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1 Introduction

Current approaches to the calculation of higher-order corrections in perturbative Quantum Field

Theory (QFT) are based on the decomposition of an observable into an independent set of Feynman

integrals, usually called master integrals. While the details of the decomposition strongly depend

on the specific QFT, the master integrals only depend on the kinematics of the process and the loop

order. The computation of these Feynman integrals is thus an interesting problem in its own right,

providing one of the crucial ingredients for the calculation of higher-order corrections to various

physical observables.

Over the last decades, a lot of effort has been put into developing new techniques aimed at

the efficient evaluation of Feynman integrals, both analytical and numerical. This effort has been

focused on developing a better understanding of the classes of functions that these integrals evaluate

to. It can be shown very generically that Feynman integrals evaluate to iterated integrals [1], with

a non-trivial branch-cut structure that is constrained by physical considerations [2]. These very

generic arguments still leave a large space of functions to explore, but it is by now well known that

many Feynman integrals evaluate to iterated integrals with a very specific underlying geometry.

The simplest kind of functions one finds are multiple polylogarithms (MPLs) [3], which, roughly

speaking, correspond to iterated integrals over rational functions. The mathematical properties of

MPLs are well understood. In particular, several computational tools have been developed to work

with this class of functions, both for their analytic manipulation and their numerical evaluation. It
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is however known that starting at the two-loop order a new class of iterated integrals appears, where

the integration kernels involve square roots of cubic or quartic polynomials which define an elliptic

curve. If a single elliptic curve is present, the iterated integrals can be written in terms of elliptic

multiple polylogarithms (eMPLs) [4–6]. Despite many recent developments, our understanding of

the analytic structure of eMPLs is not nearly as mature as in the case of MPLs, and their numerical

evaluation is still very challenging. Under certain conditions eMPLs can be expressed in terms of

iterated integrals of Eisenstein series [7, 8], for which more advanced numerical evaluation strategies

are known [9]. Computing sets of master integrals involving elliptic curves is at the forefront of the

problems that can currently be tackled.

In this paper we consider the complete set of master integrals appearing in the calculation of

the two-loop amplitudes describing the production or decay of a pseudo-scalar bound state of a

pair of massive fermions of the same flavour, be they quarkonium or leptonium bound states. For

instance, the set of master integrals we consider is sufficient to compute the next-to-next-to-leading

order (NNLO) QCD corrections to the hadro-production of a pseudo-scalar (cc) bound state (usually

called ηc) at the LHC, or the NNLO QED corrections to the decay of an (e+e−) bound state (usually

called para-positronium) into two photons. These processes are of great phenomenological interest.

For instance, quarkonium production offers interesting opportunities to study the interplay between

the perturbative and non-perturbative regimes of QCD [10–14]. The master integrals contributing

to the NNLO corrections to such processes involve both MPLs and eMPLs and, while some of them

were already known in the literature [15–28], the complete set was not yet available in analytic

form.

The purpose of this paper is two-fold: we present both analytic expressions for a complete set of

two-loop master integrals contributing to the processes discussed above, and high-precision numeri-

cal evaluations of the integrals which can then be used for phenomenological studies. Regarding the

analytic calculation, we obtain analytic expressions for all integrals by direct integration of their

parametric representation. As already noted, we find that the integrals can be expressed in terms

of MPLs, eMPLs and iterated integrals of Eisenstein series. The set of elliptic Feynman integrals

involves two different elliptic curves: one elliptic curve belongs to the same family as the sunrise

integral [29–36], while the second is an elliptic curve that appears in certain master integrals for tt

production at hadron colliders [22, 37]. Importantly, these two elliptic curves appear in independent

sets of master integrals. Regarding the numerical evaluation of the master integrals, we present

high-precision numerical results valid to 1000 digits. These numbers are obtained by numerically

solving systems of differential equations within two slightly different approaches. More specifically,

the results valid to 1000 digits are obtained with the auxiliary mass flow method [38–40] as im-

plemented in AMFlow [40], and they are validated with results obtained with the generalised power

series expansion [41, 42] as implemented in diffexp [42]. These high-precision numerical results

allow us to identify relations between the coefficients in the Laurent expansion of the master inte-

grals in the dimensional regulator ǫ using the PSLQ algorithm [43]. These relations are important

to obtain more compact analytic results, and it would certainly be interesting to understand how

they can be generated more systematically. Our results can be found in a Mathematica-readable

format at ref. [44].

The calculation of the various amplitudes which can be written in terms of the set of master

integrals we consider in this paper will be discussed in detail in a companion paper [45]. We

nevertheless present here analytic results for the two-loop QED corrections to the decay of true para-

positronium, which were first obtained in numerical form more than 20 years ago in refs. [46, 47],

adding to the small but increasing number of physical quantities involving elliptic integrals which

are known in analytic form [48–52].

The paper is structured as follows. In section 2 we discuss the set of master integrals we

will consider in this paper. We present two types of relations beyond integration-by-parts identities
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which arise in degenerate kinematic configurations such as the ones corresponding to the amplitudes

we consider. In section 3 we describe the analytic computation of the master integrals by direct

integration, and we characterise the solutions in terms of MPLs, eMPLs and iterated integrals of

Eisenstein series. In section 4 we summarise the main steps we followed for the numerical evaluation

of the master integrals, along with the checks we did on our results. We also obtain relations between

the elliptic master integrals using the high-precision numerical evaluations. Finally, in section 5 we

discuss our results for the two-loop amplitude for the para-positronium decay to two photons, before

we present our conclusion and outlook in section 6.

2 Master integrals

2.1 Kinematics and conventions

We consider the master integrals required to compute the two-loop perturbative corrections to the

production or decay of a pseudo-scalar bound state of two massive fermions. This bound state

can be a quarkonium bound state, in which case we consider higher-order QCD corrections, or a

leptonium bound state, in which case we consider QED corrections. For concreteness, the discussion

of this section focuses on the production of such a bound state, but it is clear that it also holds for

its decay.

The perturbative corrections to the production of a bound state of massive fermions are sys-

tematically accounted for by considering the corrections to the short-distance process

a(k1)b(k2) → Q(p1)Q(p2) , (2.1)

where Q and Q are fermions of mass mQ and the initial-state particles ab can be two gluons (gg),

two photons (γγ) or a photon and a gluon (γg). We will consider the process in eq. (2.1) at leading

order in an expansion in the relative velocity v of the QQ pair in the bound-state rest frame.

This amounts to equating the heavy-fermion momenta p1 and p2, and the kinematics effectively

degenerate to those of a three-point process. More explicitly, assuming k1 and k2 incoming and p1
and p2 outgoing, we have

k21 = k22 = 0, p2 =
1

2
k1 · k2 = m2

Q where p = p1 = p2 =
1

2
(k1 + k2) . (2.2)

The usual Mandelstam variables associated with four-point kinematics become

s = (k1 + k2)
2
= 4m2

Q , t = (k1 − p1)
2
= −m2

Q , u = (k1 − p2)
2
= −m2

Q . (2.3)

Besides the perturbative corrections we consider here, there are also corrections related to higher

orders in an expansion in v (see, e.g., ref. [53] and references therein). All these contributions must

in general be taken into account for phenomenological predictions for the production or decay of

quarkonium or leptonium bound states, but they fall outside of the scope of this paper.

We will focus on the calculation of the master integrals that contribute to the two-loop ampli-

tudes for the process in eq. (2.1). For quarkonium states, this will allow us to compute the two-loop

amplitudes for the production and decay of the colour-singlet pseudo-scalar state 1S
[1]
0 in both the

gg and γγ channels, or the production and decay of the pseudo-scalar colour-octet state 1S
[8]
0 in

the gg and γg channels. For leptonium states, our set of integrals is sufficient to compute the

two-loop QED corrections to para-positronium decaying into two photons, for which a numerical

computation has already been performed in refs. [46, 47], or the equivalent process for (true) muo-

nium or tauonium. We will return to the decay of para-positronium in section 5. The calculation

of the two-loop corrections to the production and decay of a pseudo-scalar bound state, both in

colour-singlet and colour-octet, will be described in detail in a companion paper [45].
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To determine the set of master integrals (MIs) that contribute to the process in eq. (2.1), we

use standard techniques for the calculation of scattering amplitudes (we refer the reader to ref. [45]

for more details). Let us nevertheless highlight here a consequence of the degenerate kinematics

of eqs. (2.2) and (2.3). For generic four-point kinematics at two loops there are nine independent

scalar products involving at least one loop momentum, but due to the degenerate kinematics of

eqs. (2.2) and (2.3) only seven of them are independent. This fact must be taken into account when

mapping all integrals into topologies, and we use the program Apart [54] to implement partial-

fraction relations systematically. Once all integrals have been sorted into topologies, we reduce

them to MIs using integration-by-parts (IBP) relations [55, 56]. We perform the IBP reductions

with publicly available codes such as FIRE [57], LiteRed [58] and Kira [59].

After IBP reduction, we find 76 master integrals that contribute to the two-loop corrections to

the process in eq. (2.1). There are 19 four-point integrals (see fig. 1), 37 three-point integrals (see

fig. 2), 10 two-point integrals (see fig. 3) and 10 integrals that factorise into a product of one-loop

integrals (see fig. 4). The factorised master integrals are trivial to evaluate, and we will not discuss

them further. Several of the genuine two-loop master integrals have been considered previously

in the literature [15–28], often in kinematic configurations more generic than those of eqs. (2.2)

and (2.3).

Since there are 7 independent scalar products involving at least one loop momentum, all master

integrals can be embedded in topologies involving at most 7 propagators, i.e., they can be written

as

mI(a1, a2, a3, a4, a5, a6, a7;m
2
Q) =

∫

D4−2ǫq1D4−2ǫq2
1

Da1
1 · · ·Da7

7

, (2.4)

where the Di denote inverse propagators and the ai take integer values. We refer the reader to

appendix A for the explicit representation of each master integral in the form of eq. (2.4). We

consider the integrals in dimensional regularisation in d = 4− 2ǫ dimensions, and we normalise the

integration measure as

D4−2ǫqk =
d4−2ǫqk
iπ2−ǫ

eǫγE , (2.5)

where γE = −Γ′(1) is the Euler-Mascheroni constant. We note that, as a consequence of the

degenerate kinematics in eq. (2.3), all master integrals are single-scale integrals whose explicit

dependence on m2
Q can be determined from dimensional analysis. Each integral can then be written

as a Laurent series in ǫ,

mI(m
2
Q) = (m2

Q)
dim(mI)

∑

k≥−4

ǫkF
(k)
I , (2.6)

where dim(mI) is half of the mass dimension of the integral mI , the F
(k)
I are constants, and we

used the fact that two-loop master integrals have at most quadruple poles in ǫ. The goal of this

paper is to determine these constants for each of the master integrals, up to the order in ǫ required

to compute the two-loop amplitudes for the processes mentioned previously.

2.2 Partial-fraction and triangle relations

As we already noted, out of the 76 master integrals obtained after IBP reduction, several are

available in the literature. To further reduce the number of integrals we need to compute, we

discuss here a set of special identities beyond IBP or symmetry relations. The first kind of relations

follows from partial-fraction relations due to the degenerate kinematics in eqs. (2.2) and (2.3).

The second kind is obtained from a relation between three-point functions with a special mass

configuration. We stress that we have not tried to find all identities that go beyond IBP relations,

and it would undoubtedly be interesting to find and study such relations in a more systematic way.
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m1 m2 m3 m4

m5 m6 m7 m8 m9 m10

m11 m12 m13 m14 m15 m16

m17 m18 m19

Figure 1: Four-point non-factorisable two-loop integrals. Thin lines are massless, and thick lines

have mass mQ. A dot on a propagator means that the propagator is squared.

2.2.1 Partial-fraction relations

The fact that partial-fraction relations are useful within the framework of quarkonium physics is

well known (see, e.g., refs. [60, 61]). For example, we have already mentioned that partial-fraction

relations play an important role when sorting integrals into topologies. In addition, there are also

partial-fraction relations that relate integrals from different topologies. We discuss some examples

of such relations in this section.

