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Abstract: The naturalness problem of PQ symmetry motivates study of the heavy QCD

axion, with masses ma > 1 MeV generated at scales above the QCD scale, and low values of

the PQ symmetry breaking scale, fa. We compute the abundance of such axions in a model-

independent way, assuming only that they freeze-out after reheating from inflation, and are

not subsequently diluted by new physics. If these axions decay between neutrino decoupling

and the last scatter era of the Cosmic Microwave Background (CMB), they dilute the neu-

trinos and their abundance is constrained by CMB measurements of the energy density in

dark radiation, Neff . We accurately compute this bound using a numerical code to evolve the

axion momentum distribution, including many key processes and effects previously ignored.

We assume that the only relevant axion decays are to final states involving Standard Model

particles. We determine regions of (ma, fa) that will give a signal in Neff at CMB Stage 4

experiments. We similarly compute the Neff bound and CMB Stage 4 signal for heavy axions

that can decay to light mirror photons. Finally, we compute the bounds on heavy axions with

mass below 1 MeV that decay after the era of CMB last scatter, from their contribution to

cold or hot dark matter or Neff at this era.ar
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1 Introduction

The smallest dimensionless parameter of the Standard Model is the strong CP parameter

θ̄ . 10−10. This small parameter can be understood as resulting from a discrete spacetime

symmetry, CP [1, 2] or P [3–5], or from a global Abelian Peccei-Quinn (PQ) symmetry [6, 7].

Imposing a PQ symmetry appears odd, as the symmetry is necessarily broken by the QCD

anomaly; but it may appear as an approximate accidental symmetry at low energies [8]. In

such scenarios, the PQ symmetry is expected to be explicitly broken by higher-dimensional

operators, typically preventing sufficient dynamical relaxation of θ̄ towards zero even if they

are suppressed by powers of the Planck mass, MPl.

For example, if φ is the field that spontaneously breaks the PQ symmetry at scale fa, in

standard axion theories the interactions λnφ
n+4/Mn

Pl must be suppressed to solve the strong

CP problem,

λn < 10(−46+10n)

(
108 GeV

fa

)4+n

. (1.1)

Even for the lowest values of fa allowed by observations, of order 108 GeV, operators of

dimension 5 through 8 are highly constrained; and the problem gets worse rapidly as fa is

increased. It is non-trivial to find theories where an accidental symmetry is protected to

such high order, typically requiring significant additions to the theory. Even if one simply

imposes the PQ symmetry as a classical symmetry, it may be broken by quantum gravity

[9, 10], reintroducing the quality problem [11–14]. Since the PQ symmetry must have a QCD

anomaly, this PQ quality problem cannot be avoided by promoting it to a gauge symmetry.

On the other hand, P and CP can be embedded in higher-dimensional gauge symmetries

[15, 16] making them attractive avenues for the strong CP problem.

The severity of this PQ quality problem, shown in (1.1), applies to the standard QCD

axion, where its mass arises from non-perturbative QCD physics at the Fermi scale. It

motivates theories with a heavy QCD axion, where the axion mass arises from physics at

higher energy scales and is much larger. While the conventional QCD axion mass is less than

the eV scale, these theories allow the axion mass to be larger than the MeV scale, removing

constraints from stellar cooling and/or beam-dump experiments and allowing greatly reduced

symmetry breaking scales. Removing dimension 5 or lower operators by a gauge symmetry,1

which may underlie the accidental PQ symmetry, the shift of θ̄ from zero by a dimension 6

operator is sufficiently small if

ma >∼ MeV

(
fa

3× 104 GeV

)2

. (1.2)

In heavy axion theories there is a limit to how heavy the axion can be, and solving the quality

problem then motivates low values of fa.

1In models where the spontaneous PQ breaking occurs by hidden quark condensation [17], this only requires

the removal of hidden quark mass terms.

– 2 –



For fa of order (104 - 107) GeV, a strong cosmological limit on the heavy QCD axion

arises for masses in the (MeV - GeV) range. Such axions may decay after neutrino decou-

pling, diluting the neutrino abundance, as found for axion-like particles in [18]. There is a

powerful bound on this dark radiation from measurements of the Cosmic Microwave Back-

ground radiation (CMB) by the Planck Collaboration [19], Neff = 2.96+0.34
−0.33 at 95% c.l., and

a significantly more accurate determination, with uncertainties smaller by almost an order of

magnitude, is a key objective of CMB Stage 4 experiments [20]. In this paper we study this

bound on (ma, fa) in a model-independent way, including many effects previously ignored,

several arising from axion-meson interactions. See Refs. [21–28] for studies on axions that are

light and stable and directly contribute to dark radiation, and Ref. [29–31] for axions as hot

dark matter.

There is a long history of theories with a heavy QCD axion, motivated by both the

quality problem and the interest in reducing fa so that the axion is more visible. One simple

possibility is that QCD, or part of the gauge group in which it is embedded, becomes strong in

the UV, so that there is an important contribution to the axion potential from short distance

instantons [32–37]. It is important that these instantons do not probe new CP violating

phases, so that the new contribution to the potential aligns θ̄ to be sufficiently small. The

growth in the QCD coupling in the UV could also arise from extra spatial dimensions [38].

Another simple way to make the QCD axion heavy is to introduce a Z2 symmetry that

transforms the Standard Model (SM) into a mirror sector. The Z2 symmetry is spontaneously

or softly broken so that the mirror electroweak scale is much larger than the SM weak scale,

v′ � v. The mirror quarks are then much heavier than the SM quarks, so that below the

mirror quark masses the QCD′ coupling runs faster than the QCD coupling and confines at

a scale much above the QCD scale, Λ′ � Λ. When introducing a PQ field that is Z2 even,

the resulting axion couples with the same strength to SM and mirror gluons, and hence its

mass is larger than the conventional QCD axion by a factor of roughly (Λ′/Λ)2. The first

implementations of this idea [39, 40] used a Weinberg-Wilczek axion [41, 42], with the PQ

symmetry spontaneously broken by Higgs vevs. In this case the axion decay constant fa is

large, of order v′, and while these theories ameliorate the quality problem of (1.1, 1.2), solving

the problem requires contrived arrangements. On the other hand, in the theories considered

in [43–45] using a KSVZ axion [46, 47], the heavy QCD axion mass is

ma ∼ 100 MeV

(
v′

108 GeV

)8/11(104 GeV

fa

)
(1.3)

so that the quality problem is solved by taking fa � v′. As always, one still needs to under-

stand PQ in operators of dimension ≤ 4 as an accidental consequence of gauge symmetries [8].

If the mirror photon in these theories is light, the CMB constraints from dark radiation are

modified, which we also study.

The constraints from dark radiation on the axion mass and its couplings have been studied

in the literature. Refs. [18, 48, 49] consider an axion-like particle that couples only to photons,

and do not consider axion-gluon couplings. As we will see, the axion-gluon coupling, which
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leads to axion-meson couplings, helps to keep the axion in thermal equilibrium, so that the

Boltzmann suppression of the axion abundance is more effective, relaxing the constraint on

(ma, fa). Ref. [43] studies the mirror QCD case with an axion-mirror photon coupling but,

while the decay of the axion into three pions is taken into account, axion-pion scattering and

other axion-meson interactions are not included.

This paper is organized as follows. Sec. 2 shows the Lagrangian of the theory above and

below the QCD scale. Sec. 3 describes the computation of the dark radiation abundance with

a set of Boltzmann equations and shows the resultant Neff . Sec. 4 discusses the case with a

mirror photon. Sec. 5 shows a complementary constraint from dark matter overproduction

for a sufficiently light axion that decays after the matter-radiation equality, where the Neff

constraint is not applicable. We conclude the paper with Sec. 6.

2 The Effective Theory Above and Below the QCD Scale

In this paper, we study a heavy axion with interactions above the QCD scale given by

L =
1

2
∂µa∂µa−

1

2
m2
aa

2 +
g2

3

32π2

a

fa
GµνG̃

µν +
e2

32π2

E

N

a

fa
FµνF̃

µν . (2.1)

We assume that the axion couplings with up, down, and electron axial currents are negligible.

E/N is the ratio of the electromagnetic and QCD anomalies of the PQ symmetry. For a

KSVZ axion with electrically neutral heavy quarks, E/N = 0. For complete representations

of SU(5), E/N = 8/3.

In models with a large axion mass from mirror QCD, the axion may also couple to mirror

photons. We include the effect of mirror photons on Neff in Sec. 4. Note that mirror-photon

effects are negligible if the PQ symmetry does not have an electromagnetic anomaly and the

mirror quarks are much heavier than the mirror QCD scale, which causes the mixing between

the axion and mirror mesons composed of mirror quarks to be small. The analysis of Sec. 2

and 3 is also applicable to the case where the mirror photon is massive and decouples by the

QCD phase transition.

After an axial rotation to remove the coupling of the axions to gluons, below the QCD

scale, the interactions of the axion with mesons and photons are described by the chiral

Lagrangian, which, to leading order in p2, is

Lchiral =
f2
π

4
Tr{DµU †DµU}+

f2
π

4
Tr{2BMqU + h.c.}+

1

2

∂µa

fa
Tr{QAλa}Jaµ

+
e2

32π2
(
E

N
− 8

3
Qu −

2

3
Qd −

2

3
Qs)

a

fa
FµνF̃

µν , (2.2)

where fπ = 93 MeV, B is a strong interaction parameter of order the QCD scale, Jaµ is the

SU(3) axial current given by

Jaµ =
i

4
f2
πTr{λa(UDµU † − U †DµU)}, (2.3)
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and

QA =

Qu Qd
Qs

 (2.4)

is the quark charge matrix for the transformation that eliminates the axion-gluon coupling

with Tr QA = 1.

