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Abstract: We study the cosmological information content of the redshift-space galaxy

bispectrum monopole at one-loop order in perturbation theory. We incorporate all effects

necessary for comparison to data: fourth-order galaxy bias, infrared resummation (account-

ing for the non-linear evolution of baryon acoustic oscillations), ultraviolet counterterms,

non-linear redshift-space distortions, stochastic contributions, projection, and binning ef-

fects. The model is implemented using FFTLog, and validated with the PT Challenge

suite of N -body simulations, whose large volume allows for high-precision tests. Focusing

on the mass fluctuation amplitude, σ8, and galaxy bias parameters, we find that including

one-loop corrections allow us to significantly extend the range of scales over which the

bispectrum can be modeled, and greatly tightens constraints on bias parameters. How-

ever, this does not lead to noticeable improvements in the σ8 errorbar due to the necessary

marginalization over a large number of nuisance parameters with conservative priors. An-

alyzing a BOSS-volume likelihood, we find that the addition of the one-loop bispectrum

may lead to improvements on primordial non-Gaussianity constraints by . 30% and on

σ8 by ≈ 10%, though we caution that this requires pushing the analysis to short-scales

where the galaxy bias parameters may not be correctly recovered; this may lead to biases

in the recovered parameter values. We conclude that restrictive priors from simulations or

higher-order statistics such as the bispectrum multipoles will be needed in order to realize

the full information content of the galaxy bispectrum.
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1 Introduction

The distribution of matter in the Universe is not Gaussian. As such, any optimal analy-

sis of large-scale structure surveys must involve non-Gaussian statistics. Historically, the

distribution of galaxies has been analyzed by way of the power spectrum, which is a com-

plete statistic only in the Gaussian (large-scale) limit. Such analyses have seen particular

successes, both in measuring the Universe’s growth rate and expansion history via baryon

acoustic oscillation signatures [e.g., 1–8], and in the direct determination of cosmological

parameters using full-shape methods [e.g., 9–27]. However, if we wish to extract more

information from the observational data-sets (and thus enhance their utility at fixed exper-

imental cost), we must additionally include higher-order statistics, of which the simplest

are the bispectrum and three-point correlation function.

Much as the power spectrum describes the distribution of pairs of points, the bispec-

trum encodes the statistics of triplets [28]. Despite being a subject of significant early

work [e.g., 29–37], the bispectrum has been rarely used in modern cosmological analyses

(though see [38–40]), owing to difficulties in its measurement [c.f., 41–43], modeling, and

interpretation. On the other hand, its potential utility has been demonstrated a num-

ber of times, with claims of tight constraints on a number of cosmological parameters,

particularly those encoding extensions to the ΛCDM paradigm, such as neutrino masses,

primordial non-Gaussianity and the breaking of the equivalence principle [44–65]. To fully

utilize this information, we require theoretical models capable of predicting the shape of

the bispectrum and its dependence on the parameters of interest. This has been a subject

of significant work, starting from the matter bispectrum [66–73], then incoroporating the

effects of redshift-space distortions [37, 74–76] and galaxy bias [62, 77–81], most successfully

using the Effective Field Theory of Large Scale Structure (hereafter EFTofLSS, [82, 83],

see [84] for a recent review).

Whilst the above references have been pivotal to the development of a bispectrum

model, few contain all the necessary ingredients to allow for robust comparison of theory

and observation. In particular, one must account for the backreaction of short-scale physics

on the large-scale bispectrum [66, 67, 85], long-wavelength displacements [86–93], and sur-

vey geometry [94, 95], all of which can lead to biases in derived parameters if not properly

accounted for. In [80] a complete model for the tree-level (leading-order) bispectrum of

galaxies in redshift-space was presented and validated, including all the above effects (see

also [19]). This allows for precise modelling of the angle-averaged bispectrum monopole,

and has facilitated a number of analyses constraining ΛCDM parameters [15] and primor-

dial non-Gaussianity [96, 97]. However, this model was restricted to relatively large scales
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(k < 0.08 h−1Mpc at z = 0.61). If we wish to further exploit the constraining power of the

bispectrum, we must push to smaller scales, by extending the perturbation theory to next

order. Whilst [98] has recently demonstrated some work in this direction, a full model for

the one-loop bispectrum (including all relevant phenomena such as projection effects) has

not yet been presented and validated with simulations.

In this work, we present a complete and systematic computation of the redshift-space

galaxy bispectrum monopole at one-loop order. This includes all effects necessary to com-

pare with observational data: deterministic contributions, counterterms, bias renormal-

ization, stochasticity, bin-averaging, and coordinate distortions. This involves the galaxy

density at fourth-order: we systematically account for all bias operators (following [79]),

and include full treatment of all necessary redshift-space counterterms, ensuring a con-

vergent Taylor series. Our model necessarily depends on a number of free parameters:

these account for the unknown complexities of ultraviolet physics (such as galaxy forma-

tion physics and feedback), and ensure physical robustness. Efficient computation of the

one-loop bispectrum is non-trivial; as such, we devote a significant portion of this work to

discussing its practical computation with the FFTLog algorithm [99]. We compare the the-

oretical predictions to real- and redshift-space bispectra obtained from the PT Challenge

simulations [100], which serve both to validate the approach and to assess the informa-

tion content of the one-loop bispectrum model. Though we restrict to the measurement

of σ8 and primordial non-Gaussianity parameters, one can constrain a variety of other

phenomena with the bispectrum, and, further still, our methodology can be extended to

other correlators including the bispectrum multipoles [65, 101] and the recently-detected

trispectrum [102, 103].

The remainder of this paper is structured as follows. The theoretical model is presented

in §2, before its implementation is outlined in §3. In §4 we give details of the data and

analysis choices used to validate the model, before presenting the results of likelihood

analyses using the real- and redshift-space galaxy bispectrum in §5 & 6 respectively. §7

comments on the method’s applicability to current datasets, with a summary and discussion

given in §8. Finally, various technical details are presented in the Appendices, including:

A the perturbation theory kernels, B details of the bispectrum integration routines, C

discussion of the redshift-space counterterms, and D derivation of the stochastic bispectrum

components. Appendix E is devoted to prior volume effects. The key plots of this work

are Fig. 1, showing the one-loop bispectrum components, and Fig. 4, displaying the utility

of the bispectrum for a BOSS-like survey.

2 Theoretical Model for the One-Loop Bispectrum

In this work, we analyze the power spectrum and bispectrum of biased tracers (i.e. galaxies)

in redshift space at one-loop order. Whilst the one-loop power spectrum and tree-level

bispectrum have been described in detail before [e.g. 19, 80], a complete model for the one-

loop bispectrum has not been presented before (though some aspects can be found in [98])

and will be discussed below, with additional technical details found in the appendices. Here,
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we will restrict to Gaussian initial conditions; extension to primordial non-Gaussianity is

discussed in §5.2.

In the EFTofLSS, the bispectrum is comprised of the following terms at one-loop order

[e.g., 66, 85, 104]:

B1−loop(k1,k2,k3) = B211 +
[
B222 +BI

321 +BII
321 +B411

]
+Bct +Bstoch, (2.1)

where the first and second terms give the tree-level and one-loop bispectrum in Eulerian

perturbation theory, Bct is the derivative and counterterm contribution, and Bstoch encodes

stochasticity. This is strictly a function of five variables: three lengths, {k1, k2, k3} and

two angles, {µ1, µ2}, for µi ≡ k̂i · n̂ with line-of-sight n̂ (hereafter LoS), noting that

k1µ1 + k2µ2 + k3µ3 = 0. In real-space, this reduces to just three variables: {k1, k2, k3}.

2.1 Bias Expansion

To compute the bispectrum within Eulerian perturbation theory, our first step is to express

real-space galaxy density field, δg, in terms of a basis of bias operators, i.e. all combinations

of the density and velocity fields (δ and θ) consistent with the relevant symmetries up to a

given order in perturbation theory [79, 105–110]. For the one-loop bispectrum, we require

terms up to fourth-order (δ4
L), and here use the basis of Galileon operators proposed in

[79]:

δg = {b1δ}+

{
b2
2
δ2 + γ2 G2(Φv)

}
(2.2)

+

{
b3
6
δ3 + γ×2 δ G2(Φv) + γ3 G3(Φv) + γ21 G2(ϕ2, ϕ1)

}
+
{
γ×21 δ G2(ϕ2, ϕ1) + γ211 G3(ϕ2, ϕ1, ϕ1) + γ22 G2(ϕ2, ϕ2) + γ31 G2(ϕ3, ϕ1)

}
+O(δ5),

where curly brackets separate operators of different order and the bias parameters are

marked in color. In (2.2), we drop any terms that do not appear in the one-loop bispec-

trum; these are all composite local evolution operators such as δ4 and δ2 G2(Φv). Here

we have ignored both higher-derivative operators (which we return to below) and bias

renormalization, which is discussed in Appendix B. The Galileon operators are defined by

G2(Φv) ≡ ∇i∇jΦv∇i∇jΦv − (∇2Φv)
2, (2.3)

G3(Φv) ≡ 2∇i∇jΦv∇j∇kΦv∇k∇iΦv − 3∇i∇jΦv∇i∇jΦv∇2Φv + (∇2Φv)
3,

where Φv ≡ ∇−2θ is the velocity potential, equal to the Newtonian potential Φ ≡ ∇−2δ

at leading order. These can be simply generalized to functions of multiple potentials, with

(2.2) involving the LPT potentials ϕ1,2, satisfying

∇2ϕ1 = −δ, ∇2ϕ2 = −G2(ϕ1). (2.4)

Up to third order, this is equivalent to the bias expansion used in [106] and previous works

[e.g., 10, 80], with the relations1

γ2 ≡ bG2 , γ21 ≡ −4
7 (bG2 + bΓ3) . (2.5)

1This is obtained by noting that G2(Φv) is just the usual tidal tensor G2 ≡ −G2(δ) at first order,

and that G2(ϕ2, ϕ1) is a combination of the G2 and Γ3 operators of [106].
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Utilizing (2.2), and expanding each operator in terms of the linear density field δ(1) ≡
δL, we can define the n-th order contributions to the galaxy density field:

δ(n)
g (k) =

∫
q1...qn

(2π)3δD (q1 · · ·+ qn − k)Kn(q1, · · · , qn)δL(q1) · · · δL(qn), (2.6)

where the real-space kernels Kn are given in Appendix A.1 and depend on the bias param-

eters given above. Furthermore, this generalizes to the redshift-space density field, δs(k),

using the well-known mapping [e.g., 111]

δ(s)
g (k) = δg(k) +

∫
dx e−ik·x

[
e−ikzfuz(x) − 1

]
(1 + δg(x)) , (2.7)

where f is the logarithmic growth rate, uz(q) = (iµq/q)θ(q) is the Fourier-space LoS

velocity field, and µq ≡ q̂ · n̂, for LoS vector n̂. The associated kernels, analogous to (2.6),

are labelled as Zn and defined for n ≤ 4 in Appendix A.2.

2.2 Deterministic Contributions

Utilizing the redshift-space kernels of Appendix A.2, the tree-level bispectrum, B211 ≡〈
δ

(2)
g δ

(1)
g δ

(1)
g

〉
can be written

B211(k1,k2,k3) = 2Z2(k1,k2)Z1(k1)Z1(k2)PL(k1)PL(k2) + 2 cyc., (2.8)

where PL(k) is the linear power spectrum (though see the below discussion on infrared

resummation). This depends on the bias parameters {b1, b2, γ2}, as well as the growth

rate, f(z). The one-loop terms can be written as loop integrals over the linear power

spectrum, and come in four flavors [e.g., 66, 104]:

B222(k1,k2,k3) = 8

∫
q
Z2(k1 + q,−q)Z2(k1 + q,k2 − q)Z2(k2 − q, q) (2.9)

×PL(q)PL(|k1 + q|)PL(|k2 − q|),

BI
321(k1,k2,k3) = 6Z1(k1)PL(k1)

∫
q
Z3(−q, q − k2,−k1)Z2(q,k2 − q)

×PL(q)PL(|k2 − q|) + 5 perm.,

BII
321(k1,k2,k3) = 6Z2(k1,k2)Z1(k2)PL(k1)PL(k2)

∫
q
Z3(k1, q,−q)PL(q) + 5 perm.,

B411(k1,k2,k3) = 12Z1(k1)Z1(k2)PL(k1)PL(k2)

∫
q
Z4(k1,k2, q,−q)PL(q) + 2 cyc.,

where the BII
321 spectrum is similar to the P13(k1) contribution to the one-loop power

spectrum. Computation of the loop integrals can be performed via explicit numerical

integration or with the FFTLog method [99]; we discuss the latter in §3, with details

presented in Appendix B. As well as the tree-level biases, these spectra involve the higher-

order parameters {b3, γ×2 , γ3, γ21, γ
×
21, γ211, γ22, γ31}, of which only γ21 appears in the one-

loop power spectrum.
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2.3 Counterterms

To ensure a self-consistent theoretical model, we require a set of counterterms, which ac-

count for non-idealities in fluid equations (via the viscous stress tensor), and absorb the

unknown ultraviolet (UV, q � k) behavior of the loop integrals in (2.9) [e.g., 66, 67, 85].