In order to illustrate how partial-fraction relations arise, let us consider the following one-loop

integral,

I =

∫

ddq1
1

D1D2D3D4
, (2.7)

with the propagators

D1 = (q1 − p)
2 −m2

Q, D2 = q21 , D3 = (q1 + p)
2 −m2

Q, D4 = (q1 + p+ k2)
2 −m2

Q . (2.8)

We then note that D1 +D3 = 2D2, from which it follows that

I = 2

∫

ddq1
1

D1D2
3D4

−
∫

ddq1
1

D2D2
3D4

. (2.9)
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m20 m21 m22 m23 m24 m25 m26

m27 m28 m29 m30 m31 m32 m33

m34 m35 m36 m37 m38 m39 m40

m41 m42 m43 m44 m45 m46 m47

m48 m49 m50 m51 m52 m53 m54

m55 m56

Figure 2: Three-point non-factorisable two-loop integrals. Thin lines are massless, and thick lines

have mass mQ. A dot on a propagator means that the propagator is squared. The dashed line on

m23 denotes a numerator, see appendix A for the explicit definition.
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m57 m58 m59 m60 m61 m62

m63 m64 m65 m66

Figure 3: Two-point non-factorisable two-loop integrals. Thin lines are massless, and thick lines

have mass mQ. A dot on a propagator means that the propagator is squared.

m67 m68 m69 m70 m71 m72

m73 m74 m75 m76

Figure 4: Factorisable two-loop integrals. Thin lines are massless, and thick lines have mass mQ.

Diagrammatically,

k2

k1 p

pD3

D2D4

D1

= 2

k2

k1

D3

2p

D4

D1

−

k2

k1 − p

D3

p
D4

D2

. (2.10)

In summary, this partial-fraction relation relates a four-point function to simpler three-point func-

tions.

A similar approach can be used to generate relations between two-loop integrals. The propa-

gators in eq. (2.8) satisfy the relation

1

D1D3
=

1

2

1

D1D2
+

1

2

1

D2D3
, (2.11)

which can diagrammatically be represented as

4m2

D3D1
=
1

2

m2

m2

D2

D1

+
1

2

m2

m2

D3

D2 ,
(2.12)

where the red and blue dots connect to the rest of the diagram. It is possible to derive similar

partial-fraction relations for other combinations of propagators. We can then use them to find
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relations among master integrals from different topologies. Using this type of identities, we found

the following relations:

m6 = m26, m69 = m71, m36 = 2m39 −m16, m40 = m58,

m45 =
2 (3d− 11)m2

Q

(d− 3) (3d− 10)
m53 −

8m4
Q

(d− 3) (3d− 10)
m54 +

(d− 2)2

4 (d− 3) (3d− 10)m4
Q

m76,

m46 = m53 −
4m2

Q

(d− 4)
m54.

(2.13)

The last two relations have been derived by combining partial fraction relations with IBP relations

and therefore involve the dimension d = 4 − 2ǫ and the mass scale mQ. The question naturally

arises whether one could systematically incorporate these partial fraction relations at intermediate

steps in the IBP reduction system to find all possible relations over the different topologies.

2.2.2 Triangle relations

Another special identity follows from a relation between certain triangle integrals. Consider a one-

loop triangle integral with external legs p1, p2 and k1 = p1 + p2, with k21 = 0 and p2i 6= 0. We

furthermore assume that two of the propagators have the same mass. Explicitly, we consider

C(m2
1,m

2
2) =

∫

ddq1
1

D1(m2
1)D2(m2

1)D
2
3(m

2
2)
, (2.14)

with

D1

(

m2
)

=q21 −m2,

D2

(

m2
)

=(q1 − k1)
2 −m2,

D3

(

m2
)

=(q1 − k1 + p2)
2 −m2.

(2.15)

Introducing Feynman parameters and after some manipulations, we find that

C(m2
1,m

2
2) =

∫ ∞

0

dx
(1 + x)2ǫ

(p21 − p22) (1 + ǫ)

[

(

m2
1 (1 + x) + x

(

−p21 +m2
2 (1 + x)

))−1−ǫ

−
(

m2
1 (1 + x) + x

(

−p22 +m2
2 (1 + x)

))−1−ǫ
]

.

(2.16)

If we change variables according to x = 1/y, we get:

C(m2
1,m

2
2) =

∫ ∞

0

dy
(1 + y)2ǫ

(p21 − p22) (1 + ǫ)

[

(

m2
2 (1 + y) + y

(

−p21 +m2
1 (1 + y)

))−1−ǫ

−
(

m2
2 (1 + y) + y

(

−p22 +m2
1 (1 + y)

))−1−ǫ
]

.

(2.17)

Comparing eqs. (2.16) and (2.17), we see that C(m2
1,m

2
2) = C(m2

2,m
2
1) which corresponds diagram-

matically to

k21 = 0

p21 p22

m2
1 m2

1

m2
2

=

k21 = 0

p21 p22

m2
2 m2

2

m2
1

. (2.18)
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Since this relation holds for arbitrary p21 and p22, it can be used to relate multi-loop integrals having

this triangle as a sub-diagram. In particular, it follows that

= . (2.19)

These integrals are related to m10 and m17 by IBP relations (see fig. 1), and so we can use this

identity to relate m10 to m17.

3 Analytic results for the master integrals

In the previous section we have defined our set of master integrals, which is composed of a total of

76 MIs. Taking into account results available in the literature [15–28] and the relations discussed in

section 2.2, there are 38 master integrals that we have to consider. This can be for various reasons:

some integrals are unknown, some are known in more general kinematic configurations and the

limit cannot be smoothly taken, some have been computed but are expressed in different classes

of functions, and some are known but not to the required order in the Laurent expansion around

ǫ = 0. The integrals we must consider can be classified as follows: there are 16 four-point integrals,

m1−5, m7−15 and m18−19, 18 three-point integrals, m20−25, m28−33, m35, m37−38, m48, m49 and

m51, and 4 two-point integrals, m57, m63−65.

In this section, we review our approach to the analytic computation of the MIs listed above

and discuss some of their analytic properties. Since we are only interested in their contributions

to the NNLO corrections to the processes discussed in section 2 [45], we only focus on the terms

in the Laurent expansion around ǫ = 0 that contribute at this perturbative order. In particular

three MIs actually are absent from the NNLO corrections: m5, m25 and m38 contribute to the

two-loop amplitudes only at O(ǫ). We nevertheless compute the leading order of m5 and m38 both

analytically and numerically, while for m25 we only present numerical results for its leading order.1

We recall that for each master integral mI , our goal is to compute the numbers F
(k)
I in eq. (2.6).

These numbers are special functions evaluated at specific numerical values. We will encounter three

types of special functions, which are all particular instances of iterated integrals [1]:2

1. Multiple polylogarithms (MPLs) [3], which are iteratively defined by

G(a1, · · · , an;x) =
∫ x

0

dt

t− a1
G(a2, · · · , an; t) , (3.1)

with G(;x) = 1.

2. Elliptic multiple polylogarithms (eMPLs) [4–6]:

Γ̃

(

n1 · · · nk

z1 · · · zk
; z, τ

)

=

∫ z

0

dz′ g(n1)(z′ − z1, τ) Γ̃

(

n2 · · · nk

z2 · · · zk
; z′, τ

)

, (3.2)

with Γ̃ (; z, τ) = 1, and with the integration kernels g(n)(z, τ) defined by the Eisenstein-

Kronecker series

F (z, τ, α) =
1

α

∑

n≥0

g(n)(z, τ)αn =
θ′1(0, τ)θ1(z + α, τ)

θ1(z, τ)θ1(α, τ)
, (3.3)

where θ1 is a Jacobi theta function, and θ′1 is its derivative with respect to the first argument.

The arguments zi, z and τ are complex numbers, with Im τ > 0.

1We note that the leading order of these integrals is of weight/length four, so they could in principle contribute

to other two-loop amplitudes.
2Note that in all cases some of these integrals may be divergent and require regularisation.
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3. Iterated integrals of Eisenstein series [7, 8]:

I(f1, · · · , fk; τ) =
∫ τ

i∞

dτ ′

2πi
f1(τ

′)I(f2, · · · , fk; τ ′) , (3.4)

with I(; τ) = 1 and the fi are Eisenstein series of weight ki for some subgroup Γ ⊂ SL(2,Z).

They are special cases of modular forms of weight ki, i.e., holomorphic functions on the upper

half-plane such that

fi

(

aτ + b

cτ + d

)

= (cτ + d)ki fi(τ) , ∀
(

a b
c d

)

∈ Γ ⊆ SL(2,Z) . (3.5)

Presenting a detailed account of these functions and their properties would go beyond the scope of

this paper, and we refer instead to the relevant literature (cf., e.g., refs. [6, 9, 62–65] and references

therein, for a discussion in a physics context).

Note that a given integral may be expressible in terms of more than one of these classes of

iterated integrals. Depending on the representation chosen, the results can be more or less easy to

manipulate and evaluate. Indeed, the understanding of these different types of iterated integrals is

currently not on the same footing. For example, we know how to systematically simplify expressions

involving MPLs and how to numerically evaluate them very efficiently (see, e.g., refs. [62, 66–71],

and references therein). This is however not (yet) the case for eMPLs and iterated integrals of

Eisenstein series. While first public codes for the numerical evaluation of eMPLs exist [72], these

codes are not nearly as efficient as in the MPL case. In some cases, it is possible to write eMPLs

as iterated integrals of Eisenstein series [63], and in this representation the numerical evaluation is

much more efficient [9, 31], allowing us to reach a precision comparable to what can be achieved

for MPLs.

3.1 Direct integration

We have evaluated all the MIs for which no results were available in the literature via direct

integration. Our starting point is the parametric representation of the scalar Feynman integrals in

terms of Feynman parameters:

I = N

∫ ∞

0

dx1 · · ·
∫ ∞

0

dxn δ (1− Σ0)

n
∏

i=1

xai−1
i

Ua− 3
2d

Fa−d
, (3.6)

where N is some normalisation factor, d = 4 − 2ǫ, Σ0 =
∑n

i=1 xi, and U and F are the usual

Symanzik polynomials. The representation in eq. (3.6) can be integrated order by order in ǫ using

direct integration.3 We distinguish the two cases:

• MPL case: we are able to perform all the integrations in eq. (3.6) in terms of MPLs, and

consequently the integral can be expressed in terms of MPLs evaluated at algebraic arguments;

• eMPL case: we are not able to perform all the integrations in eq. (3.6) in terms of MPLs,

because the integrand depends on the square root of a polynomial of the fourth order, which

describes an elliptic curve. In this case we exploit the strategy outlined in refs. [37, 75] to

obtain an analytic expression in terms of eMPLs. (We refer to ref. [6] for how to relate iterated

integrals involving square roots of quartic polynomials to the eMPLs in eq. (3.2)).

3The integrals might have singularities in ǫ that forbid us to trivially integrate eq. (3.6) order by order in ǫ. For

those cases, it is simple to choose a different master integral belonging to a quasi-finite basis, where poles in ǫ appear

as prefactors (cf., e.g., refs. [73, 74]). We thus assume that we can always expand eq. (3.6) under the integration sign

and all integrations are well defined.
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The MPL case is vastly discussed in the literature [67, 76–80]. In a nutshell, one starts from

the Feynman-parameter representation in eq. (3.6) and notices that the Feynman-parameter inte-

grals are projective integrals. This observation leads to what is usually known as the Cheng-Wu

theorem in physics [81], which states that the integral is invariant under some transformations of

the argument of the delta function, such as:

Σ0 → Σ =

n
∑

i=1

cixi for any ci ≥ 0 . (3.7)

Using the freedom afforded by this transformation, together with different integration orderings, one

then looks for a way to integrate over all Feynman parameters so that each integration can be written

in terms of MPLs. This can be done using public codes such as HyperInt [67], PolyLogTools [65]

or MPL [80].

For the MIs which do not admit a representation in terms of MPLs, we use the strategy

introduced in refs. [37, 75]. More precisely, we proceed exactly as in the MPL case, but, due to the

appearance of a square root defining an elliptic curve, we cannot perform all integrations in terms

of MPLs. Instead, we find a transformation as in eq. (3.7) and an integration ordering such that

we can perform all but the last integration in terms of MPLs. The last integration will depend on

the final Feynman parameter x and the square root of a polynomial of degree 4 in x (denoted by

y) describing the underlying elliptic curve. Schematically, the last integration will be of the form:
∫

dxR(x, y)JMPL(x, y), (3.8)

where R(x, y) is a rational function in x and y, and JMPL(x, y) is a linear combination of MPLs

with numerical coefficients, where we note that the square root y can also appear in the arguments

of the MPLs. The next step is to rewrite the MPLs that appear in the last integration as eMPLs.

This can be done systematically as described in ref. [37], by iteratively differentiating the MPLs

and integrating them back in terms of eMPLs. For our MIs, these rather straightforward steps

are complicated by the appearance of spurious square roots at either the second to last or the last

integration. By spurious roots, we mean roots which are not related to the square root defining the

elliptic curve. In the remaining part of this subsection we discuss how we overcame this issue (we

note that spurious roots can also appear in the calculation of integrals involving only MPLs, and

they can be dealt with in the same way; we focus here on the elliptic case since we found it to be

by far the most challenging one).