The meson nonet and quark mass matrices are given by

U = exp i

√
2

fπ


π0√

2
+ η8√

6
+ η0√

3
π+ K+

π− − π0√
2

+ η8√
6

+ η0√
3

K0

K− K̄0 −2 η8√
6

+ η0√
3

, (2.5)

Mq =

mue
i a
fa
Qu

mde
i a
fa
Qd

mse
i a
fa
Qs

 . (2.6)

When calculating the effect of axion-meson scattering at energies below ΛQCD ≈ 150 MeV,

we limit ourselves to the relevant two-dimensional subspace, SU(2)L × SU(2)R → SU(2)V ,

since the only active QCD degrees of freedom are pions. For axion masses above ΛQCD, the

chiral perturbation based on the symmetry SU(2)L × SU(2)R → SU(2)V breaks down. In

this case, the axion may decay to heavy mesons like η and K, or for sufficiently large ma,

directly to gluons. Consequently, we use the results of [50] for the axion decay rate into

mesons, gluons, and photons (including the enhancement in the axion-photon coupling from

a− η(η′) mixing) for ma > mπ. We discuss this further in the following section, but for now

focus on the SU(2)V subspace which is sufficient for inferring axion-meson scattering in the

early Universe.

In this two-dimensional subspace, we take the Q matrix proportional to the identity in

isospin space with Qu = Qd = 1/2, so that kinetic mixing between the axion and pion is

absent, though mass mixing is present. Expanding out the chiral Lagrangian (2.2) generates

the following axion-pion mass matrix and interactions

La,π = −1

2

(
π0 a

)( B(mu +md) B(fπ/fa) (Qumu −Qdmd)

B(fπ/fa) (Qumu −Qdmd) m2
a +B(fπ/fa)

2 (Q2
umu +Q2

dmd)

)(
π0

a

)

+
B(Qumu +Qdmd)

24f2
π

(π4
0 + 4π−π+π

2
0) +

B(Qumu −Qdmd)

6fπ

a

fa
(π3

0 + 2π0π+π−)

+
1

3f2
π

(π+π0 ∂
µπ−∂µπ0 + π−π0 ∂

µπ+∂µπ0 − π2
0 ∂

µπ−∂µπ+ − π−π+ ∂
µπ0∂µπ0). (2.7)

From the π0 − a mass matrix in the limit fa � fπ, we can identify B = m2
π/(mu + md).

Moreover, since we study axions heavier than the standard QCD axion, mafa � mπfπ, and

we can thus drop the second term in the bottom right entry of the mass matrix.
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The π0 − a mass matrix is diagonalized by the rotation(
π0

a

)
=

(
cos θ sin θ

− sin θ cos θ

)(
π̂0

â

)
(2.8)

with

tan 2θ =
fπ
fa

1− z
1 + z

1

1− r2
, (2.9)

where r ≡ ma/mπ and z ≡ mu/md ' 0.47 [51]. In terms of the mass eigenstates π̂0, â, the

interaction of the axion with three pions is described by

Lâ,π̂ ⊃
A

fafπ

1

1− r2

[
∂µâ(π−π̂0 ∂µπ+ + π+π̂0 ∂µπ− − 2π+π− ∂µπ̂0) +

r2

4
m2
πâ(2π̂0π−π+ + π̂3

0)

]
(2.10)

where A = 1
3(1 − z)/(1 + z) ' 0.12. For the remainder of this paper, we drop the hats and

refer to the mass eigenstates as a and π0. Note that we do not consider the case where ma

and mπ are so highly degenerate that the axion-pion mixing angle becomes of order unity

since this does not occur as long as∣∣∣∣mπ −ma

mπ

∣∣∣∣ & fπ
fa
' 10−4

(
103 GeV

fa

) ( Axion-Pion

Non-Degeneracy Condition

)
, (2.11)

which is only violated for axions that are extremely degenerate with pions.

The coupling of the axion with photons is

La,γ =
gγ
4

a

fa
FµνF̃

µν , (2.12)

gγ =
e2

8π2

(
E

N
− 5

3
−Fθ(ma)

)
(2.13)

where E/N arises from the UV contribution associated with the anomalies of the PQ sym-

metry, 5/3 from the axial rotation that removes the axion couplings to gluons, and Fθ from

axion-meson mixing. For ma � mη, Fθ reduces to 2 sin θfa/fπ, where θ is the axion-pion

mixing angle, (2.9). Further, the value of gγ in the massless axion case is recovered in the limit

ma � mπ in which the term in parenthesis reduces to the standard result, EN−
2
3

4+z
1+z '

E
N−2.03

[51]. For ma > mπ, we extract Fθ from the calculations of [50] which include a− η and a− η′

mixing. Note that previous considerations of heavy-axion cosmological constraints, except

for [45], neglect the effect of axion-meson mixing on Fθ which leads to significantly different

values of gγ for ma > mπ. Finally, we shall consider two reference values: E/N = 8/3, which

is the case for the KSVZ model with SU(5) unification, and E/N = 0.
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3 Computation of the Dark Radiation Density

In this section, we present the numerical results of the Boltzmann equations describing the

cosmological evolution of the heavy QCD axion in the early universe. Unlike the standard

QCD axion which is light and very long-lived, the heavy QCD axion, with ma & 1 MeV and

fa limited by the quality problem, is cosmologically unstable. When the heavy axion decays

during or after neutrino decoupling, photons are subsequently heated relative to neutrinos,

producing a potentially observable negative contribution to ∆Neff . Since the heavy axion can

be out of thermal equilibrium around neutrino decoupling and contain a population of axions

which have large momenta that decay (dangerously) late, it is crucial to track the momentum

space distribution function of the axion, fa(p), throughout neutrino decoupling.

While neutrino decoupling occurs around the MeV era, the axion often decouples at

earlier times and hence its abundance must be traced back to temperatures far above the

MeV scale. The dominant interactions between the axion and thermal bath change as the

universe cools. For temperatures above the QCD scale, axion-gluon scattering dominates

and ensures the axions reach a thermal distribution for sufficiently high temperatures [52] as

discussed in Sec. 3.1. For temperatures below the QCD scale, axion-meson scattering and

axion-photon scattering can be effective as discussed in Sec. 3.2.

3.1 Axion Initial Conditions

At temperatures above the QCD phase transition temperature, TQCD ≈ 150 MeV, axion-gluon

interactions may be strong enough to keep the axion in thermal equilibrium. Generally, this

process is UV dominated so that for sufficiently high temperatures, the axion reaches thermal

equilibrium. As the universe cools, depending on fa, the axion-gluon interactions may decou-

ple. Likewise, below TQCD, axion-pion interactions may be strong enough to keep the axion in

thermal equilibrium. In this subsection, we compute the temperature at which the axion scat-

tering rate with strongly coupled particles decouples, TFO, and in the following subsection we

use this freeze-out temperature to set the initial conditions of the axion distribution function

of our Boltzmann code, which evolves the axion phase space distribution from temperatures

where first-order chiral perturbation theory is valid, TχPT ≡ 100 MeV [53] to temperatures

past neutrino and electron decoupling. We further discuss the region of parameter space in

the (ma, fa) plane where perturbation theory in gluon and pion descriptions breaks down at

axion decoupling, and quantify the resulting uncertainty in the initial axion abundance.

3.1.1 Equilibrium from Scatterings

When the temperature T is much greater than ma and TQCD, the axion-gluon interaction

a + g ↔ g + g dominates axion production. The thermally averaged rate of axion-gluon

scattering is given by [27, 52]

Γag↔gg '
16

π

(
g2

3

32π2

)2
T 3

f2
a

Fg(T ) , (3.1)
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Figure 1. Overview of the parameter space in the ma−fa plane where axion interactions with mesons

or gluons thermalize. In the purple region, scatterings with pions keep the axion in equilbrium below

TχPT. In the yellow region, meson or gluon decays and inverse decays keep the axion in equilibrium

below TχPT. In the blue region, scatterings with gluons once kept the axion in equilbrium. In

this region, the horizontal contours denote the gluon freeze-out temperature, TFO,g. The red region

indicates where the axions freeze out at temperatures above the validity of chiral perturbation theory

(TχPT ≡ 100 MeV) but below the validity of gluon peturbation theory (TgPT ≡ 2 GeV). In this region,

the freeze-out temperature is uncertain. In each region, we choose the appropriate initial condition of

the axion distribution at TχPT; see Eq. 3.7 for details.

where Fg(T ) is a temperature-dependent function that captures the axion production en-

hancement in the plasma from thermal gluon decays. Fg(T ) is numerically computed in

[27, 52], and for g3 . 1, takes the approximate analytic form Fg ≈ 2g2
3 ln 1.5/g3 [52, 54].

On the other hand, when T . TQCD, the interaction a + π ↔ π + π dominates axion

production. The thermally averaged rate of axion-pion scattering is given by

Γaπ↔ππ =
T 5

f2
af

2
π

A2

(1− r2)2
Fπ(ma, T ) (3.2)

where Fπ(ma, T ) is a temperature and axion mass dependent function that we compute

numerically in Appendix A. For reference, Fig. 16 shows Fπ as a function of mπ/T for a

variety of ma.

We define the axion decoupling temperature, TFO, when Γag↔gg = 3H(TFO,g) for T �
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TQCD, or Γaπ↔ππ = 3H(TFO,π) for T � TQCD, where H(TFO) is the Hubble rate at TFO.

Contours of TFO,g in the ma − fa plane are shown by the horizontal lines in the blue-shaded

region of Fig. 1. Likewise, the purple region indicates where the axion-pion freeze-out tem-

perature, TFO,π is less than TχPT. The estimation of TFO,g based on Eq. (3.1) breaks down if

ma > TFO,g, but we find that it anyway occurs in the red parameter region which possesses

greater uncertainty: In the red-shaded region, TFO occurs above the temperature at which

chiral perturbation theory breaks down (TχPT) but below the temperature where the strong

coupling constant, g3, becomes non-perturbative (TgPT). We take TχPT ' 100 MeV, the tem-

perature above which one-loop corrections in chiral perturbation theory become comparable

to tree-level results [53]. Similarly, TgPT ' 2 GeV is conservatively associated with the energy

scale below which g3 becomes non-perturbative and one-loop corrections become comparable

to tree-level results [50]. In the red-shaded region, we cannot precisely determine TFO. In

Sec. 3.1.3, we evaluate the uncertainty in Neff arising from this uncertainty in TFO.

3.1.2 Equilibrium from Decays and Inverse Decays

Even when TχPT < TFO < TgPT, and hence the freeze-out temperature is uncertain, it is

still possible to infer the axion abundance at TχPT for sufficiently large ma. Specifically, if

the axion decay rate is greater than Hubble at TχPT, then the axion possesses a thermal

distribution at TχPT. For example, when ma � T , the decay a → g + g can dominate over

axion-gluon scattering when T > TgPT, or, for example, a→ 3π can dominate at T = TχPT.

