

Northern Illinois University

Louis D'Eramo, *On behalf of the ATLAS Collaboration*

 $||$

Higgs self-coupling at ATLAS

Investigating the Higgs potential be expanded in the powers of *H†H*, which could recover the Landau-Ginzburg e↵ective theory description if a truncation on the series provides a good approximation. The series \mathbb{R}^n corresponds to the case when new physics sets in at a much higher energy scale than the EW scale. However, the EW scale than the EW scale. However, th

- ‣ First estimation from the Higgs mass measurement:
	- ‣ Combined with the v.e.v computation: $λ$ _{*SM*} ∼ 0.13

The full expression of the Higgs potential is encoded with parameters *μ* and *λ* as:

H

► At tree level: production of pair of Higgs bosons →strong effect on XS.

 \mathcal{A}_{102} above mentioned scenarios can be described in an e \mathcal{A}_{102} and \mathcal{A}_{102} framework. On the single Higgs $\frac{1}{2}$ and $\frac{1}{2}$ cross-section and deviations in henergy scales, and EW symmetries: [ATL-PHYS-PUB-2019-009](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2019-009/) ▶ At loop level: effect on the single Higgs

‣ Direct access to *λ* through Higgs pair creation:

▶ Wide range of BSM models predicting different shapes / values for κ_{λ}

H

H

H

 λ

H

Landau-Ginzburg Higgs

 $\cdot \sigma$ _{ZH}

Nambu-Goldstone Higgs

Coleman-Weinberg Higgs

How are Higgs pairs produced? **HERE**

‣ **gluon-gluon Fusion (ggF)**:

- ▶ Second-order contribution to total production.
- ▶ Direct handle to vector boson coupling modifiers $\kappa_{\gamma V}$ and κ_{V} .

‣ **Vector Boson Fusion (VBF):**

How to look for Higgs pairs?

Run: 356259 Event: 311347503 2018-07-22 20:00:32 CEST

HH → *bb* ¯ *bb* ¯

Strategy

Angular distance between jets in each Higgs candidate $\mid \Delta R_{jj}\!\mid$ is compared to the 4 body invariant mass m_{4j}

Only for VBF analysis:

‣ At least 2 forward jets with opposite sign. *η*

Pairing Jets

Central jets:

▶ At least 4 central b-tagged jets.

Two dedicated analyses **ggF / VBF** were made with similar strategies, on different datasets.

- ‣ The shape is obtained by **reweighting data** in the 2 b-tagged SR: correcting jet activity and b-tagging efficiency;
- ‣ Dedicated Signal, Validation, and Control Regions based on the Higgs bosons masses.
- ‣ : **Rejected** by specific variable measuring consistency of jet originating from top quark. $t\bar{t}$

Results

Backgrounds modelling:

Similar between the two analyses

• multi-jets:

Run: 339535 Event: 996385095 2017-10-31 00:02:20 CEST

Strategy

τ−

τ+

The analysis is built on the final state of the *τ* decay:

At least one $\tau_{\textrm{had}}$ is requested: $\blacktriangleright \tau_{\text{lep}}\tau_{\text{had}}$: exactly 1 lepton + 1 hadronic τ ; **►** $τ_{\text{had}}τ_{\text{had}}$: exactly two hadronic *τ*s. A Missing Mass Calculator is used to estimate the di-tau invariant mass. $\tau_{\rm lep}\tau_{\rm had}$: exactly 1 lepton + 1 hadronic τ

Example for $\tau_{\rm lep}\tau_{\rm had}$ category

Backgrounds modelling:

designed to provide MC and data-driven estimates.

Dedicated $Z \to \tau\tau$ Control Region for Z+hf and $t\bar{t}$ normalisation.

- $\triangleright \tau_{\text{lep}}\tau_{\text{had}}$: Single Lepton Trigger (SLT), Lepton + Tau Trigger (LTT) Neural Network; *τ*lep*τ*had
- ‣ : Single/Di Tau Triggers *τ*had*τ*had BDT.