Let us first discuss the MIs for which spurious square roots appear in the second to last integra-

tion. This was the case for m3, m5, m7, m13, and m14, for which we could not find a transforma-

tion of the type of eq. (3.7) and an integration ordering that allowed us to rewrite all but the last

Feynman-parameter integration in terms of MPLs. In this scenario, the next-to-last integration is

of the form:
∫

dx1

∫

dx2 S(x1, x2) IMPL(x1, x2), (3.9)

where S is a rational function in x1, x2 and the spurious square roots, and IMPL(x1, x2) is a linear

combination of MPLs whose arguments are rational functions in x1, x2 and the spurious square

roots. If there is a single spurious square root, there is a simple solution: we find a change of variables

that rationalises the spurious root, for example with the approaches described in refs. [82–84], and

then proceed with the integration over the new variables with the general strategy outlined above.4

This was sufficient for MIs m5, m7, m13, and m14. Integral m3 proved to be more challenging.

4To be more precise, this is done at the level of each individual term in the expression. Multiple spurious roots

may be present in different terms. In this case, one can rationalise each spurious root separately, and one must

carefully match the integration boundaries.
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With the most convenient choice of transformation of the type of eq. (3.7) and most convenient

integration order that we could find, we ended up with multiple spurious square roots appearing

inside the same term. We found different terms involving different pairs of spurious roots, each

still depending on two integration variables. In principle, one could attempt to rationalise all these

square roots simultaneously, but this typically leads to very complicated changes of variables, which

generate long expressions that are difficult to manipulate. Instead, we found that the expression

could be simplified by inserting

1 =

∫ ∞

−∞
dx̃ δ(1− Σ̃) , (3.10)

where Σ̃ is linear in the Feynman parameters and in x̃, into eq. (3.6):

I = N

∫ ∞

0

dx1 · · ·
∫ ∞

0

dxn δ (1− Σ)

∫ ∞

−∞
dx̃ δ

(

1− Σ̃
)

n
∏

i=1

xai−1
i

Ua− 3
2d

Fa−d
. (3.11)

We then found that there was a choice of integration ordering that allows us to perform all but

the last integral in terms of MPLs (more precisely, there were still spurious square roots, but all of

them could be rationalised), bringing us into the general strategy discussed above.

To be more explicit, let us look more closely at the case of m3. Its Feynman parameter

representation is

m3 = −e2ǫγEΓ(3 + 2ǫ)

∫ ∞

0

7
∏

i=1

dxi δ (1− Σ3)U1+3ǫF−3−2ǫ, (3.12)

where the Symanzik polynomials are:

U = x1x3 + x2x3 + x1x4 + x2x4 + x3x4 + x1x5 + x2x5 + x4x5 + x1x6 + x2x6 + x4x6

+x3x7 + x4x7 + x5x7 + x6x7,

F = x21 (x3 + x4 + x5 + x6) + x22 (x3 + x4 + x5 + x6) + x1
[

2x3x4 + x24 + 4x4x5 + x25

+2(x3 + x4 + x5)x6 + x26 + 2x2(x3 + x4 + x5 + x6)
]

+ x4 [(x5 + x6)(x4 + x5 + x6)

+x3(x4 + 2x6)] +
[

2x3(x4 + x6) + (x4 + x5 + x6)
2
]

x7 + x2
[

x24 + 2x3(x4 + x6 + x7)

+2x4(x5 + 2x6 + x7) + (x5 + x6)(x5 + x6 + 2x7)] . (3.13)

We first note that by choosing Σ = x1+x2+x4 we found the most compact intermediate expressions.

In the most convenient integration order that we could identify, we encounter the following spurious

square roots

y1 =
√

1 + 4x24 − 8x34 + 4x44 + 8x4x5 − 8x24x5 ,

y2 =
√

1− 4x4 + 4x24 − 8x4x5 + 8x24x5 ,

y3 =
√

x24 − 2x34 + x44 − 2x34x5 + x25 − 2x4x25 + x24x
2
5 ,

(3.14)

where some of the spurious square roots appear simultaneously in the same terms. However, we

found that by rewriting m3 as

m3 = −e2ǫγEΓ(3 + 2ǫ)

∫ ∞

0

7
∏

i=1

dxi δ (1− Σ)

∫ ∞

−∞
dx̃ δ (x5 − x6 + x̃)U1+3ǫF−3−2ǫ , (3.15)

with Σ as given above, and choosing the integration order

(x2, x5, x3, x7, x1, x6, x̃, x4) , (3.16)
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we obtain an expression with two spurious square roots in the integration variables, which do not

appear simultaneously within the same term. As such, we can proceed and rationalise the square

roots in each term separately, and perform the next-to-last integration in terms of MPLs.5

Let us now discuss how we deal with spurious square roots in the last integration step, which

is a much more common occurrence. These spurious roots are generated when factorising the

denominators in the second-to-last integration. In most cases, we find only spurious square roots

involving a quadratic polynomial which can always be rationalised. However, for some integrals we

encountered different spurious roots involving quartic or quintic polynomials, sometimes appearing

in the arguments of the MPLs. This was for instance the case for m3, where we encountered more

than 20 different spurious roots. In order to deal with these roots, we devised an algorithm that

allows us to eliminate all spurious roots systematically. The key idea is that it is not necessary to

bring individual terms into a form that can be integrated in terms of MPLs or eMPLs, but only the

entire integrand. Our algorithm is iterative in the transcendental weight and proceeds as follows:

1. We first consider all terms of transcendental weight one. We then group them according to

the x-dependence in their prefactor, where x denotes the last integration variable. Let us

call g1,i one of these combinations of MPLs of weight one with the x-dependent prefactor

removed. We compute the derivative d
dxg1,i and construct the dlog-kernels. At this stage,

all spurious roots in d
dxg1,i must disappear, otherwise they would not be spurious. We then

integrate d
dxg1,i back in x and fix the boundary condition either analytically or with PSLQ.

We repeat this procedure for all other weight one terms g1,j.

2. We next consider all terms of transcendental weight two. The first step is again to group them

according to the x-dependence of their prefactor. When computing the derivative of one such

term, d
dxg2,i, we now have MPLs of weight one which might still involve spurious roots. These

are dealt with as in the previous step. Next, we construct the dlog-kernels for the weight

two contributions, and again all spurious roots disappear. We then integrate d
dxg2,i back in x

and the boundary condition is fixed as at weight one. We repeat this procedure for all other

weight two terms g2,j.

3. We proceed with the same steps for weight three and then weight four, where each time the

procedure requires dealing with all the lower weight terms that are generated when taking

derivatives.

The crucial idea behind this algorithm is that, while individual terms may have spurious roots,

the combination of terms that have the same weight and share the same integration kernel cannot,

otherwise the square roots would not be spurious. Once all spurious roots have been removed,

we can perform the last integral in terms of eMPLs for all integrals where spurious square roots

appeared.

Following the steps described in this subsection we obtain fully analytic results for all the master

integrals that we are interested in. We also obtained expressions for the integrals that had already

been considered previously in the literature [15–28], and we provide results for the complete set of

master integrals that contribute to the amplitudes mentioned in section 2. The analytic results for

the MIs can be very lengthy, so we make them available in Mathematica-readable form at ref. [44].

The file analytics.m contains a replacement list of the form

mI →
∑

ǫkF
(k)
I , (3.17)

with the F
(k)
I as defined in eq. (2.6) where we set m2

Q = 1, since the dependence on the single

scale m2
Q can always be reinstated by dimensional analysis. In the case where the F

(k)
I can be

5For the integrals m5, m7, m13, and m14, we find that the strategy of introducing a second delta function allows

us to avoid any spurious square roots. This provides an alternative to the procedure described previously.
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written as MPLs, the corresponding expressions are explicitly inserted. In the elliptic case, where

the expressions are particularly lengthy, we do not explicitly insert them into the expressions for

the master integrals. Instead, as discussed in section 4.2 below, we used the PSLQ algorithm to find

relations between the different elliptic F
(k)
I , and the right-hand side of eq. (3.17) incorporates these

relations. An independent set6 of F
(k)
I is given in analytic form in the files /elliptics/F*.m of

ref. [44].

3.2 Analytic results for the master integrals

The 54 master integrals

m1,m2,m4,m6,m8−10,m16,m17,m19,m20,m26−30,

m34−47,m50−56,m58−63,m66−76

(3.18)

can be expressed entirely in terms of MPLs up to weight four evaluated at algebraic arguments.

As already mentioned, the algebraic properties and the numerical evaluation of MPLs are well

understood. In particular, using the public implementation in GiNaC [69] we obtained high-precision

evaluations of these MIs to hundreds of digits. We then used the PSLQ algorithm [43] to fit our results

to a basis of transcendental numbers. We observe that all of the MIs in eq. (3.18), except m8, m38,

m50 and m51, only involve MPLs evaluated at sixth roots of unity. This space of transcendental

numbers has dimension 88, and a basis is known [85, 86]. This observation allows us to obtain

very compact expressions for these integrals. The four remaining master integrals, m8, m38, m50

and m51, involve fourth roots of unity or algebraic numbers of the form a + b
√
2, where a and

b are rational numbers. In this cases it is possible to construct a (conjectural) basis for these

transcendental numbers using the results from section 2.5 of ref. [87].

The remaining 22 MIs not in eq. (3.18) cannot be expressed in terms of MPLs alone, but they

involve eMPLs.7 eMPLs depend on an elliptic curve, which is defined either by the square root of

a quartic polynomial or, equivalently, by a value of τ as in eq. (3.2). We find two different elliptic

curves in our computation, defined by:

τ (a) = i
K
(

1
2 − 1

2
√
5

)

K
(

1
2 + 1

2
√
5

) = i 0.805192 . . . ,

τ (b) = i
K
(

7
2 − 3

√
5

2

)

K
(

3
√
5

2 − 5
2

) = i 0.680035 . . . ,

(3.19)

where K(λ) denotes the complete elliptic integral of the first kind:

K(λ) =

∫ 1

0

dt
√

(1 − t2)(1 − λt2)
. (3.20)

More specifically, every master integral depends on (at most) one elliptic curve, and the only MIs

that depend on the elliptic curve defined by τ (b) are m24 and m25. At this point we have to address

an important question: while every τ in the complex upper half-plane defines an elliptic curve, the

same elliptic curve may arise from different values of τ . It is therefore natural to ask if the two

6This statement should be understood in light of what is described in section 4.2: the set is independent up to

relations that are undetected by PSLQ with the numerical precision at which we evaluated the integrals.
7We note, however, that MPLs do appear in these expressions. This is to be expected, since ordinary MPLs are

a subset of eMPLs, cf., e.g., ref. [6].

– 14 –



elliptic curves defined by eq. (3.19) are indeed different (i.e., non-isomorphic) elliptic curves. This

can easily be checked by computing the j-invariant of the elliptic curve,8

j(τ) =
1

q
+ 744 + 196884 q+ 21493760 q2 + 864299970 q3 +O(q4) , q = e2πiτ , (3.21)

and the two elliptic curves defined by τ1 and τ2 are the same if and only if j(τ1) = j(τ2). We find:

j(τ (a)) =
16384

5
and j(τ (b)) =

55296

5
. (3.22)

This shows that our two elliptic curves are indeed distinct. They are in fact particular members

of the families of elliptic curves associated to the sunrise integral, m64, [29–36] and the two-loop

non-planar three-point function m24 considered in refs. [22, 37].

The arguments zi of the eMPLs defined in eq. (3.2) which appear in our computation have the

form

zi =
mi

12
+
ni

12
τ (x) + ξi , x = a, b (3.23)

where mi and ni are integers and the ξi are irrational numbers that are not rational multiples

of τ (x). Instead, they can be expressed in terms of the complete and incomplete elliptic integrals of

the first kind evaluated at special arguments. The complete elliptic integral of the first kind was

already defined in eq. (3.20), while its incomplete version is defined by

F(φ|λ) =
∫ φ

0

dθ
√

1− λ sin2 θ
. (3.24)

All the ξi can be written as rational linear combination of the z̃i listed in appendix B.

If all arguments of an eMPL have the form aτ + b, with a, b ∈ Q (i.e., whenever ξi = 0 in

eq. (3.23)), the eMPL can be expressed in terms of iterated integrals of Eisenstein series, defined

in eq. (3.4), in an algorithmic fashion [63]. Writing integrals in terms of iterated integrals of

Eisenstein series presents the advantage that we know a basis for this type of iterated integrals

and also efficient techniques for their numerical evaluation. We identified seven MIs for which their

analytic expressions involve iterated Eisenstein series for two distinct subgroups Γ ⊆ SL(2,Z): m15,

m23, m48, m49, m64 and m65 involve Eisenstein series of the congruence subgroup Γ1(6),
9 while

m24 and m25 involves Eisenstein series of the congruence subgroup Γ1(4), with

Γ1(N) =
{(

a b
c d

)

∈ SL(2,Z) : a, d = 1 mod N and c = 0 mod N
}

. (3.25)

To summarise, we can classify the 76 MIs into four categories, depending on the classes of

transcendental numbers that appear in the analytic results:

• 50 MIs can be expressed in terms of MPLs evaluated at sixth roots of unity,

• 4 MIs can be expressed in terms of MPLs evaluated at fourth roots of unity and arguments

of the form a+ b
√
2, a, b ∈ Q,

• 20 MIs can be expressed in terms of eMPLs associated to the elliptic curve defined by τ (a),

and iterated integrals of Eisenstein series for Γ1(6).