The axion decay rate to strongly coupled particles is given by

Γa→QCD =
m3
a

f2
a

Fc(ma) , (3.3)

where Fc(ma) is an axion mass dependent function that captures the variety of strongly

coupled degrees of freedom the axion can decay to. We use Fc(ma) as numerically computed

in [50], which includes the following meson decay channels: a → 3π, ππγ, ηππ, KKπ, η′ππ,

ρρ, ωω, K∗K
∗
, and φφ. For ma ≥ TgPT, the axion to gluon decay rate dominates and Fc

smoothly interpolates to the perturbative result [50]

Fc '
2

π

(
g2

3

32π2

)2(
1 +

83g2
3

16π2

)
. (3.4)

Last, the axion to photon decay rate is given by

Γa→γγ =
gγ(ma)

2

64π

m3
a

f2
a

, (3.5)

where gγ(ma) is given in (2.13). Note that gγ(ma) is a function of the axion mass due to the

effects of axion-meson mixing as encoded in the mixing function Fθ(ma).

We define the axion decay temperature, Tdecay, when Γa→QCD + Γa→γγ = 3H(Tdecay).

The yellow region of Fig. 1 shows the region where Tdecay > TχPT. In this region, the axion
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Figure 2. When TχPT < TFO < TgPT, the initial axion density at the start of the Boltzmann code

is uncertain. The left panel bounds this uncertainty by showing the two extreme TFO ∈ (TχPT, TgPT)

that give the largest (blue) and smallest (orange) axion densities at the starting temperature of the

Boltzmann code. The right panel shows the corresponding axion yields. The cross-over between the

maximum and minimum TFO around 0.3 GeV arises from the balance between Boltzmann suppression

and dilution by g∗ across the QCD phase transition.

possesses a thermal distribution when we begin our Boltzmann code at TχPT, even if TFO is

uncertain.

Note that if the axion decays far before or after neutrino decoupling, the initial condition

of the axion at TχPT becomes insensitive to the calculation of ∆Neff . In particular, below

the lower dashed line, Γa = Γa→QCD + Γa→γγ , is so large that the axion always decays before

the universe is 10−2 seconds old. In this region, the neutrinos are still strongly coupled to

the thermal bath when the axion decays so that any effect to ∆Neff from the axion is erased,

regardless of the initial axion abundance at TχPT. Likewise, above the upper dashed line. Γa
is so small that the axion always decays after the universe is 1 second old. In this region,

neutrinos have long since decoupled from the thermal bath when the axion decays, leading

to ∆Neff � −0.3, which is already excluded by the observations of CMB [19].

3.1.3 Initial Condition and Its Uncertainty

For (ma, fa) in the purple or yellow regions of Fig. 1, the axion is in thermal equilbrium at

TχPT. Consequently, in these regions, we take the initial distribution function of the axion

at TχPT to be a Bose-Einstein distribution of temperature TχPT. For sufficiently large fa,

however, the axion decouples from the bath at TFO > TχPT (blue region), and we take the

initial axion distribution to be a thermal one at TFO, red-shifted down to TχPT. Inside the

red-shaded region, however, TFO is uncertain. Despite this uncertainty, we can still bound

∆Neff by running our axion Boltzmann code with both the maximum and minimum possible

axion abundance at TχPT. We scan over possible freeze-out temperatures between TχPT and

TgPT for all axion masses in the red-shaded region to determine the smallest and largest

abundance at TχPT as a function of ma. In Fig. 2, the left panel shows the TFO that gives

the maximum (blue) and minimum (orange) axion yield, Ya = na/s, as a function of ma, and
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the right panel shows these maximum and minimum yields. Note that the smallest possible

axion number density is not necessarily that of an axion in thermal equilibrium at TχPT and

the largest that of a frozen-out abundance at TFO = TgPT. This is because large changes in

the degrees of freedom of the thermal bath between TχPT and TgPT can dilute the previously

frozen-out axion. For all future plots, we show the results of ∆Neff arising from these two

possible initial conditions.

In summary, we take the initial axion distribution function at TχPT (time tχPT) to be

fa(pa, t = tχPT) =

(
exp

√
|p∗|2 +m2

a

T∗
− 1

)−1

, |p∗| = |pa|
a(T∗)

a(TχPT)
(3.6)

where fa(pa) is a Bose-Einstein distribution with momentum pa and effective temperature

T∗ given by

T∗ =


TFO,g if TFO ≥ TgPT

TχPT if TFO ≤ TχPT or Tdecay ≥ TχPT

Max & Min TFO (see Fig. 2) if TχPT < TFO < TgPT and Tdecay < TχPT

(3.7)

Note that if TRH < T∗ or if there is a source of dilution in the universe after the axion freezes-

out, then the initial abundance of axions can be small and the bounds on Neff discussed in

this work are weakened.

3.2 Axion Abundance Below ΛQCD: Boltzmann Equations

Accurately capturing the effect of heavy axion decoupling and decay on our cosmology requires

understanding the phase space evolution of the axion in the primordial thermal bath. The

Boltzmann equation describing the evolution of the axion phase space density, fa(pa), is

∂fa
∂t
− paH

∂fa
∂pa

= (Cγ + CP + Cπ + CΓ)(fa,eq − fa), (3.8)

where pa = |pa| is the magnitude of the axion momentum, H is the Hubble expansion rate, and

Cγ , CP , Cπ, and CΓ are the collision terms for axion-two photon scattering, axion-Primakoff

scattering, axion-pion scattering, and axion-meson decay, respectively.

Generally, the collision term, C, corresponding to the axion interaction a+A+B+ ...↔
I + J + ..., is

C(fa,eq − fa) =
1

2Ea

∫
dΠAdΠB...dΠI ...dΠJ ...S |M|2Λ (2π)4δ4(pa + pA + pB...− pI − pJ ...)

(3.9)

where Ea =
√
p2
a +m2

a is the axion energy, dΠ = d3p/(2π)32E is the phase space measure

per particle, |M |2 is the matrix element of the interaction, S = 1/m! is the symmetry factor

for every m identical particles in the initial or final states, and

Λ = [(1± fA)(1± fB)...(1± fa)fIfJ ...− fAfB...fa(1± fI)(1± fJ)...] (3.10)

' (fa,eq − fa) exp(−EA/T ) exp(−EB/T )... (Kinetic equilibrium limit)

– 11 –



is the phase space density factor for all the incoming and outgoing particles interacting with

the axion, where the plus sign refers to stimulated emission (boson) and the minus to Fermi

blocking (fermion). The second line of Eq. (3.10) shows Λ in the limit where 1± f ' 1 with

f = exp(−E/T ) the Boltzmann distribution, which is an excellent approximation for particles

in kinetic equilibrium.

In past literature, only the axion-two photon, Cγ , and the axion-Primakoff, CP , col-

lision terms have been considered in calculations involving the axion Boltzmann equation.

Consequently, these terms have already been computed, and their values are [55]

Cγ ≈
m2
a − 4m2

γ

m2
a

ma

Ea

[
1 +

2T

pa
log

1− e−(Ea+pa)/2T

1− e−(Ea−pa)/2T

]
Γa→γγ (3.11)

CP ≈
Γa→γγ
m3
a

∑
i=e,µ,π±

nie
2
i log

[
1 +

16E2
a(mi + 3T )2

m2
γ(m2

i + (mi + 3T )2)

]
. (3.12)

Here, Γa→γγ is the axion-to-two photon decay rate, (3.5), mγ is the photon plasma mass,

and ni is the number density of the ith electromagnetically charged particle of charge ei in

the thermal bath. When the electron is relativistic, mγ ' eT/3 [56], but when the electron

becomes non-relativistic at T . me, mγ reduces to the classical plasma frequency of mγ '
e
√
ne/me, which is exponentially suppressed. For simplicity, we piecewise-connect the two

regimes for mγ when they intersect, which occurs roughly at T ' me/2.

The axion-pion scattering collision term for a massive axion has not been computed in

the literature and we do so for the first time in Appendix A. Cπ takes the form

Cπ =

(
A

fafπ

1

1− r2

)2 T 6

2Ea
×FPS

(ma

T
,
pa
T

)
, (3.13)

where A = 1
3(1− z)/(1 + z) ' 0.12 and r ≡ ma/mπ as before. The function FPS contains the

phase space integration over the axion-pion scattering matrix. In Appendix A, we determine

this axion-pion scattering matrix, numerically perform the phase integration, and show how

Cπ agrees with the massless axion result found in literature [53, 57]. Note that integration of

Cπ over the axion phase space defines Γaπ↔aπ given in Eq. (3.2).

The axion-meson decay collision term has also never been considered in the literature.

Under the Boltzmann approximation in the kinetic equilbrium limit, CΓ is simply

CΓ ≈
ma

Ea
ΓQCD , (3.14)

where ΓQCD is the total axion decay rate to all final states containing mesons (3.3). In (3.14),

we use the Boltzmann kinetic equilibrium approximation.

It is fruitful to estimate the impact of the axion-pion scattering and axion-meson decays

compared with the standard Boltzmann calculations in literature which only include Primakoff

scattering and axion-photon decays. For example, the solid contours in Fig. 3 show the axion-

pion decoupling temperature, TFO,π vs fa over a range of axion masses. For fa . 106 GeV,

– 12 –



Figure 3. (Left) Axion freeze-out temperature from pion (solid) and Primakoff (dashed) scatterings

as a function of fa for a variety of ma between 0 and 200 MeV. For fa & 3× 104 GeV, the axion-pion

scattering dominates over Primakoff scattering, keeping the axions in thermal equilbrium until T ∼ 10

MeV for fa . 106 GeV.