Results

Fit: based on a **MVA distribution** trained in 3 SRs:

[ATLAS-CONF-2021-030](http://cdsweb.cern.ch/record/2777236)

Run: 329964 **Event: 796155578** 2017-07-17 23:58:15 CEST

The HH invariant mass is also sensitive to $\kappa_{\lambda}.$

- ► Exactly 2 b-jets;
- \blacktriangleright < 6 central jets.
- ‣ Exactly 2 high-quality photons;
- ▶ No lepton.

A *BDT* is used to select signal-like events w.r.t di-photon + single Higgs. Categories are created from $m^*_{\overline{h} \overline{h} m}$:

Due to experimental resolution effects, a corrected version is used in the analysis:

‣ Low mass, focused on BSM

- \blacktriangleright $\kappa_{\lambda} = 10$ ggF HH used as signal;
- ‣ High mass, focused on SM
	- $\kappa_{\lambda} = 1$ ggF HH used as signal.

bb¯*γγ*

$$
m_{b\bar{b}\gamma\gamma}^* = m_{b\bar{b}\gamma\gamma} - m_{b\bar{b}} - m_{\gamma\gamma} + 250 \text{ GeV}
$$

How to look for signal?

Backgrounds modelling: Results: Results: Results:

Diphoton Background

- ▶ Several monotonic functions fitted to background template normalised to data sideband are tested;
- ‣ Minimisation of the signal bias.
- ‣ Final choice: **exponential**.

Single Higgs HH signal

The background and signal processes are modelled thanks to functional forms used in the final fit:

> ‣ Single Higgs and HH (ggF and VBF) processes can be modelled with a **doublesided Crystal Ball** function.

observed (expected) limit is **4.1 (5.5)** x SM prediction. $\sigma_{HH}^{ggF+VBF}$ *HH*

Limits are set on κ_{λ} : $-1.5 < \kappa_{\lambda} < 6.7$ observed $-2.4 < \kappa_{\lambda} < 7.7$ expected.

Combination: $\mathcal{L} = 139$ fb⁻¹ **[ATLAS-CONF-2021-052](http://cdsweb.cern.ch/record/2786865)** Combination: $\mathscr{L} = 36$ fb⁻¹ [Phys. Lett. B 800 \(2020\) 135103](https://www.sciencedirect.com/science/article/pii/S0370269319308251?via=ihub) bb^{1} *V* final state : $\mathcal{L} = 139$ fb⁻¹ [Phys. Lett. B 801 \(2020\) 135145](https://www.sciencedirect.com/science/article/pii/S0370269319308676)

Additional results with $\mathscr{L} = 139$ fb⁻¹:

bbyy and *bbττ* final states:

Combination done with most of the analyses with $\mathcal{L} = 36$ fb⁻¹:

Combination

New full Run-2 combination with the two strongest channels.

μggF+*VBF HH* **observed (expected)** limit is **3.1 (3.1).**

Best limit observed up to now!

Combination

Combination done with Full Run-2 analyses with $\mathcal{L} = 139 \text{fb}^{-1}$

CERN published a **Yellow report** to provide estimated performances: [CERN-LPCC-2018-04](https://arxiv.org/abs/1902.00134) Since then we have improved our limits, far beyond the luminosity gain:

- \rightarrow *HH* → *bb*τ⁺τ[−] ([ATL-PHYS-PUB-2021-044\)](http://cdsweb.cern.ch/record/2798448); $PUB-2021-044$: \blacksquare
- $\blacktriangleright HH \rightarrow b\bar{b}\gamma\gamma$ ([ATL-PHYS-PUB-2022-001](http://cdsweb.cern.ch/record/2799146)). Combination (ATL-PHYS-PUB-2022-005)

A look into $\mathcal{F}_{\mathcal{A}}$, and $\mathcal{F}_{\mathcal{A}}$ is the 95% CL on the 95% CL on the HH production as a function of $\mathcal{F}_{\mathcal{A}}$