• 2 MI can be expressed in terms of eMPLs associated to the elliptic curve defined by τ (b), and

iterated integrals of Eisenstein series for the congruence subgroup Γ1(4). We note once more

that we only provide numerical results for m25 since it is not strictly speaking needed for the

processes we are concerned with. Nevertheless, given that it is coupled to m24, we know that

it can be written in terms of the same set of functions.
8The j-invariant can be evaluated in Mathematica using j(τ) = 1728 KleinInvariantJ[τ].
9The MIs m64 and m65 correspond to the two master integrals for the equal-mass sunrise, for which a represen-

tation in terms of iterated integrals of Eisenstein series for Γ1(6) is known in the literature, cf. refs. [63, 64]. In this

paper we explicitly compute them up to the order ǫ2 in dimensional regularisation.
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4 Numerical results for the master integrals

In the previous section we discussed how we could obtain fully analytic results for the master

integrals and we briefly reviewed the class of special functions that appear in the answer. We also

noted that the numerical evaluation of MIs integrating to MPLs was a solved problem, and even

used high-precision evaluations to write them in bases of transcendental numbers.

For the numerical evaluation of eMPLs and iterated integrals of Eisenstein series, we follow the

strategy presented in refs. [9, 88, 89]. In a nutshell, the integration kernels g(n)(z, τ) and fj(τ) in

eqs. (3.2) and (3.4) are expanded in a so-called q-expansion (a Fourier expansion with q = e2πiτ ).

This series is truncated at a finite order, which, together with the convergence properties of the

series representation, determines the precision of the numerical evaluation. The coefficients of

this series expansion are MPLs, which can be numerically evaluated with standard tools. In the

case of iterated integrals of Eisenstein series, it is known how to transform the integrals into a

representation where the q-expansion converges very rapidly, and we can evaluate the integrals to

hundreds of digits in an acceptable amount of time. For eMPLs, however, the convergence is in

general very slow which in practice means we can only get a very small number of digits. For all

integrals that involve eMPLs we obtained numerical results valid to O(10) digits. We have validated

all our results by comparing them to completely independent numerical evaluations obtained with

pySecDec [90], with which one can achieve a similar level of precision.

While the efficiency of the numerical evaluation of eMPLs will surely improve in the future,

alternative approaches can already be used to obtain high-precision numerical evaluations for MIs

involving eMPLs. These evaluations can then be used in phenomenological applications. In this

section we explain how we bypassed the evaluation of eMPLs to obtain numerical results for all

master integrals with a precision of 1000 digits. This precision is more than sufficient for any

phenomenological application, and also allows us to use the PSLQ algorithm to simplify and find

relations between the various F
(k)
I , as will be discussed in section 4.2. We discuss two independent

calculations, which have in common the fact that they are based on numerically solving systems of

differential equations.

4.1 High-precision numerical results from differential equations

To obtain high-precision numerical evaluations for the elliptic MIs that involve eMPLs, we construct

systems of differential equations for them [15, 91–93], which are then solved numerically. These

calculations are performed with two alternative approaches. In the first one, we build the differential

equations and provide the required boundary conditions ourselves. The system is then solved

in terms of generalised power series [41, 42] using diffexp [42]. In the second approach, we

use AMFlow [40], which automatises the construction and solution of the system of differential

equations [38–40]. The integrals involving eMPLs can be collected in four topologies (topologies 3,

4, 5 and 6 in the notation of appendix A). In topology 6, however, the only elliptic integrals are

m5, which only contributes at order ǫ to the two-loop amplitudes of ref. [45], and m15, which can

be written in terms of iterated integrals of Eisenstein series, and can thus be evaluated efficiently

to hundreds of digits from its analytic representation. We have thus only evaluated the elliptic

integrals of topology 6 with AMFlow, since the evaluation with diffexp is only used as a check in

the other topologies.

Let us briefly discuss the calculation with diffexp, since AMFlow implements similar steps in

an automated way. In a nutshell, if ~I is a basis of master integrals for a given topology, we compute

the system of differential equations

∂xi

~I =M(~x; ǫ)~I , (4.1)

where ~x denotes all the kinematic variables on which the integrals ~I depend. We then numerically

solve this differential equation order by order in ǫ. We note, however, that we cannot straightfor-
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(a) (b) (c)

Figure 5: Diagrams defining the topologies for the differential equations used in the numerical

evaluation of the integrals involving eMPLs. The thick dashed line has mass λ2, while the solid

thick lines have mass m2
Q. Thin lines are massless.

wardly apply the differential-equation approach to the master integrals in figs. 1 to 4. Indeed, as

noted in eq. (2.6), they depend on a single variable and as such they satisfy a trivial differential

equation. Instead, we will consider two-scale versions of the master integrals and evaluate them at

the point corresponding to the kinematics of eq. (2.3). We are assisted in this task by the fact that a

generalisation of topologies 3 and 4 was considered in refs. [21, 23] and a generalisation of topology

5 in ref. [22], precisely from the perspective of their differential equations. For each topology we

setup the calculation in the following way:

• For topology 3: we consider the topology defined by the diagram in fig. 5a, evaluated at

λ2 = 0. Our basis is similar to the one chosen in refs. [21, 23].10 For completeness, all

the information required to completely define the basis we chose can be found in the folder

/diffexp/ of ref. [44].

• For topology 4: we consider the topology defined by the diagram in fig. 5b, evaluated at

λ2 = 0. The same comments as for topology 3 apply. The complete information to define our

basis can be found in the folder /diffexp/ of ref. [44].

• For topology 5: we consider the topology defined by the diagram in fig. 5c, evaluated at

λ2 = 4m2
Q. The basis we choose is that of ref. [22], up to some trivial normalisation factors.

The complete information to define our basis can be found in the folder /diffexp/ of ref. [44].

Constructing the differential equations for these three sets of master integrals is straightforward with

standard approaches [15]. In all cases, our bases are such that the differential equation matrices

M(~x; ǫ) in eq. (4.1) are polynomials in ǫ (with our choice of bases, they are polynomials of degree 2).

In the sub-sectors that only couple integrals which evaluate to MPLs, the differential equation is

in canonical (dlog) form, that is, the corresponding entries of M(~x; ǫ) consist of dlog-forms and are

proportional to ǫ. To solve the differential equations we use the initial conditions given in refs. [21–

23] within diffexp. This allows us to numerically solve the three systems of differential equations

to hundreds of digits at the relevant kinematic points (if the integrals are logarithmically divergent

at this point, we instead compute a generalised series expansion). We then use IBP relations to

relate the bases chosen to solve the differential equations to the master integrals in figs. 1 to 4.

Up to some differences in the way the boundary conditions are determined, the evaluation

within AMFlow is based on the same procedure. The different steps are automated so that one can

simply require the evaluation of the integral at a phase-space point. Using AMFlow, we were able

to evaluate the integrals to very high precision (O(1500) digits), but to be conservative we keep

only the first 1000 digits. We found that we could achieve a higher precision with AMFlow than

10We thank the authors of refs. [21, 23] for discussions in identifying and correcting some typos in their publications.
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with diffexp, so we quote the former as our final results. While the difference is irrelevant for

phenomenological studies, the highest precision of the AMFlow evaluations were useful in identifying

extra relations between different integrals using PSLQ.

We find complete agreement between the numerical evaluations within the two approaches, and

also with the pySecDec evaluations. Furthermore, in this process we also reevaluate master integrals

that do not involve eMPLs, which we find to completely agree with the high-precision numerical

evaluation of their analytic expressions. Our results, correct to 1000 digits, can be found in the file

numerics.m at ref. [44].

4.2 Relations among elliptic master integrals

The fact that the algebraic properties and the numerical evaluation of MPLs is well understood

allowed us to use the PSLQ algorithm to express the MIs that evaluate to MPLs in a basis of MPLs

with specific arguments. This results in rather compact analytic representations for those MIs.

This is in contrast to the case of MIs that involve eMPLs and/or iterated integrals of Eisenstein

series where, as already noted in section 3.1, analytic expressions can be extremely long. Indeed, it

is currently very complicated to simplify expressions involving eMPLs, because not much is known

about how to manipulate such functions.

In order to simplify our analytic expressions, we were nevertheless able to find relations between

the coefficients in the Laurent expansion of certain elliptic master integrals. We were motivated

by the fact that the poles of the two-loop amplitudes for quarkonium or leptonium production or

decay considered in ref. [45] are free of elliptic contributions.11 Using the PSLQ algorithm we found

the following relations:
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where ζn denotes the Riemann zeta function evaluated at n (in particular, ζ2 = π2/6 and ζ4 =

π4/90) and Cl2(x) denotes the Clausen function, Cl2 (x) = Im
[

Li2(e
ix)
]

. It would be very inter-

esting to find a systematic way to derive such identities, and some might follow from the type of

relations discussed in section 2.2. In practice, using these relations we are able to write some of the

lengthiest elliptic integrals in terms of much more compact expressions.

5 Analytic results for the para-positronium decay up to NNLO

As mentioned in section 2, the master integrals we have discussed in this paper allow us to com-

pute the NNLO contributions to the production and decay of several quarkonium and leptonium

pseudo-scalar bound states. While we leave a more extensive discussion of such calculations to a

separate publication [45], we finish this paper by discussing the NNLO corrections to the para-

positronium (e+e−) decay to two photons, presenting for the first time complete analytic results

for this contribution.

The para-positronium state is a pseudo-scalar particle with spectroscopic notation 0+− (JPC).12

The most precise experimental measurement for its decay width includes the decay to any even

number of photons, giving [95]

Γexp.
p-Ps decay = (7990.9± 1.7) (µs)

−1
. (5.1)

The leading-order of the decay to four photons is of the same order in perturbation theory as the

NNLO corrections to the decay to two photons. We write

Γp-Ps decay = Γp-Ps→γγ + Γp-Ps→4γ , (5.2)

where the leading-order contribution to Γp-Ps→4γ has been computed analytically in ref. [96],

Γp-Ps→4γ =
me α

5
em

2

(αem

π

)2
(

112

5
− 3π2

2
+

3

10
ζ3 +

π4

24
+

697

15
π2 log 2− 152

5
π2 log 3

)

. (5.3)

The NNLO corrections to Γp-Ps→γγ were first computed in purely numerical form more than 20

years ago [46, 47] (see also ref. [97]), and in this section we present them for the first time in analytic

form.

We can express the decay of the para-positronium to two photons up to NNLO accuracy in

QED as [46, 97, 98],

Γp-Ps→γγ =
me α

5
em

2

[

1 +
(αem

π

)

(

π2

4
− 5

)

− 2α2
em logαem − 3α3

em

2π
log2 αem

+
α3
em

π
logαem

(

533

90
+ 10 log 2− π2

2

)

+
(αem

π

)2

(K2 +K2,soft) +O
(

α3
em

)

]

,

(5.4)

where αem is the electromagnetic fine structure constant and me is the electron mass. The terms

of the form αn
em logk αem and K2,soft are corrections related to the leptonium bound state [98–101].

These and the LO and NLO corrections were already known in analytic form in the literature. We

note that K2 and K2,soft are independently divergent (each has a so-called Coulomb singularity)

but their sum is finite. The master integrals that we have computed in this paper allow us to obtain

for the first time the analytic results for the two-loop contribution K2.