For the one-loop bispectrum in real-space, these operators are degenerate with derivative

operators in the bias expansion, such as ∇2δ. Furthermore, the redshift-space bispectrum

contains additional counterterms that appear after the renormalization of contract opera-

tors in the perturbative mapping of (2.7); these are discussed in detail in Appendix C.

The overall bispectrum counterterm contribution can be written as

Bctr(k1,k2,k3) = 2Z1(k1)Z1(k2)(F ctr
2 + Zctr

2 )(k1,k2)PL(k1)PL(k2) + cyclic perms. ,

(2.10)

where F ctr
2 (k1,k2) is the real-space counterterm kernel [79]:

F ctr
2 (k1,k2) = −

{[
βB,a(k

2
1 + k2

2) + βB,bk
2
3

]
F2(k1,k2) (2.11)

+
[
βB,c(k

2
1 + k2

2) + βB,dk
2
3

]
κ(k1,k2) + βB,e k1 · k2

} 1

k2
NL

,

where κ(k1,k2) = (k̂1 · k̂2) − 1 (cf. A.2), and we choose the non-linear scale kNL =

0.45hMpc−1 [44, 112, 113]. (2.10) additionally involves the µ-dependent redshift-space

kernel Zctr
2 defined by

Zctr
2 (k1,k2) =

1

k2
NL

(
C1k

2
3zF2(k1,k2) + C2k

2
3z

(
µ2

3 −
1

3

)
F2(k1,k2) + C3k

2
3z (2.12)

+C4k
2
3z

(
(k1 · k2)µ1µ2

k1k2
− µ2

1 + µ2
2

3
+

1

9

)
+ C5fk

2
3zµ

2
3G2(k1,k2)

+C6fk
3
3z

[
µ1

k1

(
µ2 −

1

3

)
+
µ2

k2

(
µ1 −

1

3

)]
+ C7fk

3
3z

[
µ1

k1
+
µ2

k2

]
+C8f

2k4
3z

µ1

k1

µ2

k2
+ C9k

2
3z

(
(k1 · k2)2

k2
1k

2
2

− 1

3

))
,

as derived in Appendix C, with k3z ≡ k3µ3. In principle, two combinations of C1, C2

and C5 are constrained by the power spectrum, so only one parameter out of three is

independent here. In practice, however, we did not find any difference between imposing

the power spectrum constraints on C1, C2, C5 or treating them as free parameters. This is

why we proceed with keeping them free in what follows. In total, the one-loop bispectrum

counterterm depends on 14 free parameters, {βB,i}, and {Ci} in addition to the one-loop

power spectrum counterterms.2

Notably, many of the counterterms appearing in (2.12) are degenerate at the bis-

pectrum monopole level; nevertheless, we prefer to keep all of them in the model, and

marginalize over them within physically motivated priors. This is done for two main rea-

sons. First, terms with different powers of µ can, in principle, be distinguished even at the

2Some of the bispectrum counterterms are time integrals of the power spectrum counterterms,

but since we do not know the time-dependence, we prefer to keep all the counterterms free.
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bispectrum monopole level thanks to the Alcock-Paczynski projection effect [114], which is

described below. Second, the degeneracy between these terms can be broken with higher

order angular multipole moments of the bispectrum [37, 41], which we will analyze in the

future.

2.4 Stochasticity

Contributions to the bispectrum are also sourced by the non-deterministic part of the den-

sity field ε [106–110], i.e. that uncorrelated with δL. At tree-level, this gives two terms,

∝ 1/n̄, P (k)/n̄ (arising from Poissonian shot-noise with sample density n̄), whilst at one-

loop order, we must keep contributions suppressed by (k/khalo)2, where k−1
halo is some char-

acteristic halo size. From [79], we have the following form at next-to-leading order in

real-space:

Bstoch(k1,k2,k3)|real−space =
Ashot,0

n̄2
+
Ashot,1

n̄2

(
k2

1 + k2
2 + k2

3

)
(2.13)

+

[(
Bshot + S1

k2
1

k2
NL

+ S0
k2

2 + k2
3

k2
NL

)
PL(k1)

n̄
+ 2 cyc.

]
,

depending on another five free parameters {Ashot,0, Bshot} and {Ashot,1, S0, S1}, which can-

not be constrained with the one-loop power spectrum. In the Poisson limit, Ashot,0 =

Bshot = 1, with all higher-order terms (arising, for example, from halo exclusion) vanish.

In redshift-space, significantly more dependencies arise. A systematic derivation of

these is presented in Appendix D and yields the following expression:

Bstoch = B
(Pn̄−1)
stoch +B

(n̄−2)
stoch +B

(k2Pn̄−1)
stoch +B

(k2n̄−2)
stoch , (2.14)

where

B
(Pn̄−1)
stoch (k1,k2,k3) =

[
b1Bshot + fµ2(1 + Pshot)

]
Z1(k1)PL(k1)

n̄
+ cyc.

B
(n̄−2)
stoch (k1,k2,k3) =

Ashot,0

n̄2
,

B
(k2Pn̄−1)
stoch (k1,k2,k3) =

[ ∑
n=1,2,3,4

Snk
2
1µ

2(n−1)
1 + S5Z1(k1)(µ2

2k
2
2 + µ2

3k
2
3)

+ S6Z1(k1)µ2
1(µ2

2k
2
2 + µ2

3k
2
3) + S7Z1(k1)

k1z

k2
1

(k3
2z + k3

3z) + S0Z1(k1)(k2
2 + k2

3)

]
PL(k1)

k2
NLn̄

+ cyc. ,

B
(k2n̄−2)
stoch (k1,k2,k3) =

[
Ashot,1(k2

1 + k2
2 + k2

3) +Ashot,2(k2
3z + k2

1z + k2
2z)
] 1

k2
NLn̄

2
.

(2.15)

This expression shares the parameter Pshot with the power spectrum, but includes an

additional 12 nuisance coefficients: {{Sn}, {Ashot,n}, Bshot}. Pshot is defined as a constant

rescaling of the stochastic power spectrum [80],

〈ε(k)ε(k′)〉 = (2π)3δ
(3)
D (k + k′)

1 + Pshot

n̄
. (2.16)

Note that in the absence of projection effects the counterterms Ashot,1 and Ashot,2 are fully

degenerate. Therefore, for the purposes of this study we will set Ashot,2 = 0.
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2.5 Infrared Resummation

An additional complication arises from the effects of long-wavelength displacements, which

can be consistently treated using “infrared resummation”. A rigorous derivation of this

was presented in [86, 87] in the context of time-sliced perturbation theory [115], and, at

tree-level order, can be implemented by replacing the linear power spectrum PL with its

IR-resummed equivalent, i.e.3

PL(k) → Pnw(k) + e−Σ2k2(1+fµ2(2+f))−δΣ2k2f2µ2(µ2−1)Pw(k) (2.17)

≡ Pnw(k) + e−Σ2
tot(µ)k2Pw(k),

where Pw and Pnw are the wiggly and smooth parts of the power spectrum respectively.

This has the effect of damping the oscillatory component by a k- and µ-dependent factor.

The damping scales are given in terms of the broadband power spectrum as

Σ2 =
1

6π2

∫ kS

0
dq Pnw(q) [1− j0(qrBAO) + 2j2(qrBAO)] , (2.18)

δΣ2 =
1

2π2

∫ kS

0
dq Pnw(q)j2(qrBAO),

where rBAO is the sound-horizon scale and kS ∼ 0.1hMpc−1. At one-loop order, the

IR-resummed bispectrum can be written schematically as

B1−loop = B211[Pnw + (1 + k2Σ2
tot)e

−Σ2
totk

2
Pw] (2.19)

+
(
BI

321 +BII
321 +B411

)
[Pnw + e−Σ2

totk
2
Pw],

where B[P ] indicates that the bispectrum should be evaluated using the power spectrum

P and we have dropped the counterterms and stochasticity [86]. In this case, the loop

corrections become more complex, since the damping factor, Σ2
tot is a function of the

redshift-space angles µ. To allow for efficient computation via the FFTLog procedure

(Appendix B), we here adopt the isotropic approximation for the one-loop terms, dropping

any µ-dependence in Σ2
tot inside the integral. This is expected to be a good approximation

in practice, and is exact for the real-space case. Note that we keep the full redshift-

dependent damping function in the tree-level expressions, i.e. the isotropic templates are

used only for the computations of the one-loop corrections.

2.6 Coordinate Rescalings

To compare to observations, we must distill the full bispectrum B(k1,k2,k3) to a lower-

dimensional form. In this work, we consider the angle-averaged bispectrum monopole (as

in [15, 80, 96]), defined via

B0(k1, k2, k3) =

∫ 1

−1

dµ

2

∫ 2π

0

dφ

2π
B(k1, k2, k3, µ1[µ], µ2[µ, φ]), (2.20)

3Note that the general expressions for the IR resummed functions in terms of differential op-

erators presented in [86, 87] can be applied to the whole power spectrum, i.e. in principle the

procedure of these works does not require a wiggly-smooth decomposition. We prefer to use this

decomposition because it results in a significant time gain.
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in terms of the angles µ and φ, with µ1 = µ, µ2 = µ cosα −
√

1− µ2 sinα cosφ, for

cosα ≡ k̂1 · k̂2. In practice, we must consider also the impact of the fiducial cosmology

used to convert angles and redshifts into Cartesian coordinates: this modifies (2.20) to

B0(k1, k2, k3) =
1

α2
‖α

4
⊥

∫ 1

−1

dµ

2

∫ 2π

0

dφ

2π
(2.21)

×B(q1[k1, µ1], q2[k2, µ2], q3[k3, µ3], ν1[µ], ν2[µ2(µ, φ)]),

with q = k
√
µ2/α2

‖ + (1− µ2)/α2
⊥ and ν = µ/

[
α‖
√
µ2/α2

‖ + (1− µ2)/α2
⊥

]
for conventional

rescaling parameters α‖, α⊥ depending on cosmological parameters [80]. The angular

integrals can be performed numerically via Gauss-Legendre quadrature in practice. We

further incorporate integration over finite k-bins as well as discreteness effects; both effects

are discussed below.

3 Practical Implementation

3.1 Loop Integrals

We now discuss how to compute the one-loop bispectrum. The most difficult part of this is

evaluating the loop integrals appearing in (2.9): in this work, these are computed via the

FFTLog procedure [99], the subtleties of which are described in Appendix B. In essence, the

real-space computation proceeds by first writing the integration kernels (products of Zn) as

polynomials in k2
i , q

2, and |ki ± q|2 (or their reciprocals). By expanding the linear (or IR-

resummed) power spectrum as a sum over complex polynomials, i.e. PL(k) ∼
∑
cmk

ν+iηm

for frequency ηm and FFTLog ‘bias’ ν, the various terms in (2.9) take the form (using B222

as an example) ∑
m1m2m3

cm1cm2cm3

∫
q

1

q2ν1 |k1 − q|2ν2 |k2 + q|2ν3
(3.1)

for some complex νi. The integral can be evaluated using techniques borrowed from quan-

tum field theory, and reduces the calculation to a tensor multiplication, noting that all

cosmological information is encoded within cm. In redshift space, the appearance of an-

gles, q̂ ·n̂ inside the integral make this more challenging; however, it can be evaluated using

similar tricks to the one-loop power spectrum [cf. 112]), as discussed in Appendix B.

Following the above tricks, the bispectrum takes the following schematic form, again

taking B222 as an example:

B222(k1, k2, k3, µ1, µ2) ∼
∑
i

θi
∑

0≤j+k≤12

µj χk B
(i,j,k)
222 (k1, x, y), (3.2)

where the i index runs over all combinations of bias and f(z), denoted θi.
4 Additionally,

we have expanded in terms of the redshift-space angles {µ, χ ≡
√

1− µ2 cosφ} (of which

there are 47 non-trivial combinations); these are related to the µi angles via:

µ1 ≡ µ, µ2 ≡ µ cosα− χ sinα, k3µ3 = −k1µ1 − k2µ2. (3.3)

4Examples of these include b31, γ2b1f
2, f6 et cetera.
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We adopt this basis rather than the more familiar choice of {µ1, µ2}, since it avoids patholo-

gies for flattened triangles (whence k1 ≈ k2 + k3, and µ1 ≈ −µ2). The underlying shapes,

B(i,j,k), appearing in (3.2) are independent of both redshift-space angles and bias param-

eters, and depend only on the form of the linear power spectrum, k1, x = k2
3/k

2
1 and

y = k2
2/k

2
1, assuming k1 ≥ k2 ≥ k3.