Figure 4. (Right) Total axion decay rate (τ−1) as a function ofma for E/N = 0 (blue) and E/N = 8/3

(orange). Resonant peaks in the decay rate arise from axion-meson mixing when ma is near mπ0 , mη,

and m′η. Troughs arise from cancellations in gγ between the anomaly, axial rotation, and meson-

mixing contributions. For ma & 2 GeV, the decay rate is set by gluons. The dashed contours show

the axion-photon decay rate without meson mixing.

the axion remains in thermal equilibrium from pionic interactions until a few 10s of MeV

which is typically far lower than the Primakoff decoupling temperature [18],

TFO,P ≈ 91

√
g∗(TFO,P)

gc(TFO,P)

(
fa

106 GeV

)2( gγ
α/2π

)−2

GeV , (3.15)

where gc is the the sum of the charged relativistic degrees of freedom in the bath. The Pri-

makoff decoupling temperature is shown by the dashed contours in the left panel of Fig. 3. For

fa & 5× 104 GeV, TFO,P � TFO,π, demonstrating the importance of the pions at maintaining

thermal equilibrium with the axion all the way to O(10) MeV temperatures. The lower pionic

decoupling temperature compared to standard Primakoff decoupling leads to two important

effects: (1) it can reduce the abundance of axions with masses above TFO,π, as they now follow

an exponentially suppressed distribution relative to the standard, non-Boltzmann suppressed

distribution; and (2) it can enhance the initial abundance of axions with masses below TχPT

as they are not diluted by g∗S like axions that decouple from Primakoff interactions in the

early universe.

Similarly, axion-meson decays and inverse decays can keep the axion in thermal equi-

lbrium at low temperatures. Most importantly, for a fixed fa, the additional QCD decay

channels can significantly decrease the axion lifetime relative to Γ−1
a→γγ , which is the standard

axion lifetime taken in previous Boltzmann calculations. For example, the solid blue and

orange contours of Fig. 4 show the total axion decay rate including QCD decay channels for

E/N = 0 and 8/3, respectively. Compared to the dashed contours used in past literature,
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which show Γa→γγ when meson mixing and QCD channels are absent, the realistic total axion

decay rate can be significantly different. Moreover, because the axion lifetime relative to neu-

trino decoupling dominantly sets the Neff signal, we expect that incorporating axion-to-QCD

channels will significantly alter the allowed parameter space in the (ma, fa) plane.

To precisely quantify these new effects, the phase space evolution of the axion, (3.8),

together with the evolution of the Standard Model particles in the thermal bath must be

computed to determine the effect of axion decoupling and decay on the relative temperature

differences between photons and neutrinos in our present Universe, as typically characterized

by the effective number of neutrino species

Neff =
8

7

(
11

4

)4/3 ρν
ργ
. (3.16)

Here, ρν and ργ are the neutrino and photon energy densities. Note that Neff is most sensitive

to heavy axions that decay at temperatures near neutrino decoupling, which occurs around

the MeV scale. The particles in the thermal bath from TχPT through neutrino decoupling

are photons, neutrinos, electrons, muons, pions and a small density of heavier mesons. The

contribution to the energy density from these heavier mesons and from deviations of pions

from the ideal gas law from self-interactions, ρδQCD
, is approximately 5% of the total energy

density at TχPT and quickly drops far below 1% by T = 60 MeV (see Fig. 17).

The evolution of the energy density of species in the thermal bath that are tightly ther-

mally coupled follows the energy density Boltzmann equation

∑
i=γ,e,µ,π,δQCD

∂ρi
∂t

+ 3H(ρi + Pi) =
Γνe
T 4

(ρ2
νe − ρ

2
νe,eq) +

Γνµτ
T 4

(ρ2
νµτ − ρ

2
νµτ ,eq) (3.17)

+

∫
d3pa
(2π)3

√
p2
a +m2

a(Cγ + CP + Cπ + CΓ)(fa − fa,eq),

where

ρi =

∫
d3pi
(2π)3

√
p2
i +m2

i fi(pi), Pi =

∫
d3pi
(2π)3

1

3

p2
i√

p2
i +m2

i

fi(pi) (3.18)

are the energy densities and pressures of the ith tightly coupled species in the bath. We

assume that the photons and pions follow Bose-Einstein distributions and the electrons and

muons follow Fermi-Dirac distributions. As discussed more in Appendix C, we infer ρδQCD

and PδQCD
from the work of [58], which computes the Standard Model equation of state across

the QCD phase transition and takes into account the deviations from the ideal gas law arising

from the strongly coupled QCD bath.

The energy densities of particles not strongly thermally coupled electromagnetically,

namely the axion and neutrinos, must be solved for numerically. Specifically, the rate of

change of the neutrino energy densities on the right side of (3.17) follow the Boltzmann

– 14 –



equations

∂ρνe
∂t

+ 4Hρνe = −Γνe
T 4

(ρ2
νe − ρ

2
νe,eq) (3.19)

∂ρνµτ
∂t

+ 4Hρνµτ = −
Γνµτ
T 4

(ρ2
νµτ − ρ

2
νµτ ,eq). (3.20)

Here, Γνe ' 0.68G2
FT

5 and Γνµτ ' 0.15G2
FT

5 [18] are thermally averaged neutrino inter-

action rates with the thermal bath for electron neutrinos and for muon and tau neutrinos,

respectively.

Last, the Hubble rate, H, quantifies the expansion rate of the universe and sets the

decoupling time of all interactions. The squared Hubble rate is set by the sum of all energy

densities,

H2 =

(
Ṙ

R

)2

=
8πG

3

(
ργ + ρe + ρµ + ρπ + ρδQCD

+ ρνe + ρνµτ + ρa
)
. (3.21)

We numerically solve the system of equations (3.8)-(3.21) using the method of lines [59].

The method of lines is a numerical technique for solving a system of partial differential

equations by discretizing one independent variable direction (comoving momentum in our

case) while keeping the other independent variable continuous (logarithmic time in our case).

The main advantage of the method of lines technique is the conversion of the Boltzmann

system of partial differential equations in {|pa|, t} into a system of many ordinary differential

equations in {t} which is computationally easier to solve. Moreover, by keeping the time-like

variable continuous, useful techniques such as dynamical step-sizes can be employed to speed

up the computation by automatically taking large temporal time-steps when changes in the

interactions are small (such as at thermal equilibrium) while taking small temporal time-steps

when changes are sudden (such as decays, decouplings, or re-thermalizations). See Appendix

C for more details of our numerical setup.

3.3 ∆Neff

In this section, we present the numerical results of Neff as determined from the Boltzmann

equations of Sec. 3.2 describing the cosmological evolution of the heavy QCD axion below

TχPT.

First, to compare with past literature and highlight the importance of the new effects

discussed in this work, we show Neff for heavy axion cosmologies without incorporating the

following crucial elements in the Boltzmann code: axion-pion scattering, axion-meson decay,

axion-meson mixing in gγ , the proper frozen-out initial axion abundance, and the QCD contri-

butions to the background energy density as described by ρπ and δQCD. Fig. 5 shows the nu-

merical results of Neff when these terms are neglected. That is, including only the photon (Cγ)

and Primakoff (CP ) collision terms in Eq. (3.8) and Eq. (3.17); including only γ, e and µ in the

sum of the thermally coupled species of Eq. (3.17); including only ργ , ρe, ρµ, ρνe , ρνµτ , and ρa
in Hubble (3.21); setting the initial abundance of axions at the start of the Boltzmann code to
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that of a frozen-out abundance set by Primakoff scatterings such that T∗ = Max(TFO,P, TχPT);

and finally, in Eq. (2.13), setting E/N = 0 and Fθ = (1 − z)/(1 + z), which is the axion-

meson mixing contribution in the inapplicable ma � mπ limit. The left panel of Fig. 5 shows

contours of ∆Neff in the ma− τγ plane, where τγ is the axion to photon lifetime when axion-

meson mixing is neglected. Note that τγ is the total lifetime of the axion since QCD decay

channels are neglected in this particular case.

For τγ & 10−1 s the axion decays after neutrino decoupling, heating up the photons

relative to the neutrinos and giving rise to ∆Neff < 0 as can be seen from the enhanced

denominator of Eq. (3.16). For τγ . 10−1 s and ma & 10 MeV, the axion decays sufficiently

early that the photons and neutrinos rethermalize before the neutrino decouples. In this

scenario, the Neff signal of the heavy axion is absent and ∆Neff ' 0. For τγ . 10−1 s and

ma . 10 MeV, the axion remains in thermal equilibrium past neutrino decoupling, heating

up the photons and again giving rise to negative ∆Neff . The right panel of Fig. 5 shows the

same ∆Neff contours as the left panel but in the ma−fa plane. Both panels assume the usual

hadronic axion with E/N = 0. Taking the GUT motivated value of E/N = 8/3 only slightly

shifts the contours in the right panel vertically.

We now consider Neff for heavy axion cosmologies incorporating the new effects included

in this work: axion-pion scattering, axion-meson decay, axion-meson mixing in gγ , the proper

(and occasionally uncertain) frozen-out initial axion abundance, the QCD contributions to

Figure 5. Contours of Neff in the ma − τγ (left) and ma − fa (right) planes neglecting the following

crucial effects that we take into account in future figures: axion-pion scattering, axion-meson decays,

axion-meson mixing in gγ , the proper frozen-out initial axion abundance, and the QCD contributions

to the background evolution. Note that by neglecting these effects, as done in past works, the axion-

lifetime is incorrectly set by the axion-photon decay rate with no axion-meson mixing, as shown by

the y-axis of the left panel. The dark orange region is excluded at 95% confidence by Planck, while

the light orange shows the future reach of CMB-S4 experiment at 95% confidence.
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the background energy density as described by ρπ and δQCD, as well results for the KSVZ

E/N = 0 and the GUT motivated E/N = 8/3. Figs. 6 and 7 show the contours of ∆Neff

for heavy axions with these additional contributions for E/N = 0 (KSVZ) and E/N = 8/3

(GUT), respectively. In both figures, the left and right panels show the parameter space in the

(ma, τ) and (ma, fa) planes, respectively. Note that here, τ is the total lifetime of the axion,

which begins differing from τγ forma & mπ where axion-meson mixing becomes important and

then becomes even more disparate when axion-meson channels open for ma & 3mπ, as shown

in Fig. 4. The solid and dashed blue contours in each panel correspond to taking the maximum

possible Ya (blue) and minimum possible Ya (dashed) when TFO lies in the uncertain region

between TχPT and TgPT, as indicated in Fig. 2. The separation between the solid and dashed

blue contours indicates the uncertainty in Neff arising from the uncertainty in TFO in this

region. As can be seen, this region is localized roughly between 250 MeV . ma . 800 MeV

and, for any value of ma in this region, the uncertainty in the value of fa for any Neff contour

is typically only a several 10s of percent and always less than a factor 3.