We follow the presentation of refs. [46, 47] and express the two-loop virtual amplitudes con-

tributing to K2 in terms of three different types of terms: (a) regular diagrams without fermion

loops as shown in fig. 6a, (b) contributions with fermion loops in diagrams of type light-by-light

12The vector particle case would be the ortho-positronium with notation 1−−.
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(a) (b) (c)

Figure 6: Two-loop diagrams for the decay of para-positronium into two photons with (a) regular

corrections, (b) light-by-light contributions and (c) vacuum polarisation corrections.

scattering as in fig. 6b and (c) contributions with vacuum polarisations as in fig. 6c. These different

contributions have ultraviolet poles which can be removed by renormalisation. After this process,

a single pole remains which is related to a Coulomb singularity (see, e.g., ref. [46]). We then write:

A(2−loop)
ren. = A(2−loop)

reg ren. + B(2−loop)
lbl ren. + B(2−loop)

vac ren. +A(2−loop)
Coul. , (5.5)

where A(2−loop)
ren. denotes the two-loop amplitude obtained after subtracting the ultraviolet poles,

which can be done contribution by contribution in the decomposition of fig. 6, and

A(2−loop)
Coul. = −π

2

4ǫ
. (5.6)

The analytic expressions for the remaining terms in eq. (5.5) are:
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B(2−loop)
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B(2−loop)
vac, ren. =− 15061

1440
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2160
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60
π2 log 2 +

8

15
ζ3 +

1

5
F

(0)
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F

(0)
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where we have kept the elliptic contributions in the symbolic form F
(k)
I , whose analytic representa-

tion can be found at ref. [44]. We note that the two-loop amplitude exhibits functions of maximal
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weight four (for MPLs) and maximal length four (for elliptic functions), which is in full agreement

with the conjectural property that scattering amplitudes at n-loops should exhibit functions of max-

imal weight/length 2n. Using our high-precision numerical evaluations, these different contributions

evaluate to

A(2−loop)
reg, ren. =− 21.10789796731067145661 . . . , (5.10)

B(2−loop)
lbl =0.64696557211233073992 . . .+ i 2.07357555846158085167 . . . , (5.11)

B(2−loop)
vac, ren. =0.22367201327357266787 . . . , (5.12)

where the numbers are truncated to 20 digits after the decimal.

The NNLO contribution K2 in eq. (5.4) can then be decomposed as

K2 =
1

4
K2

1 +K2,reg +K2,lbl +K2,vac +K2,Coul. , (5.13)

where K1 = π2

4 − 5 is the NLO contribution, and the remaining terms are twice the real part of

eqs. (5.10), (5.11), (5.12) and (5.6) respectively. The soft contribution takes the form [46],

K2,soft =
107π2

24
−K2,Coul.. (5.14)

Therefore, combining all these expressions, we obtain the high-precision numerical result

K2 +K2,soft = 5.1309798210659600230 . . . , (5.15)

where, as before, all number are truncated to 20 digits after the decimal. We note that the finite

part of K2 is dominated by the (negative) contribution of K2,reg. The finite piece of K2,soft has a

similarly sized positive contribution, leading to a NNLO perturbative correction of O(1).

Since the precision of our numerical evaluation of K2 depends on the numerical evaluation of

our master integrals, which are correct up to over 1000-digits accuracy, they do not contribute to

the theory error associated with the NNLO decay width. The theory error is determined by the

precision to which the QED coupling αem and the electron mass me are known. We use for the

coupling

αem = (7.2973525693± 0.0000000011)× 10−3, (5.16)

and for the electron mass

me = (0.5109989500± 0.00000000015) MeV, (5.17)

where the errors are correlated with r = −0.99998 [102, 103]. The propagation of these correlated

errors to the decay width can be determined with:

∆Γ =

√

(∆me)
2

(

∂Γ

∂me

)2

+ (∆αem)
2

(

∂Γ

∂αem

)2

+ 2r ∆me∆αem
∂Γ

∂αem

∂Γ

∂me
. (5.18)

We find that the decay width of para-Positronium to two photons is given by

Γtheory, LO
p-Ps→γγ =(8032.502933± 0.000004) (µs)−1 , (5.19)

Γtheory, NLO
p-Ps→γγ =(7989.458752± 0.000004) (µs)−1 , (5.20)

Γtheory, NNLO
p-Ps→γγ =(7989.606333± 0.000004) (µs)−1 , (5.21)

where for comparison we also quote the LO and NLO results. After a sizeable change in going from

LO to NLO, we find that the NNLO result is very close to the NLO. Our results agree with those
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of refs. [46, 97], but we find that the authors of ref. [97] have slightly underestimated their error.

Combining our results with those for the decay into four photons quoted in eq. (5.3), we obtain

Γtheory, NNLO
p-Ps decay =(7989.618221± 0.000004) (µs)

−1
, (5.22)

which is in full agreement with the experimental measurement quoted in eq. (5.1).

6 Conclusions

In this paper we have computed the complete set of two-loop master integrals contributing to the

NNLO corrections to the production or decay of a pseudo-scalar bound state of two massive fermions

of the same flavour. We have presented both analytic results as well as high precision numerical

evaluations. The analytic results involve both MPLs and eMPLs (and iterated integrals of Eisenstein

series). The presence of elliptic integrals presented the main challenge to the evaluation of this set

of integrals. The high-precision numerical evaluations are comparatively simple to obtain with

modern tools such as diffexp [42] and AMFlow [40]. Besides being important for phenomenological

studies, these high-precision numerical evaluations also allowed us to considerably simplify the

analytic expressions using the PSLQ algorithm. All our results can be obtained from the repository

at ref. [44]. As an example of the type of processes these integrals can be used for, we recomputed

the two-loop corrections to the decay of para-positronium into two photons [46, 47, 97], presenting

both analytic results and high-precision numerical evaluations.

Computing Feynman integrals involving elliptic functions is still a very challenging task. More-

over, once analytic expressions are obtained, it is not yet known how to simplify them or even

how to efficiently evaluate them. We expect this situation to improve substantially in the coming

years as more and more processes involving elliptic functions are computed, and the analytic results

we obtained in this paper will be very useful in this process. For instance, understanding how to

systematically find the relations in section 4.2 will be of great importance: in our calculation, it

allowed us to rewrite the lengthiest elliptic integrals in terms of simpler ones. We also expect that

there will be important developments in the numerical evaluation of eMPLs, and reproducing the

high-precision numerical evaluations of the master integrals from their analytic representation will

provide an important test.

The set of master integrals we have computed will open the door to new NNLO predictions

for processes involving bound states of heavy fermions. Besides the para-positronium decay to two

photons discussed in this paper, for which experimental precision is expected to increase at future

experiments, see e.g. [104, 105], and the equivalent process for (true) para-muonium and (true) para-

tauonium, our results also allow us to study the production and decay of quarkonium states at an

unprecedented level of precision. An interesting prospect is to use charmonium production to study

the gluon parton distribution function of the proton, as these are rather unconstrained at scales

close to the mass of the charm quark. Furthermore, it is interesting to study the convergence of the

perturbative expansion as the strong coupling αs is not so small at these scales, see refs. [106, 107]

and references therein. We will discuss several of these processes in a companion paper [45].

Regarding the evaluation of two-loop master integrals for processes with quarkonium or lepto-

nium states, the next steps are clear. The set of integrals we considered here correspond to very

simple kinematics, only depending on the mass of the heavy fermion. Adding an extra particle in

the final state would lead to richer kinematic configurations and allow us to study other processes,

for instance, hadro-production or photo-production of vector bound states with spectroscopic nota-

tion 3S1, commonly called J/ψ (cc) and Υ (bb). Due to the Landau-Yang theorem, the LO of these

production processes involves an additional gluon in the final state making it effectively a 2-to-2

process (gg → J/ψ + g). Similarly, we could study the pT -distribution of ηQ at NNLO accuracy
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by computing the two-loop corrections to the process gg → ηQ + g. Tackling such calculations will

pose many challenges. In particular, the numerical evaluation will be much more involved as the

integrals will depend on several variables. As such, a single high-precision evaluation of master

integrals will no longer be sufficient.
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A Master integrals

In this appendix we give the definition of the 76 MIs studied in the present paper in terms of 12

different sets of denominators, which we list below:

• Set t1:

Dt1 =

{

q21 , (q1 − k1)
2
, q22 , (q2 + k2)

2
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,
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Q

}

,

(A.1)
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(A.2)

• Set t3:

Dt3 =

{

q21 −m2
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2 −m2
Q, q

2
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;

(A.3)
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• Set t4:

Dt4 =

{

q21 −m2
Q, (q1 + k1)

2 −m2
Q, q

2
2 −m2

Q, (q1 + q2)
2 ,

(

q2 −
k1
2

− k2
2

)2

,

(

q1 + q2 +
k1
2

− k2
2

)2

−m2
Q, (q1 + k2)

2

}

;

(A.4)

• Set t5:

Dt5 =
{

q21 −m2
Q, (q1 + k1)

2 −m2
Q, (q1 + q2)

2
, (q1 + q2 + k1 + k2)

2
, q22 −m2

Q,

(q2 + k2)
2 −m2

Q, (q1 + k2)
2
}

;
(A.5)

• Set t6:

Dt6 =
{

q21 −m2
Q, (q1 + k1)

2 −m2
Q, (q1 + q2 + k1 + k2)

2
, q22 −m2

Q, (q2 + k2)
2 −m2

Q,

(

q1 + q2 +
k1
2

+
k2
2

)2

−m2
Q, (q1 + k2)

2

}

;
(A.6)

• Set t7:

Dt7 =
{

q21 , (q1 + k1)
2
, q22 −m2

Q, (q2 + k2)
2 −m2

Q, (q1 + q2)
2 −m2

Q, (q1 + q2 + k1 + k2)
2 −m2

Q,

(q1 + k2)
2
}

;

(A.7)

• Set t8:

Dt8 =

{

q21 ,

(

q1 −
k1
2

− k2
2

)2

−m2
Q,

(

q1 −
k1
2

+
k2
2

)2

−m2
Q, q

2
2 , (q1 + q2 − k1)

2
,

(

q2 −
k1
2

− k2
2

)2

−m2
Q, (q1 + q2)

2

}

;

(A.8)

• Set t9:

Dt9 =
{

q21 −m2
Q, (q1 − k1)

2 −m2
Q, (q1 + k2)

2 −m2
Q, q

2
2 , (q2 − k1 − k2)

2
,

(q1 + q2 − k1)
2 −m2

Q, (q1 + q2)
2
}

;
(A.9)

• Set t10:

Dt10 =

{

q21 , (q1 − k1)
2 , (q1 + k2)

2 ,

(

q2 −
k1
2

− k2
2

)2

, q22 −m2
Q, (q1 − q2 + k2)

2 −m2
Q,

(q1 + q2)
2
}

;

(A.10)

• Set t11:

Dt11 =
{

q21 , (q1 − k1)
2 , (q1 + k2)

2 , q22 , (q2 − k1 − k2)
2 , (q1 + q2 − k1)

2 , (q1 + q2)
2
}

; (A.11)
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• Set t12:

Dt12 =

{

q21 , (q1 − k1)
2, q22 , (q1 + q2 − k1)

2,

(

q2 −
k1
2

− k2
2

)2

−m2
Q,

(

q2 −
k1
2

+
k2
2

)2

−m2
Q,

(

q1 −
k1
2

− k2
2

)2

−m2
Q

}

.

(A.12)

In terms of the previous 12 sets, the four-point non-factorisable two-loop integrals in fig. 1 can

be written as:

m1 = mI(t1)
(1, 1, 1, 1, 1, 1, 1;m2

Q), m2 = mI(t2)
(1, 1, 1, 1, 1, 1, 1;m2

Q),

m3 = mI(t3)
(1, 1, 1, 1, 1, 1, 1;m2

Q), m4 = mI(t12)
(1, 1, 1, 1, 1, 1, 1;m2

Q),

m5 = mI(t6)
(1, 1, 1, 1, 1, 1, 0;m2

Q), m6 = mI(t8)
(0, 1, 1, 1, 1, 1, 1;m2

Q),

m7 = mI(t3)
(1, 1, 0, 1, 1, 1, 1;m2

Q), m8 = mI(t8)
(1, 1, 1, 1, 1, 1, 0;m2

Q),

m9 = mI(t2)
(1, 0, 1, 0, 1, 1, 1;m2

Q), m10 = mI(t2)
(1, 1, 1, 1, 0, 0, 1;m2

Q),

m11 = mI(t3)
(1, 0, 1, 1, 1, 0, 1;m2

Q), m12 = mI(t3)
(1, 0, 1, 2, 1, 0, 1;m2

Q),

m13 = mI(t3)
(1, 1, 0, 1, 1, 1, 0;m2

Q), m14 = mI(t3)
(2, 1, 0, 1, 1, 1, 0;m2

Q),

m15 = mI(t6)
(1, 0, 1, 1, 1, 1, 0;m2

Q), m16 = mI(t8)
(0, 1, 1, 1, 0, 1, 1;m2

Q),

m17 = mI(t8)
(0, 1, 1, 1, 1, 0, 1;m2

Q), m18 = mI(t3)
(1, 0, 1, 1, 1, 1, 0;m2

Q),

m19 = mI(t8)
(1, 1, 1, 1, 1, 0, 0;m2

Q). (A.13)

