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A pulsed electron lens produces a betatron tune shift along a hadron bunch as a function of the
longitudinal coordinates, which is a longitudinal detuning. An example of transverse detuning is the tune
shifts due to octupole magnets. This paper considers a pulsed electron lens as a measure to mitigate the
head-tail instabilities. Using a detailed analytical description within a Vlasov formalism, the coherent
properties of the longitudinal and transverse detuning are presented. The analytical predictions are
compared with the results of the particle tracking simulations. A pulsed electron lens is demonstrated to be
a source of tune spread with two components: a static one, leading to Landau damping and a dynamic one,
leading to an effective impedance modification, which we demonstrate analytically and in our particle
tracking simulations. The effective impedance modification can be important for beam stability due to
devices causing longitudinal detuning, especially for nonzero head-tail modes. The Vlasov formalism is
extended to include the combination of longitudinal and transverse detuning. As a possible application at
the SIS100 heavy-ion synchrotron [Facility for Antiproton and Ion Research (FAIR) at GSI Darmstadt,
Germany], a combination of a pulsed electron lens with octupole magnets is considered.
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I. INTRODUCTION

Transverse collective instabilities, induced by the beam
coupling impedances, can limit the beam intensity in
synchrotrons. The head-tail instability occurs without a
threshold in the beam intensity and it is observed or
expected in many synchrotrons [in the heavy ion synchro-
tron SIS100 of the Facility for Antiproton and Ion Research
(FAIR) accelerator complex [1,2] or the Large Hadron
Collider (LHC) [3], for example]. Instability mitigation
methods (linear chromaticity adjustments, Landau damp-
ing, transverse feedback system, linear coupling, and
others) play a crucial role in the operation of synchrotrons
for high beam intensities [4].
This contribution focuses on Landau damping, an effect

caused by energy exchange between coherent and incoherent
motion, in bunched beams in ring accelerators [3–15]. This
effect requires an incoherent betatron tune spread in the
bunch. The tune spread can depend on longitudinal or
transverse single-particle amplitudes.An incoherent betatron

tune shift as a function of the longitudinal amplitude is
referred to as the longitudinal detuning. The transverse
detuning is the tune shift as a function of the transverse
action variable (for example, octupole magnets). The
dispersion relation analytically relates the incoherent tune
spread to Landau damping.
This paper introduces a longitudinally pulsed electron lens

(PEL) as a source of longitudinal detuning and demonstrates
its ability to mitigate transverse instabilities via Landau
damping. We compare a PEL with other possible devices
(radio frequency quadrupole cavity (RFQ) [8], dc electron
lens (dc EL) [9], and Landau octupoles (LO) [10]) and
investigate their effects on the coherent beam stability with
a SIS100 application in mind. The Vlasov formalism is
extended to include the linear combination of longitudinal
and transverse detuning. Particle tracking simulations are
used to verify the analytical results. As a possible application
at the SIS100, a combination of PEL with LO is considered.
A PEL affects the hadron bunch via the electromagnetic

field of a copropagating (or counterpropagating) electron
beam, similar to dc EL. It relies on pulsing the electron
beam current in a way that each slice of the hadron bunch
receives a longitudinal position dependent kick. The
longitudinal pulsing has a Gaussian profile with the peak
current occurring in the longitudinal center of the bunch.
Electron bunches for space-charge compensation in short
(relative to the compensator length) hadron bunches were
discussed in detail in [16], including the question of

*gubaidulin@temf.tu-darmstadt.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 25, 084401 (2022)

2469-9888=22=25(8)=084401(15) 084401-1 Published by the American Physical Society

https://orcid.org/0000-0001-8457-0278
https://orcid.org/0000-0002-8117-2052
https://orcid.org/0000-0002-3225-078X
https://orcid.org/0000-0001-7156-192X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevAccelBeams.25.084401&domain=pdf&date_stamp=2022-08-24
https://doi.org/10.1103/PhysRevAccelBeams.25.084401
https://doi.org/10.1103/PhysRevAccelBeams.25.084401
https://doi.org/10.1103/PhysRevAccelBeams.25.084401
https://doi.org/10.1103/PhysRevAccelBeams.25.084401
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


multiple electron beam kicks. The pulsing profile is
matched to the bunch profile if their rms widths are equal.
In this paper, the transverse distribution of the electron
beam is assumed to be homogeneous. This PEL was
proposed in [17] for space-charge compensation in the
SIS18 [18]/SIS100 [19]. Instead, a dc EL relies on the
transverse nonlinearity of the electron beam’s electromag-
netic field providing tune shifts depending on the transverse
single-particle amplitudes. In the SIS18, a prototype PEL
will be installed [20]. The resulting increase in the space-
charge limit and an optimal number of electron lenses in the
SIS18/SIS100 are under investigation in [20,21]. The effect
of a PEL on coherent beam dynamics and on transverse
beam stability is the topic of this contribution.
Dispersion relations for Landau damping of transverse

instabilities in bunches were given in Eqs. (1) and (2) of [7]
for two particular cases: only transverse detuning or only
longitudinal detuning. Combined dispersion relation for
arbitrary longitudinal and transverse bunch profiles has not
been given before. Such dispersion relations could be used
to estimate stability boundaries from the following devices
and their combinations.
LO is a standard source of the transverse detuning to

mitigate transverse instabilities in several accelerators, e.g.,
the LHC [10], SIS100 [5], and the proposed Future Circular
Collider (hh) (FCC-hh) [11]. In recent years, several
alternatives to LO methods of Landau damping were
proposed, mainly for high energy hadron colliders. The
authors of [9] proposed a dc EL as a source of Landau
damping due to the transverse detuning. They analytically
estimated and compared the resulting stability boundary
with LO for the LHC and FCC-hh using Eq. (1) from [7].
Both the magnitude and the shape of the stability bounda-
ries given in [9] for a dc EL were not confirmed with
particle tracking simulations for different head-tail modes.
Authors of [8] introduced an RFQ as an alternative to LO

for Landau damping. An RFQ, like a PEL, provides Landau
damping due to the longitudinal detuning. Studies of an
RFQ using the dispersion relation Eq. (2) in [7] and particle
tracking were performed in [8,12]. In [8], a combination of
LO with an RFQ for the instability mitigation was proposed
and verified in [12] using particle tracking. However, no
analytical expression for this combination was given via a
dispersion relation for a Gaussian bunch.
In [13,22], the second-order chromaticity was studied in

an experiment and, analytically, using a Vlasov formalism,
where its effects on the coherent beam stability were linked
to an RFQ. A new dispersion relation [see Eq. (31) in [13] ]
was derived including only the longitudinal detuning.
Authors of [13] establish two separate effects for an
RFQ and for the second-order chromaticity ξð2Þ: Landau
damping and an effective impedance modification. These
effects were studied separately. The effective impedance
modification was demonstrated in a case of an airbag
bunch, with no incoherent tune spread, which means no

