

Higgs self-coupling at ATLAS

Investigating the Higgs potential

The full expression of the Higgs potential is encoded with parameters μ and λ as:

$$V(\phi^{\dagger}\phi) = -\mu^{2}\phi^{\dagger}\phi + \lambda(\phi^{\dagger}\phi)^{2}$$

$$\supset \underbrace{\mu^{2} H^{2}}_{\frac{1}{2}m_{H}^{2}} + \underbrace{\sqrt{\frac{\lambda}{2}}\mu H^{3}}_{\frac{1}{2}m_{H}^{2}} + \underbrace{\frac{\lambda}{4}H^{4}}_{\frac{1}{2}m_{H}^{2}}$$

- ► First estimation from the Higgs mass measurement:
 - Combined with the v.e.v computation: $\lambda_{SM} \sim 0.13$

▶ Direct access to λ through Higgs pair creation; H

- Coupling strength denoted as $\kappa_{\lambda} = \log \Omega / \chi_{SM}$
- ► Wide range of BSM models predicting different shapes / values for κ
- ► Quartic interaction even rarer :

 out of reach even for HL-LHC

- ► At <u>tree level</u>: production of pair of Higgs bosons →strong effect on XS.
- ► At loop level: effect on the single Higgs cross-section and deviations in kinematics: ATL-PHYS-PUB-2019-009

Louis D'Eramo (NIU) - 19/05/2022 - Higgs self-coupling at ATLAS - LHCP2022

How are Higgs pairs produced?

► gluon-gluon Fusion (ggF):

$$\sigma_{HH}^{ggF} = 31.02 \text{ fb}$$

- Destructive interference between triangle and box diagrams makes the tiny (1000x smaller than
- ► Low m_{HH} : essential to κ_{λ} trilinear coupling κ_{λ}
- m_{HH} shape very dependent on the κ_{λ}

► Vector Boson Fusion (VBF):

$$\sigma_{HH}^{VBF} = 1.72 \text{ fb}$$

- Second-order contribution to total production.
- ▶ Direct handle to vector boson coupling modifiers κ_{2V} and κ_{V} .

How to look for Higgs pairs?

No clear *Golden channel*, but several promising signatures:

 $BR(HH \rightarrow XXYY)$

= results from ATLAS

Combining the results is necessary for observation.

- ► $H \rightarrow b\bar{b}$: High BR
- Large hadronic background

$$ggF: \mathcal{L} = 36fb^{-1}$$

JHEP 01 (2019) 030

VBF:
$$\mathcal{L} = 126 \text{fb}^{-1}$$

JHEP 07 (2020) 108

$$HH \to b\bar{b}\tau^{+}\bar{\tau}^{-} \qquad \mathcal{L} = 139 \text{fb}^{-1}$$

$$\mathcal{L} = 139$$

ATLAS-CONF-2021-030

- ► $H \rightarrow b\bar{b}$: High BR
- ► $H \rightarrow \tau^+ \tau^-$: Low background

$$HH \rightarrow b\bar{b}\gamma\gamma$$

 $\mathcal{L} = 139 \text{fb}^{-1}$

ATLAS-CONF-2021-016

- ► $H \rightarrow b\bar{b}$: High BR
- $ightharpoonup H o \gamma \gamma$: Good mass resolution

$HH \rightarrow W^+W^- + XX / HH \rightarrow b\bar{b}ZZ$

Not shown today

- ightharpoonup Decent BR from $H \to VV$
- Complex final signatures due to the decay of Vs

 $b\bar{b}l\nu l\nu$: $\mathcal{L} = 139 \text{fb}^{-1}$ $\gamma \gamma WW^*$: $\mathcal{L} = 36 \text{fb}^{-1}$

Phys. Lett. B 801 (2020) 135145

Eur. Phys. J. C 78 (2018) 1007

 $b\bar{b}l\nu q\bar{q}$: $\mathcal{L} = 36 \text{fb}^{-1}$

JHEP 04 (2019) 092

 $WW^*WW^*: \mathcal{L} = 36 \text{fb}^{-1}$

JHEP 05 (2019) 124

Run: 356259

Event: 311347503

2018-07-22 20:00:32 CEST

 $HH \rightarrow b\bar{b}b\bar{b}$

Strategy

ggF: $\mathcal{L} = 36 \text{fb}^{-1}$

JHEP 01 (2019) 030

VBF: $\mathcal{L} = 126 \text{fb}^{-1}$ **JHEP 07 (2020) 108**

 $HH \rightarrow b\bar{b}b\bar{b}$

Two dedicated analyses ggF / VBF were made with similar strategies, on different datasets.