Two options arise for using the bispectrum templates B(i,j,k) in Monte Carlo Markov

Chain (MCMC) analyses: (a) they may be computed once for a fixed linear power spec-

trum, (b) they may be computed as a tensor multiplication (cf. 3.1) at each step in the

MCMC chain, feeding in the relevant linear power spectrum (and thus cm coefficients)

each iteration. Whilst (b) is the approach usually adopted for the one-loop power spec-

trum, we will here adopt (a) for the one-loop bispectrum. This has the effect of fixing

cosmology in the bispectrum loops (except for σ8, which acts as a global rescaling, modulo

a small effect concerning the IR resummation amplitude, which we ignore in this work),

and is chosen on computational grounds, since the size of the necessary FFTLog matri-

ces becomes very large.5 Explicitly, we compute the bispectrum templates, B(i,j,k), for

a grid of values of {x, y, k1} (treating flattened triangles with
√
x +
√
y = 1 separately

to avoid divergences), then use these to construct a three-dimensional linear interpolator

for each shape. The resulting bispectra have been compared to results from explicit (and

computationally intensive) numerical integration for a range of values of bias and triangle

shapes and found to be in excellent agreement. Full details of the above steps are given in

Appendix B.3. We additionally publicly release all our analysis code: this can be found at

GitHub.com/OliverPhilcox/OneLoopBispectrum.

3.2 Bin Integration

To robustly compare theory and data, we must integrate the model across some set of bins.

Following [80], this is achieved via the integral:

B̂0,int =
V 2

(2π)6N123

3∏
i=1

(∫ ki+∆k/2

ki−∆k/2
dqi qi

)
B0(q1, q2, q3), (3.4)

where B0 is the bispectrum monopole of (2.21) and N123 = 8πk1k2k3(∆k)3V 2/(2π)6 for

bin center (k1, k2, k3) and width ∆k. As in [80], this is strictly exact only in the narrow-bin

limit, and can be corrected by “discreteness weights” as in the former work. In practice,

we compute the set of bispectrum templates B(i,j,k)(k1, x, y) for a range of values of k1, x, y

(see Appendix B.3) then perform the bin-averaging by linearly interpolating these values,

dropping any triangles that do not satisfy the triangle conditions |q1 − q2| ≤ q3 ≤ q1 + q2.

The integration is performed using Gauss-Legendre quadrature, as for the angular integrals.

Finally, we note that we can perform bin integration either within the MCMC chains or

as a pre-processing step (allowing us to use bin-averaged templates in the later analysis).

We use the latter option for the purposes of this paper.

5To see this, note that the matrix in (3.1) has size N3
freq, for Nfreq FFTLog frequencies. Taking

Nfreq = 64, with 47 angular combinations, O(50) bias parameter combinations, and computing the

matrix for 10 choices of each of x and y (noting that k scales out), we find ∼ 5× 1010 elements, or

∼ 50 GB in (complex) single precision.
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3.3 Free Parameters

Our full model for the one-loop galaxy power spectrum and bispectrum depends on the

following 44 free parameters (i.e. Wilson coefficients):

{b1, b2, bG2 , b3, γ×2 , γ3, bΓ3 , γ
×
21, γ211, γ22, γ31} (3.5)

×{c0, c2, c4, c̃, βB,a, βB,b, βB,c, βB,d, βB,e, Ci[i = 1...9]}
×{Pshot, a0, a2, Bshot, Ashot,0, Ashot,1, Si[i = 0...7]},

where parameters appearing only in the power spectrum (following the definitions of [80]),

only in the bispectrum, and in both spectra, are shown in blue, black and purple respec-

tively. The three lines give bias parameters, UV counterterms, and stochasticity parameters

respectively. Note that here we switch to the power spectrum biases bG2 and bΓ3 instead

of γ2 and γ21 to ease the comparison with previous works [80, 116]; these are related via

(2.5). Whilst performing an MCMC analysis in this high-dimensional space may seem a

formidable task, we note that all parameters except {b1, b2, bG2} enter the theory model

linearly, and can thus be analytically marginalized, following [117]. This is exact, and

will be applied to all analyses presented in this work, significantly reducing computational

cost. Since the parameter bΓ3 is of physical interest in power spectrum analyses, we opt to

marginalize over this explicitly, alongside the quadratic biases.

For the purposes of the analytic marginalization, we assume the following priors on the

bispectrum nuisance parameters: all means are zeros, and the expectation values given by

10 for all bias parameters, 10 for all real-space counterterms and one-loop stochastic contri-

butions, 20 for redshift-space counterterms (in order to account for enhancements caused

by short-scale non-linear redshift-space distortions, known as fingers-of-God [118]), and 20

for redshift-space one-loop stochastic contributions. For the tree-level stochastic countert-

erms, following [80] we assume standard deviations of 5 for the dimensionless Bstoch, Pshot,

and Ashot parameters. The power spectrum nuisance priors match [80, 116]. Note that our

nuisance parameters are normalized in such a way that their physical values are expected to

be O(1) numbers from the naturalness arguments. In this sense our physically-motivated

choice of nuisance parameter is conservative, as we allow them to be as large as O(10).

3.4 Numerical Results

Before proceeding to use the one-loop bispectra to perform parameter inference, we first

consider the form of the spectra themselves. Plotting the bispectrum is a challenge it-

self: the monopole exists in the three-dimensional simplex of {k1, k2, k3}, and we have

contributions from a wide variety of nuisance parameter combinations. For the purpose of

visualization, we will fix the bias parameters to simple local-in-Lagrangian space predic-

tions, based on [119]: assuming the bias to be described only by linear and quadratic terms
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bL1 , b
L
2 in Lagrangian space, this gives{

b1 = bL1 + 1, b2 = bL2 , b3 = −3b2, γ2 = −2

7
bL1 , γ3 = −1

9
bL1 − γ2, (3.6)

γ21 =
2

21
bL1 +

6

7
γ2, γ

×
2 = −2

7
b2, γ22 = − 6

539
bL1 −

9

49
γ2

γ×21 =
2

21
b2 +

2

7
γ×2 , γ31 = − 4

11
bL1 − 6γ2, γ211 =

5

77
bL1 +

15

14
γ2 + γ21 −

9

7
γ3

}
.

In Fig. 1 we plot the deterministic (Eulerian PT) bispectrum contributions assuming

the above bias relations with bL1 = 1, bL2 = 0.3 and f(z) = 0.7, as well as distortion

parameters α‖ = α⊥ = 1 and the best-fit PT Challenge input power spectrum (cf. §4). For

both equilateral and squeezed triangles we observe a similar form: the one-loop corrections

are suppressed on large scales (by k/kNL) but become large as k increases, with the BI
321

piece exceeding tree-level theory by k ∼ 0.1hMpc−1. We find significant cancellation

between the various one-loop components (which all depend on the same biases), which

is expected from the IR cancellation of loop integrals. Note that the high-k behavior is

further modified by the counterterms (scaling as k2P 2
L(k)) and stochasticity (scaling as

k0 and PL(k) at leading-order). The individual shapes of the bispectrum components are

generally non-trivial, with oscillatory signatures seen in B411 and, to a lesser extent, BI,II
321 .

The smooth nature of B222 (expected since the three power spectra are all inside the q

integral) implies that a smaller number of FFTLog frequencies can likely be used in its

computation, which may expedite the template computation, and suggests that this has

only weak cosmology dependence. From the deterministic contributions alone, it is clear

that the one-loop bispectrum is a significant fraction of Btree for all k & 0.1hMpc−1, and

thus its inclusion is necessary if we wish to model the bispectrum beyond the softest modes.

4 Data and Analysis Details

The dataset used in this paper is the PT Challenge suite [100], comprising high-resolution

N -body simulations at z = 0.61 with a total volume of 566h−3Gpc3. Galaxies are allocated

via a BOSS-like halo occupation prescription, and various summary statistics computed

using a fiducial cosmology with Ωm = 0.3. In all our analyses, we use the redshift-space

power spectrum multipoles, P`(k), and the real-space power spectrum proxy Q0, both of

which were studied in detail in [116]. In this work, we additionally add the bispectra in both

real- and redshift-space, with the comparison allowing us to assess the relative importance

of redshift-space distortions in the one-loop bispectrum.

The relevant bispectra are computed as described in [80], which studied the tree-level

bispectrum likelihood. We bin the bispectrum data in wavenumber bins of width ∆k =

0.01hMpc−1, and use only triangles whose bin centers satisfy momentum conservation.6

For kmax = 0.15, 0.2, 0.3, we find a total of 372, 825, and 2600 independent triangle

configurations, respectively, and note that, unlike [80], we do not include the very first

bin in the analysis, i.e. we fix kmin = 0.01hMpc−1 for the bispectrum. This matches

6As shown in [80], the remaining triangles do not carry significant cosmological information.
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Figure 1. Contributions to the one-loop galaxy bispectrum monopole in redshift-space.

The blue and black curves show the tree-level and one-loop bispectra respectively, with

individual one-loop contributions shown in color. Dashed lines indicate negative contribu-

tions, and we show results for two types of triangle: equilateral, with k1 = k2 = k3, and

squeezed, with k2 = 0.9k1 and k3 = 0.2k1. For illustration, we assume coevolution biases

following [119], with Lagrangian biases bL1 = 1, bL2 = 0.3 and a growth factor f(z) = 0.7.

We do not include the contributions from stochasticity or counterterms in this plot, but

note that all bias operators have been renormalized.

the analyses of the actual surveys like BOSS, where the very first bin is often affected by

systematics including stellar contamination [2, 15].

Our theory model for the power spectrum matches that of [80, 116], and we make

use of the publicly available code class-pt [112] to compute the power spectrum models.7

Similarly, our theoretical model for the bispectrum is discussed in detail in Section 2, and

implemented using the FFTLog prescription using Mathematica – we refer the reader to

Appendix B for technical details.

An important part of the likelihoods are the covariance matrices, encoding both errors

and correlations. As in previous works, we here adopt the Gaussian tree-level approxima-

tion for the analytic covariance matrices of power spectra and bispectra, neglecting any

cross-correlation between the two statistics. For sufficiently large scales these assumptions

are well justified [24, 63, 65, 80]; at smaller-scales, and in the presence of non-uniform

survey geometry, a mock-based approach will probably be needed, such as in [15], most

likely in combination with some compression scheme [e.g., 117].

The mock galaxy clustering data from the PT Challenge simulations are analyzed

within the Bayesian framework. Here, we perform a global MCMC analysis using the

7GitHub.com/michalychforever/CLASS-PT.
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publicly available sampler Montepython [120, 121] varying the clustering amplitude σ8,

f equil
NL (the amplitude of equilateral primordial non-Gaussianity [96]) and the EFT nuisance

parameters. Since the true value of σ8 in the simulations remains blinded, we will show

results only for the fractional error on σ8. As noted above, we will marginalize over all

physical nuisance parameters given in §3.3. This is in contrast with some bispectrum stud-

ies that aim to fix certain nuisance parameters, such as asserting coevolution relations for

Lagrangian biases [81]. Indeed, for some particular purposes, i.e. fits of σ8, it may be suffi-

cient to keep fewer parameters in the fit. However, such approximations are unwarranted –

their validity can break down for other types of analyses. Therefore, we prefer to explicitly

vary all physical nuisance parameters in the fit. By virtue of analytic marginalization [117],

this is done at no computational cost.

5 Results: Real-space

We now present results from the above analyses, focusing first on the combination of

the redshift-space power spectrum and real-space bispectrum. Though not quite match-

ing observational setups (where the power spectrum and bispectrum are both observed

in redshift-space), this analysis will allow us to understand the impact of redshift-space

distortions.

To obtain the real space model, we set f = 0 in all calculations and retain only EFT

operators that do not depend on the LoS angles, giving a one-loop model fully equivalent

to that used in [79, 81]. Our data vector contains the power spectrum multipoles, the

real-space analog and the bispectrum monopole, i.e. [P`(k), Q0(k), B(k1, k2, k3)] and we

restrict to the z = 0.61 snapshot of the PT Challenge simulations. In most analyses we use

P`(k) up to kmax = 0.16hMpc−1, and Q0 in the range 0.16hMpc−1 ≤ k < 0.40hMpc−1, as

validated in [80, 100, 116]. We explore the impact of varying the bispectrum kmax below.

5.1 Clustering amplitude and bias parameters

We first focus on measuring the mass clustering amplitude σ8 and leading galaxy bias

parameters {b1, b2, bG2 , bΓ3}. These appear both in the one-loop power spectrum and bis-

pectrum models, and hence can be tightly constrained by the data. Unlike σ8, the true

values of bias parameters in the simulations are unknown. As such, we take their best-fit

values at a certain kmax (where the one-loop model can be trusted) as a proxy for their

true values. This kmax is measured as in [100] (see also [113]) by determining at what

scale cut posteriors for at least one parameter become biased w.r.t. analyses with lower

kmax. We take best-fit values of bias parameters at the last stable kmax as ground truth,

ptrue. Following this, our parameter measurements are quoted as ∆p = p− ptrue, to avoid

unblinding the results.

We fit the real-space bispectrum data for the following choices of scale-cut:

kBmax/(hMpc−1) = 0.15, 0.17, 0.19, 0.21, 0.23, 0.25 .

The resulting posterior contours are shown in Fig. 2, with one-dimensional marginalized

limits on the amplitude and some nuisance parameters shown in Tab. 1. From the figure,
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Figure 2. Posterior distributions for the clustering amplitude, σ8, and certain nuisance

parameters extracted from MCMC analyses of the power spectrum multipoles and the one-

loop real-space bispectrum. The power spectrum likelihood is the same for all cases, whilst

we vary kBmax for the bispectrum, as indicated in the caption. Corresponding marginalized

parameter contours for kmax = 0.21hMpc−1 are given in Tab. 1.

we find that the posterior on σ8 remains unbiased up to kBmax = 0.21hMpc−1, with a shift

of 1 − 2% observed for kBmax = 0.23hMpc−1 and kBmax = 0.25hMpc−1, which becomes

significant relative to the PT Challenge error-bars.