Landau damping. Whereas Landau damping was demon-
strated in a regime where the effective impedance modifi-
cationwas shown to beweak. Therefore, it was impossible to
establish the relative strength of Landau damping and the
effective impedance modification for various parameter
regimes. In this work, we use the Vlasov formalism to derive
a dispersion relation that includes a linear combination of
transverse and longitudinal detuning.
Landau damping of nonzero head-tail modes was inves-

tigated in detail for transverse detuning [23] due to octu-
poles. Studies of a dc EL, an RFQ, and the second-order
chromaticity ξð2Þ neglected to discuss Landau damping of
nonzero head-tail modes in detail using either particle
tracking or analytical expressions.
In hadron synchrotrons operating below transition energy,

the zero head-tail mode is usually suppressed by natural
chromaticity. Transverse feedback systemscanbean effective
mitigation against head-tail andother instabilities [24,25], but
can have restrictions, for example, higher-order head-tail
modes in short bunches or an instability due to a resistive
damper [26]. In such cases, Landau damping devices are
indispensable for the beam stability. But also for the l ¼ 0
mode, if it can be damped by a feedback system, Landau
damping devices can be used supplementary and result in
lower power requirements for the feedback, for example.
The main results of the paper are structured in the

following manner: In Sec. II, a new dispersion relation for
the linear combination of longitudinal detuning and trans-
verse detuning is derived. Furthermore, we demonstrate
that the longitudinal detuning induced by a PEL leads to
Landau damping of a transverse head-tail instability,
similarly to higher-order chromaticity and to an RFQ.
The effective impedance modification and change of the
instability coherent tune shift are related to the head-tail
mode spectrum distortion by the longitudinal detuning.
In Sec. III, zero head-tail mode stability boundaries are

reconstructed for a PEL, a dc EL, LO, and an RFQ with
particle tracking using an antidamper [27] as a rigid mode
kick. Furthermore, with this method, we validate the
dispersion relation for a combination of LO and a PEL,
for the FAIR SIS100. These simulation results are com-
pared to the respective dispersion relations from Sec. II.
In Sec. IV, we investigate Landau damping of nonzero

head-tail modes using a resistive wall impedance model.
Particle tracking simulation results are compared with
analytical formulae of Sec. II for a PEL, a dc EL, LO,
and an RFQ. We discover that the effective impedance
modification for nonzero head-tail modes raises the thresh-
old for Landau damping due to the longitudinal detuning.
In Sec. V, our results are summarized.

II. VLASOV DESCRIPTION OF THE
LONGITUDINAL DETUNING DUE TO THE

PULSED ELECTRON LENS

The present derivation for a PEL applies the
general perturbation formalism presented in [13,28–30].
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Additionally, it expands to both transverse ΔQ⊥
y ðJx; JyÞ

and longitudinal ΔQk
yðJz;φÞ detuning. (Ju is used for the

single-particle amplitudes.) At the end, new dispersion
relations are derived and two effects of a PEL on the
coherent beam stability are discussed. For the longitudinal
detuning, the dependency on the longitudinal phase φ is
included because the timescale (in the number of revolution
turns) of the head-tail instability τinst is slower than the
timescale of the synchrotron motion, determined by the
synchrotron tune Qs0 (τ

−1
inst < Qs0). In this work, only these

“slow” head-tail instabilities are considered. Faster insta-
bilities are discussed, for example, in [31,32]. The trans-
verse detuning, on the contrary, can be averaged over
significantly faster betatron motion Qx0;y0 ≫ Qs0 .
Therefore, the transverse detuning is justified to be inde-
pendent of the betatron phases θx and θy.
Using a perturbation method, let us assume that the

distribution functionΨ has a small (ϵ ≪ 1) perturbation ϵΨ1:

Ψ ¼ f0ðJx; JyÞg0ðJzÞ þ ϵΨ1ðJx; θx; Jy; θy; Jz;φ; tÞ: ð1Þ

Here we assume that the unperturbed distribution function
can be factorized into a longitudinal g0ðJzÞ and a transverse
distribution f0ðJx; JyÞ. Time t is taken in the revolution turns
and ðJu; θuÞ are action-angle variables. The Vlasov equation
with a dipolar wakeHwake and the PELHPEL contributions is

dΨ
dt

¼ ∂Ψ
∂t

þ ½H0 þHPEL þ ϵHwake;Ψ� ¼ 0; ð2Þ

where H0 ¼ Qy0Jy þQx0Jx −Qs0Jz is the Hamiltonian of
the unperturbed system and ½H;Ψ� is a Poisson bracket
notation.
This study is limited to the instabilities driven by dipolar

wakefields. The unperturbed distribution has no dipolar

moment, therefore Hwake ¼ Fwakeðz;tÞ
ω0γmv

ffiffiffiffiffiffiffiffiffiffiffiffi
2Jyβ̂y

q
sin θy is of

the order ϵ (β̂y is the average beta function). Thus, at the
perturbation order ϵ, the Vlasov equation is

∂Ψ1

∂t
þ ½H0;Ψ1� þ ½HPEL;Ψ1� ¼ −½Hwake;Ψ0�: ð3Þ

Hamiltonians are normalized by the revolution frequency
ω0 and by the particle momentum γmv. Let us consider a
PEL with a homogeneous transverse profile and a modu-
lated current with a Gaussian longitudinal profile (z is the

longitudinal coordinate) IeðzÞ ¼ Imaxe
−ðz= ffiffi

2
p

σek Þ2 , then

HPEL ¼ ΔQmaxJye
−ðz= ffiffi

2
p

σek Þ2 ; ð4Þ

where ΔQmax is given in Table I.
If the ratio of transverse and longitudinal (geometrical)

rms emittances satisfies εy=εz ≪ 1, then the only signifi-
cant effect from a PEL is the longitudinal detuning

ΔQk
yðJz;φÞ ¼ ∂HPEL

∂Jy
, the same is true for an RFQ as a

longitudinal detuning device. Additionally, all synchrobe-
tatron resonances are considered to be weak. The same
assumptions are made for the head-tail instability theory
in [30] that does not account for either transverse or
longitudinal detuning. From the Hamiltonian, we can find
that a PEL tune shift is

ΔQk
yðJz;φÞ=ΔQmax

¼ IðeÞ0

�
Jz
2εz

σ2z
σ2ek

�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

static

þ 2
X∞
n¼1

IðeÞn

�
Jz
2εz

σ2z
σ2ek

�
cos ð2nφÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dynamic

; ð5Þ

where IðeÞn ðxÞ ¼ e−xInðxÞ stands for the exponentially
scaled modified Bessel function of the first kind. This
tune shift has two components. The static component is
independent of the longitudinal phase. It is similar to LO
but depends on the longitudinal amplitude instead of the
transverse amplitudes. The dynamic component depends
on the even harmonics cos 2nφ. It is closer to the linear
chromaticity ξð1Þ and its average tune shift over a synchro-
tron period is zero. A similar Fourier decomposition exists

for any longitudinal detuning ΔQk
yðz; δÞ because it is

guaranteed to be periodic in φ. Chromatic tune shifts

TABLE I. Tune spreads, betatron phase factors BðJz;ϕÞ, and head-tail spectrum functions Hðzð1Þ; zð2ÞÞ for electron lenses, an RFQ,

and LO, kx;y ¼ Jx;y
2εx;y

σ2x;y
σ2e⊥

.