Figs. 6 and 7 demonstrate three important differences in the Neff signal from heavy axions

as currently considered in literature (Fig. 5): First, the effect of axion-pion resonance on the

mixing angle can be seen by the triangular shaped peaks near ma = m0
π. In this regions, the

axion is tightly coupled thermally to pions so that when the axion decays, its abundance is

sufficiently exponentially suppressed that it does not heat up the photons even when decaying

past neutrino decoupling. Second, for ma & 3mπ, |∆Neff | is reduced for fixed (ma, fa) due to

the meson-decay channels now open which cause the axion to decay earlier, especially near

resonances in the mixing angle at ma = mπ, mη, and mη′ . This can be seen more clearly in

the (ma, fa) planes. Note that for some ma, incorporating axion-meson mixing can increase

the axion lifetime due to cancellations between contributions of gγ (3.5). The increased

|∆Neff | for fixed (ma, fa) due to the increased axion lifetime is important for ma < 3mπ when

only the axion-photon decay channel is open. Third, for ma . mπ, |∆Neff | is reduced for

fixed (ma, fa) because the axion is kept in thermal equilibrium by axion-pion scattering to

lower temperatures compared to when the pions are absent. This leads to a reduced axion

abundance at neutrino decoupling which reduces the |∆Neff | contribution from the axion.

Each of these effects can be seen more clearly in the top panels of Fig. 8 which show

the evolution of the energy densities of the axion and other species in the thermal bath as a

function of time and temperature (top horizontal axis) for fixed (ma, fa) = (100 MeV, 2.5×106

GeV) and (1000 MeV, 1.0× 109 GeV), in the top left and top right panels, respectively. The

dark colored contours show the evolution of the comoving energy density, Xi = ρiR
4 of

the ith species when including the axion-meson interactions while the light colored contours

show the same evolution when the axion-meson interactions are absent. The electromagnetic

component of the thermal bath, γ, e, µ, π, δQCD is shown in blue, νµ,τ in green, νe in orange,

and the axion in red. The dashed red contour shows the comoving energy density of the

axion if it were to maintain a thermal distribution for all times. As can be seen from the

ma = 100 MeV panel, the axion starts off in thermal equilbrium compared to the case

without meson interactions in which the axion possesses a g∗S suppressed abundance from
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Figure 6. Contours of Neff in the ma − τ (left) and ma − fa (right) planes for E/N = 0. The dark

orange region is excluded at 95% confidence by Planck, while the light orange shows the future reach

of CMB-S4 experiment at 95% confidence. The dashed contours indicate where the initial axion yield

is uncertain because TFO lies between TχPT and TgPT. The dashed contours bound this uncertainty

by showing the value of Neff taking the minimum initial axion yield while the solid contours show the

value of Neff taking the maximum initial axion yield as given in Fig. 2.

Figure 7. Same as Fig. 6, but for E/N = 8/3.

earlier Primakoff freeze-out. Moreover, the axion abundance with meson interactions follows

the dashed thermal distribution to lower temperatures than without meson interactions. This
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Figure 8. Top panels show the comoving energy density evolution of the axion (dark red), electron

neutrinos (dark orange), muon and tau neutrinos (dark green), and strongly coupled species in the

Standard Model thermal bath (dark blue) for (ma, τ) = (100 MeV, 0.1s), left, (ma, τ) = (1000 MeV,

0.1s), right. The correspondingly lighter shaded contours show the same evolution but without pion

or meson interactions. The dashed red contour shows the axion comoving energy density if it were to

maintain a thermal density at all times. The bottom panels show the instaneous value of Eq. (3.16)

minus the Standard Model result, NSM
eff = 3.044. The left and right panels respectively highlight how

including QCD interactions can keep the axion thermally coupled to the Standard Model bath for a

longer time or enhance the axion decay rate at a fixed fa. The left panel demonstrates that for low

ma, the axion can be in thermal equilbrium at TχPT when including pions-interactions but be out

of equilbrium when including only Primakoff processes which freeze-out at much higher temperatures

that lead the axion to possess a g∗S diluted abundance at TχPT. In the left panel, the axion lifetime

with or without mesons is approximately the same (τ ≈ 0.1 s) because the meson decay channels are

forbidden and axion-pion mixing is not too appreciable yet. In contrast, the right panel demonstrates

that for high ma, the axion can decay much earlier due to the kinematic availability of meson decay

channels (τ ≈ 0.01 s with meson interactions and 24 s without). This leads to a reduced ∆Neff , as

shown on the bottom right panel. In both panels, we take E/N = 0.

leads to a relative suppression in the non-relativistic abundance of the axion prior to decaying

around 2 MeV. Consequently, including axion-pion scattering ∆Neff is not as negative as

previous results in the literature. The temporal evolution of ∆Neff(t) = Neff(t) − 3.044, as

shown by the dark blue (with mesons) and light blue (without mesons) contours in the lower

left panel of Fig. 8, demonstrates this difference explicitly. Note that for ma = 100 MeV, the

axion mass is on the cusp of the axion-pion resonance for E/N = 0. For ma closer to mπ, the

axion follows the dashed thermal abundance for a longer duration which generates the large

triangular peak in the allowed Neff plot of Fig. 6.

For ma = 1000 MeV, the axion with meson interactions again follows the dashed thermal
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distribution to slightly lower temperatures than the axion without meson interactions. More

important though is the difference in decay time between the two cases. In particular, the

axion with meson interactions (dark red) decays earlier than the axion without (light red) due

to the a→ ηππ, ππγ decay channels that are now kinematically open to the 1000 MeV axion

that are absent from the 100 MeV axion. These extra decay channels lead to a much smaller

∆Neff as shown explicitly by the evolution of ∆Neff in the bottom right panel of Fig. 8.

We note that for ma > 2 GeV, the axion decays dominantly into gluons. Here, the

2σ limit on Neff as constrained by Planck approximately follows the contour τ ≈ 0.05 s

around ma ∼ GeV and slowly drops with increasing axion mass. The slight decrease in the

maximum allowed τ in this region originates from the increase in the axion energy density at

decay with axion mass: For such heavy axions with long lifetimes, fa is large and the axion

freezes-out early, leading to freeze-out yield roughly independent of ma. Consequently, the

heavier the axion, the earlier it must decay so that its energy density at neutrino decoupling

is further exponentially suppressed to counter its larger frozen-out energy density. As shown

in Appendix B, the exponentially decaying energy density of axions, ρa ∝ e−t/τ , leads to a

logarithmic decrease in the maximum allowed τ given by the semi-analytic function

τmax(ma) <
4.3× 10−2 s

1 + 0.25 ln ma
2 GeV

(ma ≥ 2 GeV). (3.22)

Eq. (3.22) can also be written in terms of fa by equating τ−1
max with the analytic decay rate

into gluons given by Eqns. (3.3) and (3.4),

fa . 1.2× 1010 GeV
( ma

2 GeV

)3
2
( α3

0.3

)( 1 + 83
4πα3

1 + 83
4π0.3

)1
2 (

1 + 0.25 ln
ma

2 GeV

)−1
2

(ma ≥ 2 GeV).

(3.23)

Thus, for ma � 2 GeV and fa small enough to be probed by accelerator experiments [45, 50,

60–68], the dark radiation constraint is absent.

4 Including a Mirror Photon

In this section we add a mirror photon γ′ to the theory, with a mass sufficiently small that it

can be ignored in our analysis. A mirror photon is natural in theories with a Z2 symmetry

that not only doubles the SU(3)c sector of the Standard Model to achieve a heavy QCD

axion, but also doubles the SU(2)L×U(1)Y sector. This complete mirroring of the Standard

Model gauge group introduces another axion coupling relevant in computing the amount of

dark radiation

La,γ′ =
gγ′

4

a

fa
F ′µνF̃

′µν . (4.1)
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Figure 9. The axion total decay width (left) and branching ratios (right) as a function of axion

mass, for E/N = 8/3. The orange (blue) contours refer to decays to photons (mirror photons); the

green contour is for decays to states that include hadrons. In the left panel, the solid (dashed) black

contours give the axion decay width in the theory with (without) mirror photons.

Above the mirror QCD scale, Λ
′
QCD, the Z2 symmetry ensures that

gγ′ =
e′2

8π2

(
E

N

)
, (4.2)

with e′ differing from e only by renormalization group scaling, which we ignore.

Note that unlike gγ in (3.5), gγ′ does not include contributions from axion-mirror meson

mixing nor from the axial rotation onto mirror quarks because the masses of the lightest

mirror quarks are typically much heavier than Λ
′
QCD and thus irrelevant to the theory below

Λ
′
QCD. If, however, any mirror quark is lighter than the mirror QCD scale, then there is an

additional contribution to gγ′ analogous to the second and third terms in (2.13) for gγ . In

the minimal theory, where the Z2 symmetry exchanges the Standard Model with its mirror

and is spontaneously broken by a difference between the electroweak vevs with v′ � v, all

mirror quarks are heavier than Λ
′
QCD for fama & 25 GeV2 [69]. This relation is satisfied for

nearly the entire parameter region of interest to us, so that all mirror quarks are well above

the QCD scale; gγ′ is thus uncorrected and given by (4.2).