However, at kBmax ≥ 0.23hMpc−1, we observe that the nuisance parameters become

biased w.r.t. measurements at low scale cuts, for example, we find a visible tension between

the b2 posterior at kBmax = 0.23hMpc−1 and kBmax = 0.19hMpc−1. In addition, we see that

parameters the bG2 and bΓ3 become biased. The optimal values of these parameters scale
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along the degeneracy direction bG2 +0.34bΓ3 ≈ const, which closely matches the degeneracy

combination imposed by the power spectrum, bG2 + 0.4bΓ3 [11].

In contrast with the kBmax ≥ 0.21 hMpc−1 picture, the results at all choices of kBmax ≤
0.21hMpc−1 are fully consistent, implying that kBmax = 0.21hMpc−1 should be chosen as a

baseline scale cut. This is somewhat larger than the one-loop power spectrum scale-cut of

kmax = 0.16hMpc−1; whilst this might appear unusual, we note that the power spectrum

contains significantly higher signal-to-noise, and is subject to redshift-space complexities,

both of which decrease kPmax. We use best-fit values of nuisance parameters from the

baseline P` +Q0 +B(kBmax = 0.21hMpc−1) analysis as ground truth values in the below.

P`
Parameter 68% limits

∆σ8/σ8 0.0080± 0.0064

∆(b1σ8)/(b1σ8) −0.0063+0.0042
−0.0038

∆b2 −0.04+0.44
−0.56

∆bG2 0.08+0.25
−0.34

∆bΓ3 —

P`+Q0+Breal

Parameter 68% limits

∆σ8/σ8 0.0005± 0.0049

∆(b1σ8)/(b1σ8) −0.0003± 0.0013

∆b2 −0.005± 0.037

∆bG2 −0.003± 0.017

∆bΓ3 0.005± 0.050

Table 1. One-dimensional marginalized contraints on low-order bias parameters and the

clustering amplitude σ8 extracted from the PT Challenge data-set. We display results

obtained using only the power spectrum multipoles P` (left panel, cf. [100]), and those

including the power spectrum, Q0 and the one-loop real-space bispectrum likelihood with

kBmax = 0.21hMpc−1 (right panel). The one-loop bispectrum is the main new feature of

this work. Most parameters are normalized to their true values, to avoid unblinding the

simulation. In real-space, the addition of the bispectrum significantly tightens posteriors on

bias parameters (by at least an order of magnitude), and gives ≈ 20% improvement on σ8.

Further details are given in the main text, with corresponding results for the redshift-space

bispectrum shown in Tab. 2.

It is instructive to compare the parameter constraints extracted using the one-loop

bispectrum to those from the power spectrum multipoles alone, i.e. P`(k) at the baseline

kmax = 0.16hMpc−1. These are shown in the left panel of Tab. 1. We find an improvement

of 31% in σ8, whilst the error-bars on bias parameters tighten by an order of magnitude

in some cases. Despite the noticeable increase in signal-to-noise of the data-set, we find

a modest improvement in σ8: this is linked to the proliferation of bias, counterterm, and

stochasticity parameters needed to describe the one-loop bispectrum in an unbiased man-

ner.

It is also useful to compare our one-loop bispectrum results with those from the tree-

level bispectrum. We cannot directly use results from [80] since the former work also

varied other cosmological parameters such as H0 and Ωm. To obtain a cleaner comparison,

we repeat the tree-level analysis of [80] with the same analysis settings as here, using

kBmax = 0.08hMpc−1 for the tree-level bispectrum. We find ∆σ8/σ8 = 0.002 ± 0.0053, i.e.

an 21% improvement over the power spectrum only result. Comparing this the present
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analysis, we see that the addition of the one-loop bispectrum likelihood yields an extra

10% improvement over the tree-level bispectrum likelihood.

Finally, we compare our results with those of [81]. Unlike our work, [81] used the power

spectrum of halos and galaxies in real space, leading to the notorious b1 − σ8 degeneracy

being largely unbroken. This explains why our results on σ8 are much better – most of

the constraining power comes from redshift-space distortions omitted in [81]. Despite this

difference, our analysis does confirm a general trend pointed out in [81] – the returns

from the one-loop bispectrum are limited by the large number of nuisance parameters. As

such, it will be important to obtain better priors on them in the future, for example using

hydrodynamical simulations.

5.2 Primordial non-Gaussianity

It is interesting to study to what extent the one-loop bispectrum model can help improve

constraints on primordial non-Gaussianity (PNG), following constraints from the tree-level

bispectrum in [96, 97]. We consider here the case of equilateral PNG, which induces the

following three-point correlation of the linear density field (see [96] for further details),

〈δ(1)
k1
δ

(1)
k2
δ

(1)
k3
〉 = (2π)3δ

(3)
D (k123)Bequil(k1, k2, k3) ,

Bequil =

3∏
a=1

T (ka)

[
18

5
f equil

NL ∆4
ζ

Sequil(k1, k2, k3)

k2
1k

2
2k

2
3

]
,

Sequil(k1, k2, k3) =

(
k1

k2
+ 5 perms.

)
−
(

k2
1

k2k3
+ 2 perms.

)
− 2 ,

(5.1)

where ζ is the primordial curvature fluctuation with dimensionless amplitude ∆ζ , and we

have introduced the transfer function T (k) = (P11(k)/Pζ(k))1/2.

Non-Gaussianity in the initial conditions generates three main effects [96]: (1) an

additional contribution B111 to the tree-level bispectrum, (2) an extra one-loop power

spectrum correction P12, and (3) further contributions in the galaxy bias expansion, which

modifies the tree-level expressions by introducing the so-called “scale-dependent” bias. The

latter stems from the following expression,

δg ⊂ bζ∇2ζ + ... , (5.2)

where “...” denote non-linear PNG corrections which can be ignored for the purposes of this

paper. The term ∇2ζ generates tree-level “scale-dependent” bias corrections to the power

spectrum. Note that these corrections are suppressed in the equilateral case w.r.t. the

case of local PNG, where the scale-dependent bias is a leading effect on the galaxy power

spectrum, and thus the power spectrum dominates the constraining power on f loc
NL.

As shown in [96], for the one-loop power spectrum and tree-level bispectrum, we must

include all three of the P12, B111 and bζ-related terms in our model. In this paper, we

consider the one-loop bispectrum, which technically requires additional non-linear f equil
NL

corrections to the galaxy bispectrum, such as B
(I)
113, B

(II)
113 , B

(I)
122, B

(II)
113 [110, 122]. However,

given that f eq
NL∆ζ is small, these will be suppressed, thus we leave their systematic cal-

culation for future work, focussing only on the leading terms, similar to [96, 98]. For
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f equil
NL . 500, the next-to-leading order contributions are subdominant to two-loop matter

corrections for k . 0.2hMpc−1.

Concerning scale-cuts, we find that use of the P` and Q0 statistics at high kmax can

lead to biases in the recovered values of f equil
NL . This is consistent with the estimates of [96],

which showed that the two-loop corrections can actually be larger than the non-Gaussian

P12 contribution at small scales. Thus, we choose kmax = 0.2hMpc−1 for the Q0 statistics

and kmax = 0.14hMpc−1 for P` in the PNG analysis of this section. For Breal we use the

baseline data cut kBmax = 0.21hMpc−1, motivated by the discussion above.

To perform the analyses including PNG, we fit the parameter f equil
NL in addition to

σ8 and nuisance parameters. Since the PT challenge simulations were run using purely

Gaussian initial conditions, we expect to find f equil
NL consistent with zero. Indeed, our

nominal constraint on the amplitude of the equilateral shape is given by

1-loop (kBmax = 0.21hMpc−1): f equil
NL = 72± 80 (95% CL) . (5.3)

We stress that these results are obtained without any external priors on σ8 or the non-linear

bias coefficients. This constraint can be compared with that obtained from the tree-level

real-space bispectrum likelihood,

tree (kBmax = 0.08hMpc−1): f equil
NL = 53± 114 (95% CL) . (5.4)

At face value, our results imply that the addition of the one-loop bispectrum can improve

constraints on f equil
NL by ∼ 30%.

6 Results: Redshift-Space

In this section we present the analysis of the data-vector [P`(k), Q0(k), B0(k1, k2, k3)], where

all statistics are in redshift space and include projection and coordinate-distortion effects.

This set-up thus fully matches an analysis of a realistic galaxy survey such as BOSS [2].

As for the power spectrum, we expect that the addition of redshift-space distortions (par-

ticularly the fingers-of-God effect [118], hereafter FoG), will reduce the non-linear scale,

thus it is likely that kBmax, and the constraining power of the bispectrum monopoole, will

decrease.

6.1 Clustering amplitude and bias parameters

Let us discuss the recovery of the mass clustering amplitude σ8 and bias parameters. As

a point of comparison, we fix the fiducial bias parameters to those extracted from the real

space analysis before with kBmax = 0.21hMpc−1. We fit the redshift-space bispectrum data

for the following choices of scale-cut:

kBmax/(hMpc−1) = 0.15, 0.17, 0.20, 0.22 . (6.1)

The resulting posterior contours are shown in Fig. 3, and we observe that all param-

eters of interest are unbiased at kBmax = 0.15hMpc−1. For comparison, we also show the

baseline real space bispectrum results of §5. Note that if we use kBmax < 0.15hMpc−1,

– 17 –



0.02 0.02

8/ 8

0.5

0.0

0.5

1.0

b
3

0.2

0.0

0.2

b
2

0.5

0.0

0.5

b 2

0.005

0.000

0.005

(b
1

8)
/(b

1
8)

0.006 0.000
(b1 8)/(b1 8)

0.5 0.0 0.5
b2

0.2 0.0 0.2
b 2

0.0 0.5 1.0
b 3

P +Q0+B0 (kB
max = 0.15 hMpc 1)

P +Q0+B0 (kB
max = 0.17 hMpc 1)

P +Q0+B0 (kB
max = 0.20 hMpc 1)

P +Q0+B0 (kB
max = 0.22 hMpc 1)

P +Q0+Breal (kB
max = 0.21 hMpc 1)

Figure 3. Posterior distributions of the clustering amplitude and certain nuisance pa-

rameters obtained from MCMC analyses of the power spectra and one-loop redshift-space

bispectrum monopole B0. The power spectrum likelihood is the same for all cases. We show

results for different values of the bispectrum data cut kBmax, as indicated by the caption.

This is analogous to Fig. 2 (whose optimal constraint is shown by the purple curve), but

utilizes the redshift-space bispectrum. Corresponding marginalized parameter constraints

with kBmax = 0.15hMpc−1 are given in Tab. 2.

the bispectrum data is not sufficient to constrain all the nuisance parameters entering the

theory model. This gives rise to significant marginalization projection effects, which can

be näıvely interpreted as a bias in our model. We study these effects in Section E and show

that the measurements at kBmax < 0.15hMpc−1 are consistent with our baseline choice

kBmax = 0.15hMpc−1 once projection effects are taken into account.
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P`+Q0+Btree
0

Parameter 68% limits

∆σ8/σ8 0.0003± 0.0054

∆(b1σ8)/(b1σ8) −0.0025± 0.0016

∆b2 −0.085± 0.082

∆bG2 0.034± 0.046

∆bΓ3 −0.12± 0.12

P`+Q0+B1−loop
0

Parameter 68% limits

∆σ8/σ8 0.0101± 0.0057

∆(b1σ8)/(b1σ8) −0.0016± 0.0015

∆b2 −0.146± 0.094

∆bG2 −0.028± 0.039

∆bΓ3 0.09± 0.10

Table 2. One-dimensional marginalized constraints on low-order bias parameters and the

clustering amplitude σ8 extracted from the PT Challenge data-set. We show the fit from the

combined likelihood including power spectrum multipoles, Q0, the tree-level redshift-space

bispectrum at kBmax = 0.06hMpc−1 (left table) and the one-loop redshift-space bispectrum

at kBmax = 0.15hMpc−1 (right table). The parameters are normalized relative to their

true values. Whilst we find significant enhancements in the bias parameter constraints

compared to the power spectrum alone (cf. Tab. 1), the constraint on σ8 does not improve

appreciably.

At kBmax = 0.17hMpc−1 the clustering amplitude σ8, the rescaled linear bias b1σ8, b2
and bΓ3 become biased w.r.t. their optimal values coming from the real-space bispectrum

analysis. These biases are accompanied with a significant increase in the χ2 statistics. Thus,

we conclude that the two-loop bispectrum corrections are not negligible at this scale. This

is further supported by the bias growing with kBmax: in particular, at kBmax = 0.22hMpc−1

the bias on σ8 reaches 2%, which is significant in the context of the PT Challenge simulation

volume. In conclusion, we find that the one-loop galaxy bispectrum model in redshift space

works well up to kBmax = 0.15hMpc−1 for the precision that corresponds to the total volume

of the PT Challenge simulation (which we recall is significantly larger than current and

forthcoming datasets). The optimal values of cosmological and bias parameters for this

choice are presented in Tab. 2. For comparison, we also show the results from the tree-level

bispectrum analysis akin to [80].8 That kBmax is lower in redshift-space than real-space is

no surprise: this indicates that the characteristic scale of FoG effects (σFoG) is smaller

than that of non-linearities (k−1
NL). For the power spectrum in redshift-space, higher-order

counterterms were important to model FoG, scaling as k4
z . An analogous set of nuisance

parameters may be included here, but we caution that their number is large due to the

higher dimensionality of the bispectrum.