LO RFQ PEL dc EL

ΔQmax ∝ ILO
Jx
εx

β̂y
2π

qv2
p0ωRFQ

Z
A
Ie
Ia

me
mp

gLe
4πεnx

σ2x
σ2e

1�βeβi
βpβi

hΔQy=ΔQmaxiϕ ayx
Jx
εx
þ ayy

Jy
εy J0ð σz

λRFQ

ffiffiffiffiffiffiffiffi
2

Jz
2εz

q
Þ IðeÞ0 ð Jz

2εz

σ2z
σ2
ek
Þ R

1
0 ½IðeÞ0 ðukyÞ − IðeÞ1 ðukyÞ�

×IðeÞ0 ðukxÞdu
ΔQrms=ΔQmax 0.24 0.2 0.14 0.16
BðJz;φÞ= ΔQmax

Qs
0 P∞

n¼1 J2nðωrfqσz
βrc

ffiffiffiffi
Jz
εz

q
Þ sin ð2nφÞn

P∞
n¼1 I

ðeÞ
n ð Jz

2εz

σ2ek
σ2z
Þ sin ð2nφÞn

0

Hlðzð1Þ; zð2Þ; ::zðkÞÞ j−lJlðzð1ÞÞ ≈j−l
P∞

n¼−∞ Jlþ2nðzð1ÞÞJnðzð2ÞÞ j−lJlðzð1ÞÞ
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depend on the energy spread δn ∝ sinn φ, and longitudinal
position based kicks (an RFQ or a PEL) depend on
zn ∝ cosn φ. Thus, it is generally not accurate to consider
tune shifts only varying with the longitudinal amplitude
ignoring their dependency on the phase φ.
Assuming a dipolar motion only in the vertical plane

in Eq. (3), the perturbed distribution function has the fol-
lowing two terms: Ψ�

1 ðJx;θx; Jy;θy; Jz;φ; tÞ ¼ ψ1ðJx; Jy;
Jz;φÞe�jθye−jQcoht. Knowing that the instability coherent
tune shift is small Qcoh ≈Qy0 , only one term Ψ−

1 ∝ e−jθy is
significant. The result, after inserting the Hamiltonians and
the perturbed distribution function in Eq. (3), is a partial
differential equation w.r.t φ only

fQcoh −Qy0 − ΔQ⊥
y ðJx; JyÞ − ΔQk

yðJz;φÞ
− j½Qs0 þ ΔQsðJz;φÞ�∂φgψ1ðJx; Jy; Jz;φÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2Jyβ̂y

q
g0ðJzÞ

∂f0ðJx; JyÞ
∂Jy

Fwakeðz; tÞ
2ω0γmv

; ð6Þ

where the transverse detuning ΔQ⊥
y ðJx; JyÞ (e.g., LO) is

introduced as a small addition to the betatron tune Qy0 . A
small synchrotron detuning ΔQsðJz;φÞ ≪ Qs0 is also
included here. Let us find the eigenfunction expansion of
ψ1 ¼

P
l ψ

l
1ðJx; Jy; Jz;φÞ and its eigenvalues Ql assuming

periodic boundary conditions ψ l
1ðJx; Jy; Jz;φ ¼ 0Þ ¼

ψ l
1ðJx; Jy; Jz;φ ¼ 2πÞ and considering the differential oper-

ator in the left-hand side of Eq. (6),

Ql ¼ −Qcoh þQy0 þ lQs0

þ hΔQk
yiφðJzÞ þ ΔQ⊥

y ðJx; JyÞ þ lhΔQsiφðJzÞ; ð7Þ

ψ l
1ðJz;φÞ ¼ AlðJx; Jy; JzÞejlφe−jBðJz;φÞ; ð8Þ

BðJz;φÞ ¼
Z

φ

0

½ΔQk
yðJz;φ0Þ − hΔQk

yiφ0 ðJzÞ�
dφ0

Qs
; ð9Þ

where hΔQk
yiφ0 ðJzÞ indicates averaging over a synchrotron

period and thus depends only on the longitudinal amplitude
Jz. The function BðJz;φÞ generalizes the betatron phase
factor χ of the linear chromaticity ξð1Þ [see Eqs. (6.185) and
(6.187) in [30] ] for arbitrary longitudinal detuning. It has
beenmodifiedw.r.t Eq. (20) in [13] andEq. (9) in [33] (where
it is denoted as Λ) to include QsðJz;φÞ in the integral to
account forΔQsðJz;φÞdetuningand its effect on the betatron
phase factor. The functionB specifies for a givenparticlewith
an amplitude Jz and a phase φ and by how much it heads or
trails the head particle in the betatron phase. Figure 1
demonstrates the variation of the betatron phase factor over
a single synchrotron period: for the linear chromaticity ξð1Þ,
there is a phase difference between the head and the tail of the
particle reflected by the B-function; for a PEL or the second-
order chromaticity ξð2Þ, bunch head and tail particles have the
same phase, but particles near bunch ends still have different

phases. Specific formulae for the betatron phase factor
BðJz;φÞ and tune shifts ΔQy are given in Table I for a
PEL, an RFQ, a dc EL, and LO. One can observe that the B-
function of a PEL and an RFQ has only even harmonics ofφ,
and only the Jz dependency is different. For a PEL and for an
RFQ, the first even harmonic sin 2φ is the strongest one,
corresponding to the second-order chromaticity ξð2Þ tune
shift [see Eq. (33) in [13] ]. The B-function of a PEL is
described well by the first two even φ harmonics, see Fig. 1.
Figure 1 illustrates that the BðJz ¼ εz;φÞ-function of a PEL
is similar to that of the second-order chromaticity for σz ¼
σek (from Table I) or to an RFQ when its wavelength is
matched to the bunch length. Landau damping with the
transverse detuning, in contrast, does not affect the betatron
phase relation between the head and the tail of the bunch.
After substituting Ψ1 using the eigenfunction expansion

of Eq. (8) into the Vlasov equation [Eq. (6)], it reduces to an
equation for the function of the transverse and longitudinal
amplitudes AlðJx; Jy; JzÞ:

X∞
l0¼−∞

Al0 ðJx; Jy; JzÞffiffiffiffiffiffiffiffiffiffiffiffi
2Jyβ̂y

q
∂f0ðJx;JyÞ

∂Jy

ejl
0φe−jBðJz;φÞQl0

¼ −
FwakeðJz;φ; tÞ

2ω0γmv
g0ðJzÞ: ð10Þ

The right-hand side of Eq. (10) does not depend on
the transverse amplitudes fJx; Jyg, thus the left-hand
side must be constant w.r.t. these coordinates. The
amplitude dependency can be redefined as Al0 ðJx; Jy; JzÞ ¼
Rl0 ðJzÞIl0 ðQcohÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2β̂y=Jy

q
, where Rl0 ðJzÞ is the longitudinal

mode. By substituting the expression for the amplitude
dependency in Eq. (10), we find the dispersion integrand
IlðQcohÞ:

FIG. 1. Comparison between the betatron phase factors
BðJz;φÞ for a PEL, ξð2Þ, and an RFQ. The PEL and the RFQ
are matched to the rms bunch length, the value of ξð2Þ corresponds
to the same rms tune spread, Jz ¼ εz. The case of a linear
chromaticity ξð1Þ is shown for reference.

