤ 4 . (5)
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Figure 4: Quantum circuit of the quantum feature map approach used within the general architecture in Fig. 2.
Adapted from [15]. The variational 2-qubit gate is defined as ZZ(θ) = exp (−iθσ⊗2

z /2), additionally we apply the
Hadamard gate on the hidden layer, which has the following effect on the initial qubit state H|0〉 = |0〉+|1〉√

2
in the

computational basis. The measurement is only taken of the first 4 qubits, but the hidden layer can have nevertheless
an influence on the outcome since it is entangled via the ZZ-gates. The amount of entanglement depends on the
value of θ.

5 Results and implementation details

The different architectures of the hybrid quantum-classical neural network described above
have been tested and the results are shown in detail below. The simulations of the hybrid
quantum-classical network structure have been done in Python using PyTorch [16] and quan-
tum computing libraries such as Pennylane [10] and Qiskit [17]. It is a supervised training
procedure. The data set consists of doublets, which are two 3-dimensional points (hits) in a
Euclidean space that form nodes connected via an edge. Each of these doublets have a label
that defines whether they are true edges, i.e., the corresponding hits belong to the same tra-
jectory or not. The aim of the embedding is to represent the hits in a feature space where the
true doublets are close together and the false ones are further apart. This is achieved by us-
ing the hinge embedding loss during training, similarily to the Exa.TrkX project. The hinge
embedding loss, available in PyTorch [16], is defined for each sample sn = (xi, x j, yi, j) as fol-
lows, where Φ(xk, θ) represents the embedded hit xk given by the model including trainable
parameters θ:

loss(sn) =


max{0, ||Φ(xi, θ) − Φ(x j, θ)||2}, if (xi, x j) belong to the same trajectory
0, if (xi, x j) belong to different trajectories.

(6)

The n-th sample sn is described by the two hits in the original space, denoted as (xi,x j). To
each of these doublets belongs a label y(i, j) ∈ {±1} that indicates if the two points belong to
the same trajectory y(i, j) = 1 or not, y(i, j) = −1. The hinge embedding loss function favors
the case in which two hits of to the same trajectory are embedded close together. Other loss
functions that act similarly (i.e., cosine embedding loss) have also been tested.

5.1 Training the quantum circuit construction

The quantum circuit architecture (displayed in Fig. 2 and 3) was trained using ADAMAX opti-
mizer [18], a learning rate of 0.001, batch size of N = 100. The classical MLP has nlayers = 10
where each of the layers consist of 512 neurons. In table 1, a comparison between the quan-
tum circuits that have been trained is displayed. The training time increases with increasing
number of gates in the 4-qubit circuits. The 2-qubit gates are more computationally expen-
sive. The difference in number of gates and number of parameters occurs because some of
the gates (e.g. the CNOT gate) do not have a variable parameter. The listed quantum circuits
have been chosen due to their different values regarding the entanglement and expressiblity
metrics. The presented values in Table 1 have been reproduced and the metrics are described
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tum circuits that have been trained is displayed. The training time increases with increasing
number of gates in the 4-qubit circuits. The 2-qubit gates are more computationally expen-
sive. The difference in number of gates and number of parameters occurs because some of
the gates (e.g. the CNOT gate) do not have a variable parameter. The listed quantum circuits
have been chosen due to their different values regarding the entanglement and expressiblity
metrics. The presented values in Table 1 have been reproduced and the metrics are described
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Figure 5: Validation loss of the hybrid network with the respective quantum circuit within the general architecture.

Table 1: Comparison between the different 4-qubit circuit parameters. Circuits from [12]. The error on the metric
values is of the order O(10−4).

Circuit Parameters Entanglement Expressibility Training time
nparams (higher value preferred) (lower value preferred) (average per batch)

5 28 0.290 0.051 37 ± 8s
7 19 0.212 0.104 20 ± 4s
11 12 0.538 0.139 14 ± 4s
14 16 0.545 0.011 16 ± 4s

in more detail in [12]. Due to the favourable metric values of circuit 14, a good training
performance is expected for this circuit. This is confirmed in when comparing the validation
loss.
In Fig. 5, the mean values of 3 independent runs with different initial random states and
the respective standard deviation as error bars are shown. We observe a strong initialization
dependence for circuit 5 that also exhibits the largest number of parameters of the tested
circuits, in detail discussed below. Circuit 14 has the best converging behavior towards the
lowest validation loss in this comparison. While circuit 7 converges to a similarly low value,
the validation loss function exhibits higher and lower spikes. This could be explained by
the training strategy using mini-batches of size 100. Circuit 11 converges to a comparable
value of validation loss but seems to be converging more slowly until epoch 40. An unfortu-
nate random initialization might explain the initially slow convergence rate of circuit 7 and
especially 5. The training results could be improved, by repeatedly applying the respective
quantum circuit [12]. By doing this, the entanglement value increases as the KL-divergence
decreases, i.e., the expressibility of the circuit increases (4.2) and thus the flexibility of the
quantum circuit in representing random states. This means the quantum circuit is able to rep-
resent a wider range of states. The improvement when increasing the number of repetitions
of the circuit can be seen in Fig. 6. Hence, repeating the best performing circuit 14 from
before can improve the validation loss and score displayed above. At the same time such it
also increases the number of gates in the circuit which leads to longer training times.