Considering the marginalized posteriors directly, we find that the one-loop bispectrum

likelihood (at kBmax = 0.15hMpc−1) yields only a 12% improvement on σ8 compared to the

power spectrum alone, though the constraints on bias parameters (and thus astrophysics)

improve markedly. Comparing this with the tree-level case, we see that the inclusion of one-

loop corrections actually lead to a somewhat worse result than for tree-level bispectrum,

8For this analysis we use kBmax = 0.06hMpc−1 and set the c1 counterterm to zero for consistency

with our one-loop model. This term served as a proxy for the one-loop corrections thus its inclusion

is equivalent to partially accounting for one-loop information. To clearly compare the tree-level and

one-loop results, we exclude it here.

– 19 –



0.1 0.0 0.1
8/ 8

0.5

0.0

0.5

1.0

b
2

2

1

0

1

2

b 2

0.04

0.02

0.00

0.02

(b
1

8)
/(b

1
8)

0.05 0.00
(b1 8)/(b1 8)

2 1 0 1 2
b2

0 1
b 2

P +Q0, BOSS-like
P +Q0+Btree

0 , BOSS-like
P +Q0+B1 loop

0 , BOSS-like

Figure 4. Posterior distributions of the clustering amplitude and low-order nuisance

parameters from MCMC analyses of the power spectrum data (P` +Q0, in green), and the

combination of the power spectrum and redshift-space bispectrum monopole (P`+Q0+B0),

using tree-level (blue, from [80]) and one-loop (red) theory. The covariance is rescaled to

match the volume of the BOSS survey, and we assume kmax = 0.2 h−1Mpc for both the

one-loop power spectrum and bispectrum.

which tightens the σ8 constraint by 18% for the analysis settings adopted in this work.

This is consistent with previous studies considering the real-space bispectrum [81], and

arises primarily due to the large number of nuisance parameters appearing in the one-loop

calculation, especially in redshift-space. A similar situation takes place in the context

of the one-loop redshift-space power spectrum, whose information content is limited by

marginalization over nuisance parameters [24]. We will discuss this issue in detail later.

7 Implications for the BOSS survey

In this section we estimate the potential performance of the one-loop bispectrum model

applied to the BOSS survey data [2], which is the largest publicly-available spectroscopic

galaxy clustering dataset. This survey has significantly smaller volume than our mock
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simulation data, so one can expect that the analysis can be pushed to smaller scales [16, 80].

Indeed, the relevant parameter in this problem is the ratio of the theory systematic bias in

a certain parameter to the statistical error on that parameter. For the BOSS volume the

statistical errors are significantly larger than the PT Challenge simulation volume, due to

a ratio of volumes of ≈ 100. As the theoretical errors do not depend on the volume, the

ratio between the theoretical error and statistical errors thus becomes smaller, and hence

any residual theoretical systematics becomes less sizable in relative terms.

To demonstrate this, we repeat the likelihood analysis above for the redshift-space

data vector [P`, Q0, B0], but rescale the covariance to match the BOSS volume VBOSS =

VPT Challenge/100 ' 6 (h−1Gpc)3. We select kmax = 0.20hMpc−1 for power spectrum

multipoles P` and kBmax = 0.20hMpc−1 for the bispectrum monopole B0; significantly

larger than that found in §6. The results of this analysis are presented in Fig. 4 and in

Tab. 3, showing also the P` +Q0 and P` +Q0 +Btree
0 (kBmax = 0.08 hMpc−1 following [80])

analyses for comparison.

P` +Q0, BOSS-like

Parameter 68% limits

∆σ8/σ8 0.019± 0.042

∆(b1σ8)/(b1σ8) −0.013± 0.013

∆b2 −0.37+0.50
−0.68

∆bG2 0.37± 0.33

P`+Q0+ Btree
0 , BOSS-like

Parameter 68% limits

∆σ8/σ8 −0.023+0.035
−0.040

∆(b1σ8)/(b1σ8) 0.0021± 0.0089

∆b2 −0.02+0.34
−0.40

∆bG2 0.07± 0.19

P`+Q0+ B1−loop
0 , BOSS-like

Parameter 68% limits

∆σ8/σ8 −0.025± 0.034

∆(b1σ8)/(b1σ8) 0.0051± 0.0080

∆b2 0.31+0.35
−0.45

∆bG2 0.31+0.17
−0.19

Table 3. One-dimensional marginalized constraints on low-order bias parameters and the

clustering amplitude σ8 extracted from the PT Challenge dataset, with covariance adjusted

to match the volume of the BOSS survey. We show results for the P` + Q0 only analysis

(top left), the tree-level P` +Q0 +B0 likelihood (top right), and the one-loop P` +Q0 +B0

likelihood (bottom). The inclusion of the bispectrum sharpens constraints on σ8 by ≈ 24%,

with some ≈ 10% improvement arising from the addition of the one-loop contributions.

We see that in the context of BOSS, the addition of the one-loop bispectrum yields

an ≈ 24% improvement over the power spectrum-only result and an ≈ 10% improvement

over the tree-level bispectrum likelihood result. However, this leads to a noticeable shift in

nuisance parameters, with bG2 approximately 1.7σ from its fiducial value. This could simply

be a prior-volume effect however (since the effect of the priors becomes more important at

lower simulation volume), especially given that bG2 departs from its fiducial value at 1.1σ

already for the power-spectrum alone. The tree-level bispectrum analysis, however, results

in an unbiased recovery of all nuisance and cosmological parameters.
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It is also instructive to study whether the one-loop bispectrum can improve constraints

on equilateral PNG. Incorporating this parameter in the analysis as before (varying both

f equil
NL and σ8) we find f equil

NL = 197 ± 350. For the clustering amplitude we find ∆σ8/σ8 =

−0.026±0.035, with a slight 0.6σ shift w.r.t. the ground truth. For comparison, we have also

run an analysis using the tree-level bispectrum at kBmax = 0.08hMpc−1 instead of the one-

loop bispectrum, and found f equil
NL = 420±440, ∆σ8/σ8 = −0.025±0.040. First, we see some

bias in f equil
NL , which can be attributed to prior volume effects and somewhat more optimistic

data cuts for the power spectrum that we use in our analysis here. Indeed, in [96] it was

shown that the tree-level model yields unbiased results on f equil
NL for kBmax = 0.08hMpc−1

and kP`
max = 0.17hMpc−1. Second, we notice that the bound on f equil

NL in the one-loop case

is 30% better than that of the tree-level analysis. The improvement is quite modest as

a consequence of the fact that the one-loop model introduces many nuisance parameters,

which cannot be constrained by the data. In our analysis we use highly conservative but

still physically- motivated priors; if more aggressive priors on nuisance parameters are used,

the constraints are likely to improve further.

In conclusion, we note that the addition of the one-loop bispectrum may yield some

≈ 30% improvement on the amplitude of equilateral PNG. We stress, however, that this

comes with two important caveats. First, the kBmax used for this study (0.2hMpc−1) results

in noticeable biases on the nuisance parameters, suggesting that the errorbar on f equil
NL may

be underestimated due to over-fitting. Whether this induces a bias on f equil
NL is unclear;

such an error would likely show up only in the analysis of simulations containing f equil
NL 6= 0.

Secondly, we have neglected the PNG-induced one-loop corrections to the bispectrum (as in

[98]), which can be marginally important for the scales of interest (particularly in the tails

of the f equil
NL posterior), as can be easily estimated with the scaling universe approximation

outlined in [122].

Finally, we note that our analysis indicates a more modest improvement on f equil
NL than

that reported in [98]. [98] suggest that the one-loop bispectrum improves f equil
NL constraints

over the tree-level result by a factor of few. This follows from a comparison with the tree-

level bispectrum analysis of [96]. This comparison is misleading, however, since the baseline

analysis of [96] varies cosmology whilst [98] always keeps cosmological parameters fixed.

We have checked that this accounts for most of the difference between [96] and [98]. A more

detailed comparison with [98] is not currently possible because the former work has not yet

presented sufficient details about their analysis and theory model. It will be interesting to

compare our results with their analysis in the future.

8 Conclusions and Discussion

In this work, we have presented and validated a complete calculation of the galaxy bis-

pectrum monopole in redshift space at one-loop order in effective field theory. Our model

includes one-loop corrections due to mode coupling, as well as the full set of EFT coun-

terterms that are needed to regulate the UV behavior of loop integrals and capture the

physical effects of backreaction of short scales onto the large-scale modes. Furthermore,

we incorporate a bias expansion up to fourth order (noting that many operators van-

– 22 –



ish after renormalization of the power spectrum and bispectrum) as well as fourth order

redshift-space distortions. In addition, our calculation includes IR resummation to capture

the non-linear evolution of baryon acoustic oscillations (both for the power spectrum and

bispectrum), as well as projection and binning effects. In short, we include all relevant

ingredients needed to compare theory with observational galaxy clustering data.

We have studied the performance of the one-loop bispectrum model in terms of cosmo-

logical parameter constraints, focusing primarily on the mass fluctuation amplitude σ8. To

validate our model we use the PT Challenge simulation suite [100], which are equivalent to

a BOSS-like survey with a hundred times larger volume, thus allowing for high-precision

tests. We analyze a data vector that consists of the standard redshift-space power spec-

trum multipoles, the real-space power spectrum proxy Q0 [116], and the redshift-space

bispectrum monopole. In this setup, we have found that the inclusion of the one-loop

corrections allows us to extend the agreement between bispectrum theory and data up to

kmax = 0.15hMpc−1, or kmax = 0.21hMpc−1 in real-space. This can be contrasted with

the tree-level model bispectrum model, which works only up to kmax = 0.08hMpc−1 [80].

We caution that these scale-cuts depend on both the survey volume and galaxy type: for

BOSS, we can use kmax = 0.20hMpc−1, and it is likely that the wavenumber reach is larger

for emission line galaxies, which boast smaller FoG effects [12, 64]. Further, one might hope

to extend the k-reach by specializing to some real-space bispectrum analog (similar to Q0)

at high-k: this will be considered in future work.

Despite a significant extension of the k-space reach, we have not found the bispectrum

to lead to noticeable improvements in the σ8 constraints compared to those with obtained

from tree-level theory when applied to the PT Challenge simulations. This is a consequence

of the large number of the EFT nuisance parameters that appear in the one-loop calculation

(particularly in redshift-space), and must be marginalized over in our analysis. For a BOSS-

volume survey (and accompanying systematic error thresholds), we find greater utility, with

the one-loop bispectrum improving constraints by ∼ 10% over the tree-level case, though it

remains to be seen whether any accompanying shifts in nuisance parameters are real (and

malignant) or just prior volume effects.

We have additionally studied whether the one-loop bispectrum can help constrain

equilateral primordial non-Gaussianity (and thus single-field inflation), finding that, for the

BOSS survey, the one-loop bispectrum may improve constraints on the non-Gaussianity

parameter f equil
NL by ≈ 30% compared to the tree-level theory. Achieving this, however,

requires pushing the bispectrum analysis to kBmax = 0.2hMpc−1, where the shifts in the

bias parameters become evident. It remains to be seen if this problem can be alleviated

with better priors on nuisance parameters or with one-loop PNG-induced corrections to

the bispectrum, which were omitted in this study. If one is interested in astrophysics, the

one-loop bispectrum is much more useful: we find a significant tightening in the posteriors

of parameters such as linear and tidal bias compared to those with only tree-level theory.

An important conclusion from our study is that we need better knowledge of the

EFT nuisance parameters if we wish to extract more cosmological information from the

bispectrum. This can be done in several ways. First, one can include data from the

higher-order angular moments of the redshift-space bispectrum [37]. Since these moments
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depend on the same set of parameters, their inclusion should tighten the EFT nuisance

parameters posteriors, aiding determination of the cosmological parameters of interest.

Second, one can constrain the EFT nuisance parameters with higher order statistics, such as

the trispectrum, see e.g. [102, 123] for work in this direction. Finally, one can obtain better

priors on the extra nuisance parameters using high fidelity N-body or hydrodynamical

simulations. A powerful route by which to acheive this involves EFT field level techniques,

see e.g. [85, 124–132]. We plan to investigate these options in future work.

Though the one-loop bispectrum analysis of this work was limited only to two cos-

mological parameters, the mass fluctuation amplitude and the equilateral non–Gaussianity

parameter, it may be similarly extended to other parameters such as local primordial non-

Gaussianity, or the neutrino mass. The improvement on other parameters, especially those

beyond the minimal ΛCDM model, could be significantly larger, particularly when some

new feature is introduced that is not degenerate with the smooth loop corrections. If the

parameter of interest enters the theoretical model linearly, the analysis can proceed as

above; if this is not the case, one would require an optimization of our one-loop bispectrum

pipeline, since the FFTLog-based approach does not currently allow for a fast re-calculation

of the theoretical template as the power spectrum is varied. If only the α‖, α⊥ parameters

are varied however, the templates do not need to be recomputed, only rebinned (via 2.21).