VADIM GUBAIDULIN et al. PHYS. REV. ACCEL. BEAMS 25, 084401 (2022)

084401-4



IlðQcohÞ ¼
∂f0ðJx;JyÞ

∂Jy
Jy

Qcoh −Qy0 − ΔQ⊥
y − hΔQk

yiφ − lQs

: ð11Þ

This separation of pure longitudinal amplitude dependency
Rl0 ðJzÞ from Al0 ðJx; Jy; JzÞ is only possible because we
consider a specific combination of transverse and longi-

tudinal detuning ΔQy ¼ ΔQk
yðJz;φÞ þ ΔQ⊥

y ðJx; JyÞ and
not a more general case of detuning ΔQyðJx; Jy; Jz;φÞ. In
the latter case, one would need to solve an integral equation
for the amplitudes and the betatron phase factorBwill also be
a function of the amplitudes Jx, Jy (in addition to Jz).
Now everything about the perturbed distribution func-

tion Ψ1 is known, except its longitudinal modes RlðJzÞ:

Ψ1 ¼ e−jQcohte−jBðJz;φÞ
X∞
l¼−∞

RlðJzÞejlφ

× e−jθyIlðQcohÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2β̂y=Jy

q
: ð12Þ

In order to find the longitudinal modes, we need to solve
the Vlasov equation perturbed by a wakefield force
expressed as

Fwake ¼
q2Qs0ω0

Qy0ηR

X∞
p¼−∞

Z⊥
y ðQpÞejQp

r
R cos φ

X∞
l0¼−∞

λlðQpÞ:

ð13Þ

For comparison, see Eq. (6.173) in [30] with r ¼
ffiffiffiffiffiffiffiffiffiffiffi
2Jzβ̂z

q
,

where β̂z is the longitudinal beta function. The frequency of
the impedance Qp ¼ Qy0 þ lQs0 þ p is normalized by the
revolution frequency ω0, R ¼ C=ð2πÞ is the accelerator
effective radius, η is the slip factor, and q is the ion charge.
The line density of the dipolar moment λlðQpÞ of the
distribution function Ψ for the azimuthal mode l in the
frequency domain is

λlðQp0
Þ ¼

Z
∞

0

Hp0

l ðrÞRlðrÞ
�ZZ

IlðQcohÞdJxdJy
�
rdr:

ð14Þ

H-functions have the physical meaning of an airbag bunch
head-tail mode spectrum. In general, the head-tail mode
spectrum is jλlj2 and it depends on both the spectrum
functions H and the longitudinal distribution function g0.
The integral representation ofH-functions was first defined
by the authors of [13] in Eq. (22):

Hp
l ðJzÞ ¼

Z
2π

0

e−jQp
r
R cosφe−jBPELejlφ

dφ
2π

: ð15Þ

Using Jacobi-Anger expansion [34], we would introduce
a simpler sum representation, considering only the first

even harmonic (∝ sin 2φ) of BPEL, see Table I, the con-
tribution of the wakefield, and the linear chromaticity
ξð1Þ ∝ cosφ:

Hp
l ðzð1Þ; zð2ÞÞ ¼ j−l

Xn¼þ∞

n¼−∞
Jlþ2nðzð1ÞÞJnðzð2ÞÞ; ð16Þ

where JnðxÞ is the Bessel function of the first kind [34]. The
arguments of the H-function are defined as

zð1Þ ¼ ðQp −Qy0ξ
ð1Þ=ηÞ 2σz

R

ffiffiffiffiffiffiffi
Jz
2εz

s
; ð17Þ

zð2ÞPEL ¼ ΔQmax

Qs0

Ie1

�
Jz
2εz

σ2z
σ2ek

�
; ð18Þ

where zð1Þ describes the first harmonic effects (wakefield and

ξð1Þ), and zð2ÞPEL describes the second harmonic effects [from a
PEL in Eq. (18), an RFQ or the second-order chromaticity
ξð2Þ has a similar formula]. This expression can be extended
to include other higher harmonics as well. The sum repre-
sentation in Eq. (16) has advantages for faster numerical
calculations and for understanding the effect of a PEL on the
head-tailmode spectrum. Indeed, if zð2Þ ≈ 0, onlyn ¼ 0 term
is nonzero, and we have a known expression j−lJlðzð1ÞÞ, for
example, Eq. (6.177) and discussions therein in [30]. As zð2Þ
rises, n ¼ �1 becomes significant and the mode spectrum
mixes with Jl�2ðzð1ÞÞ terms and Jn¼0;1ðzð2ÞÞ serves as the
weight functions. The head-tail mode spectrum distortion by

a PEL, determined by zð2ÞPEL, scale with the parameter
ΔQmax=Qs0 . Additionally, like for the Bessel functions
[34], from Eq. (16)

P
l jHp

l ðzð1Þ; zð2ÞÞj2 ¼ 1 for any p,
zð1Þ, zð2Þ. Meaning that the second harmonic effect zð2Þ
redistributes the energy between different modes, modifying
the shape of the mode spectrum by making some modes
stronger and others weaker. Distortion of the mode spectrum
by the longitudinal detuning is the origin of the effective
impedance modification.
An example of changes in the mode spectrum is demon-

strated in Fig. 2 (top plot) for a moderately strong PEL
ΔQmax=Qs0 ¼ 0.5. The weak distortion of the zero mode is
evident from Eq. (16) because the sum becomes symmetric
for �n terms and odd terms cancel each other. The l-modes
are no longer degenerate, the l ¼ 1, 2modes becomeweaker,
and the l ¼ −1;−2 modes become stronger, see Fig. 2 (top
plot). In Fig. 2 (bottom plot), we consider two different
frequencies and demonstrate how themode spectrum at these
frequencies is modified depending on the strength of the
longitudinal detuning ΔQmax=Qs0 .
After pasting Eq. (13) into Eq. (10), multiplying both

sides by e−jlφ and integrating over φ, a single mode l is
determined,
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RlðJzÞ ¼ jKg0ðJzÞ
X∞
p¼−∞