HHH*/*SM

Louis D'Eramo (NIU) - 19/05/2022 - Higgs self-coupling at ATLAS - LHCP2022 distribution are cut by the selection cuts, while for CMS a category of events with low values of *mHH* $\rm Higgs$ self-coupling at ATLAS - LHCP2022. $\rm Higgs$ second minimum, which is lower than $\rm Higgs$ tionis D'Eramo (NILI) - 19/05/2022 - Higgs selfcombined ATLAS and CMS results, while the blue and red lines correspond to the ATLAS and CMS

▶ Theoretical uncertainties on single Higgs

oh Luminosity phase of the LHC aims at collecting more than 10 **x** the ru decay channels studied and for their combination. The story is not over yet: the **High Luminosity** phase of the LHC aims at collecting more than **10 x** the runs 1-3 datasets.

of the different expected significances, as well as the combination, are shown in Table 57. A combined **combination** [\(ATL-PHYS-PUB-2022-005](http://cdsweb.cern.ch/record/2802127))

Thanks for your attention.

Investigating the Higgs potential

- The first piece of information came from the Higgs boson discovery:
	- ‣ Existence of a new particle with couplings according to prediction from EWSB;
	- ‣ First measurement of Higgs mass:

• The Fermi constant can be determined thanks to the muon lifetime measurement:

$$
m_H = 125.09 \text{ GeV} \leftrightarrow \mu = 88.45 \text{ GeV}
$$

$$
m_H
$$

$$
H
$$

$$
-
$$

$$
H
$$

[1010.0991](https://arxiv.org/pdf/1010.0991.pdf)

$$
\frac{1}{\tau_{\mu}} = \frac{G_F^2 m_{\mu}^2}{192\pi^3} (1 + \Delta q)
$$

 $G_F = 1.1663788(7) \times 10^{-5}$ GeV⁻² \hookrightarrow *1/* \sim 246.23 GeV ▶ From most precise MuLan experiment:

; potential parameters are in iked by \blacksquare Where the potential parameters are linked by :

$$
\nu = \sqrt{\frac{\mu^2}{\lambda}} \frac{1}{\sqrt{2}G_F}
$$

Relationship between the electron charge, the weak boson masses, and the Fermi Constant.

Louis D'Eramo (NIU) - 19/05/2022 - Higgs self-coupling at ATLAS - LHCP2022 $\frac{1}{10}$ (NIII) - 19/05/2022 - Higgs self-coupling at ATI AS - \sim to the final lifetime fits, the resulting time fits, the resulting time \sim

$$
\Rightarrow \nu \simeq 240.25 \text{ Ge}
$$

$$
\Rightarrow \lambda \sim 0.13
$$

The full expression of the Higgs potential is encoded with parameters *μ* and *λ* as:

$$
V(\phi^{\dagger}\phi) = -\mu^2\phi^{\dagger}\phi + \lambda(\phi^{\dagger}\phi)^2
$$

$$
V(H) \supset \left[\frac{\mu^2}{\frac{1}{2}m_H^2} H^2 + \frac{\lambda \nu H^3}{4} + \frac{\lambda}{4} H^4 \right]
$$

When linearising the Higgs field after the EWSB around the vacuum expected value *ν* one gets:

Investigating the Higgs potential

H H λ The full expression of the Higgs potential is encoded with parameters *μ* and *λ* as:

$$
V(\phi^{\dagger}\phi) = -\mu^2\phi^{\dagger}\phi + \mu^2\lambda(\phi^{\dagger}\phi)^2
$$

$$
V(H) \supset \left[\frac{\mu^2}{\frac{1}{2}m_H^2} H^2 \right] + \left[\frac{\lambda \nu H^3}{4} + \frac{\lambda}{4} H^4 \right]_{hhh \to hhh \to h
$$

Louis D'Eramo (NIU) - 19/05/2022 - Higgs self-coupling at ATLAS - LHCP2022

When linearising the Higgs field after the EWSB around the vacuum expected value *ν* one gets:

- ‣ Quartic interaction even rarer :
	- ▶ At tree level: very mild effect on XS and kinematic distributions.
	- ▶ At loop level: similar constraints obtained on XS, but stronger effect kinematics.
	- ‣ No strong constraints even with FCC 100 TeV collider

 $(\kappa_4 \in [-3, 13])$ or the CLIC 3000 GeV $(\kappa_4 \in [-5, 7])$.