Analyses including such effects will be natural next steps in our research program.

Finally, we note that the bispectrum data offers novel probes of new physics. In

particular, constructing the bispectrum from different tracers will allow one to probe the

equivalence principle [53–59]. Such an analysis is complicated if one considers only the

power spectrum since the effects sensitive to the equivalence principle appear there only at

the one-loop order. In contrast, the cross-bispectrum of different kinds of tracers can be a

sensible probe of the equivalence principle, whose violation would generate new bispectrum

shapes that are not present in the ΛCDM model. This, in particular, will help one derive

new constraints on the violation of Lorentz symmetry in the dark matter sector [133, 134].

We leave this and other tests of new physics with the bispectrum for future work.
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A Perturbation Theory Kernels

A.1 Real-Space

At fourth-order, the real-space perturbation theory kernels (cf. 2.6) are given by

K1(q1) = b1, (A.1)

K2(q1, q2) = {b1F2(q1, q2)}+

{
b2
2

+ γ2 κ(q1, q2)

}
,

K3(q1, q2, q3) = {b1F3(q1, q2, q3)}+ {b2F2(q1, q2) + 2γ2 κ(q1, q23)G2(q2, q3)}

+

{
b3
6

+ γ×2 κ(q1, q2) + γ3 L(q1, q2, q3) + γ21κ(q1, q23)κ(q2, q3)

}
,

K4(q1, q2, q3, q4) = {b1F4(q1, q2, q3, q4)}

+

{
b2
2

[F2(q1, q2)F2(q3, q4) + 2F3(q1, q2, q3)]

+ γ2 [κ(q12, q34)G2(q1, q2)G2(q3, q4) + 2κ(q123, q4)G3(q1, q2, q3)]}

+

{
b3
2
F2(q1, q2) + γ×2 [2κ(q12, q3)G2(q1, q2) + κ(q3, q4)F2(q1, q2)]

+ 3γ3 L(q1, q2, q34)G2(q3, q4)

+ γ21 [κ(q12, q34)κ(q1, q2)F2(q3, q4) + 2κ(q123, q4)κ(q12, q3)F2(q1, q2)]}
+
{
γ×21 κ(q1, q23)κ(q2, q3) + γ211L(q1, q2, q34)κ(q3, q4)

+ γ22 κ(q12, q34)κ(q1, q2)κ(q3, q4)

+ γ31

[
1

18
κ(q1, q234)

(
15

7
κ(q23, q4)κ(q2, q3)− L(q2, q3, q4)

)
+

1

14
(M(q1, q23, q4, q234)−M(q1, q234, q23, q4))κ(q2, q3)

]}
,

where the bias parameters are shown in color, qi···j ≡ qi+ · · ·+qj and we define the angles

κ(q1, q2) = (q̂1 · q̂2)2 − 1, (A.2)

L(q1, q2, q3) = 2(q̂1 · q̂2)(q̂2 · q̂3)(q̂3 · q̂1)− (q̂1 · q̂2)2 − (q̂2 · q̂3)2 − (q̂3 · q̂1)2 + 1,

M(q1, q2, q3, q4) = (q̂1 · q̂2)(q̂2 · q̂3)(q̂3 · q̂4)(q̂4 · q̂1).

(A.1) uses the standard Eulerian density and velocity kernels (Fn and Gn) and we note that

the kernels have not been symmetrized over their arguments. We additionally note that,

despite appearing in K4, b3 does not contribute to the one-loop bispectrum after averaging

over internal angles and performing bias renormalization. Furthermore, we drop any bias

operators in K4 that do not appear in the one-loop bispectrum, thus the above expression

will not be sufficient for computation of the two-loop power spectrum.
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A.2 Redshift-Space

The redshift-space kernels are obtained by expanding the RSD mapping of (2.7) and ex-

panding all fields in terms of the linear density field. Following a lengthy computation, we

find the following forms in terms of the real-space kernels:

Z1(q1) = K1 + fµ2
1, (A.3)

Z2(q1, q2) = K2(q1, q2) + fµ2
12G2(q1, q2) +

fµ12q12

2
K1

[
µ1

q1
+
µ2

q2

]
+

(fµ12q12)2

2

µ1

q1

µ2

q2
,

Z3(q1, q2, q3) = K3(q1, q2, q3) + fµ2
123G3(q1, q2, q3)

+ (fµ123q123)

[
µ12

q12
K1G2(q1, q2) +

µ3

q3
K2(q1, q2)

]
+

(fµ123q123)2

2

[
2
µ12

q12

µ3

q3
G2(q1, q2) +

µ1

q1

µ2

q2
K1

]
+

(fµ123q123)3

6

µ1

q1

µ2

q2

µ3

q3
,

Z4(q1, q2, q3, q4) = K4(q1, q2, q3, q4) + fµ2
1234G4(q1, q2, q3, q4)

+ (fµ1234q1234)

[
µ123

q123
K1G3(q1, q2, q3) +

µ4

q4
K3(q1, q2, q3)

+
µ12

q12
G2(q1, q2)K2(q3, q4)

]
+

(fµ1234q1234)2

2

[
2
µ123

q123

µ4

q4
G3(q1, q2, q3) +

µ12

q12

µ34

q34
G2(q1, q2)G2(q3, q4)

+ 2
µ12

q12

µ3

q3
K1G2(q1, q2) +

µ1

q1

µ2

q2
K2(q3, q4)

]
+

(fµ1234q1234)3

6

[
3
µ12

q12

µ3

q3

µ4

q4
G2(q1, q2) +

µ1

q1

µ2

q2

µ3

q3
K1

]
+

(fµ1234q1234)4

24

µ1

q1

µ2

q2

µ3

q3

µ4

q4
,

writing µi···j ≡ µqi+···+qj and dropping the argument of K1 for clarity.

B Computation of the One-Loop Bispectrum with FFTLog

In this appendix, we discuss practical computation of the loop integrals given in (2.9).

Before considering the redshift-space case, we will first examine how to compute the real-

space integrals, which follow a similar logic, but are significantly simpler. Our approach

follows [99], but is extended to the case of biased tracers and redshift-space.

B.1 Real-Space

B.1.1 Formalism

As noted in §2, the first step in the bispectrum computation is the expansion of the pertur-

bation theory kernels (Appendix A) as polynomials in q2, |k1 − q|2 and |k2 + q|2 or their

reciprocals (utilizing permutation symmetries). In practice, this results in a sum over many

thousands of terms, once the relevant symmetries have been imposed, and is automated
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using mathematica. For B222, each term is proportional to∫
q

PL(q)PL(|k1 − q|)PL(|k2 + q|)
qα1 |k1 − q|α2 |k2 + q|α3

, (B.1)

for integer αi, with a similar form found for the other loop integrals except with fewer

factors of PL. Expanding the linear power spectrum as a sum of complex polynomials in k,

i.e. PL(k) =
∑

m cm k
ν+iηm for frequencies ηm, coefficients cm, and (real) FFTLog bias ν

(which sets the eventual integral convergence properties), we can rewrite (B.1) in the form∑
m1m2m3

cm1cm2cm3

∫
q

1

q2ν1 |k1 − q|2ν2 |k2 + q|2ν3
(B.2)

for 2νj = αj−ν−jηmi , where all the cosmology dependence (encoded in cm) is now outside

the integral. The remaining integral can be computed using path integral methods as∫
q

1

q2ν1 |k1 − q|2ν2 |k2 + q|2ν3
≡ k3−2(ν1+ν2+ν3)J(ν1, ν2, ν3;x, y) (B.3)

where x2 = k3/k1, y2 = k2/k1 and J (with complex arguments νi) can be expressed as a sum

of hypergeometric functions and Gamma functions [99]. This reduces the computation of

bispectrum templates to a set of matrix multiplications and function evaluations, as noted

in §3. For BI
321 we find a similar form to (3.1), except with rank-two matrices, whilst BII

321

and B411 involve only a one-dimensional sum (and one set of cmi coefficients).

B.1.2 Limiting Behavior

When computing spectra via FFTLog, it is important to verify whether the relevant loop

integrals actually converge. This is achieved by taking the UV and IR limits of the in-

tegration kernels and assessing the dependence on the νi parameters appearing in (B.2).

As an example, we consider the contribution of three δ operators to B222 (involving three

copies of b1F2(k − q, q)). This has the following limits in the equilateral configuration

k1 ∼ k2 ∼ k3 ∼ k:

BUV
222(k1,k2,k3) ⊃ 89

2401
b1

3 k6

∫
q

P 3
L(q)

q6
, (B.4)

BIR
222(k1,k2,k3) ⊃ 2

21
b1

3k2P 2
L(k)

∫
q

PL(q)

q2
.

For PL(q) ∼ qν , the integral is UV convergent for ν < 1 and IR convergent for ν > −1.

By choosing the bias in this range, FFTLog will give accurate values for the integrals. In

contrast, if ν is chosen to be outside this range, we must add the relevant UV or IR limits

by hand (taking care to include subleading divergences if necessary).
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Considering all bias terms, the limits of B222 take the following schematic form for

equilateral triangles:

BUV
222 ∼

∫
q
P 3
L(q) (B.5)

×

{
b2

3 +

(
k

q

)2

b2
2f1(b1, γ2) +

(
k

q

)4

b2 f2(b1, γ2) +

(
k

q

)6

f2(b1, γ2)

}

BIR
222 ∼ P 2

L(k)

∫
q
PL(q)

{(
k

q

)2 [
b1

3f4 + b1
2f5(b2, γ2)

]
+ [b1f6(b2, γ2) + f7(b2, γ2)]

}
,

where {fi} are some polynomials, and we consider only the leading-order contribution for

each bias parameter. Inserting PL(q) ∼ qν as before shows that a term containing K powers

of b2 is UV convergent for ν < 1− 2K/3, implying ν < −1 for b32, significantly tighter than

the ν < 1 limit for matter (i.e. b31). However, the UV limit of b32 is fully degenerate with

the bispectrum shot-noise (ε0 in 2.13), and should be subtracted off in practice, as for the

b22 contribution to P22. If we adopt ν > −1, this term will not be captured by the FFTLog

formalism, thus the subtraction becomes implicit. In this case, we require ν < −1/3 to

avoid the b22 divergence (and the second-order b32 divergence, both of which are degenerate

with the ε2 stochasticity in 2.13). In the IR, (B.5) shows that the integral is convergent for

ν > −1 for terms involving two or more powers of b1, and ν > −3 else. To satisfy all the

conditions simultaneously, we may take −1 < ν < −1/3, dropping the shot-noise piece.

For BI
321, the limiting UV and IR form is given by

BI,UV
321 ∼ b1PL(k)

∫
q
P 2
L(q)

{
1

2
X2 +

(
k

q

)2

Xf1(· · · ) +

(
k

q

)4

f2(· · · )

}
(B.6)

BI,IR
321 ∼ b1P

2
L(k)

∫
q
PL(q)

{(
k

q

)2 [
b1

2f3(· · · ) + b1f4(· · · )
]

+ f6(· · · )

}
,

where X ∈ {b2, b3, γ×2 } and ellipses are taken to mean bias operators excluding X (in

the UV) or b1 (in the IR). (B.6) implies that UV divergences can be avoided if we take

ν < (1 − 2K)/2 when the term involves K powers of b2, b3, or γ×2 ; these are all the

composite operators appearing at third order. Furthermore, as in B222, the UV limits of

the terms involving two powers of b2, b3 and γ×2 are proportional to shot-noise (this time

of the η0 variety in 2.13),9 and should be subtracted off in practice (or dropped implicitly

by fixing ν > −3/2). In the IR, divergences vanish for ν > −1 for terms involving b31 or

b21 and ν > −3 else. Overall, we require a bias of −1 < ν < −1/2 to satisfy all conditions,

assuming subtraction of the η0 shot-noise contributions.

For BII
321, we require the UV and IR convergence properties of

∫
q Z3(k, q,−q)PL(q),

which we label P̃13(k) by analogy with the galaxy power spectrum (2.9). This natively

involves all bias operators in (2.2) up to third order; however, this set is reduced to just

{δ,G2(Φv),G2(ϕ2, ϕ1)} when the renormalization conditions are applied. These conditions

demand

lim
k1→0

〈X(k)δL(k1)〉′loop = 0 (B.7)

9This occurs regardless of the triangle configuration, once permutations are taken into account.
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for renormalized operator X and linear density field δL(k), i.e. there can be no loop con-

tributions which do not decay in the UV limit [106]. The contribution of all composite

operators (e.g., δ2) to P̃13 is exactly that of a non-decaying loop diagram (since there is no

suppression by the F3 kernel), thus must vanish when the operators are properly renormal-

ized. This leaves only G3, which evaluates to zero after averaging over the angular part of

q. Following these redefinitions (which do not affect B222 and BI
321), we find the UV and

IR limits:

P̃UV
13 ∼

∫
q
PL(q)

(
k

q

)2

f1(b1, γ2, γ21) (B.8)

P̃ IR
13 ∼

∫
q
PL(q)

{(
k

q

)2

b1f2 + f3(γ2, γ21)

}
.