Central jets:

► At least 4 central b-tagged jets.

Only for VBF analysis:

 \blacktriangleright At least 2 forward jets with opposite η sign.

Fit: using the HH invariant mass

Example from **VBF**

Pairing Jets

Angular distance between jets in each Higgs candidate $|\Delta R_{ii}|$ is compared to the 4 body invariant mass m_{4i}

- ▶ Both reconstructed masses are expected to be similar;
- ▶ Distance to expected median is minimised.

Results

ggF: $\mathcal{L} = 36 \text{fb}^{-1}$ JHEP 01 (2019) 030

VBF: $\mathcal{L} = 126 \text{fb}^{-1}$ **JHEP 07 (2020) 108**

$HH \rightarrow b\bar{b}b\bar{b}$

Backgrounds modelling:

Similar between the two analyses

► multi-jets:

- ► The shape is obtained by reweighting data in the 2 b-tagged SR: correcting jet activity and b-tagging efficiency;
- Dedicated Signal, Validation, and Control Regions based on the Higgs bosons masses.
- ightharpoonup: Rejected by specific variable measuring consistency of jet originating from top quark.

Example from ggF

Results:

ggF analysis, Partial Run-2

observed (expected) limit is $\sigma_{HH}^{ggF} \times BR(HH \to b\bar{b}b\bar{b})$ **12.9 (14.8)** x SM prediction.

 σ_{HH}^{VBF} observed (expected) limit is **840 (550)** x SM prediction.

Limits are set on κ_{2V} :

$$-0.4 < \kappa_{2V} < 2.6$$
 (observed),

$$-0.6 < \kappa_{2V} < 2.7$$
 (expected).

VBF analysis, Full Run-2

$HH \rightarrow b\bar{b}\tau^{+}\tau^{-}$

Run: 339535

Event: 996385095

2017-10-31 00:02:20 CEST

ATLAS-CONF-2021-030

Exactly 2 b-jets

The analysis is built on the final state of the τ decay:

At least one $\tau_{\rm had}$ is requested:

- ▶ $\tau_{\text{lep}}\tau_{\text{had}}$: exactly 1 lepton + 1 hadronic τ ;
- ightharpoonup $au_{\rm had} au_{\rm had}$: exactly two hadronic $au_{\rm s}$.

A Missing Mass Calculator is used to estimate the di-tau invariant mass.

Backgrounds modelling:

 $t \bar{t}$ and multi-jets can lead to fake $\tau_{\rm had}$ reconstruction. Dedicated control regions, scale and transfer factors are designed to provide MC and data-driven estimates.

Example for $au_{
m lep} au_{
m had}$ category

Fit: based on a MVA distribution trained in 3 SRs:

- $ightharpoonup au_{
 m lep} au_{
 m had}$: Single Lepton Trigger (SLT), Lepton + Tau Trigger (LTT) Neural Network;
- $ightharpoonup au_{
 m had} au_{
 m had}$: Single/Di Tau Triggers BDT.

Dedicated $Z \to \tau \tau$ Control Region for Z+hf and $t\bar{t}$ normalisation.

Results:

 $\sigma_{HH}^{ggF+VBF}$ observed (expected) limit is 4.7 (3.9) x SM prediction.

Limits are set on κ_{λ} :

$$-2.4 < \kappa_{\lambda} < 9.2$$
 observed,

$$-2.0 < \kappa_{\lambda} < 9.0$$
 expected.

Run: 329964

Event: 796155578

2017-07-17 23:58:15 CEST

 $HH \rightarrow b\bar{b}\gamma\gamma$

Strategy

- **ATLAS-CONF-2021-016**

- ► Exactly 2 b-jets;
- ► < 6 central jets.
- Exactly 2 high-quality photons;
- No lepton.

350 GeV

The HH invariant mass is also sensitive to κ_{λ} .