Similarly, the three-point integrals in fig. 2 admit the expressions:

m20 = mI(t2)
(0, 1, 1, 1, 1, 1, 1;m2

Q), m21 = mI(t3)
(0, 1, 1, 1, 1, 1, 1;m2

Q),

m22 = mI(t4)
(1, 1, 1, 1, 1, 1, 0;m2

Q), m23 = mI(t4)
(1, 1, 1, 1, 1, 1,−1;m2

Q),

m24 = mI(t5)
(1, 1, 1, 1, 1, 1, 0;m2

Q), m25 = mI(t5)
(2, 1, 1, 1, 1, 1, 0;m2

Q),

m26 = mI(t7)
(1, 1, 1, 1, 1, 1, 0;m2

Q), m27 = mI(t11)
(1, 0, 1, 1, 1, 1, 1;m2

Q),

m28 = mI(t1)
(1, 0, 0, 1, 1, 1, 1;m2

Q), m29 = mI(t1)
(0, 1, 0, 1, 1, 1, 1;m2

Q),

m30 = mI(t1)
(0, 2, 0, 1, 1, 1, 1;m2

Q), m31 = mI(t3)
(0, 1, 0, 1, 1, 1, 1;m2

Q),

m32 = mI(t4)
(1, 0, 1, 1, 1, 1, 0;m2

Q), m33 = mI(t4)
(2, 0, 1, 1, 1, 1, 0;m2

Q),

m34 = mI(t4)
(1, 1, 0, 1, 1, 1, 0;m2

Q), m35 = mI(t4)
(1, 1, 0, 1, 1, 2, 0;m2

Q),

m36 = mI(t4)
(1, 1, 1, 1, 1, 0, 0;m2

Q), m37 = mI(t5)
(1, 1, 0, 1, 1, 1, 0;m2

Q),

m38 = mI(t5)
(0, 1, 1, 1, 1, 1, 0;m2

Q), m39 = mI(t7)
(0, 1, 1, 1, 1, 1, 0;m2

Q),

m40 = mI(t10)
(0, 1, 1, 1, 1, 1, 0;m2

Q), m41 = mI(t1)
(0, 1, 0, 1, 1, 0, 1;m2

Q),

m42 = mI(t2)
(0, 1, 1, 0, 0, 1, 1;m2

Q), m43 = mI(t2)
(0, 1, 2, 0, 0, 1, 1;m2

Q),

m44 = mI(t2)
(0, 2, 1, 0, 0, 1, 1;m2

Q), m45 = mI(t2)
(0, 0, 1, 0, 1, 1, 1;m2

Q),

m46 = mI(t2)
(0, 0, 2, 0, 1, 1, 1;m2

Q), m47 = mI(t3)
(0, 1, 0, 1, 1, 0, 1;m2

Q),

m48 = mI(t3)
(1, 0, 0, 1, 1, 0, 1;m2

Q), m49 = mI(t3)
(0, 1, 0, 1, 1, 1, 0;m2

Q),

m50 = mI(t5)
(0, 1, 1, 1, 1, 0, 0;m2

Q), m51 = mI(t5)
(0, 2, 1, 1, 1, 0, 0;m2

Q),

m52 = mI(t5)
(0, 1, 1, 0, 1, 1, 0;m2

Q), m53 = mI(t7)
(0, 0, 2, 0, 1, 1, 1;m2

Q),

m54 = mI(t7)
(0, 0, 3, 0, 1, 1, 1;m2

Q), m55 = mI(t10)
(0, 1, 1, 1, 0, 1, 0;m2

Q),

m56 = mI(t11)
(0, 0, 1, 1, 1, 0, 1;m2

Q), (A.14)

and the two-point integrals in fig. 3:

m57 = mI(t3)
(0, 1, 1, 1, 0, 1, 1;m2

Q), m58 = mI(t9)
(0, 1, 1, 1, 1, 1, 0;m2

Q),
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m59 = mI(t1)
(0, 0, 1, 0, 1, 0, 1;m2

Q), m60 = mI(t1)
(0, 0, 2, 0, 1, 0, 1;m2

Q),

m61 = mI(t1)
(0, 0, 0, 1, 1, 0, 1;m2

Q), m62 = mI(t1)
(1, 0, 0, 1, 1, 0, 0;m2

Q),

m63 = mI(t3)
(0, 1, 0, 1, 1, 0, 0;m2

Q), m64 = mI(t3)
(0, 1, 0, 1, 0, 1, 0;m2

Q),

m65 = mI(t3)
(0, 2, 0, 1, 0, 1, 0;m2

Q), m66 = mI(t5)
(0, 1, 1, 0, 0, 1, 0;m2

Q). (A.15)

Finally, the two-loop factorisable integral in fig. 4 are written as:

m67 = mI(t3)
(1, 1, 1, 0, 1, 1, 1;m2

Q), m68 = mI(t3)
(0, 1, 1, 0, 1, 1, 1;m2

Q),

m69 = mI(t3)
(0, 0, 1, 1, 1, 1, 0;m2

Q), m70 = mI(t9)
(1, 1, 1, 1, 1, 0, 0;m2

Q),

m71 = mI(t9)
(1, 1, 1, 0, 0, 1, 0;m2

Q), m72 = mI(t1)
(0, 1, 1, 0, 0, 1, 1;m2

Q),

m73 = mI(t1)
(0, 0, 1, 0, 0, 1, 1;m2

Q), m74 = mI(t5)
(0, 0, 1, 1, 0, 1, 0;m2

Q),

m75 = mI(t11)
(0, 1, 1, 1, 1, 0, 0;m2

Q), m76 = mI(t1)
(0, 0, 0, 0, 0, 1, 1;m2

Q). (A.16)

B Arguments of the eMPLs

In this appendix we present the analytic expressions for the arguments of the eMPLs as defined in

eq. (3.23). We find that we need six different values of z̃i for the eMPLs associated to the elliptic

curve τ (a), and just one, which we denote z̃b, for the eMPLs described by τ (b). Furthermore, we

checked using PSLQ that there is no rational linear combination of the form

6
∑

i=1

ci z̃i = c7 + c8 τ
(a) , ci ∈ Q . (B.1)

The numbers z̃i are special values of the elliptic integral:

A(a)(x) =
4
√
5

2 K (λa)

∫ x

(1−
√
1+2i)/2

dt√
4t4 − 8t3 + 4t2 + 1

, (B.2)

with

λa =
1

2
+

1

2
√
5
. (B.3)

We then have13

z̃1 = Im A

(

1

2
+
i

2

)

=
i

4
− i

F(φ1|λa)
2K(λa)

= 0.3486 . . . ,

z̃2 = Im A

(

1

2
− 1

2
i

√

5

3

)

=
i

4
− i

F(φ2|λa)
2K(λa)

= 0.0204 . . . ,

z̃3 = Re A (−i) = −τ
(a)

4
+

F(φ3|λa) + F(φ4|λa)
4K(λa)

= 0.1904 . . . ,

z̃4 = Im A (−i) = − iτ
(a)

4
− i

F(φ3|λa)− F(φ4|λa)
4K(λa)

= −0.0615 . . . ,

z̃5 = Re A(2) = −τ
(a)

4
+

F(φ5|λa)
2K(λa)

= 0.6280 . . . ,

z̃6 = Re A

(

3

2

)

= −τ
(a)

4
+

F(φ6|λa)
2K(λa)

= 0.5625... ,

(B.4)

13We note that when evaluating the quantities z̃a with Mathematica using its native implementation of the incom-

plete elliptic integral of the first kind, EllipticF, we obtained different numerical values than those obtained from

the numerical evaluation of eq. (B.2) with NIntegrate. We take the NIntegrate value as the correct one.
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where F(φ|m) was defined in eq. (3.24) and we set φi = sin−1 αi, with

α1 =

√

√

√

√

2
√

(2+i)+
√
−5+10i√

5+1

i+
√
1− 2i

,

α2 =

√

√

√

√

2
√

30
(

(−1− i) +
√
−3 + 6i

)

(6 + 3i) + 3i
√
5 +

√
15 + 30i+

√
15− 30i

,

α3 =
23/4 4

√

(5 + 5i)− 5
√
1 + 2i

√

(1 + 2i)3/2 + (−1 + 2i)−
√
5 +

√
5 + 10i

,

α4 =

√

√

√

√

(

(−1 + 2i) +
√
1 + 2i

)

√

2−4i√
5+1

(−1 + 2i) +
√
1− 2i

,

α5 =

√

√

√

√

(

3 +
√
1 + 2i

)

√

2−4i√
5+1

3 +
√
1− 2i

,

α6 =

√

√

√

√

(

2 +
√
1 + 2i

)

√

2−4i√
5+1

2 +
√
1− 2i

.

(B.5)

Similarly, the number z̃b is defined by the elliptic integral:

A(b) =
1 +

√
5

4 K (λb)

∫ (1+
√
2)

(1−
√
5)

dt√
t4 − 4t3 + 8t

, (B.6)

with

λb =
1

2

(

3
√
5− 5

)

. (B.7)

We therefore have

z̃b = A(b) − 1

2
= (3 +

√
5)
F (φb| − 5− λb)−K(−5− λb)

4K(λb)
= i 0.1853 . . . , (B.8)

where in this case φb is defined as φb = sin−1 αb, with

αb =

√

4
√
2 +

√
5 + 3

2
√
5

. (B.9)

References

[1] K. T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977) 831.

[2] L. D. Landau, On analytic properties of vertex parts in quantum field theory,

Nucl. Phys. 13 (1959) 181–192.

[3] A. B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059.

[4] F. C. S. Brown and A. Levin, Multiple elliptic polylogarithms, 2013.

[5] J. Broedel, C. R. Mafra, N. Matthes and O. Schlotterer, Elliptic multiple zeta values and one-loop

superstring amplitudes, JHEP 07 (2015) 112, [1412.5535].

[6] J. Broedel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals on

elliptic curves. Part I: general formalism, JHEP 05 (2018) 093, [1712.07089].

– 28 –

http://dx.doi.org/10.1016/B978-0-08-010586-4.50103-6
http://arxiv.org/abs/math/0103059
http://dx.doi.org/10.1007/JHEP07(2015)112
http://arxiv.org/abs/1412.5535
http://dx.doi.org/10.1007/JHEP05(2018)093
http://arxiv.org/abs/1712.07089


[7] Y. I. Manin, Iterated integrals of modular forms and noncommutative modular symbols, in Algebraic

geometry and number theory, vol. 253 of Progr. Math., (Boston), pp. 565–597, Birkhäuser Boston,

2006. math/0502576.

[8] F. Brown, Multiple modular values and the relative completion of the fundamental group of M1,1,

1407.5167v4.

[9] C. Duhr and L. Tancredi, Algorithms and tools for iterated Eisenstein integrals,

JHEP 02 (2020) 105, [1912.00077].

[10] M. Krämer, Quarkonium production at high-energy colliders,

Prog. Part. Nucl. Phys. 47 (2001) 141–201, [hep-ph/0106120].

[11] J.-P. Lansberg, New Observables in Inclusive Production of Quarkonia,

Phys. Rept. 889 (2020) 1–106, [1903.09185].

[12] Quarkonium Working Group collaboration, N. Brambilla et al., Heavy quarkonium physics,

hep-ph/0412158.

[13] J. P. Lansberg, J/ψ, ψ ’ and Υ production at hadron colliders: A Review,

Int. J. Mod. Phys. A 21 (2006) 3857–3916, [hep-ph/0602091].

[14] A. Andronic et al., Heavy-flavour and quarkonium production in the LHC era: from proton–proton

to heavy-ion collisions, Eur. Phys. J. C 76 (2016) 107, [1506.03981].

[15] T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions,

Nucl. Phys. B 580 (2000) 485–518, [hep-ph/9912329].

[16] R. Bonciani, P. Mastrolia and E. Remiddi, Master integrals for the two loop QCD virtual corrections

to the forward backward asymmetry, Nucl. Phys. B 690 (2004) 138–176, [hep-ph/0311145].

[17] C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, Two-loop amplitudes and master

integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop,

JHEP 01 (2007) 082, [hep-ph/0611236].

[18] S. Beerli, A New method for evaluating two-loop Feynman integrals and its application to Higgs

production, other thesis, 2008.

[19] R. Bonciani, A. Ferroglia, T. Gehrmann and C. Studerus, Two-Loop Planar Corrections to

Heavy-Quark Pair Production in the Quark-Antiquark Channel, JHEP 08 (2009) 067, [0906.3671].

[20] T. Gehrmann, E. W. N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark

and gluon form factors to three loops in QCD, JHEP 06 (2010) 094, [1004.3653].

[21] L.-B. Chen, Y. Liang and C.-F. Qiao, Two-Loop integrals for CP-even heavy quarkonium production

and decays, JHEP 06 (2017) 025, [1703.03929].

[22] A. von Manteuffel and L. Tancredi, A non-planar two-loop three-point function beyond multiple

polylogarithms, JHEP 06 (2017) 127, [1701.05905].

[23] L.-B. Chen, J. Jiang and C.-F. Qiao, Two-Loop integrals for CP-even heavy quarkonium production

and decays: Elliptic Sectors, JHEP 04 (2018) 080, [1712.03516].