UV divergences occur unless ν < −1, and IR divergences occur unless ν > −1 (for b1) or

ν > −3 (else). As for P13 [99], there is no range of biases which satisfy all the conditions;

in this case, we can choose −1 < ν < 1 (satisfying the IR limits, and avoiding subleading

UV divergences at ν > 1), and correct the UV part by adding the relevant limit by hand,

which takes the following explicit form in real-space:

P̃UV
13 (k) = −k2

(
61

315
b1 +

64

35
γ2 −

32

15
γ21

)∫ ∞
0

q2dq

2π2

P (q)

q2
, (B.9)

proportional to the velocity divergence σ2
v .

Finally, we consider B411. This contains the fourth-order bias operators, and involves

Wick contractions of linear density fields within the same operator, permitting simplifica-

tion via the renormalization condition:

lim
k1,2→0

〈X(k)δL(k1)δL(k2)〉′loop = 0, (B.10)

which is proportional to the UV limit of B411. The first effect of this is to remove con-

tributions from any fourth-order composite local evolution operator (such as δ4 or δ G3);

these operators were already dropped from the bias expansion in (2.2). Secondly, this will

remove a number of UV divergences in the below. Before bias renormalization, the UV

and IR limits of the remaining terms take the form:

BUV
411 ∼ b1

2P 2
L(k)

∫
q
PL(q)

{
f1(b2, γ

×
2 , γ

×
21) +

(
k

q

)2

f2(· · · )

}
(B.11)

BIR
411 ∼ b1

2P 2
L(k)

∫
q
PL(q)

{(
k

q

)2

f3(b1, b2, γ2) + f4(· · · )

}
,

where ellipses represent additional bias terms which impatience lead us to ignore. The first

line is UV convergent for ν < −3 (first term, involving composite operators) or ν < −1

(second term, no composite operators). However, the first term possesses a UV limit that

does not decay as an (negative) integer power of q2, violating the renormalization condition

(B.10). The precise action of bias operator renormalization is to remove such terms (and
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only these, as far as this diagram is concerned). By evaluating the diagram with ν > −1,

such contributions will be avoided, i.e. the operators will be correctly renormalized. In the

IR, we find that divergences can be avoided by setting ν > −1 (for terms involving the

first and second order operators proportional to b1, γ2 or b2), or ν > −3 (for the remaining

terms). As for P̃13, there is no single bias that will simultaneously remove all the UV

and IR divergences in B411, even after bias renormalization. Fixing −1 < ν < 1, we may

compute the full expression by manually adding the appropriate UV limit to the FFTLog

result. These limits can be computed straightforwardly from the kernels in mathematica

and are omitted from this publication to avoid unnecessary tedium.

B.2 Redshift-Space

In redshift-space the perturbation theory kernels depend not only on the lengths q, |k1−q|
and |k2 + q| but also the LoS angles µi ≡ k̂i · n̂ and q̂ · n̂.10 Although we are primarily

interested only in the bispectrum monopole (i.e. that integrated over µ1,2, with a suit-

able Lebesque measure, as in 2.20), the full dependence on µi is necessary for accurate

calculation of coordinate distortions (2.21), thus we cannot simply average over µi before

computing the loop integrals; furthermore, this is difficult to perform analytically due to

the presence of high powers of q̂ · n̂. After expanding the kernels as polynomials, we will

find loop integrals of the form:∫
q

(q̂ · n̂)n

q2ν1 |k1 − q|2ν2 |k2 + q|2ν3
(B.12)

for n ∈ {0, 1, · · · , 6} (cf. 3.1), with prefactors depending on µi, ki, biases and f(z). Below,

we consider how to compute this utilizing the FFTLog procedure, generalizing the approach

of [112] for the power spectrum.

First, we expand the q̂ · n̂ angles as Cartesian sums, i.e.
∑3

i=1 q̂in̂
i, and pull out the

LoS vectors from the integral. The remaining function is a fully symmetric rank-n tensor,

given by

F i1···in ≡
∫
q

q̂i1 · · · q̂in
q2ν1 |k1 − q|2ν2 |k2 + q|2ν3

. (B.13)

This has dependence only on k1 and k2; as such, its tensorial dependence can be written in

terms of the components of k1, k2, and any isotropic tensors of relevance, i.e. the Kronecker

delta.11 Explicitly, this takes the form:

F i1···in =
∑
k

AkOi1···ink , (B.14)

where {Ok} is the set of all independent symmetric rank-n combinations of k̂i1, k̂i2 and δijK .

As an example, the n = 2 operators are {δijK , k̂i1k̂i1, k̂i1k̂
j
2 + k̂i2k̂

j
1, k̂

i
2k̂
j
2}. We then define an

10In the isotropic approximation of infrared resummation (§2) the angular dependence is purely

polynomial.
11Note that the Levi-Cevita tensor, which is relevant for rank-three tensors and above, does not

contribute to the expansion of (B.13), since it is antisymmetric.
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“overlap matrix”, giving the correlation between basis elements:

Ikk′ = Oi1···ink Ok′i1···in (B.15)

(assuming Einstein summation conventions); this allows extraction of the Ak coefficients

via Ak = [I]−1
kk′ Ok

′
i1···inF

i1···in , where the second term is just the contraction of (B.14) with

various powers of k̂1 and k̂2. Finally, we contract (B.14) with n copies of n̂i to yield∫
q

(q̂ · n̂)n

q2ν1 |k1 − q|2ν2 |k2 + q|2ν3
=
(

[I]−1
kk′ O

k′
i1···inF

i1···in
)(
Oi1···ink n̂i1 · · · n̂in

)
, (B.16)

where the first set of parentheses contains a set of (k̂1,2 · q̂ coefficients inside the q integral,

and the second contains powers of µ1,2. To make this explicit, we give the n = 1 case:∫
q

(q̂ · n̂)

q2ν1 |k1 − q|2ν2 |k2 + q|2ν3
=
µ1 − µ2ν12

1− ν2
12

∫
q

q̂ · k̂1

q2ν1 |k1 − q|2ν2 |k2 + q|2ν3
(B.17)

+
µ2 − µ1ν12

1− ν2
12

∫
q

q̂ · k̂2

q2ν1 |k1 − q|2ν2 |k2 + q|2ν3
,

writing ν12 ≡ k̂1 · k̂2. In this manner, the FFTLog integral can be performed for arbitrarily

large n. We adopt this method to compute the bispectrum templates in redshift space,

applying it as a simplification step before the loop integrals are computed as in Appendix

B.1.

Notably, the above decomposition breaks down in the limit of k̂1 · k̂2 → −1, i.e. for

k1 ‖ k2, whence there is only one angle in the problem. The corresponds to flattened

triangles (with k1 = k2 + k3 or
√
x +
√
y = 1), which contain the divergence 1 − ν2

12 →
0. Strictly speaking, this divergence is cancelled by the numerators, once k̂1 = −k̂2 is

identified; however, if one separately computes the loop integral coefficients proportional

to powers of µ1 and µ2, numerical issues will arise. In this limit, we adopt a different

angular decomposition, noting that (B.13) can depend only on k̂1 and the Kronecker delta.

The basis tensors are much simpler in this case, for example, with {δijK , k̂i1k̂
j
1} for n = 2, and

facilitate computation in an analogous manner to the above. For n = 1, (B.17) becomes∫
q

(q̂ · n̂)

q2ν1 |k1 − q|2ν2 |k2 + q|2ν3

∣∣∣∣
flat

= µ1

∫
q

q̂ · k̂1

q2ν1 |k1 − q|2ν2 |k2 + q|2ν3
, (B.18)

which does not diverge. This divergence also illustrates the importance of expanding

the bispectrum templates in the {µ, χ} basis (with µ ≡ µ1, χ ≡
√

1− µ2 cosφ) rather

than {µ1, µ2} (cf. §3): the former is undefined for flattened triangles, whence µ1 = −µ2,

whilst the latter simply has dependence only on µ in this limit (noting that µ2 = µ ν12 −√
1− ν2

12 χ→ −µ as ν12 → −1).

B.3 Implementation

The above tricks allow us to efficiently compute the one-loop bispectrum in redshift space.

A rough overview of the computation is the following:
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1. Expand the relevant (symmetrized) perturbation theory kernels as polynomials in q,

|ki ± q|, µi and q̂ · n̂.

2. Replace powers of q̂ · n̂ with (B.16) and expand.

3. Create lookup tables giving each {ν1, ν2, ν3} triplet of FFTLog frequencies and the

associated coefficient (depending on biases and µi).

4. Switch from the native {µ1, µ2, µ3} basis to the (divergence-free) {µ, χ} angular basis.

5. Compute the bispectrum templates for each of the 47 combinations of µiχj and

the relevant combinations of bias parameters using the FFTLog algorithm. This is

performed for a grid of values of k1, x, y, with flattened templates (obeying
√
x+
√
y =

1) computed separately, using the alternate angular decomposition given in Appendix

B.2, and involving only 7 non-trivial powers of µ.

6. Create a three-dimensional linear interpolator for each template using the precom-

puted bispectrum shapes (combining full and flattened configurations).

7. Apply binning and angular integration using (3.4), including the Alcock-Paczynski

parameters if necessary.

8. Compute the full bispectrum as a sum over templates, weighted by the bias config-

urations and any necessary discreteness weights.

Notably, only steps (5) and beyond depend on the power spectrum template, and thus the

cosmological survey in question. We note one further subtlety: computing the bispectrum

templates near (but not at) the flattened limit of
√
x +
√
y = 1 can lead to numerical

issues due to large values of 1/(1 − ν2
12), which appear in the angular decompositions of

(q̂ · n̂) raised to the n-th power (cf. B.17). To counter this, when the templates are being

computed and the condition
√
x+
√
y < 1.1 is met, we replace the FFTLog prefactor by its

Taylor series in (1 + ν12), artificially removing the divergent terms (which are present only

due to numerical inaccuracies). Mathematica and Python code implementing all of the

above steps is publicly available at GitHub.com/OliverPhilcox/OneLoopBispectrum.

Following initial testing of the FFTLog routines against explicit numerical integration

for a small number of bins, we use the following choices of FFTLog bias: ν = −0.6 for

B222 and BII
321, ν = −0.3 for the matter terms in BI

321 (i.e. those involving only b1 and

f) and B411, and ν = −0.8 for the remaining terms in BI
321. We additionally use 64

FFTLog frequencies for B222, 96 frequencies for BI
321, and 128 frequencies for BII

321 and

B411, which reduces computational costs, whilst keeping good resolution on the terms

with enhanced oscillatory behavior. Additionally, we manually add the UV limits of BII
321

and B411 (as in Appendix B.1), and choose the k-range for the FFTLog decomposition

to lie in [10−5, 10]hMpc−1, computing all shapes on an interpolation grid of 64 k1-values

logarithmically spaced in [10−3, 0.5]hMpc−1, and 41 equally-spaced values of each of
√
x

and
√
y, subject to the triangle conditions. This is sufficient to ensure that the spectra

are subpercent accurate in the regime of interest; the results are largely unchanged if the

number of FFTLog frequencies is reduced by a factor of two. The computation requires ∼

– 32 –

https://github.com/oliverphilcox/OneLoopBispectrum


104 CPU-hours to compute all templates (entirely performed within Mathematica), with

the majority of time devoted toB222, and could certainly be optimized further. Calculations

have been compared against explicit numerical integration of the (unsimplified) bispectrum

kernels, and we find excellent sub-percent agreement in all cases.

C Counterterms from Redshift-Space Distortions

The RSD mapping to O(δ4
1) can be obtained by expanding (2.7) to fourth order:

δ
(s)
k =δk − ikz[(1 + δg)uz]k +

i2

2
k2
z [(1 + δg)u

2
z]k

− i3

3!
k3
z [(1 + δg)u

3
z]k +

i4

4!
k4
z [v

4
z(1 + δg)]k ,

(C.1)

where Az ≡ A · n̂ ≡ AµA. To facilitate renormalization, we must smooth this expansion

with a low-pass filter of some size R = Λ−1. Products of fields at the same point (contact

terms) are sensitive to short-scaled modes and hence must to be smoothed and renormal-

ized. We denote these operations by square brackets, [...]R. Galilean symmetry implies the

following schematic structure of the renormalized correlators (see [135–137] for the first

order results),

[ui(1 + δg)]R = (1 + δg`)u
i
` +Oiu ,

[uivj(1 + δg)]R = (1 + δg`)u
i
`u
j
` + ui`O(1)j

u2
+ uj`O

(1)i
u2 +O(2)ij

u2
,

[uiujuk(1 + δg)]R = (1 + δg`)u
i
`u
j
`u
k
` + 3u2

`O
(1)ijk
u3

+ 3u`O
(2)ijk
u3

+O(3)ijk
u3

,

[uiujukul(1 + δg)]R = (1 + δg`)u
i
`u
j
`u
k
`u

l
` + 4u3

`O
(1)ijkl
u4

+ 6u2
`O

(2)ijkl
u4

+ 4u`O
(3)ijkl
u4

+O(4)ijkl
u4

.