Due to experimental resolution effects, a corrected version is used in the analysis:

$$m_{b\bar{b}\gamma\gamma}^* = m_{b\bar{b}\gamma\gamma} - m_{b\bar{b}} - m_{\gamma\gamma} + 250 \text{ GeV}$$

A BDT is used to select signal-like events w.r.t di-photon + single Higgs. Categories are created from $m_{b\bar{b}\gamma\gamma}^*$:

- Low mass, focused on BSM
 - $\kappa_{\lambda} = 10$ ggF HH used as signal;
- ► High mass, focused on SM
 - $\kappa_{\lambda} = 1$ ggF HH used as signal.

How to look for signal?

Backgrounds modelling:

The background and signal processes are modelled thanks to functional forms used in the final fit:

Diphoton Background

- Several monotonic functions fitted to background template normalised to data sideband are tested;
- Minimisation of the signal bias.
- ► Final choice: exponential.

Single Higgs HH signal

➤ Single Higgs and HH (ggF and VBF) processes can be modelled with a doublesided Crystal Ball function.

Results:

 $\sigma_{HH}^{ggF+VBF}$ observed (expected) limit is 4.1 (5.5) x SM prediction.

Limits are set on κ_{λ} :

$$-1.5 < \kappa_{\lambda} < 6.7$$
 observed

$$-2.4 < \kappa_{\lambda} < 7.7$$
 expected.

Combination

 $b\bar{b}l\nu l\nu$ final state : $\mathcal{L}=139 \mathrm{fb}^{-1}$

Combination: $\mathcal{L} = 36 \text{fb}^{-1}$

Combination: $\mathcal{L} = 139 \text{fb}^{-1}$

ATLAS-CONF-2021-052

Phys. Lett. B 801 (2020) 135145

Phys. Lett. B 800 (2020) 135103

Combination done with most of the analyses with $\mathcal{L} = 36 \mathrm{fb}^{-1}$:

Additional results with $\mathcal{L} = 139 \text{fb}^{-1}$:

 $b\bar{b}\gamma\gamma$ and $b\bar{b}\tau\tau$ final states:

New full Run-2 combination with the two strongest channels.

 $\mu_{HH}^{ggF+VBF}$ observed (expected) limit is 3.1 (3.1).

Best limit observed up to now!

Combination

Combination done with Full Run-2 analyses with $\mathcal{L} = 139 \mathrm{fb}^{-1}$

Best limit set so far on κ_{λ} so far.

Benefits from the nice complementarity between the two channels to improve the global limit.

0 -4

-2 0 2 4 6 8 1

The story is not over yet: the High Luminosity phase of the LHC aims at collecting more than 10 x the runs 1-3 datasets.

CERN published a **Yellow report** to provide estimated performances: <u>CERN-LPCC-2018-04</u> Since then we have improved our limits, far beyond the luminosity gain:

- ► $HH \rightarrow b\bar{b}\tau^{+}\tau^{-}$ (ATL-PHYS-PUB-2021-044);
- ► $HH \rightarrow b\bar{b}\gamma\gamma$ (ATL-PHYS-PUB-2022-001).

combination (ATL-PHYS-PUB-2022-005)

	Statistical-only		Statistical + Systemat		
	ATLAS	CMS	ATLAS	CMS	
$HH o b\overline{b}b\overline{b}$	1.4	1.2	0.61	0.95	
$HH o b \overline{b} au au$	2.5 4.	0 1.6	2.1 2.8	1.4	
$HH o b \overline{b} \gamma \gamma$	2.1 2.3	3 1.8	2.0 2.2	1.8	
$HH \to b\bar{b}VV(ll\nu\nu)$	-	0.59	-	0.56	
$HH o b \overline{b} Z Z(4l)$		0.37		0.37	
combined	3.5 4.	6 2.8	3.0 3.2	2.6	
	Combined		Co	mbined	
	4.5		4.0		

- ► Theoretical uncertainties on single Higgs production and top-related backgrounds;
- Modelling of the diphoton background.

 $\sim 0.5 \le \kappa_{\lambda} \le 1.6$ @ 68% C.L.

Thanks for your attention.

BACK-UP

Investigating the Higgs potential

The full expression of the Higgs potential is encoded with parameters μ and λ as:

$$V(\phi^{\dagger}\phi) = -\mu^2 \phi^{\dagger}\phi + \lambda(\phi^{\dagger}\phi)^2$$

When linearising the Higgs field after the EWSB around the vacuum expected value ν one gets:

$$V(H) \supset \underbrace{\mu^2 H^2}_{\frac{1}{2}m_H^2} + \underbrace{\lambda\nu H^3}_{\frac{1}{2}m_H^2} + \underbrace{\frac{\lambda}{4}H^4}_{\frac{1}{2}m_H^2}$$

Where the potential parameters are linked by:

$$\nu = \sqrt{\frac{\mu^2}{\lambda}} = \sqrt{\frac{1}{\sqrt{2}G_F}}$$

Relationship between the electron charge, the weak boson masses, and the Fermi Constant.

