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Abstract
One key aspect of accelerator optimization is to maximize

the dynamic aperture (DA) of a ring. Given the number
of adjustable parameters and the compute-intensity of DA
simulations, this task can benefit significantly from efficient
search algorithms of the available parameter space. We pro-
pose to gradually train and improve a surrogate model of the
DA from SixTrack simulations while exploring the parame-
ter space with adaptive sampling methods. Here we report
on a first model of the particle stability plots using convolu-
tional generative adversarial networks (GAN) trained on a
subset of SixTrack numerical simulations for different ring
configurations of the Large Hadron Collider at CERN.

INTRODUCTION
The performance of a storage ring is characterized, among

others, by the extent of the volume in phase space where
the charged particles feature bounded, i.e. stable, dynamics
as simulated by long-term tracking. This is best described
by the stability plot shown in Fig. 1, obtained with single-
particle tracking codes such as SixTrack [1]. The plot illus-
trates how many revolutions particles starting from different
initial horizontal and vertical amplitudes perform before they
are lost from the beam. Every dot represents one particle at
its initial horizontal and vertical amplitudes. Typically, parti-
cles at small amplitudes are stable for millions of revolutions,
while those with higher initial amplitudes may be lost on
much shorter timescales as they are more susceptible to the
field errors of the imperfect magnetic multipoles and to the
effects of the non-linear magnets (sextupoles, octupoles, etc.)
required to suppress collective beam phenomena through
chromaticity and Landau damping, for example [2, 3]. The
boundary between the stable and the chaotic regimes is called
Dynamic Aperture (DA) (see, e.g. [4, 5]). To maximize the
DA, one has to properly adjust a large number of machine
parameters, which requires efficient search algorithms in the
available parameter space. The search for optimal parameter
settings has been mostly a manual task where beam physi-
cists scan promising areas of the entire parameter space with
particle tracking simulations. This is usually complemented
by employing analytical concepts like resonance driving
terms (RDTs) [6]. Typically, lower priority parameters, al-
though still relevant for machine performance, have often
∗ michael.schenk@cern.ch

not been optimized for due to the lack of better search al-
gorithms. For a machine as complex as the Future Circular
Collider (FCC) [7], an extensive search of the available pa-
rameter space with a manual approach is rather impractical
and would likely not reveal the best working point.

Surrogate modeling techniques combined with adap-
tive sampling have been used in other engineering do-
mains where function evaluations, such as running compute-
intensive simulations or experimental data acquisitions, are
expensive (see e.g. [8, 9] and references therein). The pro-
cess of finding optimal settings for a complex machine like
the FCC requires among others thousands of computation-
ally expensive tracking simulations and will hence benefit
from combining such techniques with existing beam physics
codes like SixTrack.

Figure 1: Example stability plot obtained with SixTrack.

The main objectives of this work are twofold: first, to
identify and develop a suitable model for the stability plots
as a function of the machine parameters, and second, to
develop an adaptive sampling framework that provides a tar-
geted, efficient, yet exhaustive search for optimal parameter
settings. Initially, the model is trained on a readily available
set of SixTrack simulation data. From this point onwards,
it will be updated iteratively with new incoming simulation
data obtained by actively and automatically exploring the
available parameter space. The model should ideally pro-
vide confidence intervals on its predictions in order for the
adaptive sampler to automatically pick the next sampling
points that best improve the accuracy of the current model.
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Here we report on first attempts to model the particle
stability plots. After explaining the modeling technique and
the data used, some first, preliminary results are discussed.

MODEL AND DATA

Generative Adversarial Network

Figure 2: Schematic of a classical GAN [10].

Figure 2 shows a schematic of a generative adversarial
network (GAN). It is composed of two neural networks, a
generator and a discriminator, that constantly try to out-
perform each other as training progresses [11]. These two
networks can be perceived as actor and critic, respectively.
While the generator tries to produce fake images that look
identical to those in the training set, the discriminator tries
to distinguish real training images from fake ones. The two
networks are trained simultaneously in the minimax game:
as training progresses, the generator gets better at creating
counterfeit images by minimizing the probability that the
discriminator is correct. At the same time the discriminator
gets better at distinguishing fake from real data. Eventually,
an equilibrium is reached as we will see below. At this stage
the GAN is considered trained.

Unfortunately, once trained, the generator of a classical
GAN just outputs random images from the model distri-
bution learnt from the training set without us having any
control. For our purpose, however, we would like to force the
generator to produce the particle stability plot of the specific
parameter settings that we request. This can be achieved
by employing a conditional GAN (c-GAN) [12]. C-GANs
are trained much like classical GANs with the important
difference that during training we also provide a label that
characterizes the class that the image belongs to. In our case,
the class label is given by the parameter settings associated
with the stability plot.