5.1.1 Barren plateaus

Even though the hybrid quantum-classical neural network version uses shallow quantum cir-
cuits including only up to 8 qubits and the number of parameters is of O(10), the training
performance is highly dependent on the initialization of the circuit parameters. In some
cases, the training and validation losses do not converge at all within the 100 epochs that
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Figure 6: Change in entanglement (left) and expressibility (right) value for quantum circuit (QC) 14 which is repeat-
edly applied on the qubits for niterations. Ent./Expr. calculated as in [12].

have been used for training. It is visible in Fig. 7 how much the training success depends
on the initialization of the parameters, i.e., convergence of the loss function within the first
100 epochs. The loss function shows the behaviour of 3 independent runs with different
random state for initialization of the parameters in the classical MLP. Those random param-
eters act at the same time as the input to the quantum circuit and thus lead in case of run 3
to an unfavourable convergence behaviour, while for run 2 the initialization seems to only
slow down the convergence in comparison to run 1. Several approaches exist to avoid such
barren plateaus [19]. Furthermore, in this case it could help to lower the learning rate as it
was done within the QFM approach. The small spikes could be explained by the mini-batch
optimization procedure when using ADAMAX optimizer. Run 3 was omitted in Fig. 5 for better
visualization.

0 20 40 60 80 100

number epochs (1 epoch = 80 batches)

0.1

0.2

0.3

0.4

0.5

l
o
s
s

run 1

run 2

run 3

Figure 7: Validation loss of 3 independent runs of
hybrid network using circuit 5 with 4 qubits.
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Figure 8: Validation loss of hybrid architecture with
circuit 14 using 4 and 8 qubits.

5.1.2 Expanding the number of qubits

The initial circuits are all constructed using 4 qubits, corresponding to 4 qubits in the quantum
circuit. If all qubits are measured, the output is also 4-dimensional, and the input data set is
embedded into a 4-dimensional space. Thus, enlarging the quantum circuit allows to embed
into higher dimensional spaces. To compare the different performance in validation loss
and running time of the 8-qubit quantum circuit to the 4-qubit one, the last layer projects
the output of the quantum circuit (nmeas. = 8) onto a 4-dimensional embedding space. Fig.
8 shows the validation loss of the two versions of circuit 14 with 4 and 8 qubits. They
exhibit a similar training performance. The 8-qubit circuit converges slightly slower than the
4 qubit one. In table 2 it is visible, how both circuits exhibit a similar entanglement value,
but the 8-qubit circuit has a slightly higher expressibility. The plot shows the mean value of
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random state for initialization of the parameters in the classical MLP. Those random param-
eters act at the same time as the input to the quantum circuit and thus lead in case of run 3
to an unfavourable convergence behaviour, while for run 2 the initialization seems to only
slow down the convergence in comparison to run 1. Several approaches exist to avoid such
barren plateaus [19]. Furthermore, in this case it could help to lower the learning rate as it
was done within the QFM approach. The small spikes could be explained by the mini-batch
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5.1.2 Expanding the number of qubits

The initial circuits are all constructed using 4 qubits, corresponding to 4 qubits in the quantum
circuit. If all qubits are measured, the output is also 4-dimensional, and the input data set is
embedded into a 4-dimensional space. Thus, enlarging the quantum circuit allows to embed
into higher dimensional spaces. To compare the different performance in validation loss
and running time of the 8-qubit quantum circuit to the 4-qubit one, the last layer projects
the output of the quantum circuit (nmeas. = 8) onto a 4-dimensional embedding space. Fig.
8 shows the validation loss of the two versions of circuit 14 with 4 and 8 qubits. They
exhibit a similar training performance. The 8-qubit circuit converges slightly slower than the
4 qubit one. In table 2 it is visible, how both circuits exhibit a similar entanglement value,
but the 8-qubit circuit has a slightly higher expressibility. The plot shows the mean value of

Table 2: Comparison between the different 4-qubit and 8-qubit circuit parameters. As before, the error on the metric
values is of the order O(10−4). Ent./Expr. calculated as in [12].

Circuit Parameters Entanglement Expressibility Training time
nparams (average per batch)

14 (4 qubits) 16 0.545 0.011 0.28 ± 0.07min
14 (8 qubits) 32 0.544 0.062 1.44 ± 0.5min

3 independent runs of one batch per epoch and the error bars display the respective standard
deviation regarding the 3 runs. Due to the difference in number of qubits and number of
parameters, the training time per batch for the 8-qubit circuit is much longer. In this case, the
performance difference does not justify increasing the qubit number when projecting onto
a 4-dimensional embedding space due to the difference in simulation times. The 8-qubit
version becomes important if one makes use of the higher number of measurements.

5.2 Training the quantum feature map approach

The quantum feature map network was trained using similar specifications as before. Again,
ADAMAX was used as optimizer and a batch size of N = 100. The embedding dimension here
is also 4, limited due to the number of qubits within the quantum circuit and training time
constraints. The main difference is that the learning rate was lowered to lr = 1e−4.