- ► The first piece of information came from the Higgs boson discovery:
 - Existence of a new particle with couplings according to prediction from EWSB;
 - ► First measurement of Higgs mass:

$$m_H = 125.09 \text{ GeV} \leftrightarrow \mu = 88.45 \text{ GeV}$$

► The Fermi constant can be determined thanks to the muon lifetime measurement:

$$\frac{1}{\tau_{\mu}} = \frac{G_F^2 m_{\mu}^2}{192\pi^3} (1 + \Delta q)$$

► From most precise
MuLan experiment:

$$G_F = 1.1663788(7) \times 10^{-5} \text{ GeV}^{-2}$$

$$\rightarrow \nu \simeq 246.23 \text{ GeV}$$

$$\hookrightarrow \lambda \sim 0.13$$

Investigating the Higgs potential

The full expression of the Higgs potential is encoded with parameters μ and λ as:

$$V(\phi^{\dagger}\phi) = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger}\phi)^2$$

When linearising the Higgs field after the EWSB around the vacuum expected value ν one gets:

$$V(H) \supset \underbrace{\mu^2 H^2}_{\frac{1}{2}m_H^2} + \underbrace{\lambda \nu H^3}_{\frac{1}{2}m_H^2} + \underbrace{\frac{\lambda}{4}H^4}_{\frac{1}{2}m_H^2}$$

Quartic interaction even rarer :

- ► At tree level: very mild effect on XS and kinematic distributions.
- ► At <u>loop level</u>: similar constraints obtained on XS, but stronger effect kinematics.
- ▶ No strong constraints even with FCC 100 TeV collider $(\kappa_4 \in [-3,13])$ or the CLIC 3000 GeV $(\kappa_4 \in [-5,7])$.

Single Higgs constrains

−15 −10

 κ_{λ}

10

15

 κ_{λ}

 κ_{λ}

--- 95% CL

-15 -10

Exploring alternative scenarios

The measurement of the Higgs potential is answering the fundamental question of its nature. Several other models can show a non zero vacuum expected value with a different second order contribution:

$$V(H) \simeq \begin{cases} -m^2 H^\dagger H + \lambda (H^\dagger H)^2 + \frac{c_6 \lambda}{\Lambda^2} (H^\dagger H)^3, & \text{Elementary Higgs} \\ -a \sin^2 (\sqrt{H^\dagger H}/f) + b \sin^4 (\sqrt{H^\dagger H}/f), & \text{Nambu-Goldstone Higgs} \\ \lambda (H^\dagger H)^2 + \epsilon (H^\dagger H)^2 \log \frac{H^\dagger H}{\mu^2}, & \text{Coleman-Weinberg Higgs} \\ -\kappa^3 \sqrt{H^\dagger H} + m^2 H^\dagger H, & \text{Tadpole-induced Higgs} \end{cases}$$

pseudo Nambu-Goldstone boson emerging from strong dynamics at a high scale

Coleman-Weinberg Higgs
EWSB is triggered by renormalization group (RG) running effects
Tadpole-induced Higgs
EWSB is triggered by the Higgs tadpole

minimal composite Higgs model/ composite twin Higgs model: different coupling to top quark

bbbb details

0.01

SM HH

		2015				2016		
Source	Background	Scalar	SMHH	$G_{ m KK}$	Background	Scalar	SMHH	$G_{ m KK}$
Luminosity	_	2.1	2.1	2.1	_	2.2	2.2	2.2
Jet energy	_	17	7.1	3.7	_	17	6.4	3.7
b-tagging	_	13	12	14	_	13	12	14
b-trigger	_	4.0	2.3	1.3	_	2.6	2.5	2.5
Theoretical	_	23	7.2	0.6	_	23	7.2	0.6
Multijet stat	4.2	_	_	_	1.5		_	_
Multijet syst	6.1	_	_	_	1.8	_	_	_
$tar{t}$ stat	2.1	_	_	_	0.8	_	_	_
$tar{t}$ syst	3.5	_	_	_	0.3	_	_	_
Total	7.5	31	16	15	1.8	31	16	15

systematic relative uncertainties (expressed in percentage yield) in the total background and signal event yields