Z⊥
y ðQpÞHp†

l ðJzÞ
X∞
l0¼−∞

λl0 ðpÞ;

ð19Þ

with K ¼ q2Qs0=ð2Qy0EηT0Þ (1=Ohm), where E is
the energy and T0 is the revolution period. This
extends the Sacherer’s integral equation [35]. Using the
Laclare’s approach [36], an expression for λlðp0Þ is
obtained by multiplying both sides of Eq. (19) by
Hl

p0
½IlðQcohÞdJxdJy�rdr and integrating

λlðp0Þ ¼ −jK
X∞
p¼−∞

X∞
l0¼−∞

λl
0 ðpÞZ⊥

y ðQpÞ

×
Z

∞

0

½IlðQcohÞdJxdJy�Hp†

l ðrÞHp0

l ðrÞg0ðrÞrdr:

ð20Þ

Consequently, this general integral equation simultaneously
includes Landau damping with transverse and longitu-
dinal detuning. If the transverse detuning is negligible
ΔQ⊥

y ðJx; JyÞ ¼ 0, the results of Eq. (23) in [13] are

FIG. 2. Top: head-tail mode spectra jHp
l ðzð1Þ; zð2ÞÞj2 for an airbag bunch, unperturbed (solid lines), and with the effect of a PEL

(dashed lines) for ΔQmax=Qs0 ¼ 0.5 (bottom). Dependency of mode power spectrum on the PEL strength ΔQmax at points where modes
jlj ¼ f0; 1g are near their maxima.
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recovered. If the longitudinal detuning is negligible

hΔQk
yiφðJzÞ ¼ 0, the results of the dispersion relation,

Eq. (1) in [7], are recovered. Thus, our results for the linear
combination of transverse and longitudinal detuning are
general and in the limiting cases converge to the known
results. Equation (20) can be written in the matrix form, and
the solutions to this eigenvalue problem would be the

coherent tune shifts and the eigenmodes. Dedicated
Vlasov solvers are usually used to solve this type of an
eigenvalue problem numerically [14,37]. However, the
present semianalytical Vlasov solvers do not account for
arbitrary longitudinal detuning. Under the assumption of a
narrow band impedance, see [13], and only one excited
azimuthal mode, we obtain the following dispersion relation:

ΔQ−1 ¼ 1

N1

Z ∂Ψ0

∂Jy
JyjHp0

l ðzð1Þ; zð2ÞÞj2dJzdJxdJy
Qcoh −Qy0 − hΔQk

yiφðJzÞ − ΔQ⊥
y ðJx; JyÞ − l½Qs0 þ hΔQsiφðJzÞ�

; ð21Þ

where N1 ¼
R

∂Ψ0

∂Jy
JyjHp0

l ðzð1Þ; zð2ÞÞj2dJxdJydJz is the nor-
malization found from no Landau damping case. ΔQ is the
coherent tune shift in the absence of Landau damping

(hΔQk
yiφðJzÞ ¼ ΔQ⊥

y ðJx; JyÞ ¼ hΔQsiφðJzÞ ¼ 0). Qcoh is
the coherent tune in the presence of Landau damping. This
case corresponds to the static component of the tune shifts
being zero, but the normalization N1 is still affected by the
dynamic component of the tune shift via Hl

p0
function.

Linear chromaticity ξð1Þ is a special case of the longi-
tudinal detuning that has no static component and, thus, no
Landau damping. In this case, the effective impedance
changes and the mode spectrum modification is a shift
by the chromatic frequency Qy0ξ

ð1Þ=η. In Eq. (21), no

assumptions about the accelerator impedance and the
arguments of the H-function are necessary for the case
of the transverse detuning only.
If we assume a small first argument zð1Þ ≪ 1 [Eq. (17)]

of the H-function in Eq. (16), this is a further assumption
on the impedance, meaning that the frequency of the
narrow band impedance (shifted by the chromatic fre-
quency) is much smaller than the spread of frequencies in
the bunch. Additionally, we assume a small second argu-
ment zð2Þ ≪ 1 [Eq. (18)] such that J0ðzð2ÞÞ ≈ 1 and other
weight functions in Eq. (16) are approximately zero—the
head-tail mode spectrum is unperturbed by the longitudinal
detuning. The dispersion relation simplifies to

ΔQ−1 ¼ 1

N2

Z ∂Ψ0

∂Jy
JyJ

jlj
z dJxdJydJz

Qcoh −Qy0 − hΔQk
yiφðJzÞ − ΔQ⊥

y ðJx; JyÞ − l½Qs0 þ hΔQsiφðJzÞ�
; ð22Þ

where N2 ¼ ∭ ∂Ψ0

∂Jy
JyJ

jlj
z dJxdJydJz. This corresponds to

Eqs. (1) and (2) of [7] if we set either the longitudinal ΔQk
y

or the transverse detuning ΔQ⊥
y to zero. Our results are

valid for arbitrary distributions Ψ0 ¼ f0ðJx; JyÞg0ðJzÞ,
account for the dynamic part of the longitudinal detuning

ΔQk
yðJz;φÞ, and quantify the head-tail mode spectrum

distortion by the longitudinal detuning.

III. STABILITY DIAGRAMS AND LANDAU
DAMPING OF THE ZERO HEAD-TAIL MODE

In this section, the rigid mode kick model reconstructs the
stability boundaries in the simulations. This model corre-
sponds to a constant wake force acting on the beam (a delta-
function impedance Z⊥

y ∝ δðQÞ) [14]. Therefore, it drives a
rigid mode oscillation with a specific coherent tune shift,
corresponding to the zero head-tail mode. A similar method
was described and employed in a proof-of-principle experi-
ment in [27] using a transverse feedback system (as an
antidamper) in the LHC study and it agreed with the known

stability boundaries for LO. In addition, this model can be
applied to coupled bunch instabilities with symmetric
fill [25].
The rigid mode of bunch oscillations is driven in the

simulations by the following kick:

