Precision acd measurements

Davide Zuliani University and INFN of Padova

On behalf of the LHCb Collaboration

INFŃ

The 10th Annual Large Hadron Collider Physics Conference May 16-21, 2022

PRECISION QCD MEASUREMENTS WITH LHCB

DAVIDE ZULIANI

The LHCb detector

Latest QCD analyses

- Measurement of prompt charged particles production at $\sqrt{s} = 13 \,\mathrm{TeV}$
- Measurement of $b\bar{b}$ and $c\bar{c}$ -dijet differential cross-sections in the forward region of pp collisions at $\sqrt{s} = 13$ TeV
- Study of Z bosons produced in association with charm in the forward region
- Evidence for modification of b quark hadronization in high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV
- Nuclear modification factor of neutral pions in the forward and backward regions of pPb collisions

Conclusions

The LHCb detector

- _HCb is a forward spectrometer originally designed to study b- and c-hadron physics \bullet

- Impact Parameter resolution $\sigma_{IP} = (15 + 29/p_T) \,\mu$ m, lifetime resolution of $\sigma_{\tau} = 0.2 \, \text{ps}$
- Muon ID efficiency: 97% with 1-3% $\mu \rightarrow \pi$ misidentification
- Electron ID efficiency: 90% with 5% $h \rightarrow e$ misidentification

DAVIDE ZULIANI

PRECISION QCD MEASUREMENTS WITH LHCB

hadron PID

lumi counters

HCAL

ECAL tracking

The LHCb detector and QCD

LHC 13 TeV Kinematics

DAVIDE ZULIANI

Parton Distribution Functions (PDFs) are a fundamental input for LHC experiments

Must be determined from experiments!

LHCb allows to test perturbative QCD (pQCD) predictions in a phase space $(2 < \eta < 5)$ complementary to other experiments

PDFs and proton structure can be studied in two different kinematic regions:

At high x values, comparison with other experiments At low x values and high Q^2 , **unexplored by other** experiments

• Also, at LHCb both **pp collisions** and **heavy ions**!

3

Prompt-charged particles production

- Soft QCD processes description is based of phenomenological models
- Model parameters determination relies on experiments at particle accelerators
- Prompt long-lived charged particles are a suitable proxy for light hadrons production
- In this analysis a double-differential cross section measurement is performed

DAVIDE ZULIANI

PRECISION QCD MEASUREMENTS WITH LHCB

- $\sqrt{s} = 13$ TeV data from 2015 ($\mathscr{L} = 5.4 \text{ nb}^{-1}$)
- Important to access efficiencies and correction to match data

- Several background contributions:

DAVIDE ZULIANI

PRECISION QCD MEASUREMENTS WITH LHCB

bb- and cc-dijet differential cross-sections

- The main idea is to study the inclusive decay of high mass resonances in $bar{b}$ and $car{c}$ jet pairs
- It is possible to study lower invariant masses w.r.t. ATLAS & CMS
- QCD background has an important role in this analysis
- Background from $Z \rightarrow b\bar{b}$ ($c\bar{c}$) is also considered
- Directly trigger on di-jets
- Exploit good LHCb jet tagging performances

DAVIDE ZULIANI

PRECISION QCD MEASUREMENTS WITH LHCB

- A first study has been performed to measure bb and $c\bar{c}$ differential cross sections with 2016 data
- Fit to combination of two MVA discriminators (BDTs) t_0 and t_1 to get flavour composition:

$$t_0 = \mathsf{BDT}_{bc|q}(j_0) + \mathsf{BDT}_{bc|q}(j_1)$$
$$t_1 = \mathsf{BDT}_{b|c}(j_0) + \mathsf{BDT}_{b|c}(j_1)$$

bb- and cc-dijet differential cross-sections

- Differential cross sections are measured and compared with simulations from Pythia and aMC@NLO
- Results are computed for different di-jets kinematic variables:

leading jet p_T leading jet η

di-jet invariant mass m_{ii}

 $\Delta y^* = 1/2 |y_0 - y_1|$

- The cross section ratios $R = \sigma_{b\bar{b}} / \sigma_{c\bar{c}}$ are also computed as functions of kinematic variables
- Results are compatible with expectations
- This is the first inclusive, direct measurement of $c\bar{c}$ differential cross section at a hadron collider
- A similar approach will include high mass resonances (such as the Higgs boson) decaying to *bb* and $c\bar{c}$ di-jets

DAVIDE ZULIANI

- Proton charm content can be:
- So far, IC component in the proton has not been excluded

DAVIDE ZULIANI

PRECISION QCD MEASUREMENTS WITH LHCB

Therefore, the idea is to study high-x charm quarks to search for IC

The Z + c-jet production in the forward region is sensitive to the high x and high Q^2 intrinsic charm component \rightarrow **feasible at LHCb!**

Z+c-jet production

- (Run II condition), requiring a $Z \rightarrow \mu\mu$ with at least one jet
- are fitted to obtain the flavour components