Bbtautau details

BDT input variables:

Variable	$ au_{ m lep} au_{ m had}$ channel (SLT resonant)	$ au_{ m lep} au_{ m had}$ channel (SLT nonresonant & LTT)	$ au_{ m had} au_{ m had}$ channel
m_{HH}	√	√	√
$m_{ au au}^{ m MMC}$	✓	\checkmark	\checkmark
m_{bb}	✓		✓
$\Delta R(au, au)$	✓		\checkmark
$\Delta R(b,b)$	✓	\checkmark	\checkmark
$E_T^{ ext{miss}}$	✓		
$E_T^{\text{miss}} \phi$ centrality	✓		✓
m_T^W	✓		
$\Delta \phi(H,H)$	✓		
$\Delta p_T(\mathrm{lep}, au_{\mathrm{had-vis}})$	✓		
Subleading b -jet p_T	✓		

Non resonant limits per channel:

		Observed	-1σ	Expected	$+1\sigma$
	$\sigma(HH \to bb\tau\tau)$ [fb]	57	49.9	69	96
$ au_{ m lep} au_{ m had}$	$\sigma/\sigma_{ m SM}$	23.5	20.5	28.4	39.5
	$\sigma(HH \to bb\tau\tau)$ [fb]	40.0	30.6	42.4	59
$ au_{ m had} au_{ m had}$	$\sigma/\sigma_{ m SM}$	16.4	12.5	17.4	24.2
C 1: .:	$\sigma(HH \to bb\tau\tau)$ [fb]	30.9	26.0	36.1	50
Combination	$\sigma/\sigma_{ m SM}$	12.7	10.7	14.8	20.6

Impact of systematics on SM limit:

Source	Uncertainty (%)
Total	±54
Data statistics	± 44
Simulation statistics	± 16
Experimental uncertainties	
Luminosity	± 2.4
Pileup reweighting	± 1.7
$ au_{ m had}$	±16
Fake-τ estimation	± 8.4
b tagging	± 8.3
Jets and $E_T^{ m miss}$	± 3.3
Electron and muon	± 0.5
Theoretical and modeling uncertainties	
Top	± 17
Signal	± 9.3
Z o au au	± 6.8
SM Higgs	± 2.9
Other backgrounds	± 0.3

Low

High

mass

mass

BDT loose

BDT tight

Source Type Nonresonant analysis HHExperimental Photon energy resolution Norm. + Shape 0.4 < 0.2 Jet energy scale and resolution Normalization Flavor tagging Normalization < 0.2 Theoretical Factorization and renormalization scale Normalization 0.3 0.6 Parton showering model Norm. + Shape Heavy-flavor content Normalization 0.3 $\mathcal{B}(H \to \gamma \gamma, b\bar{b})$ Normalization 0.2 Spurious signal 3.0 Normalization

Relative variation of the expected upper limit on the cross-section (%)

Selection

 $b\bar{b}l\nu l\nu$ final state : $\mathscr{L}=139\mathrm{fb}^{-1}$ $b\bar{b}l\nu q\bar{q}$ final state : $\mathcal{L}=36\mathrm{fb}^{-1}$ $\gamma \gamma WW^*$ final state : $\mathcal{L} = 36 \text{fb}^{-1}$ WW^*WW^* final state : $\mathcal{L} = 36 \text{fb}^{-1}$

Phys. Lett. B 801 (2020) 135145 JHEP 04 (2019) 092 Eur. Phys. J. C 78 (2018) 1007

JHEP 05 (2019) 124

$bbl\nu q\bar{q}$ final state

This channel is aiming at reducing the contamination of $t\bar{t}$ events by requesting one W boson to decay leptonically:

$H \rightarrow b\bar{b}$:

exactly 2 b-tagged jets.