Δy0 ∝ ℑΔQy0 þℜΔQȳ=β̂y; ð23Þ

where ȳ and y0 are the beam offset and its derivative; ℜΔQ
and ℑΔQ are real and imaginary parts of the coherent tune
shift caused by thekick in the absence ofLandau damping, β̂y
is the average beta function of the ring. The present
implementation of the rigid mode kick is only for the
zero linear chromaticity ξð1Þ ¼ 0 case. Thus, the para-
meter zð1Þ ¼ 0. Using a weak longitudinal detuning
ΔQmax=Qs0 ≪ 1, we ensure that the underlying assumptions
of the dispersion relation Eq. (22) are fulfilled.
In the simulations, 2D scans over the complex coherent

tune shift are performed. All 2D scans are made with the
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same beam and accelerator parameters using 105 macro-
particles over 105 turns (≳150 synchrotron periods), only
changing the source of the detuning (a PEL, a dc EL, LO,
and an RFQ). In this section, the bunch is taken to be
Gaussian transversely and longitudinally. Separating this
2D plane into stable and unstable areas results in the
reconstruction of the stability boundaries. In the simula-
tions, the instability develops from the numerical noise.
The instability growth rate is determined by an exponential
fit to the envelope of beam offset evolution. An example of
the simulated data and an exponential fit is presented in
Fig. 3. We reconstruct stability boundaries from the
simulation data by identifying all points (on the coherent
tune shift complex plane) with exponentially growing beam
offset and extrapolating their growth rates to the zero

growth rate isoline—obtained stability boundaries are
defined using the same criterion as the analytical ones.
The tracking code PyHEADTAIL [38] is employed for the

simulations. The implementations of LO and an RFQ are
identical to [13], both a dc EL and a PEL are implemented
as slice-by-slice localized kicks. For a dc EL, each particle
of the ion beam receives a kick from the field of a
transversely Gaussian electron beam, with a constant
longitudinal profile. For a PEL, the electromagnetic field
of the electron beam is transversely homogeneous, and the
kick amplitude is modulated along the bunch length
matching the ion beam profile.
First, our particle tracking simulation should verify that a

tune shift from a PEL leads to Landau damping. Then, we
compare a PEL to the other means of Landau damping (LO,
an RFQ, and a dc EL) using the same simulation frame-
work, the same criteria for beam stability, and the same rms
tune spread from all four devices. Finally, we demonstrate
the stability boundary from a combination of longitudinal
detuning and transverse detuning, using a PEL and LO as
an example. These simulation results are used to verify
our analytical results from Sec. II and specifically the
dispersion relation Eq. (22).
Figure 4 (top) compares simulated (green histograms)

tune distributions for LO (yellow), a dc EL (red), a PEL
(blue), and an RFQ (light-blue) to the corresponding
analytical distributions (colored histograms). The vertical
and horizontal tune spreads and the complex coherent tune
shift axes in Fig. 4 are normalized by the rms betatron tune
spread ΔQrms. Using this normalization allows us to
compare various tune spread distributions from a PEL,
LO, a dc EL, and an RFQ.

FIG. 3. Example from an instability simulation: the beam offset
evolution over several synchrotron periods (blue). The exponen-
tial fit (orange) delivers the resulting growth rate.

dc

FIG. 4. Top: incoherent tune spreads and average tune shifts (green dot). Left to right: LO (yellow), a dc EL (red), a PEL (dark-blue),
an RFQ (light-blue). Bottom: stability boundaries for the head-tail mode l ¼ 0 from Eq. (22) compared to the results of the simulation
scans with the rigid mode kick, Eq. (23).
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Figure 4 (bottom) shows the reconstructed stability areas
(solid green lines) of all four devices together with the
analytical results fromEq. (22) (colored lines). For equal rms
tune spreads, the stability area is roughly the same. An RFQ
and LO tend to have a wider stability boundary. This is
attributed to larger tails in the tune distribution for LO and an
RFQ. Tune shifts from a PEL are the same in the vertical and
the horizontal planes, but not for an RFQ. Thus, a PEL,
contrary to anRFQ, ensures the same stability area in both the
horizontal and the vertical planes. An RFQ would require a
two-family scheme or a combination with LO (see [12])
because the instability coherent tune shift is typically similar
in both planes.
Figure 4 (bottom right) illustrates a near-perfect agreement

with analytical stability boundaries for theweak longitudinal
detuning. Furthermore, comparisons with Landau damping
with the transverse detuning reveal that the stable area is
roughly the same for equal rms tune spreads. As a rule of
thumb, ΔQrms defines the stability boundary “height”,
meaning that the fastest instability that is damped has a
growth rate roughly equal to the rms tune spread ≈ΔQrms.
The full tune spread ΔQfull ≈ 4–6ΔQrms determines the
“width” of the stability boundary. The shape of the stability
boundary is related to the incoherent tune distribution.
In Fig. 5, analytical estimations are compared with our

simulation results for the transverse Gaussian distribution

and a round electron beam for a dc EL for several values
of the transverse beam size ratio r ¼ σe⊥=σx0;y0 ¼f0.7; 1.0; 1.4; 1.8g. Similar ratios were considered only
analytically in [9]. Therefore, our simulation results confirm

(a) (b)

(c) (d)

FIG. 5. dc EL stability diagrams from Eq. (22) (red lines) for the head-tail mode l ¼ 0 depending on the electron to ion rms beam
transverse size ratio r ¼ σe⊥=σx0;y0 . It is compared to the results of simulation scans (green lines) with the rigid mode kick [defined in
Eq. (23)]. (a) σe⊥=σx0;y0 ¼ 0.7 (b) σe⊥=σx0;y0 ¼ 1.0 (c) σe⊥=σx0;y0 ¼ 1.4 (d) σe⊥=σx0;y0 ¼ 1.8.

FIG. 6. Stability diagrams for the head-tail mode l ¼ 0 from
Eq. (22) for LO (transverse detuning ΔQ⊥

y ðJx; JyÞ, light-yellow
line), for a PEL (longitudinal detuning hΔQk

yðJzÞiφ, light-blue
line), and for the related combination (dark-blue line). The
corresponding simulation results for the device combination
are shown by the green curve.
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that a dc EL has a possibility to slightly adjust the stability
boundary, depending on this ratio.
Finally, Fig. 6 showsLandaudamping from a combination

of a PEL and LO from the results of the simulation scans
(green) and from the dispersion relation Eq. (22) (dark-blue).
The light-blue and the light-yellow lines show the stability
diagram from the dispersion relation for the caseswith a PEL
only and LO only. For both devices, the same settings as in
Fig. 4 are applied. The stability boundary (if compared to a
PEL one only) increases in the tails and becomes wider. This
device combination helps to mitigate instabilities for a
broader range of real coherent tune shifts ℜΔQcoh but not
the instabilities with a higher growth rate ℑΔQcoh. In a
comparison with the LO only case, the device combination
mitigates the instabilities with the nearly doubled growth rate
and in a similar range for the real coherent tune shifts.