DAVIDE ZULIANI

PRECISION QCD MEASUREMENTS WITH LHCB

Modification of b quark hadronization

- (arb.) Measurements of B mesons at colliders offer unique probes of the hadronization $pp \sqrt{s} = 13 \text{ TeV}$ 0.04 LHCb 5.4 fb⁻ Entries process by which single quarks evolve into color-neutral hadrons B^0 event VELO tracks 0.03 B^0 event back tracks The ratio f_s/f_d has a dependence on the collision center-of-mass energy and on NoBias VELO tracks the *B* meson $p_{\rm T}$ 0.02 NoBias back tracks Different hadronization mechanisms can occur (e.g. "quark coalescence"), not 0.01 just fragmentation At LHCb this is studied by measuring the ratio of B_s^0 to B^0 50 100150cross sections, using Run 2 data MeV/c² The multiplicity metrics used in this analysis are the total $pp \sqrt{s} = 13 \text{ TeV}$ LHCb LHCb 140F 5.4 fb⁻¹ 5.4 fb⁻¹ number of charged tracks reconstructed in the VELO 120 $100 \le N_{\text{tracks}}^{\text{VELO}} \le 125$ Background — Total fit Data S detector $B^0_s \rightarrow J/\psi \pi^+\pi^-$ Candidates/($B^0 \rightarrow J/\psi \pi^+ \pi^-$ 10060 $30 < N_{\text{tracks}}^{\text{VELO}} \le 40$ The high-multiplicity data samples recall the 60 environment of heavy-ions collisions $20 \vdash a$ 20⊢ A fit to the invariant mass of $J/\psi \pi^+\pi^-$ is performed to 5300 5200 5250 5350 5400 5250 5300 5350 5450 5200 $M_{J/\psi\pi^+\pi^-}$ [MeV/c²]

- extract the ratio of B_s^0 to B^0 yields

DAVIDE ZULIANI

PRECISION QCD MEASUREMENTS WITH LHCB

10

Modification of b quark hadronization

- The measurement is performed with respect to multiplicity and transverse momentum p_{T}
- LHCb results are compared with cross sections ratios measured at e^+e^- collisions

- This behaviors is expected in a scenario where low- $p_{\rm T}b$ quarks recombine with s quarks produced in highmultiplicity collisions
- Measurements are qualitatively consistent with quark coalescence as and additional hadronization mechanism

DAVIDE ZULIANI

- Good agreement with data is found at low multiplicity
- For high multiplicity, B_s^0 mesons productions is enhanced relative to B^0 mesons
- No significant dependence is observed in the backward region

11

Nuclear modification factor of neutral pions

- Neutral pion production is an important probe of nuclear effects in heavy ion collisions
- In proton-lead (pPb) collisions, π^0 production is particularly sensitive to cold nuclear matter (CNM) effects on the initial state of the bound nucleons in the colliding nucleus
- This analysis measures the nuclear modification factor of π^0 meson production in pPb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV

- Measurements of π^0 production in pPb collisions at forward and backward rapidities with the LHCb detector can provide constraints on nuclear PDFs
 - Typical x between 10^{-6} and 10^{-1}
- The measurement is performed for
 - $1.5 < p_{\rm T} < 10 \,{\rm GeV}$
 - $2.5 < \eta_{\rm CM} < 3.5$ and $-4.0 < \eta_{\rm CM} < -3.0$
- At least 1 track in VELO and π^0 reconstructed as pairs of photons

DAVIDE ZULIANI

Nuclear modification factor of neutral pions

- The main systematic error comes from the interpolation between pp cross-sections and the π^0 fit model
 - Total uncertainty: 1.4 % 9.1 %
- The backward measurement shows the first evidence of enhanced π^0 production in proton-ion collisions at LHC
- **Enhanced production for backward rapidities for** $2 < p_{\rm T} < 4 \,{\rm GeV}$
- Results are compatible with charged-particle nuclear modification factor at $\sqrt{s_{\rm NN}} = 5 \,{\rm TeV}$
 - Lower enhancement for backward rapidities
 - Studies of proton and heavier unflavored mesons could help in finding an explanation!

Conclusions

- LHCb can be considered as a General Purpose Forward Detector
 - Not only flavour physics, QCD and pQCD are tested in a \bullet region complementary to ATLAS and CMS
 - Interesting environment to test PDFs and proton structure

• A lot of interesting results (these are just the latest!!)

- Checks on light hadron production using prompt-charged particles production
- Measurement of differential heavy flavour di-jets cross sections
- Intrinsic charm component in proton content at high rapidities using Z + c – jet events
- Possible different hadronization process in b quark ${ \bullet }$ production
- Study of nuclear modification factor for π^0

DAVIDE ZULIANI

Waiting for the next run(s) to come, stay tuned!

Thank you for your attention!

Questions?