Numerical results in this section are calculated taking e′ = e (that is, neglecting the small

running of e′ below v′) and with a non-zero E/N so that g′γ is non-zero. As a result, the

axion-mirror photon decay rate is

Γa→γ′γ′ =
g2
γ′

64π

m3
a

f2
a

' 1

64π

(
e2

8π2

E

N

)2
m3
a

f2
a

. (4.3)

In particular, we consider two values for E/N : 8/3, motivated by grand unification, and

1/3, which can be achieved by an appropriate choice of KSVZ fermions. For E/N = 8/3, the

total axion decay rate with and without mirror photons is shown by the solid and dashed

black contours in the left panel of Fig. 9. The light blue, orange, and green contours indicate
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Figure 10. As in Fig. 9, but for E/N = 1/3. In the left panel, the solid and dashed black contours,

giving the axion decay width with and without mirror photons, are almost conincident, as the partial

width to mirror photons is sub-dominant, as shown by the straight blue line.

the axion decay rates into γ′, γ, and QCD degrees of freedom, respectively. Because there is

no cancellation of terms in gγ′ as compared to gγ , the a → γ′γ′ decay rate (blue) is roughly

an order of magnitude greater than the a → γγ decay rate (orange) until ma & 3mπ: thus,

axions below this mass dominantly decay into dark photons. This can be seen more clearly

in the right panel of Fig. 9, which shows the branching ratios for the same three axion decay

channels. The case for E/N = 1/3 is significantly different as demonstrated in Fig. 10. In

particular, the cancellation between terms in gγ is negligible which leaves the now smaller

a→ γ′γ′ decay rate roughly an order of magnitude weaker than the a→ γγ decay rate.

We highlight these two representative values of E/N since they generate substantially

different decay branching ratios into mirror photons.2 This disparity is important since the

parameter space where the axion branching ratio into dark photons is O(1) can be cosmolog-

ically dangerous as the mirror photon decay mode (4.3) increases Neff , by directly generating

dark radiation in the form of γ′, and reduces the heating of the Standard Model bath as fewer

axions decay into γ.

Quantitatively, Neff with a mirror photon is

Neff =
8

7

(
11

4

)4/3 ρν + ργ′

ργ
, (4.4)

where ρν , ργ′ , and ργ , are the relic energy densities of neutrinos, mirror photons, and photons,

respectively. According to Eq. (4.4), an additional mirror photon in thermal equilibrium

significantly increasesNeff and is generally excluded by current ∆Neff limits [19]. Nevertheless,

a mirror photon can be allowed if it does not achieve a thermal abundance.

2The case for E/N = 2/3, which can be achieved by a KSVZ quark that possesses the same gauge quantum

numbers as down quarks, is intermediate between these two cases and like the case E/N = 1/3, also yields a

region of ∆Neff ≈ 0 at low ma.
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This leads us to consider the Boltzmann equation for fa(p) in the freeze-in picture

∂fa
∂t
− paH

∂fa
∂pa

= (Cγ + CP + Cπ + CΓ)(fa,eq − fa)− Cγ′fa , (4.5)

where the mirror photon collision term, Cγ′ , is given by

Cγ′ '
ma

Ea
Γa→γ′γ′ . (4.6)

Eq. (4.5) replaces Eq. (3.8) when including mirror photons. In addition, while the energy

density evolution of the Standard Model bath remains as given in Eqns. (3.17) and (3.19), 3

the energy density evolution of γ′ is described by

∂ργ′

∂t
+ 4Hρ′γ =

∫
d3p

(2π)3
maΓa→γ′γ′fa = maΓa→γ′γ′ na . (4.7)

Conservatively, we take the initial γ′ density at TχPT to be zero. Due to the substantial

change in Standard Model degrees of freedom across TQCD, freeze-in production of γ′ much

earlier than TχPT is diluted and this conservative estimate is a fairly good approximation

to the true initial abundance of γ′. Last, the Hubble expansion rate, (3.21), is modified to

include the additional mirror photon energy density,

H2 =

(
Ṙ

R

)2

=
8πG

3

(
ργ + ρe + ρµ + ρπ + ρδQCD

+ ρνe + ρνµτ + ρa + ργ′
)
. (4.8)

Figures 11 and 12 show the contours of Neff when including a massless mirror photon

in heavy axion cosmologies for E/N = 8/3 and 1/3, respectively. As before, the blue region

indicates where Neff is excluded by current CMB measurements at the 2σ level. Note that

whereas ∆Neff is strictly negative in the case without the mirror photon (Figs. 6 and 7), the

case with the mirror photon gives positive ∆Neff for most of the parameter space where the

mirror photon dominates the branching ratio.

The green region indicates where the mirror photon reaches equilibrium and the freeze-in

picture breaks down. This occurs when Γaγ′γ′ & H(T = ma), or equivalently, roughly when

fa . 105 GeV
( ma

125 MeV

)1
2
(
E/N

8/3

)
. (Mirror Photon reaches thermal equil.) (4.9)

Within this green region, the contour values for Neff are artificially high because the mirror

photon acquires a greater than thermal abundance due to the lack of a back reaction in

3The axion-mediated interaction γ′+γ′ ↔ γ+γ can contribute to the energy transfer to the Standard Model

thermal bath and hence to additional terms on the right-hand-side of Eq .(3.17). However, this interaction is

O(1/f4
a ) and generally negligible. Similarly, the decay and inverse decay a ↔ γ + γ′ can also modify (3.17),

but this requires O(1) kinetic mixing or aF ′F̃ . The former is constrained by searches for relic mirror charged

particle [70], and the latter requires U(1) × U(1)′ charged particles around the mass scale fa, whose relic is

also constrained.
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Figure 11. Contours of Neff in the ma − τ (left) and ma − fa (right) planes for E/N = 8/3 when

including a mirror photon. The dashed contours indicate where the initial axion yield is uncertain

because TFO lies between TχPT and TgPT. The dashed contours bound this uncertainty by showing

the value of Neff taking the minimum initial axion yield while the solid contours show the value of

Neff taking the maximum initial axion yield as given in Fig. 2. The green region shows where fa
is sufficiently small that the dark photon reaches a thermal abundance and the freeze-in picture we

employ breaks down. The dark orange region is excluded at 95% confidence by Planck, while the light

orange shows the future reach of CMB-S4 experiment at 95% confidence.

Figure 12. Same as Fig. 11, but for E/N = 1/3.
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Eq. (4.5). In principle, capping the mirror photon abundance at a thermal abundance suggests

that realistic Neff contours within the green region are roughly fixed at the value of Neff on

the boundary of the green region; that is, the value of Neff when the mirror photon just

acquires a thermal abundance from the freeze-in picture. For axions decaying prior to neutrino

decoupling, this argument suggests Neff & 3.8 in the green region when E/N = 8/3. Such

a large ∆Neff is already excluded by experiments and thus the freeze-in picture is generally

valid within the experimentally allowed region. However, for axions decaying after neutrino

decoupling, it is possible that a tuned cancellation between the ργ′ energy deposit (positive

∆Neff contribution) and the heating of ργ relative to neutrinos (negative ∆Neff contribution)

can occur in the green region. We leave the calculation of such a tuned cancellation to future

work, but we expect that the parameter region with τ & 1 sec is excluded by BBN. This is

because to cancel the positive ∆Neff , the axion decays before the proton-neutron conversion

completes, and the Helium abundance will be affected.

5 Light Axion and Dark Matter Over-Production

In this section, we discuss constraints on the heavy QCD axion for ma < 1 MeV. As its mass

is decreased the axion remains excluded by ∆Neff until it decays after the CMB era. However,

at this point, the axions remains excluded from its contribution to dark matter at the CMB

era, until a significant further reduction in its mass. Before entering the allowed light axion

region, there is an excluded region from free-streaming effects on large scale structure.

As can be seen from Fig. 6 and 7, the CMB limit on ∆Neff excludes 1 MeV . ma . 3 MeV

for any fa. This exclusion from ∆Neff continues for ma < 1 MeV, until the axions decay after

recombination.4 Hence, the blue region of Fig. 13, where τ < tCMB ≡ 370, 000 yrs (z ≈ 1100)

[51], is excluded by ∆Neff . For τ & tCMB and ma > 0.13(ΩDMh
2/0.12)Ya(TFO,g)−1 eV, the

axion is sufficiently heavy and long-lived to exceed the observed dark matter density at the

CMB era, as shown by the excluded orange region of Fig. 13. Here, we assume the reheat

temperature is sufficiently high that axions undergo freeze-out, as shown in Fig. 1, giving

an axion freeze-out yield, Ya(TFO,g), typically between 2 × 10−3 to 2 × 10−2. Relaxing this

assumption, by taking TRH below TFO,g or by introducing dilution between axion freeze-out

and BBN, reduces the orange excluded region.

At lower axion masses, the free-streaming of axions suppresses the matter spectrum (i.e.,

the axion is hot dark matter) and for even smaller masses, the axion works as dark radiation.

We reinterpret the bound derived in [71] for our framework and exclude the green-shaded

region in Fig. 13. Here we conservatively impose the bound only for τ > t0, where t0 is the

present age of the Universe, but we expect that the bound is also applicable as long as τ > teq,

since the suppression of the matter spectrum is dominated by the free-streaming of axions

before the matter-radiation equality. A part of orange, blue, or green region is also excluded

by other astrophysical constraints (see [72] for an overview), but they are generically weaker.

4The parameter space where the axions decay before recombination but are in thermal equilibrium at BBN

and generate a positive ∆Neff is discussed in [26, 27, 52], but is weaker than the bounds in this work.
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Figure 13. Cosmological constraints on the low mass axion region, ma < 1 MeV. The axion decays

prior to recombination (tCMB ≈ 370, 000 yr) in the orange region, which is excluded by the Neff

constraint. The boundary denoting τ = tCMB is given for E/N = 0 (solid) and 8/3 (dashed) without a

mirror photon; and for 1/3 (dotted) and 8/3 (dot-dashed) with a mirror photon decay channel. In the

blue region, the axion decays after recombination, but possesses a matter energy density during the

CMB era exceeding that measured by Planck [19], assuming the axion froze-out in the early Universe.

For fa . 108 GeV, TFO occurs below the electroweak scale, and hence the axion energy density at

tCMB grows because of the reduction in g∗. In the green region, the axion suppresses the structure

formation as hot dark matter or contributes to dark radiation.

Finally, the misalignment mechanism [73–75] overproduces axion dark matter above the

dotted-dashed line in Fig. 13. Here we assume an O(1) misalignment angle.