IV. LANDAU DAMPING OF NONZERO
HEAD-TAIL MODES

This section investigates the Landau damping of wake-
field driven instabilities from a PEL, with the focus on
nonzero head-tail modes. Thresholds of the instability
suppression of a PEL are compared with the ones for
LO, a dc EL, and an RFQ. The threshold of the instability
suppression or threshold for Landau damping is an rms
tune spread value at which the beam is stabilized. The
resistive wall impedance Z⊥

y ∝ 1=
ffiffiffiffiffiffiffi
Qp

p
, relevant for many

hadron accelerators (e.g., [11,31]), is used in this section.
Relevant accelerator and beam parameters for the simu-

lation results of this section are summarized in Table II. The
bunch is taken to be Gaussian transversely and longitudi-
nally. A linear rf bucket is used in the simulations, thus the
synchrotron frequency detuning is not taken into account.
We identify several linear chromaticity settings where the
head-tail modes l ¼ f0;−1;−2g are unstable. The insta-
bility coherent tune shifts and chromaticity settings are
given in Table II. The instability growth rate was obtained
by fitting an exponential function to the beam offset,
similarly to Sec. III and Fig. 3.
Frequency spectra and characteristic intrabunch motion

of these instabilities are illustrated in Fig. 7. The mode
spectra maxima are near the related synchrotron sidebands,
indicating the azimuthal mode number l for each mode.
A characteristic head-tail pattern with the jlj number of

nodes in the offset trace plots is observed. Each instability
has an exponential growth of the transverse offset. The
instability parameters are chosen to be well below the
threshold of the TMCI.
Our particle tracking simulation results (solid lines)

for Landau damping of head-tail modes l ¼ f0;−1;−2g
are demonstrated in Figs. 8–10, where we compare it to
the analytical predictions (dashed lines) of Eq. (22).
Equation (22) does not account for the effective impedance
modification by the longitudinal detuning. Therefore, if this
effect is significant for the head-tail modes of a Gaussian
bunch, we will observe a disagreement between Eq. (22)
and the simulation results. Also, four betatron frequency
detuning devices are compared to each other: a PEL (dark-
blue), an RFQ (light-blue), a dc EL (red), and LO (yellow).
For our particle tracking scans, we iteratively increase the
strength of Landau damping for each identified head-tail
mode setting from Table II. The strength of Landau
damping is expressed by the rms betatron tune spread
ΔQrms to allow a comparison between the devices. It is
normalized by the synchrotron tune Qs0 . The instability
growth rate is normalized by its value in the absence of
betatron frequency detuning ℑΔQinst, see Table II.
The simulation results for the head-tail mode l ¼ 0 are

presented in Fig. 8. We observe a good agreement with
Eq. (22) both for the stability threshold and for the
evolution of the instability growth rate. No significant
effective impedance modification due to the longitudinal
detuning (a PEL and an RFQ) is observed for the zero head-
tail mode.
Figures 9 and 10 demonstrate particle tracking results for

head-tail modes l ¼ f−1;−2g. For the transverse detuning
(LO and a dc EL), the threshold for the instability
suppression agrees with the dispersion relation Eq. (22).
For the longitudinal detuning (a PEL and an RFQ), in the
simulation, the threshold of the instability suppression is

FIG. 7. Spectra and the trace plots of the centroid motion for
head-tail instabilities for three head-tail modes l ¼ 0 (right
curves), l ¼ −1 (middle curves), and l ¼ −2 (left curves). Those
are the instabilities when both the longitudinal and the transverse
detuning are zero.

TABLE II. Simulation and accelerator parameters for the
wakefield driven instability simulations. The coherent tune shifts
are for the case with no Landau damping.

ξð1Þ l ℜΔQinst=Qs0 ℑΔQinst=Qs0 Accelerator parameters

−0.02 0 −0.530 0.017 η 3.45×10−4

0.1 −1 −0.052 0.017 Qs0 1.74×10−3

0.5 −2 −0.017 0.009 Nmacro=
Nturns

105=105
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FIG. 8. Instability growth rate dependency on the strength of Landau dampingΔQrms=Qs0 for head-tail mode l ¼ 0. A PEL (dark-blue),
LO (yellow), a dc EL (red), and an RFQ (light-blue) results are compared with respective dispersion relations Eq. (22) (dashed lines).

FIG. 9. Instability growth rate dependency on the strength of Landau dampingΔQrms=Qs0 for head-tail mode l ¼ −1. A PEL (dark-blue),
LO (yellow), a dc EL (red), and an RFQ (light-blue) results are compared with respective dispersion relations Eq. (22) (dashed lines).

FIG. 10. Instability growth rate dependency on the strength of Landau damping ΔQrms=Qs0 for head-tail mode l ¼ −2. A PEL (dark-
blue), LO (yellow), a dc EL (red), and an RFQ (light-blue) results are compared with respective dispersion relations Eq. (22) (dashed lines).
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higher than expected from Eq. (22). For example, for a PEL
(and mode l ¼ −1), the threshold of ΔQrms=Qs0 ≈ 0.2 is
observed in the simulation, whereas analytically we expect
a lower valueΔQrms=Qs0 ≈ 0.05. This indicates that there is
a destabilizing effect from a PEL and an RFQ for the head-
tail modes l ¼ f−1;−2g. In Sec. II, this was identified as
the effective impedance modification due to the longi-
tudinal detuning. The stronger effective impedance modi-
fication for nonzero head-tail modes was already indicated
in Fig. 2. In contrast, transverse detuning from LO or a dc
EL agrees with the dispersion relation Eq. (22) regardless
of the head-tail mode number.
The interplay between the effective impedance modifi-

cation and Landau damping for the head-tail mode l ¼ −1
is illustrated in Fig. 11. The same accelerator and beam
parameters as in Fig. 9 are used for two PEL strengths. This

figure illustrates two effects: first, the stability boundary
[solid and dashed lines for Eqs. (21) and (22), respectively]
is increasing due to Landau damping; second, the insta-
bility coherent tune shift from Eq. (20) gets further away
from this boundary due to the effective impedance modi-
fication. In the calculation, we used the airbag bunch head-
tail mode spectrum as an approximation. In Fig. 11, the
stability boundaries for two PEL rms tune spread values are
presented. First, at ΔQrms=Qs0 ¼ 0.05, the stability dia-
grams estimated from Eqs. (21) and (22) are shown in
Fig. 11 in magenta color. In this situation, the instability
coherent tune shift, in the absence of Landau damping
(gray star), lies inside the stability boundary. But the
instability coherent tune shift from Eq. (20) (magenta star)
does not, due to the effective impedance modification. The
new stability threshold (cyan star) is then at the PEL rms
tune spread of ΔQrms=Qs0 ¼ 0.07. In this situation, the
effective impedance modification, illustrated as a shift of
the coherent frequency, is ≈62%. At the same PEL
strength, but for the head-tail mode l ¼ 0, it would be
≈1%. The instability suppression threshold for the head-tail
mode l ¼ −1 in the simulation is significantly higher at
ΔQrms=Qs0 ≈ 0.2. This discrepancy could be due to several
approximations that were made. First, we approximated the
head-tail mode spectrum with the one of an airbag bunch.
Second, dispersion relations Eqs. (21) and (22) were
derived for a delta-function like narrow band impedance.
But the resistive wall impedance has the frequency
dependency ∝ 1=

ffiffiffiffiffiffiffi
Qp

p
. Thus, for a more accurate descrip-

tion of the effective impedance modification and Landau
damping, one needs to solve Eq. (20) without assuming an
airbag bunch or narrowband impedance or employ particle
tracking simulations. But the above analytical approach is
sufficient to illustrate the interplay between the effective
impedance modification and Landau damping.
Figure 12 demonstrates Landau damping of head-tail

mode l ¼ −1 for several combinations of a PEL and LO.