The QFM model exhibits additional trainable parameters within the quantum circuit.
Thus, it is an interesting question how the performance changes if the size of the classical
MLP is reduced. Hence, a range of combinations of layers in comparison to the classic
10-layer case have been tested. The parameters and metric values with respect to the
entanglement and expressibility metrics are shown in Table 3 in comparison to circuit 14. As
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Figure 9: Validation loss of the quantum feature map circuit with variable numbers of layers nlayers of the classical
MLP.

displayed in Fig. 9, the 8-layer version seems to perform better or at least is comparable to
the 10-layer version within the first 100 epochs. The 4-layer version converges to a higher
validation loss and thus seems to reach its expressiveness quite early and converges to a local
minimum. The 1-layer version performs similarly to the 4-layer one, the expressiveness in
this case is also limited. Moreover, both variants (1- and 4-layer) depend on the initialization
for training success which is indicated by the error bars. For this model, the learning rate
had to be lowered to lr = 1e−4. When training using lr = 1e−3 as before, it exhibits an
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Table 3: Comparison of relevant metric parameters of the respective quantum circuits within the general model. To
get the respective training time, we set nlayers = 10 (classical layers). Ent./Expr. calculated as in [12].

Circuit Parameters Entanglement Expressibility Training time
nparams (average per batch)

QFM (5 qubits) 74 0.772 0.001 5min38 ± 8s
(niteration = 5)
14 (4 qubits) 16 0.545 0.011 16 ± 4s
(niteration = 1)

unfavorable convergence behavior. Comparing the validation loss of the 8 and 10-layer
version using the quantum feature map approach to the quantum circuit 14 (10 classical
layers) from before, they have a similar performance within the first 100 epochs, even if the
QFM circuit exhibits favorable metric values (Table 3). In the presented range of epochs
circuit 14 seems to perform better. However, this behaviour could change when training
the QFM model for more epochs. Regarding the training time per batch, circuit 14 trains
much faster and completes 100 epochs within O(105s). In comparison to that, the QFM
version needs O(107s). This difference is due to the much higher number of quantum
gates and parameters to be optimized. Also, for the QFM approach, the entanglement and
expressibility of the circuit increases as the number of niterations increases, as shown in
Fig. 10. This is accompanied by an increased training time. In Fig. 11 we compare the hybrid
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Figure 10: Change in entanglement (left) and expressibility (right) value for quantum feature map QC for different
niterations. Calculated as in [12].

version to different sized classical MLPs. Regarding the best loss using the QC approach,
there seems to be a trade-off between entanglement and expressibility. Whereas circuit 7 has
the lowest entanglement and an intermediate expressibility, circuit 14 is really expressive
but at the same time exhibits the highest entanglement within this comparison. In the QFM
comparison we observe a proportionality of training success of the classical counterpart to
the success in the representing the classical input within the quantum circuit. It is interesting
how the difference in best loss value of the 8- and 10-layer version is enhanced in the hybrid
model.

6 Conclusion

Combining quantum circuits and artificial neural networks to hybrid quantum-classical neu-
ral networks is a promising and interesting field of study with possible applications using
noisy intermediate-scale quantum technologies [8]. The long simulation times of the quan-
tum circuits that are of O(10 hrs) currently restrict the number of qubits to 4 in our approach
(O(1 hr) training the QC approach for 1 epoch on 4 CPUs and 7-8 hours for training the QFM
model for 1 epoch). Training on real quantum hardware is expected to be faster in the fu-
ture. The current simulation time restrictions lead to a reduced expressiveness of the circuits
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Figure 11: Comparison of best validation loss with different sized classical MLPs trained on 100 epochs. The left
figure compares the QC approach circuits and the 10-classical layer QFM version. In the second figure, we vary the
number of hidden layers in the classical MLP within the QFM approach. The presented mean and standard deviation
is calculated for 3 independent runs each (2 independent runs for QFM 10 layer version). The classical versions are
trained using lr = 1e−3 for the 8/10-layer version and lr = 1e−4 for the 1/4-layer version. The dashed lines indicate
the respective mean value.

and a low number of parameters. The entanglement and expressibility values of the different
tested quantum circuits can be improved by repeating their main structure and thus increase
the number of parameters within the network. We observe that the success in representing
the classical input within the quantum circuit highly depends on the training success of the
classical MLP. More efficient encoding schemes will be tested as next steps. When compar-
ing the best loss, there seems to be a trade-off between entanglement and expressibility. To
test more complex circuits efficiently, it is important to speed-up the simulation process using
GPUs and parallelization techniques and hence be able to use more qubits and more training
data. This would open future possibilities to replace larger parts of classical neural networks
with expressive quantum circuits for embedding and classification tasks. It would also allow
us to increase the size of the training data sets. To conclude, we perform a successful data
embedding step using hybrid quantum-classical neural networks. This is an important step in
increasing the accuracy in the particle tracking task using GNNs. We plan to combine both,
the embedding and the quantum GNN [5], to obtain this objective.
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