[24] S. Di Vita, S. Laporta, P. Mastrolia, A. Primo and U. Schubert, Master integrals for the NNLO

virtual corrections to µe scattering in QED: the non-planar graphs, JHEP 09 (2018) 016,

[1806.08241].

[25] L.-B. Chen and J. Wang, Master integrals of a planar double-box family for top-quark pair

production, Phys. Lett. B 792 (2019) 50–55, [1903.04320].

[26] M. Gerlach, G. Mishima and M. Steinhauser, Matching coefficients in nonrelativistic QCD to

two-loop accuracy, Phys. Rev. D 100 (2019) 054016, [1907.08227].

– 29 –

http://arxiv.org/abs/math/0502576
http://arxiv.org/abs/1407.5167v4
http://dx.doi.org/10.1007/JHEP02(2020)105
http://arxiv.org/abs/1912.00077
http://dx.doi.org/10.1016/S0146-6410(01)00154-5
http://arxiv.org/abs/hep-ph/0106120
http://dx.doi.org/10.1016/j.physrep.2020.08.007
http://arxiv.org/abs/1903.09185
http://arxiv.org/abs/hep-ph/0412158
http://dx.doi.org/10.1142/S0217751X06033180
http://arxiv.org/abs/hep-ph/0602091
http://dx.doi.org/10.1140/epjc/s10052-015-3819-5
http://arxiv.org/abs/1506.03981
http://dx.doi.org/10.1016/S0550-3213(00)00223-6
http://arxiv.org/abs/hep-ph/9912329
http://dx.doi.org/10.1016/j.nuclphysb.2004.04.011
http://arxiv.org/abs/hep-ph/0311145
http://dx.doi.org/10.1088/1126-6708/2007/01/082
http://arxiv.org/abs/hep-ph/0611236
http://dx.doi.org/10.1088/1126-6708/2009/08/067
http://arxiv.org/abs/0906.3671
http://dx.doi.org/10.1007/JHEP06(2010)094
http://arxiv.org/abs/1004.3653
http://dx.doi.org/10.1007/JHEP06(2017)025
http://arxiv.org/abs/1703.03929
http://dx.doi.org/10.1007/JHEP06(2017)127
http://arxiv.org/abs/1701.05905
http://dx.doi.org/10.1007/JHEP04(2018)080
http://arxiv.org/abs/1712.03516
http://dx.doi.org/10.1007/JHEP09(2018)016
http://arxiv.org/abs/1806.08241
http://dx.doi.org/10.1016/j.physletb.2019.03.030
http://arxiv.org/abs/1903.04320
http://dx.doi.org/10.1103/PhysRevD.100.054016
http://arxiv.org/abs/1907.08227


[27] M. Becchetti, R. Bonciani, V. Casconi, A. Ferroglia, S. Lavacca and A. von Manteuffel, Master

Integrals for the two-loop, non-planar QCD corrections to top-quark pair production in the

quark-annihilation channel, JHEP 08 (2019) 071, [1904.10834].

[28] M. K. Mandal, P. Mastrolia, J. Ronca and W. J. Bobadilla Torres, Two-loop scattering amplitude

for heavy-quark pair production through light-quark annihilation in QCD, JHEP 09 (2022) 129,

[2204.03466].

[29] A. Sabry, Fourth order spectral functions for the electron propagator, Nucl. Phys. 33 401–430.

[30] D. J. Broadhurst, The Master Two Loop Diagram With Masses, Z. Phys. C 47 (1990) 115–124.

[31] C. Bogner, A. Schweitzer and S. Weinzierl, Analytic continuation and numerical evaluation of the

kite integral and the equal mass sunrise integral, Nucl. Phys. B922 (2017) 528–550, [1705.08952].

[32] L. Adams, C. Bogner and S. Weinzierl, The two-loop sunrise integral around four space-time

dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case,

J. Math. Phys. 56 (2015) 072303, [1504.03255].

[33] L. Adams, C. Bogner and S. Weinzierl, The iterated structure of the all-order result for the two-loop

sunrise integral, J. Math. Phys. 57 (2016) 032304, [1512.05630].

[34] C. Bogner, S. Müller-Stach and S. Weinzierl, The unequal mass sunrise integral expressed through

iterated integrals on M1,3, Nucl. Phys. B 954 (2020) 114991, [1907.01251].

[35] J. Broedel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals on

elliptic curves II: an application to the sunrise integral, Phys. Rev. D 97 (2018) 116009,

[1712.07095].

[36] L. G. J. Campert, F. Moriello and A. Kotikov, Sunrise integrals with two internal masses and

pseudo-threshold kinematics in terms of elliptic polylogarithms, JHEP 09 (2021) 072, [2011.01904].

[37] J. Broedel, C. Duhr, F. Dulat, B. Penante and L. Tancredi, Elliptic polylogarithms and Feynman

parameter integrals, JHEP 05 (2019) 120, [1902.09971].

[38] X. Liu, Y.-Q. Ma and C.-Y. Wang, A Systematic and Efficient Method to Compute Multi-loop

Master Integrals, Phys. Lett. B 779 (2018) 353–357, [1711.09572].

[39] X. Liu and Y.-Q. Ma, Multiloop corrections for collider processes using auxiliary mass flow,

Phys. Rev. D 105 (2022) L051503, [2107.01864].

[40] X. Liu and Y.-Q. Ma, AMFlow: A Mathematica package for Feynman integrals computation via

auxiliary mass flow, Comput. Phys. Commun. 283 (2023) 108565, [2201.11669].

[41] F. Moriello, Generalised power series expansions for the elliptic planar families of Higgs + jet

production at two loops, JHEP 01 (2020) 150, [1907.13234].

[42] M. Hidding, DiffExp, a Mathematica package for computing Feynman integrals in terms of

one-dimensional series expansions, Comput. Phys. Commun. 269 (2021) 108125, [2006.05510].

[43] H. R. P. Ferguson and D. H. Bailey, "a polynomial time, numerically stable integer relation

algorithm, RNR Technical Report RNR-91-032 (1992) .

[44] https://gitlab.com/onium_pseudo_scalar/master_integrals .

[45] S. Abreu, M. Becchetti, C. Duhr and M. A. Ozcelik, Two-loop form factors for pseudo-scalar

quarkonium production and decay, 2211.08838.

[46] A. Czarnecki, K. Melnikov and A. Yelkhovsky, Alpha**2 corrections to parapositronium decay: A

Detailed description, Phys. Rev. A 61 (2000) 052502, [hep-ph/9910488].

[47] A. Czarnecki, K. Melnikov and A. Yelkhovsky, alpha**2 corrections to parapositronium decay,

Phys. Rev. Lett. 83 (1999) 1135–1138, [hep-ph/9904478].

[48] I. Hönemann, K. Tempest and S. Weinzierl, Electron self-energy in QED at two loops revisited,

Phys. Rev. D 98 (2018) 113008, [1811.09308].

– 30 –

http://dx.doi.org/10.1007/JHEP08(2019)071
http://arxiv.org/abs/1904.10834
http://dx.doi.org/10.1007/JHEP09(2022)129
http://arxiv.org/abs/2204.03466
http://dx.doi.org/10.1007/BF01551921
http://dx.doi.org/10.1016/j.nuclphysb.2017.07.008
http://arxiv.org/abs/1705.08952
http://dx.doi.org/10.1063/1.4926985
http://arxiv.org/abs/1504.03255
http://dx.doi.org/10.1063/1.4944722
http://arxiv.org/abs/1512.05630
http://dx.doi.org/10.1016/j.nuclphysb.2020.114991
http://arxiv.org/abs/1907.01251
http://dx.doi.org/10.1103/PhysRevD.97.116009
http://arxiv.org/abs/1712.07095
http://dx.doi.org/10.1007/JHEP09(2021)072
http://arxiv.org/abs/2011.01904
http://dx.doi.org/10.1007/JHEP05(2019)120
http://arxiv.org/abs/1902.09971
http://dx.doi.org/10.1016/j.physletb.2018.02.026
http://arxiv.org/abs/1711.09572
http://dx.doi.org/10.1103/PhysRevD.105.L051503
http://arxiv.org/abs/2107.01864
http://dx.doi.org/10.1016/j.cpc.2022.108565
http://arxiv.org/abs/2201.11669
http://dx.doi.org/10.1007/JHEP01(2020)150
http://arxiv.org/abs/1907.13234
http://dx.doi.org/10.1016/j.cpc.2021.108125
http://arxiv.org/abs/2006.05510
https://gitlab.com/onium_pseudo_scalar/master_integrals
http://arxiv.org/abs/2211.08838
http://dx.doi.org/10.1103/PhysRevA.61.052502
http://arxiv.org/abs/hep-ph/9910488
http://dx.doi.org/10.1103/PhysRevLett.83.1135
http://arxiv.org/abs/hep-ph/9904478
http://dx.doi.org/10.1103/PhysRevD.98.113008
http://arxiv.org/abs/1811.09308


[49] S. Abreu, M. Becchetti, C. Duhr and R. Marzucca, Three-loop contributions to the ρ parameter and

iterated integrals of modular forms, JHEP 02 (2020) 050, [1912.02747].

[50] M. Prausa and J. Usovitsch, The analytic leading color contribution to the Higgs-gluon form factor

in QCD at NNLO, JHEP 03 (2021) 127, [2008.11641].

[51] S. Badger, E. Chaubey, H. B. Hartanto and R. Marzucca, Two-loop leading colour QCD helicity

amplitudes for top quark pair production in the gluon fusion channel, JHEP 06 (2021) 163,

[2102.13450].

[52] F. Caola, S. Ferrario Ravasio, G. Limatola, K. Melnikov, P. Nason and M. A. Ozcelik, Linear power

corrections to e+e− shape variables in the three-jet region, 2204.02247.

[53] G. T. Bodwin, E. Braaten and G. P. Lepage, Rigorous QCD analysis of inclusive annihilation and

production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125–1171, [hep-ph/9407339].

[54] F. Feng, Apart: A Generalized Mathematica Apart Function,

Comput. Phys. Commun. 183 (2012) 2158–2164, [1204.2314].

[55] K. G. Chetyrkin and F. V. Tkachov, Integration by Parts: The Algorithm to Calculate beta

Functions in 4 Loops, Nucl. Phys. B 192 (1981) 159–204.

[56] K. G. Chetyrkin, A. L. Kataev and F. V. Tkachov, Higher Order Corrections to Sigma-t (e+ e- —>

Hadrons) in Quantum Chromodynamics, Phys. Lett. B 85 (1979) 277–279.

[57] A. V. Smirnov and F. S. Chuharev, FIRE6: Feynman Integral REduction with Modular Arithmetic,

Comput. Phys. Commun. 247 (2020) 106877, [1901.07808].

[58] R. N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals,

J. Phys. Conf. Ser. 523 (2014) 012059, [1310.1145].

[59] J. Klappert, F. Lange, P. Maierhöfer and J. Usovitsch, Integral reduction with Kira 2.0 and finite

field methods, Comput. Phys. Commun. 266 (2021) 108024, [2008.06494].

[60] F. Feng, Y. Jia and W.-L. Sang, Can Nonrelativistic QCD Explain the γγ∗

→ ηc Transition Form

Factor Data?, Phys. Rev. Lett. 115 (2015) 222001, [1505.02665].

[61] F. Feng, Y. Jia and W.-L. Sang, Next-to-Next-to-Leading-Order QCD Corrections to the Hadronic

width of Pseudoscalar Quarkonium, Phys. Rev. Lett. 119 (2017) 252001, [1707.05758].

[62] C. Duhr, Mathematical aspects of scattering amplitudes, in Proceedings, Theoretical Advanced Study

Institute in Elementary Particle Physics: Journeys Through the Precision Frontier: Amplitudes for

Colliders (TASI 2014): Boulder, Colorado, June 2-27, 2014, pp. 419–476, 2015. 1411.7538. DOI.

[63] J. Broedel, C. Duhr, F. Dulat, B. Penante and L. Tancredi, Elliptic symbol calculus: from elliptic

polylogarithms to iterated integrals of Eisenstein series, JHEP 08 (2018) 014, [1803.10256].

[64] L. Adams and S. Weinzierl, Feynman integrals and iterated integrals of modular forms,

Commun. Num. Theor. Phys. 12 (2018) 193–251, [1704.08895].

[65] C. Duhr and F. Dulat, PolyLogTools — polylogs for the masses, JHEP 08 (2019) 135, [1904.07279].

[66] C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes,

JHEP 08 (2012) 043, [1203.0454].

[67] E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman

integrals, Comput. Phys. Commun. 188 (2015) 148–166, [1403.3385].

[68] J. Ablinger, J. Blümlein and C. Schneider, Analytic and Algorithmic Aspects of Generalized

Harmonic Sums and Polylogarithms, J.Math.Phys. 54 (2013) 082301, [1302.0378].