FIG. 11. Stability boundaries for two PEL strengths for the
mode l ¼ −1 (solid and dashed lines, respectively) from
Eqs. (21) and (22) and respective coherent tune shifts of the
instability (stars) from Eq. (20). Accelerator and beam parameters
are the same as in Fig. 9. Two Landau damping strengths
ΔQrms=Qs0 ¼ f0.05; 0.07g are considered (magenta and cyan
colors, respectively).

FIG. 12. Landau damping for the head-tail mode l ¼ −1 due to a combination of LO and a PEL: instability growth rate dependency on
the strength of a PEL. The curves correspond to four different LO strengths, given in normalized units in the plot.
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The effective impedance modification comes solely from
the dynamic part of the longitudinal detuning [see Eqs. (9)
and (15)]. Landau damping in this case is improved, like in
the case of zero head-tail mode in Fig. 6. Similarly to the
case of only longitudinal detuning in Figs. 9 and 10, with
increasing rms tune spread, the beam is stabilized.
Figure 12 demonstrates that it could be beneficial to
combine a PEL with LO for Landau damping of higher-
order head-tail modes. However, the effective impedance
modification should be carefully taken into account.

V. CONCLUSIONS

The PEL as a source of the longitudinal detuning has
been introduced and its effects on transverse beam stability
have been demonstrated. AVlasov formalism was used to
derive new dispersion relations Eqs. (21) and (22) for a
linear combination of the transverse and the longitudinal
detuning. There are two distinct effects of the PEL (or other
longitudinal detuning) on the transverse beam stability:
Landau damping due to the static component of the
detuning; and the head-tail mode distortion due to the
dynamic component of the detuning, see Eq. (5).
The head-tail mode distortion is the origin of the

effective impedance modification [13], as it is explained
in Sec. II, see Fig. 2 and Eqs. (9) and (16). In contrast, for a
transverse detuning, there is no effective impedance modi-
fication and only Landau damping is affected. These
analytical results were confirmed for a Gaussian bunch
with particle tracking in Secs. III and IV for three different
head-tail modes and compared to the stability boundaries of
LO, a dc EL, and an RFQ.
The betatron phase factor was demonstrated to vary

along the bunch in the presence of the longitudinal
detuning, see Eq. (9) and Fig. 1. This variation relates
the PEL dynamic longitudinal detuning to the dynamic
longitudinal detuning due to higher-order chromaticity [13]
and the RFQ [12].
Figure 2 displays how the head-tail mode spectrum is

affected depending on the strength of the longitudinal
detuning from a PEL. The head-tail modes in the presence
of the longitudinal detuning are described by the sum in
Eq. (16), similar sum representation exists for any longi-
tudinal detuning.
The ratio, ΔQmax=Qs0 , determines the strength of the

effective impedance modification by the longitudinal
detuning. In the weak regime ΔQmax=Qs0 ≲ 1, only the
zero head-tail mode is described well by the dispersion
relation Eq. (22), see Fig. 8. The rigid mode kick model
was shown to reconstruct the shape and the magnitude of
the stability boundaries, see Fig. 4. For the zero head-tail
mode, Landau damping either with transverse or longi-
tudinal detuning is equally effective for a given rms tune
spreadΔQrms, see Fig. 4. The simulation results for the zero
head-tail mode (see Fig. 5) indicate that with a dc EL, it is

possible to adjust the stability boundary by changing the
electron to ion beam size ratio.
The nonzero head-tail modes are described by Eqs. (20)

and (21) which include the effective impedance modifica-
tion, leading to the instability amplification, see Figs. 2
and 9. For nonzero modes, this is a significant effect,
neglected by Eq. (22). The instability becomes stronger
because some modes are getting weaker and other modes
are amplified, see Fig. 2. For the nonzero head-tail modes,
Landau damping with longitudinal detuning requires rms
tune spreadsΔQrms up to 2–5 times larger than predicted by
the dispersion relation Eq. (22) due to the destabilizing
effect of the effective impedance modification (see Figs. 9
and 10). Landau damping with transverse detuning, on the
contrary, does not have this effect and is described by the
dispersion relation Eq. (22).
In the strong lens regime ΔQmax=Qs0 ≫ 1, the instability

is shifted toward higher-order modes with a smaller growth
rate, see Fig. 2. This is the regime foreseen for a PEL in the
SIS100 as a space-charge compensation device [17]. Due to
the large mode spectrum modification by PEL, expressions
of Eqs. (20) and (21) should be used instead of Eq. (22).
Landau damping is stronger for a larger rms tune spread.
Therefore, both Landau damping and the effective imped-
ance modification from a PEL are stabilizing in this regime.
The complex interplay between a PEL and space charge

is beyond the scope of the present work. In [39], the
feasibility of Landau damping with a dc EL in space
charge–dominated beams was demonstrated. For a PEL,
the same argumentation should be valid for the static
component of the detuning. While the dynamic component
of the detuning should lead to a weaker head-tail instability,
see Fig. 2 (bottom).
Combinations of transverse and longitudinal detuning

devices are expected in several hadron accelerators. SIS100
is foreseen [2] to have both, a PEL and LO. For the LHC, a
combination of LO and an RFQ was recently proposed [8].
We have derived new integral equations [Eqs. (19) and
(20)] and dispersion relations Eqs. (21) and (22) for the
combinations of transverse and longitudinal detuning and
for arbitrary bunch profiles. Those dispersion relations are
an extension of Eq. (31) in [13], where the transverse
detuning is not included. Our dispersion relation Eq. (21)
simplifies to Eq. (22) for a situation with the assumptions
discussed at the end of Sec. II. Finally, our dispersion
relation Eq. (22) reduces to Eqs. (1) and (2) from [7] for
either longitudinal or transverse detuning. Stability boun-
daries due to a PEL, LO, and their combination are given
and verified with simulation results, see Figs. 4 and 6.
A transversely nonlinear PEL is not covered in this

contribution, see Sec. II, Eq. (10) and discussion therein.
One can presume that Landau damping will stay approxi-
mately the same for equivalent rms tune spreads regardless
if the lens is pulsed or not. The effective impedance
modification of head-tail modes is, however, not trivial
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in this case. Nonlinear synchrotron oscillations were not
taken into account in this contribution but could be relevant
for SIS100 operation with longer bunches.
In summary, we presented an analytical description of

Landau damping due to a linear combination of transverse
and longitudinal detuning. Coherent properties of longi-
tudinal and transverse detuning, and Landau damping due
to four devices (PEL, dc EL, LO, and RFQ), were
compared in detail. The application of a PEL in different
settings for Landau damping was demonstrated. We
showed that the effective impedance due to longitudinal
detuning has a significant effect on the beam stability,
especially for nonzero head-tail modes. The results from
analytical considerations are verified using particle tracking
simulations.
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