Δκ4 Δκ4

Single Higgs constrains Single Higgs constr **Higgs constr**

Louis D'Eramo (NIU) - 19/05/2022 - Higgs self-coupling at ATLAS - LHCP2022 J auje D'Exempe (NIII) J 0/05/0000 LI

Exploring alternative scenarios *V* (*H*) ' $\overline{\mathbf{R}}$ >>>>>>: *m*²*H†^H* ⁺ (*H†H*)² ⁺ *^c*6 **a** sin p *H†H/f*) + *b* sin⁴(p *H†H/f*)*,* Nambu-Goldstone Higgs (*H†H*)² + ✏(*H†H*)² log *^H†^H ^µ*² *,* Coleman-Weinberg Higgs p $\left($ $\right)$

opportunted in potential in each school of the school is as follows: The measurement of the Higgs potential is answering the fundamental question of its nature. Several other models can show a non zero vacuum expected value with a different second order contribution:

23

Louis D'Eramo (NIU) - 19/05/2022 - Higgs self-coupling at ATLAS - LHCP2022

bbbb details

systematic relative uncertainties (expressed in percentage yield) in the total

Louis D'Eramo (NIU) - 19/05/2022 - Higgs self-coupling at ATLAS - LHCP2022 $F = \frac{1}{2}$ $F = \frac{1}{2}$ LOUIS D'ÉTATITO (INTU) - TRIUSIZUZZ - MIGGS \mathbf{S} significantly more stringent than \mathbf{S} results in the previous r r-coupling at ATLAS - LITURZUZZ region is estimated to the difference of ΔT and ΔS . I HCP2022 \cdots ggo oon oodping dirmative on tot alternative \cdots

Bbtautau details the di-τ system, calculated using the Missing Mass Calculator [87]; mbb is the invariant bb-mass; ΔRðτ; τÞ is $\sum_{i=1}^n \frac{1}{i!}$ T relative and relative and position of the Emission of the Temperature and the transverse of the transverse o plane as definitions as the state of the state of the A ^T −ϕτ² Þ=sinðϕτ¹ −ϕτ² Þ, B ¼ sinðϕτ¹ − ϕEmiss

$s_{\rm t}$ \sim $t_{\rm t}$ BDT input variables: **EDT** input variables: Higgs boson candidates; ΔpTđlep; τhad-vis $\mathcal{L}_{\mathcal{A}}$ is the difference in pT between the electron or muon and thad-vis $\mathcal{L}_{\mathcal{A}}$

^T Þ=

TABLE II. Observed and expected upper limits on the production cross-section cross-section times the HH μ ratio for NR H at 95% C.L., and the SM prediction. The SM prediction of the expected limit are expected limit are \sim Non resonant limits per channel:

Impact of overamatice an CM limit. \mathbf{H} and \mathbf{H} expected the SM expectation. Impact of systematics on SM limit:

[ATLAS-CONF-2021-016](http://cdsweb.cern.ch/record/2759683)

Bbyy details

Relative variation of the expected upper limit on the cross-section (%)

Fit: m_{HH} in different categories

- ‣ exactly 2 b-tagged jets.
- $H \rightarrow WW^* \rightarrow l\nu q\bar{q}$:
- $\blacktriangleright \geq 1$ high-quality lepton.
- \blacktriangleright \geq 2 additional jets, pair chosen with minimising Δ*R*(*jet*, *jet*)
- ‣ Kinematic fit to find the neutrino momentum assuming $m_H^{} = 125$ GeV

Selection

bblvq \bar{q} final state

γ γ This channel is aiming at reducing the contamination of $t\bar{t}$ events by requesting one W boson to decay leptonically:

$H \rightarrow b\bar{b}$:

observed (expected) limit is **300 (190)** times the SM prediction.

Results

$b\bar{b}l\nu q\bar{q}$ final state

l

Relative uncertainty on the signal yield scale factor

Comparison to CMS

 \overline{a}