[69] J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms,

Comput. Phys. Commun. 167 (2005) 177, [hep-ph/0410259].

[70] L. Naterop, A. Signer and Y. Ulrich, handyG —Rapid numerical evaluation of generalised

polylogarithms in Fortran, Comput. Phys. Commun. 253 (2020) 107165, [1909.01656].

– 31 –

http://dx.doi.org/10.1007/JHEP02(2020)050
http://arxiv.org/abs/1912.02747
http://dx.doi.org/10.1007/JHEP03(2021)127
http://arxiv.org/abs/2008.11641
http://dx.doi.org/10.1007/JHEP06(2021)163
http://arxiv.org/abs/2102.13450
http://arxiv.org/abs/2204.02247
http://dx.doi.org/10.1103/PhysRevD.55.5853
http://arxiv.org/abs/hep-ph/9407339
http://dx.doi.org/10.1016/j.cpc.2012.03.025
http://arxiv.org/abs/1204.2314
http://dx.doi.org/10.1016/0550-3213(81)90199-1
http://dx.doi.org/10.1016/0370-2693(79)90596-3
http://dx.doi.org/10.1016/j.cpc.2019.106877
http://arxiv.org/abs/1901.07808
http://dx.doi.org/10.1088/1742-6596/523/1/012059
http://arxiv.org/abs/1310.1145
http://dx.doi.org/10.1016/j.cpc.2021.108024
http://arxiv.org/abs/2008.06494
http://dx.doi.org/10.1103/PhysRevLett.115.222001
http://arxiv.org/abs/1505.02665
http://dx.doi.org/10.1103/PhysRevLett.119.252001
http://arxiv.org/abs/1707.05758
http://arxiv.org/abs/1411.7538
http://dx.doi.org/10.1142/9789814678766_0010
http://dx.doi.org/10.1007/JHEP08(2018)014
http://arxiv.org/abs/1803.10256
http://dx.doi.org/10.4310/CNTP.2018.v12.n2.a1
http://arxiv.org/abs/1704.08895
http://dx.doi.org/10.1007/JHEP08(2019)135
http://arxiv.org/abs/1904.07279
http://dx.doi.org/10.1007/JHEP08(2012)043
http://arxiv.org/abs/1203.0454
http://dx.doi.org/10.1016/j.cpc.2014.10.019
http://arxiv.org/abs/1403.3385
http://dx.doi.org/10.1063/1.4811117
http://arxiv.org/abs/1302.0378
http://dx.doi.org/10.1016/j.cpc.2004.12.009
http://arxiv.org/abs/hep-ph/0410259
http://dx.doi.org/10.1016/j.cpc.2020.107165
http://arxiv.org/abs/1909.01656


[71] H. Frellesvig, D. Tommasini and C. Wever, On the reduction of generalized polylogarithms to Lin
and Li2,2 and on the evaluation thereof, JHEP 03 (2016) 189, [1601.02649].

[72] M. Walden and S. Weinzierl, Numerical evaluation of iterated integrals related to elliptic Feynman

integrals, Comput. Phys. Commun. 265 (2021) 108020, [2010.05271].

[73] E. Panzer, On hyperlogarithms and Feynman integrals with divergences and many scales,

JHEP 03 (2014) 071, [1401.4361].

[74] A. von Manteuffel, E. Panzer and R. M. Schabinger, A quasi-finite basis for multi-loop Feynman

integrals, JHEP 02 (2015) 120, [1411.7392].

[75] M. Hidding and F. Moriello, All orders structure and efficient computation of linearly reducible

elliptic Feynman integrals, JHEP 01 (2019) 169, [1712.04441].

[76] F. Brown, The Massless higher-loop two-point function, Commun. Math. Phys. 287 (2009) 925–958,

[0804.1660].

[77] C. Anastasiou, C. Duhr, F. Dulat and B. Mistlberger, Soft triple-real radiation for Higgs production

at N3LO, JHEP 07 (2013) 003, [1302.4379].

[78] J. Ablinger, J. Blümlein, C. Raab, C. Schneider and F. Wißbrock, Calculating Massive 3-loop

Graphs for Operator Matrix Elements by the Method of Hyperlogarithms,

Nucl. Phys. B885 (2014) 409–447, [1403.1137].

[79] C. Bogner and F. Brown, Feynman integrals and iterated integrals on moduli spaces of curves of

genus zero, Commun. Num. Theor. Phys. 09 (2015) 189–238, [1408.1862].

[80] C. Bogner, MPL–A program for computations with iterated integrals on moduli spaces of curves of

genus zero, Comput. Phys. Commun. 203 (2016) 339–353, [1510.04562].

[81] H. Cheng and T. T. Wu, Expanding protons: scattering at high-energies. The MIT Press, 1987.

[82] M. Becchetti and R. Bonciani, Two-Loop Master Integrals for the Planar QCD Massive Corrections

to Di-photon and Di-jet Hadro-production, JHEP 01 (2018) 048, [1712.02537].

[83] M. Besier, D. Van Straten and S. Weinzierl, Rationalizing roots: an algorithmic approach,

Commun. Num. Theor. Phys. 13 (2019) 253–297, [1809.10983].

[84] M. Besier, P. Wasser and S. Weinzierl, RationalizeRoots: Software Package for the Rationalization

of Square Roots, Comput. Phys. Commun. 253 (2020) 107197, [1910.13251].

[85] D. J. Broadhurst, Massive three - loop Feynman diagrams reducible to SC* primitives of algebras of

the sixth root of unity, Eur. Phys. J. C 8 (1999) 311–333, [hep-th/9803091].

[86] J. M. Henn, A. V. Smirnov and V. A. Smirnov, Evaluating Multiple Polylogarithm Values at Sixth

Roots of Unity up to Weight Six, Nucl. Phys. B 919 (2017) 315–324, [1512.08389].

[87] F. Brown, Notes on Motivic Periods, Comm. Num. Theo. Phys. 11 (2017) 557 – 655, [1512.06410].

[88] C. Duhr and R. Marzucca, to appear, .

[89] R. Marzucca, Talk at elliptics ’20, https://indico.cern.ch/event/927781/contributions/3926280/, .

[90] S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, J. Schlenk et al., pySecDec: a toolbox for

the numerical evaluation of multi-scale integrals, Comput. Phys. Commun. 222 (2018) 313–326,

[1703.09692].

[91] A. V. Kotikov, Differential equations method: New technique for massive Feynman diagrams

calculation, Phys. Lett. B254 (1991) 158–164.

[92] A. V. Kotikov, Differential equations method: The Calculation of vertex type Feynman diagrams,

Phys. Lett. B259 (1991) 314–322.

[93] A. V. Kotikov, Differential equation method: The Calculation of N point Feynman diagrams, Phys.

Lett. B267 (1991) 123–127.

– 32 –

http://dx.doi.org/10.1007/JHEP03(2016)189
http://arxiv.org/abs/1601.02649
http://dx.doi.org/10.1016/j.cpc.2021.108020
http://arxiv.org/abs/2010.05271
http://dx.doi.org/10.1007/JHEP03(2014)071
http://arxiv.org/abs/1401.4361
http://dx.doi.org/10.1007/JHEP02(2015)120
http://arxiv.org/abs/1411.7392
http://dx.doi.org/10.1007/JHEP01(2019)169
http://arxiv.org/abs/1712.04441
http://dx.doi.org/10.1007/s00220-009-0740-5
http://arxiv.org/abs/0804.1660
http://dx.doi.org/10.1007/JHEP07(2013)003
http://arxiv.org/abs/1302.4379
http://dx.doi.org/10.1016/j.nuclphysb.2014.04.007
http://arxiv.org/abs/1403.1137
http://dx.doi.org/10.4310/CNTP.2015.v9.n1.a3
http://arxiv.org/abs/1408.1862
http://dx.doi.org/10.1016/j.cpc.2016.02.033
http://arxiv.org/abs/1510.04562
http://dx.doi.org/10.1007/JHEP01(2018)048
http://arxiv.org/abs/1712.02537
http://dx.doi.org/10.4310/CNTP.2019.v13.n2.a1
http://arxiv.org/abs/1809.10983
http://dx.doi.org/10.1016/j.cpc.2020.107197
http://arxiv.org/abs/1910.13251
http://dx.doi.org/10.1007/s100529900935
http://arxiv.org/abs/hep-th/9803091
http://dx.doi.org/10.1016/j.nuclphysb.2017.03.026
http://arxiv.org/abs/1512.08389
http://arxiv.org/abs/1512.06410
https://indico.cern.ch/event/927781/contributions/3926280/
http://dx.doi.org/10.1016/j.cpc.2017.09.015
http://arxiv.org/abs/1703.09692


[94] S. Catani, The Singular behavior of QCD amplitudes at two loop order,

Phys. Lett. B 427 (1998) 161–171, [hep-ph/9802439].

[95] A. H. Al-Ramadhan and D. W. Gidley, New precision measurement of the decay rate of singlet

positronium, Phys. Rev. Lett. 72 (1994) 1632–1635.

[96] R. N. Lee and K. T. Mingulov, DREAM, a program for arbitrary-precision computation of

dimensional recurrence relations solutions, and its applications, 1712.05173.

[97] G. S. Adkins, N. M. McGovern, R. N. Fell and J. Sapirstein, Two loop corrections to the decay rate

of parapositronium, Phys. Rev. A 68 (2003) 032512, [hep-ph/0305251].

[98] K. Melnikov and A. Yelkhovsky, O(alpha**3 ln alpha) corrections to positronium decay rates,

Phys. Rev. D 62 (2000) 116003, [hep-ph/0008099].

[99] I. B. Khriplovich and A. S. Yelkhovsky, On the radiative corrections alpha**2 in alpha to the

positronium decay rate, Phys. Lett. B 246 (1990) 520–522.

[100] S. G. Karshenboim, New logarithmic contributions in muonium and positronium, JETP 76 (1993)

541–546.

[101] B. A. Kniehl and A. A. Penin, Order alpha**3 ln (1 / alpha) corrections to positronium decays,

Phys. Rev. Lett. 85 (2000) 1210, [hep-ph/0004267].

[102] Particle Data Group collaboration, P. Zyla et al., Review of Particle Physics,

PTEP 2020 (2020) 083C01.

[103] P. Mohr, D. Newell and B. Taylor, Codata recommended values of the fundamental physical

constants: 2014, .

[104] S. D. Bass, QED and Fundamental Symmetries in Positronium Decays,

Acta Phys. Polon. B 50 (2019) 1319, [1902.01355].

[105] K. Dulski et al., The J-PET detector—a tool for precision studies of ortho-positronium decays,

Nucl. Instrum. Meth. A 1008 (2021) 165452, [2006.07467].

[106] J.-P. Lansberg and M. A. Ozcelik, Curing the unphysical behaviour of NLO quarkonium production

at the LHC and its relevance to constrain the gluon PDF at low scales,

Eur. Phys. J. C 81 (2021) 497, [2012.00702].

[107] M. A. Ozcelik, Pseudoscalar Quarkonium Hadroproduction and Decay up to Two Loops. PhD thesis,

IJCLab, Orsay, U. Paris-Saclay, 2021.

– 33 –

http://dx.doi.org/10.1016/S0370-2693(98)00332-3
http://arxiv.org/abs/hep-ph/9802439
http://dx.doi.org/10.1103/PhysRevLett.72.1632
http://arxiv.org/abs/1712.05173
http://dx.doi.org/10.1103/PhysRevA.68.032512
http://arxiv.org/abs/hep-ph/0305251
http://dx.doi.org/10.1103/PhysRevD.62.116003
http://arxiv.org/abs/hep-ph/0008099
http://dx.doi.org/10.1016/0370-2693(90)90641-I
http://dx.doi.org/10.1103/PhysRevLett.85.1210
http://arxiv.org/abs/hep-ph/0004267
http://dx.doi.org/10.1093/ptep/ptaa104
http://dx.doi.org/10.5506/APhysPolB.50.1319
http://arxiv.org/abs/1902.01355
http://dx.doi.org/10.1016/j.nima.2021.165452
http://arxiv.org/abs/2006.07467
http://dx.doi.org/10.1140/epjc/s10052-021-09258-7
http://arxiv.org/abs/2012.00702

	1 Introduction
	2 Master integrals
	2.1 Kinematics and conventions
	2.2 Partial-fraction and triangle relations
	2.2.1 Partial-fraction relations
	2.2.2 Triangle relations


	3 Analytic results for the master integrals
	3.1 Direct integration
	3.2 Analytic results for the master integrals

	4 Numerical results for the master integrals
	4.1 High-precision numerical results from differential equations
	4.2 Relations among elliptic master integrals

	5 Analytic results for the para-positronium decay up to NNLO
	6 Conclusions
	A Master integrals
	B Arguments of the eMPLs