The stability plots can be perceived as rasterized images
where each initial condition represents one pixel. As a result,
the c-GAN architecture employed here was chosen to be
composed of 4 convolutional and 2 dense layers for both
the generator and the discriminator networks. While the
generator uses filter and up-scaling layers to get from 6 × 6
random noise input to 12 × 12, and eventually 24 × 24
pixel images, the discriminator uses filter and down-scaling
convolutional layers to get from 24 × 24 to 12 × 12, and
to 6 × 6 pixel images.

Training Data
For this initial study, the training data was produced using

SixTrack, running a scan in both, first-order chromaticity
𝑄′ and Landau octupole current 𝐼oct for the CERN Large
Hadron Collider (LHC) lattice at injection energy 450 GeV.
The stability plots for 1728 different (𝑄′, 𝐼oct) pairs were
generated. The number of samples in the initial amplitudes
in both transverse planes was set to 24, corresponding to
stability plots with a relatively low resolution of 24 × 24
pixels. This will be increased in the future.

Figure 3: Distribution of training data (left) and discretiza-
tion onto a regular grid (right) in parameter space.

The distribution of training examples in the 2D parameter
space is shown in Fig. 3, left. The parameters have been
mapped to the range [0, 1], corresponding to 𝑄′ ∈ [5, 25]
and 𝐼oct ∈ [−50, 50] A. To train the c-GAN one could in
principle provide directly a tuple of the continuous parame-
ter values (𝑄′, 𝐼oct) as input label to every image. However,
to improve the stability of the c-GAN training, we create
discrete labels instead as illustrated in Fig. 3, right. The
chosen discretization is 31 × 31. It is likely and desirable
that this restriction of discretizing the input parameters can
be lifted in the future. One notices that in the discretized
parameter space some settings of (𝑄′, 𝐼oct) do not have any
corresponding training data. Assuming that the model gen-
eralizes well, it will interpolate for the labels with missing
training data and produce reasonable results nevertheless.
This will be demonstrated below.

RESULTS
Figure 4 shows the training evolution of the discriminator

for real (blue) and fake (orange) input images, as well as
for the generator (green). After training the GAN for 100
epochs corresponding to just over 5000 training steps, the
GAN loss functions stabilize and reach an equilibrium [11].
The final loss values of the neural networks are consistent
with expectations for this type of GAN.

Comparisons between SixTrack output and model pre-
dictions are shown in Fig. 5 for two different settings of
(𝑄′, 𝐼oct)1. The particle actions (2𝐽𝑥, 2𝐽𝑦) are given in units
of rms geometric emittance which was set to 7.3 nm in both
transverse planes, corresponding to a normalized rms emit-
tance of 𝜀rms = 3.5 µm. The particle loss vs turns is also
1 More examples for different parameter settings are available here: https:
//cernbox.cern.ch/index.php/s/RQncUlluhuJARDx
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Figure 6: SixTrack output (left) and model predictions (right) over the entire 𝑄′ vs 𝐼oct parameter space.

Figure 4: GAN training evolution of the loss functions of
discriminator and generator, respectively.

Figure 5: SixTrack output vs model predictions for two
different (𝑄′, 𝐼oct) settings.

shown in the rightmost column for both the ground truth
(blue) and the model prediction (red). This was obtained by
assuming a 2D Gaussian particle distribution in the trans-
verse planes and assigning corresponding weights to every
particle in amplitude space. The particle loss vs turns pre-
dicted by the GAN also provides a confidence bound ob-
tained by generating several fake images and computing
their standard deviation. The images demonstrate that gen-
erally the model captures the main features of the stability
plots. However, at the level of individual particles, there are
some differences which have not been captured entirely by

the GAN. With the low resolution of only 24 × 24 pixels,
every particle has a relatively large associated weight. This
means that in the stability plots, discrepancies between the
ground truth and the model prediction at the level of indi-
vidual particles can already have an important effect on the
loss vs turns calculation. By increasing the number of sam-
ples in both amplitudes, this effect can be strongly reduced,
thus improving the accuracy of the model. An overview
of the SixTrack output (left) and model predictions (right)
over the entire 2D parameter space is given in Fig. 6. The
white squares correspond to parameter settings for which
no training data was available. The plot illustrates that, at
least visually, the GAN generalizes well on unseen (𝑄′, 𝐼oct)
settings, which is an important requirement of the model.
This is still to be evaluated quantitatively. At present the
model relies on a smooth dependence of the survival plot on
the input parameters which is not always a valid assumption,
e.g. for the transverse tunes when crossing resonances. To
include information on the resonance lines, one might incor-
porate resonance conditions analytically or use additional
data from frequency map analysis (FMA) [13].

CONCLUSIONS
To determine the optimal parameter settings of a particle

accelerator in an automated and efficient manner, we are
investigating the potential of combining surrogate modeling
with adaptive sampling techniques. As a first step we have
studied the use of c-GANs to predict the stability plot for
given machine settings. To that end, we have trained the
GAN on a small subset of the available parameter space for
the LHC using SixTrack simulation data. While these pre-
liminary studies reveal promising results, the performance
of GANs and the stability of their training remains to be
explored for higher-dimensional parameter spaces and larger
amounts of training data.
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