6 Conclusions

The strong CP problem can be addressed in a wide variety of axion models. The minimal

ones, where the QCD axion mass is solely given by strong QCD dynamics, predict mafa ∼
(100 MeV)2, but are typically plagued by a quality problem. This quality problem can be

ameliorated or solved in a range of “Heavy QCD Axion” theories, where mafa is orders of

magnitude larger than in the minimal models. The constraints and search strategies for

these heavy axions are completely different from those for the conventional lighter axion. An

important constraint from CMB data arises if the axion lifetime is in the range of 10−1 s

– 10−12 s, decaying after neutrino decoupling at the MeV era, but before last scattering of

the CMB at the eV era. In this case, the energy density of neutrinos is diluted, affecting

the dark radiation at the CMB era, Neff , which has been precisely measured by the Planck

Collaboration [19] and will be significantly improved by CMB Stage 4 experiments [20]. Thus,

theory and experiment both strongly motivate a detailed study of this cosmological bound on
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heavy axions. For axion masses above 1 MeV, except for accelerator searches at low values

of fa, Neff is the strongest bound on the heavy QCD axion, and is the focus of this work.

A well-motivated and predictive model involves a mirror copy of the SM with a large

axion mass generated by the mirror QCD interaction. In this case there is a competition

between axion decays to photons diluting the neutrino contribution to Neff and axion decays

to mirror photons directly enhancing Neff . We have also provided a detailed analysis of the

Neff bound in theories with a light mirror photon.

Our analysis of the Neff bound takes into account key pieces missing from previous studies

of the heavy QCD axion by developing a Boltzmann code that follows the evolution of the

momentum distribution for the axion. The mesons and gluons of QCD play a key role;

we include axion-pion scattering, axion decay to final states involving mesons, and axion-

meson mixing. In addition we follow a detailed cosmological evolution from the initial axion

abundance from freeze-out to the non-trivial QCD contributions in the Friedmann equations.

Our results for the CMB Neff constraints on the heavy QCD axion, in the absence of a

mirror photon, are shown in Figs. 6 and 7, and are very powerful. Planck excludes large areas

of parameter space, especially at large fa , but large areas remain at low fa, where the quality

problem is solved for operators of dimension 6 and larger. The discovery reach of CMB-S4

at larger values of ma is modest, but improves at lower ma: for example, if fa is of order 104

GeV, CMB-S4 will see a signal for ma in the range of (3-10) MeV.

We find two important differences from standard results, illustrated by comparing Fig. 5

with our results shown in Figs. 6 and 7. First, resonances occur when the axion mass is

around the π0, η, and η′ masses, greatly affecting Neff for axion masses between (100− 1000)

MeV. Second, by including mesons and gluons, we correctly take account of the axion lifetime.

This is a large effect, especially at large ma, increasing the decay rate by orders of magnitude

as ma rises above ∼ 1 GeV; this point is apparent in the right panels of Figs. 6 and 7 where

regions with higher fa open up.

In the presence of a light mirror photon, our results for the CMB Neff constraints are

shown in Figs. 11 and 12 for E/N = 8/3 and 1/3 respectively. For E/N = 8/3, ma < 100 MeV

is excluded for all values of fa. A substantial fraction of the allowed region with 100 MeV <

ma < 500 MeV will be probed by CMB-S4 via a positive signal for ∆Neff . For E/N = 1/3,

the CMB Neff bound is considerably weaker. A new allowed region opens up at lower axion

masses, 1 MeV < ma < 100 MeV, where dark radiation from the mirror photon compensates

neutrino dilution from axion decays. A large fraction of this region gives a CMB-S4 signal,

with ∆Neff positive (negative) for smaller (larger) values of fa. These allowed regions both

solve the quality problem for operators of dimension 6 and larger.

The current and future 95% confidence limit on the axion mass from Neff in this work

are shown in comparison to other cosmological and astrophysical constraints in Fig. 14. The

limits on Neff in this work provide the strongest constraints on heavy QCD axions for ma & 1

MeV and fa & 105 GeV. Complementary constraints at small fa arise from direct heavy axion

searches at accelerators [45, 68] as shown by the purple shaded regions. Producing axions in a

beam dump, such as the DUNE Near Detector, and discovering their subsequent decays, will
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Figure 14. Overview of the excluded parameter space as determined in this work (blue region) in

relationship to other QCD axion bounds. The solid orange region shows the 2σ exclusion region on

Neff as determined by Planck for the heavy QCD axion with E/N = 0 (see Fig. 6). The dashed orange

contour shows the future reach of Neff from CMB-S4. The left boundary of the orange region indicates

where the axion decays after recombination which marks the parameter space where Neff contstraints

become inapplicable (see Fig. 13). The blue region indicates where the axion energy density at re-

combination is greater than that of dark matter, assuming the reheat temperature of the universe

is high enough that the axion froze-out with a thermal abundance. The solid and dashed purple

regions shows the present and future bounds from accelerator searches, respectively [45, 50, 60–68].

The brown region shows the bound from supernova 1987a on axions with hadronic interactions, [76],

green from horizontal-branch cooling [77], red from CAST [78, 79], and pink from solar neutrinos [80].

Below the dot-dashed contour, the axion energy density arising from the misalignment mechanism,

with a misalignment angle of unity, is greater than the observed dark matter energy density. In the

green region, the axion suppresses the structure formation or contributes to Neff . Below the dotted

contours, the axions suffers a PQ quality problem arising from operators of the labeled dimension.

The diagonal yellow strip indicates the standard QCD axion, which highlights the severity of the PQ

quality problem for low mass axions.

allow the region enclosed by the dashed purple contour to be probed [45]. Furthermore, the

dashed purple contour at higher ma and low fa can be probed by observing axions in B meson

decays at Belle [68]. The bound from axion cooling of Supernova 1987A has uncertainties

arising from the temperature and density profiles of the supernova, and has been computed

for a variety of such profiles in [76]; we show a conservative case. Constraints on the decay of
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the axion from extragalactic background light or CMB spectral distortions are derived in [18],

but the constraints do not exclude the parameter region that is allowed in Fig. 14.

The bounds shown in Fig. 14, and elsewhere in the paper, are computed assuming that

the reheat temperature of the universe TRH is above the axion freeze-out temperature, and

that there is no subsequent dilution of the axion abundance, for example from late decaying

particles. Removing this assumption relaxes the bounds, since axion production occurs via

freeze-in rather than freeze-out, or is diluted after freeze-out. Since the freeze-out temperature

decreases as fa drops, relaxing the bounds becomes harder at lower fa. For fa < 104 GeV,

the axion is kept into thermal equilibrium even at T < 4 MeV, and the BBN bound TRH > 4

MeV [81–83] excludes the possibility of relaxing the bound. It may be plausible that the

reheating temperature is below the freeze-out temperature for large fa, but solving the quality

problem favors low fa, and it is typically harder to obtain a large enough ma for large fa; see

e.g., Eq. (1.3).

The next decade will yield exciting and important answers to axion physics. Heavy

QCD axions provide a highly-motivated solution to the strong CP problem. Unlike the

standard QCD axion, which induces a small ∆Neff signal [26], heavy QCD axions can generate

substantial ∆Neff signals that can be probed by the exquisite sensitivity of current and near

future CMB telescopes. Moreover, in theories without a mirror photon, this signal results

from a depletion of the cosmic neutrino abundance, providing a less common fingerprint of a

negative contribution to ∆Neff . Such a measurement would determine a correlation between

the axion mass and decay constant.
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A Calculation of Axion-Pion Collision Term

In this section, we compute the axion-pion scattering collision term, Cπ, used in the axion-

Boltzmann equation, (3.17). The interaction between an axion, neutral pion, and two charged

pions includes the following three interactions, a(pa) + π0(p1) ↔ π+(p2) + π−(p3), a(pa) +

π−(p1) ↔ π0(p2) + π−(p3), and a(pa) + π+(p1) ↔ π+(p2) + π0(p3) as shown in Fig. 15.

According to the chiral Lagrangian (2.2), the matrix element for a+ π0 → π+ + π− is

Ma+π0→π++π− =
3

2

A

fafπ

1

1− r2
(s−m2

π), (A.1)

where s = (pa + p1)2. The matrix elements for a + π− → π− + π0 and a + π+ → π+ + π0

scattering are obtained by the four momentum mapping p1 → −p2 and p1 → −p3, respectively.
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a π+

π0 π−

pa p2

p1 p3

a π0

π− π−

pa p2

p1 p3

a π+

π+ π0

pa p2

p1 p3

Figure 15. Feynman diagrams associated with axion-pion scattering involving charged pions.

As a result, the total squared amplitude for scatterings involving the axion and charged pions

is

|M|2
a+πi→π†j+π†k

= |M|2a+π0→π++π− + |M|2a+π−→π−+π0
+ |M|2a+π+→π++π0

(A.2)

=

(
3

2

A

fafπ

1

1− r2

)2 [
(s−m2

π)2 + (t−m2
π)2 + (u−m2

π)2
]

=

(
3

2

A

fafπ

1

1− r2

)2 [
s2 + t2 + u2 − 3m4

π − 2m2
am

2
π

]
,

where t ≡ (pa − p2)2, u ≡ (pa − p3)2 and πi, πj , πk in the subscript of (A.2) refer to three

pions of different charge π0, π+, π−. Likewise, the interaction between an axion and three

neutral pions generates the squared scattering amplitude

|M|2a+π0→π0+π0
=

(
3

2

A

fafπ

1

1− r2

)2

m4
a. (A.3)

Inserting the sum of the squared scattering matrix elements, (A.2) and (A.3), into Eq. (3.9)

and integrating over the phase spaces of the three pions gives the product of the axion-pion

collision term and fa,eq − fa

Cπ(fa,eq − fa) =
1

2Ea

∫ [
dΠ1 dΠ2 dΠ3(|M|2

a+πi→π†j+π†k
+

1

2!
|M|2a+π0→π0+π0

)

× Λ(2π)4δ4(pa + p1 − p2 − p3)
]
, (A.4)

where

Λ = (1 + fa) (1 + f1) f2f3 − faf1 (1 + f2) (1 + f3) (A.5)

' (fa,eq − fa)f1 (1 + f2 + f3) , (A.6)

and fi is the distribution function of particle i possessing momentum pi in accordance with

Fig. 15. In going from (A.5) to (A.6), we take the pions to be in thermal equilibrium with

the Standard Model thermal bath so that f1, f2, and f3 follow a Bose-Einstein distribution of
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temperature T . The temperature T of the strongly coupled thermal bath is inferred at each

numerical time step by solving the following equation for T :∑
i=γ,e,µ,π,δQCD

ρi = ργ(T ) + ρe(T ) + ρµ(T ) + ρπ(T ) + ρδQCD(T ) (A.7)

where the left-hand side of (A.7) is solved from Eq. (3.17) and the right-hand side is calculated

from Eq. 3.18 for γ, µ, e, π and from [58] for ρδQCD
, as described more in Appendix C.