(C.2)

where ui`, δ` are the smoothed long-wavelength velocity and density fields (for clarity, we

will drop the subscript ` in the below). To preserve Galilean symmetry, the operators O
should not depend on the smoothed velocity field.

Note that the velocity field scales like k−1δk at the linear order, i.e.

ui = −∂i
∆
θ , (C.3)

for Laplacian ∆. Thus, in order to obtain the redshift-space bispectrum counterterms

scaling like k2δ2, we need to retain four types of correction: (1) O(k1δ2) arising from [ui(1+

δg)]R, (2) O(k0δ2) coming from [uiuj(1+δg)]R, (3) O(k−1δ2) coming from [uiujuk(1+δg)]R,

and (4) O(k−2δ2) coming from [uiujukul(1 + δg)]R.

We now discuss each type of composite operator. The renormalized operator [ui(1 +

δg)]R with counterterms O(kδ2) is given by

[ui(1 + δg)]R = ui(1 + δ) + ẽ1∂iδ + ẽ2∂i(skls
kl) + ẽ3∂iδ

2 + ẽ4skl∂is
kl + ẽ5δ∂iδ , (C.4)

where δ is the matter density field and we have introduced the tidal tensor sij = [∂i∂jΦ−
δij(∆Φ/3)]/(3

2H
2). The renormalized operator [uiuj(1 + δg)]R with counterterms O(k0δ2)

is given by

[uiuj(1 + δg)]R = uiuj(1 + δ) + c̃1δijδ + c̃2sij + c3δ
2δij + c̃4silslj , (C.5)
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The renormalized operator [uiujuk(1 + δg)]R with counterterms O(k−1δ2) is given by

[uiujuk(1 + δg)]R = uiujuk(1 + δ) + b̃1u(iδjk) + b̃2 u(isjk) + b̃3δu(iδjk) , (C.6)

where (...) denotes symmetrization over indices. Finally, the renormalized operator [uiujukul(1+

δg)]R with counterterms O(k−2δ2) is given by

[uiujukum(1 + δ)]R = uiujukum(1 + δg) + d̃1u(iujδkl) . (C.7)

In combination, once certain redundant operators are removed, we find the following

redshift-space bispectrum counterterm kernel,

Zctr
2 (k1,k2) =

(
C1µ

2k2
3F2(k1,k2) + C2k

2
3z

(
µ2

3 −
1

3

)
F2(k1,k2) + C3k

2
3z

+ C4k
2
3z

(
(k1 · k2)µ1µ2

k1k2
− µ2

1 + µ2
2

3
+

1

9

)
+ C5fk

2
3zµ

2
3G2(k1,k2)

+ C6fk
3
3z

[
µ1

k1

(
µ2 −

1

3

)
+
µ2

k2

(
µ1 −

1

3

)]
+ C7fk

3
z

[
µ1

k1
+
µ2

k2

]
+ C8f

2k4
3z

µ1

k1

µ2

k2

+ C9k
2
3z

(
(k1 · k2)2

k2
1k

2
2

− 1

3

))
1

k2
NL

,

(C.8)

involving nine Wilson coefficients, marked in color. The overall bispectrum counterterm is

given by

Bctr(k1,k2,k3) = 2Z1(k1)Z1(k2)(F ctr
2 + Zctr

2 )(k1,k2)P11(k1)P11(k2) + cyclic perms. ,

(C.9)

where F ctr
2 (k1,k2) is the real space, µ-independent kernel. In principle, some of the redshift-

space counterterms are the same as coefficients in front of the µ-dependent k2P11 redshift-

space counterterms in redshift space, and thus should be constrained by the power spectrum

data. Indeed, at leading order we have [137]

δCTR,LO
z (k) = C0k

2δ + C1µ
2k2δ + C2µ

4k2δ , (C.10)

where

C1 = C1 −
C2

3
, C2 = C2 + C5f . (C.11)

The relationship between our power spectrum counterterm coefficients (∝ k2PL) and Cn is

given by:

c0 = b1

(
C0 +

C1

3
+
C2

5

)
+
C0f

3
+
C1f

5
+
C2f

7
,

c2 =
1

7f
(7b1C1 + 6b1C2 + 7C0f + 6C1f + 5C2f) ,

c4 =
1

11f2
(11b1C2 + 11C1f + 15C2f) .

(C.12)
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D Stochastic terms

In this section we discuss stochastic contributions to the one-loop bispectrum.

D.1 Real space

The stochastic contributions to the galaxy density field in real space are given in terms of

ε by (some operators are present in [137]):

δε = d1ε+ d2εδ + d̄1

(
k

kNL

)2

ε+ d2

(
k

kNL

)2

[εδ]k + d3[∂iε∂iδ]k + d4[ε∆δ]k + d5[∆εδ]k .

(D.1)

Note that 〈εδ〉 = 0 by definition. There are two non-trivial possibilities to contract opera-

tors in δε to obtain the tree-level bispectrum contributions (with free coefficients shown in

color):

O
(
Pn̄−1

)
: 〈b1δk1d2[εδ]k2εk3〉′ = 2d2

b1P (k1) + cyc.

n̄
,

O
(
n̄−2

)
: 〈ε3〉′ = d1

3Ashot

n̄2
,

(D.2)

where primes denote that we drop the Dirac delta function. These match the operators

present in the tree-level bispectrum model [80]. At the one-loop order we find three distinct

contractions:

O
(
k2Pn̄−1

)
: 〈b1δk1 d̄2k

2
2[εδ]k2εk3〉′ = b1d̄2

(k2
2 + k2

3)P (k1) + cyc.

n̄
,

O
(
k2Pn̄−1

)
: 〈b∇2δk

2
1δk1d2[εδ]k2εk3〉′ = b∇2δd2

k2
1P (k1) + cyc.

n̄
,

O
(
k2n̄−2

)
: 〈d̄1k

2
1εk1εk2εk3〉′ = d̄1Ashot

k2
1 + cyc.

n̄2
.

(D.3)

These reproduce the stochastic bispectrum contribution derived in [79].

D.2 Redshift space

In redshift space, the density field involves the following terms at tree-level:

δ(z)(k) = Z1(k)δ(1)(k) + [Z2(δ(1))2]k + d1εk + d2b1[δ(1)ε]k − ifkzd1

[
ε
ẑi∂i
∆

θ(1)

]
k

, (D.4)

whilst at next-to-leading order (i.e. one-loop), we have the additional stochastic contribu-

tions,

δ
(µ2k2)
stoch (k) =

(
d1fµ

2k2ε+ kzz
i(εi + kiε) + k2

zzizjε
ij
)

(1 + δg). (D.5)

At leading order we have the LoS-dependent Pn̄−1 term derived in [80]. To obtain the

one-loop expression, we must perform a renormalization of the contact operators involving
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the stochastic fields, as in Appendix C. The contact operator renormalization O(ε, εδ) at

the leading order in derivatives, gives the following terms, schematically:

[ui(1 + δg)]R ⊃ u(1)
i ε+ (εi + kiε)(1 + δg) + ε∂iδ + ∂i(εδ),

[uiuj(1 + δg)]R ⊃ (δijε+ εij)(1 + δ) + u
(1)
i εj + u

(1)
i kjε+ sijε,

[uiujuk(1 + δg)]R ⊃ u(1)
i δjkε+ u

(1)
i εjk.

(D.6)

These operators generate the following LoS-dependent correction to the stochastic compo-

nent of the galaxy density field:

δstoch ⊃kzu(1)
z ε+ kz[(εiz

i + ∂zε)(1 + δg)] + k2
z(ε+ εzz)(1 + δg)

+ k2
zu

(1)
z εz + k2

zu
(1)
z [∂zε] + k3

z(u
(1)
z ε+ u(1)

z εzz)

+ kz(ε[∂zδ]) + kz[∂z(εδ)] + k2
z [εszz] .

(D.7)

Focussing on the k2P (k)/n̄ corrections to the bispectrum that are generated by this density

field (D.7), we find three possibilities:

1. Insertion of the redshift-space counterterms k2δ and the real-space operator d2δε,

i.e. 〈k2δ[εδ]ε〉:

〈k2
1µ

2α
1 δk1d2[εδ]k2εk3〉′ = d2

k2
1µ

2α
1 PL(k1) + cyc.

n̄
,

〈k2
1µ

2α
1 δk1ifk2zd1

[
ε
ẑi∂i
∆

θ(1)

]
k2

εk3〉′ = −fd1
k2

1µ
2α+2
1 PL(k1) + cyc.

n̄
,

(D.8)

where α = 0, 1, 2.

2. Insertion of the redshift-space stochastic counterterm ∼ k2ε and the real-space op-

erator d2δε, i.e.

〈Z1(k1)δk1d2[εδ]k2k
2
3zεk3〉′ = d2

Z1(k1)PL(k1)(k2
2z + k2

3z) + cyc.

n̄
. (D.9)

3. Insertion of the new redshift-dependent stochastic correction k2
z [δε], i.e.

〈Z1(k1)δk1k
2
2z[εδ]k2εk3〉′ =

Z1(k1)PL(k1)(k2
2z + k2

3z) + cyc.

n̄
,

〈Z1(k1)δk1k2z[∂zεδ]k2εk3〉′ =
Z1(k1)PL(k1)k2zk3z + cyc.

n̄
,

〈Z1(k1)δk1k
2
2z

[
∂zε

∂zθ

∆

]
k2

εk3〉′ = −
Z1(k1)PL(k1)µ2

1k2zk3z + cyc.

n̄
,

〈Z1(k1)δk1k
3
2z

[
ε
∂zθ

∆

]
k2

εk3〉′ =
(
Z1(k1)PL(k1)

k1z

k2
1

(k3
2z + k3

3z) + cyc.

)
1

n̄
,

〈Z1(k1)δk1k2z [ε∂zδ]k2
εk3〉′ = −

Z1(k1)PL(k1)k2
1z + cyc.

n̄
,

〈Z1(k1)δk1k
2
2z

[
ε

(
∂2
z

∆
− 1

3

)
δ

]
k2

εk3〉′ =
(
Z1(k1)PL(k1)

{
µ2

1 −
1

3

}
(k2

2z + k2
3z) + cyc.

)
1

n̄
,

(D.10)
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Many of these terms happen to be linearly-dependent once we apply the bispectrum triangle

condition. All in all, the µ-dependent part of the stochastic bispectrum at order k2Pn̄−1

is given by

B
(k2Pn̄−1)
stoch (k1,k2,k3) =

[∑
n=1,2,3,4 Snk

2
1µ

2(n−1)
1 + S5Z1(k1)(µ2

2k
2
2 + µ2

3k
2
3) (D.11)

+S6Z1(k1)µ2
1(µ2

2k
2
2 + µ2

3k
2
3) + S7Z1(k1)k1z

k21
(k3

2z + k3
3z)

]
PL(k1)
k2NLn̄

+ cyc. ,

which involves additional nuisance coefficients shown in color.

In addition, there are purely stochastic terms that generate the bispectrum of the order

k2n̄−2. These arise from the following combinations:

〈εk1εk2k
2
3zεk3〉′ =

k2
3z + cyc.

n̄2
, (D.12)

giving the bispectrum contribution

B
(k2n̄−2)
stoch (k1,k2,k3) = Ashot,2

k2
3z + k2

1z + k2
2z

n̄2
. (D.13)

After performing angular integration (in the absence of coordinate-distortion effects), this

term takes the same form as the real-space term ∼ k2n̄−2. Thus, it does not produce a new

contribution to the bispectrum monopole, though is important if higher-order multipoles

are also considered.

E Prior volume effects

In this section we study the prior volume effects present in our posteriors when the one-loop

bispectrum likelihood is analyzed with small data cuts, such as kBmax = 0.12hMpc−1. At

face value, the posterior distributions from this analysis are several σ away from the true

values. However, here we show that as much as half of this shift can be explained by prior

volume (marginalization projection) effects. Indeed, such effects are expected to be present

when the data volume is not sufficient to tightly constrain model parameters, which is the

case for analyses with low kBmax.

We performed the following test: rerunning our full analysis on the mock data gener-

ated by our fitting pipeline for the best-fit cosmology at kBmax = 0.15 hMpc−1. This mock

data is simply a theory curve without any statistical scatter. In the absence of prior volume

effects our pipeline must exactly recover the input parameters. However, when we fit this

mock bispectrum data at kBmax = 0.12 hMpc−1, we find that the mean values recovered

from our pipeline are shifted relative to the input values at the (1−1.5)σ level, as shown in

Fig. 5. This is evidence of prior volume effects. Furthermore, the shifts are in the directions

of the apparent biases observed in the actual data (§6). Thus, if we subtract these shifts

from the actual posteriors at kBmax = 0.12, the mean posterior values would match the true

input parameter values at least within the 99% CL. Finally, we note that the parameters
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b2, bG2 and bΓ3 are highly correlated; this means that a shift in one would induce a shift in

both.

As an additional check, we repeat our mock analysis for kBmax = 0.15hMpc−1. Overall,

we find much improved agreement between the mock and actual analyses. The posteriors

for σ8 and bΓ3 are still shifted with respect to the ground truth by . 1σ (which is smaller

than 1.5σ shifts in the kBmax = 0.12hMpc−1 case), but all other parameters are recovered

without noticeable bias.
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