$H \rightarrow WW^* \rightarrow l\nu q\bar{q}$:

- ► ≥ 1 high-quality lepton.
- ► ≥ 2 additional jets, pair chosen with minimising $\Delta R(jet, jet)$
- ► Kinematic fit to find the neutrino momentum assuming $m_H = 125 \text{ GeV}$

Fit: m_{HH} in different categories

Resolved

This channel is aiming at $HH o b \bar{b} WW^*$ signal, but is also sensitive to $HH \rightarrow b\bar{b}ZZ^*$ and $HH \rightarrow b\bar{b}\tau\tau$

- ightharpoonup H o bb:
 - Exactly 2 b-tagged jets
- $ightharpoonup H o WW^* o l\nu l\nu$:
 - Exactly 2 opposite charge high quality leptons.
 - Categories: based on flavour.
- ► Deep neural Network:
 - ► To remove dominant backgrounds

Fit: single bin in different categories

Results

 $b\bar{b}l\nu l\nu$ final state : $\mathcal{L}=139 \mathrm{fb}^{-1}$ $b\bar{b}l\nu q\bar{q}$ final state : $\mathcal{L}=36 \mathrm{fb}^{-1}$ $\gamma\gamma WW^*$ final state : $\mathcal{L}=36 \mathrm{fb}^{-1}$ WW^*WW^* final state : $\mathcal{L}=36 \mathrm{fb}^{-1}$

Phys. Lett. B 801 (2020) 135145

JHEP 04 (2019) 092

Eur. Phys. J. C 78 (2018) 1007

JHEP 05 (2019) 124

 $HH \rightarrow W^+W^- + XX$

$b\bar{b}l\nu q\bar{q}$ final state

 σ_{HH}^{ggF} observed (expected) limit is 300 (190) times the SM prediction.

Systematic source	
	Non-Res (%)
$\overline{t\bar{t}}$ modelling ISR/FSR	+30/-20
Multijet uncertainty	+10/-10
$t\bar{t}$ Matrix Element	+10/-10
W+jets modelling PDF	+4/-7
W+jets modelling scale	+9/-10
W+jets modelling gen.	+10/-8
$t\bar{t}$ modelling PS	+3/-2
\overline{b} -tagging	+30/-20
m JES/JER	+13/-20
$E_{\mathrm{T}}^{\mathrm{miss}}$ soft term res.	+20/-20
Pile-up reweighting	+3/-10
Total systematic	+60/-80

Relative uncertainty on the signal yield scale factor

 $b\bar{b}l\nu l\nu$ final state

Resolved

 σ_{HH}^{ggF} observed (expected) limit is 40 (29) times the SM prediction.

Comparison to CMS

$\frac{\sigma(pp \to HH)}{\sigma_S M}$ at 13 TeV		Partial Run 2 (2015-16)		Ful Run 2 (2015-18)	
		Obs	Exp	Obs	Exp
ИИ х b basas	ATLAS	20.3	26	4.1	5.5
$HH \rightarrow bbyy$	CMS	23.6	18.8	7.7	5.2
$HH \rightarrow bb\tau\tau$	ATLAS	12.5	15	4.7	3.9
	CMS	31.4	25.1	5.2	3.3
IIII \ hhhh	ATLAS	12.9	21		
$HH \rightarrow bbbb$	CMS	74.6	36.9	3.6	7.3
	ATLAS	6.9	10	2.8	2.8
Combination	CMS	22.2	12.8		

Limit on κλ at 9	Limit on κλ at 95% C.L.		Expected
TITI 1. 1. 1.	ATLAS	-1.5 – 6.7	-2.4 - 7.7
$HH \rightarrow bb\gamma\gamma$	CMS	-3.3 - 8.5	-2.5 - 8.2
HH o bb au au	ATLAS	-2.4 - 9.2	-2.0 - 9.0
	CMS	-1.8 - 8.8	-3.0 - 9.9
TTTT . 1.1.1.1.	ATLAS		
$HH \rightarrow bbbb$	CMS	-2.3 - 9.4	-5.0 - 12.0
Combination	ATLAS	-1.0 - 6.6	-1.2 - 7.2
	CMS		

Limit on κ 2v at 95% C.L.		Observed	Expected
HH o bb au au	ATLAS		
	CMS	-0.4 - 2.6	-0.6 - 2.8
$HH \rightarrow bb\gamma\gamma$	ATLAS		
	CMS	-1.3 - 3.5	-0.9 - 3.1
	ATLAS	-0.4 - 2.6	-0.6 - 2.7
$HH \rightarrow bbbb$	CMS	-0.1 - 2.2	-0.4 - 2.5

Phys. Rev. Lett. 122 (2019) 121803