To calculate Cπ, we first introduce another δ-function in (A.4) by writing dΠ3(2π)3 =
d3p3

2E3
= d4p3δ(p

2
4 − m2

4)Θ(p0
4). By integrating p3 over the other delta function δ4(p1 + p2 −

p3 − p4), Eq. (A.4) simplifies to

Cπ(fa,eq − fa) =
1

2Ea

∫ [
dΠ1 dΠ2(|M|2

a+πi→π†j+π†k
+

1

2!
|M|2a+π0→π0+π0

)Λ2πδ(p2
4 −m2

π4)Θ(p0
4)
]
,

(A.8)

with the understanding that p3 = pa + p1 − p2. Note that the argument of the remaining

delta-function, p2
3 −m2

3, can be written as

Q+ 2 ((EaE1 − |pa||p1| cosα)− (E1E2 − |p1||p2| cos γ)− (EaE2 − |pa||p2| cos θ)) (A.9)

where, in the notation of [84], Q = m2
3−m2

a+m2
1 +m2

2, and α, θ, γ are the angles between pa
and p1, pa and p2, and p1 and p2, respectively. It is convenient to express the latter angle

in terms of the former two by cos γ = cosα cos θ + sinα sin θ cosβ.

In the massless axion limit, the argument of the remaining delta function can easily

be expressed in terms of Ea as done in [53]. However, in the massive axion limit, this is

impossible and it is thus more useful to move the argument of the delta function onto one of

the scattering angles, as done in [84], which we follow. In particular, the choice of the angle

β is most convenient as it only occurs once in (A.9). The resulting integral for Cπ is

Cπ(fa,eq − fa) =
1

2Ea

∫ [( d|p1|
(2π)3

p2
1

2E1
d cosαdβ

)(
d|p2|
(2π)3

p2
2

2E2
d cos θ dφ

)2πδ(g(β))∣∣∣ dgdβ ∣∣∣


×(|M|2
a+πi→π†j+π†k

+
1

2!
|M|2a+π0→π0+π0

)Λ2πδ(p2
4 −m2

π4)Θ(p0
4)
]

(A.10)

where g(β) = p3(β)2 − m2
3. The integrals over the azimuthal angles β and φ can be done

analytically due to the delta function and the lack of φ dependence in the integrand. The

remaining integrals over the pion 3-momenta |p1| ∈ [0,∞) and |p2| ∈ [0,∞) and the polar

angles cosα ∈ [−1, 1] and cos θ ∈ [−1, 1] are done numerically using Monte Carlo integration.

To ensure the integration region is performed only in the kinematically allowed region, we

include a Heaviside function Θ(1−cos2 βi) in (A.10), where βi is the location of the two (equal

and opposite) roots of g(β) [84]. Note that βi are functions of the other four integration

variables.
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Figure 16. Numerical evaluation of Fπ as a function of mπ/T for a variety of axion masses. Fπ
becomes suppressed for ma > mπ and T < mπ since the production of axions must occur at the

Boltzmann tail of the incoming pions. The massless axion limit, which has been computed previously

in literature [53, 85], corresponds to the ma/mπ = 0 contour.

We can gain intuition for the cosmological effect of axion-pion scattering by calculating

the thermally averaged pion-to-axion scattering rate as introduced in Eq. (3.2),

Γaπ↔ππ =
1

na,eq

∫
d3pa
(2π)3

Cπfa,eq ≡
T 5

f2
af

2
π

A2

(1− r2)2
Fπ(ma, T ), (A.11)

where na,eq is the thermal number density of axions with mass ma at temperature T . As

before, A ≡ 1
3(1 − z)/(1 + z), z ≡ mu/md, and r ≡ ma/mπ. Fig. 16 shows Fπ as a function

of mπ/T for a variety of axion masses. For ma � mπ, Fπ reduces to previous results in the

literature for massless axions [53, 57], with Fπ related to the hLO function defined in [53, 57]

by the mapping Fπ(mπ/T,ma = 0) ≡ 0.212hLO(mπ/T ). According to Fig. 16, for T < mπ,

Fπ drops as ma increases. This is because in this regime, only the Boltzmann tail of pions

with high energies ma can kinematically scatter to produce axions.

B Neff for Large Axion Masses

In the main text, we show the Neff constraint for ma < 2 GeV. In this appendix, we derive

the constraint for ma > 2 GeV.

In the left panels of Fig. 6, 7, 11 and 12, the Neff contours become approximately hori-

zontal above ma ≈ 1 GeV, signifying that Neff is dictated mainly by the lifetime of the axion

in this region. However, careful inspection indicates that the slope of the contours is not quite

flat, but slightly decreases as ma grows. The reason is, for fixed τ , the energy density of the

axion at decay increases with increasing mass. This follows because axions in this region have

– 32 –



such large fa that they decouple early and decay non-relativistically. Thus, what actually

sets the Neff contours in the ma > 2 GeV region is how much energy density they deposit

into the thermal bath right at neutrino decoupling.

For example, let ρmax be the maximum energy density that can be deposited at a certain

time t∗ so that Neff does not drop below an arbitrary contour, Neff,0, which we will take to be

' 2.62, the 2σ limit on Neff allowed by Planck. Choose a point (m0, τ0) that lies on this Neff,0

contour in the ma & 1 GeV region. Analytically, the energy density of this non-relativistic

axion at time t∗ is

ρ(t∗) = ρinit

(
ainit

a(t∗)

)3

e−t∗/τ0 = m0Y0s(t∗)e
−t∗/τ0 ≡ ρmax (B.1)

where Y0 is the axion yield, and s(t∗) the entropy density at time t∗. Note Eq. (B.1) defines

ρmax. It follows that for axions of different (ma, τ) to possess the same energy density as ρmax

at time t∗, requires

m0Y0

maYa
= exp t∗

(
1

τ0
− 1

τ

)
(B.2)

or equivalently,

τ =
τ0

1 + τ0
t∗

ln
(
maYa
m0Y0

) , (B.3)

We perform a numerical fit of the Neff,0 = 2.62 contour with the anchor point (m0, τ0) =

(2.0 GeV, 4.3 × 10−2 s) and find t∗ ' 0.17 s. Other anchor points give similar t∗. Eq. (3.22)

follows from this fit.

C Numerical Approaches

In this section, we discuss the numerical techniques used to solve the Boltzmann equation

describing the cosmological evolution of the axion. As mentioned in Sec. 3.2, we employ the

method of lines technique to convert the Boltzmann system of partial differential equations

into a system of ordinary differential equations. In particular, we discretize the partial differ-

ential equation governing the axion phase space density, (3.8), into a partition of N ordinary

differential equations, {fp̃,i(t)} of time, with each ODE corresponding to the time evolution

of the phase space density at a fixed comoving momentum, |p̃i| = |pi|a(t), with i ∈ {1, ..., N}.
In our numerical setup, we split (3.8) into N = 24 ODEs of logarithmically equidistant |p̃i|
where i = 1 corresponds to the fixed comoving momentum |p̃1| = e−8TχPT and i = N corre-

sponds to |p̃N | = e7/2TχPT. Note that because of entropy conservation — which holds except

for when the axion dominates the energy density of the universe before decaying — each

fixed comoving momentum equals the ratio of the physical momentum to the temperature,

|p|/T . We have verified the convergence of our results by checking that Neff changes by less

than 1% when using larger N . In addition, our results for Neff for just the Standard Model
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Figure 17. Top left: The orange contour shows g∗ as a function of temperature assuming an ideal gas

of photons, neutrinos, electrons, muons, and pions, while the blue contour shows g∗ for the Standard

Model including heavy mesons and deviations from the ideal gas law [58]. Top right: ρδQCD as a

function of temperature, extracted from the difference in the blue and orange g∗ contours on the top

left panel. Bottom panels: Same as top panels but for g∗P ≡ P/T 4.

cosmology, or equivalently, when the axion decays far before neutrino decoupling, is 3.040.

This value slightly differs from the true Standard Model value of NSM
eff = 3.044 [86–88] by

∼ 0.2% because we do not include effects from QED corrections or neutrino oscillations.

The dynamical timescale (∼ 1/H, where H is Hubble) involved in the cosmological

evolution of the Boltzmann equation spans many orders of magnitude from the end of the

QCD phase transition to past neutrino decoupling. Hence, we solve the system of Boltzmann

equations in terms of the logarithmic timescale y = ln(t/tχPT), where tχPT = 1/2H(TχPT) is

the starting time of the Boltzmann code.

Last, we determine the extra QCD contributions to the energy density (ρδQCD
) and pres-

sure (PδQCD
) arising from heavy mesons and from ideal gas law deviations using the calcu-

lations of [58], which tabulated g∗(T ) and g∗S(T ) for the Standard Model across the QCD

phase transition. The top left panel of Fig. 17 shows g∗ as a function of temperature T . The

orange contour shows the value of g∗ assuming an ideal gas comprised of photons, neutrinos,

electrons, muons, and pions in thermal equilibrium. The blue contour, which diverges from

the orange above T ∼ 100 MeV, is the Standard Model value of g∗ from [58], which includes
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contributions, δQCD, from heavy mesons and from ideal gas law deviations. We extract ρδQCD

by taking the difference between the blue and orange contours, ∆g∗, and multiplying this

result by π2T 4/30, as shown by the top right panel.

Similarly, the bottom left panel of Fig. 17 shows the ratio P/T 4 = g∗P as a function

of temperature T , where P is the total pressure of the relevant species. As before, the

orange contour shows the value of g∗P assuming an ideal gas comprised of photons, neutrinos,

electrons, muons, and pions in thermal equilibrium. The blue contour, which diverges from

the orange above T ∼ 100 MeV, is the Standard Model value of g∗P from [58], which we infer

through the relationship g∗P = π2

30 (4
3g∗S − g∗). We extract PδQCD

by taking the difference

between the blue and orange contours, ∆g∗P , and multiplying this result by T 4, as shown by

the bottom right panel.
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