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ABSTRACT

Controlling non-linear effects in the transverse dynamics of charged particle beams in circular ac-
celerators opens new possibilities for controlling some of the beam properties. Beam splitting by
crossing a stable 1D non-linear resonance is part of the routine operation of the CERN Proton Syn-
chrotron. The beam undergoes trapping and transport inside stable islands created in the horizontal
plane to allow multi-turn extraction towards the Super Proton Synchrotron, where the beam is used
for fixed-target experiments. This process acts only on the horizontal beam emittance, inducing a re-
duction of its initial value. In this paper, we present a generalisation of this approach, in which both
transverse planes are affected by the proposed technique. We will discuss in detail how to manipu-
late the transverse emittances by means of a controlled crossing of a 2D non-linear resonance. The
novel technique will be presented by discussing the theoretical analysis of a Hamiltonian model, as
well as simulating the performance of the proposed manipulation using a more realistic non-linear
symplectic map.

1 Introduction

In circular particle accelerators, the beam dynamics is governed by a number of invariants. This is the case of transverse
emittances, which are preserved under the condition that radiation effects can be neglected, which is often the case for
hadron accelerators at intermediate beam energy, and time-dependent effects are absent. The very existence of these
invariants is related to the existence of integrals of motion of the Hamiltonian character of the beam dynamics.

This picture, however, has to be completely reviewed whenever non-linear resonances and time-dependent effects are
introduced in the system. In this case, the invariance of the transverse emittances is broken, which implies a potential
harmful impact on the accelerator performance due to the diffusion of orbits in phase space [1, 2, 3, 4].

Perturbative theory [5] has shown that for quasi-integrable systems one can define quasi-invariant quantities whose
value changes by a small amount even after extremely long times. In the presence of non-linear effects, non-linear
invariants can be found, which represent the generalisation of the Courant-Snyder invariant [6] for the case of linear
dynamics. In this respect, the theory of Normal Forms (see, e.g. [7] for an overview) provides exactly the tools to
evaluate, among other observables, these invariants for a non-linear symplectic map near an elliptic fixed point.
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Indeed, the lack of invariance for the transverse emittances implies a degraded accelerator performance in terms, e.g.
of emittance growth and particle loss. There are, however, also some advantages that we would like to highlight and
explore. One could devise appropriate beam manipulations in which the transverse emittances are acted upon in a
controlled way.

In recent years, the proposal of the so-called Multi-Turn Extraction (MTE) at the CERN Proton Synchrotron (PS) [8,
9, 10, 11] and its successful operational implementation [12, 13, 14, 15] opened the way to a novel attitude towards
applications of non-linear beam dynamics. The principle of MTE relies on the adiabatic crossing of a non-linear
resonance in the horizontal plane, with the goal to trap particles inside the stable islands of the phase space and then
transport them towards high amplitudes prior to extraction without any beam loss. This manipulation generates a beam
structure that extends beyond the length of the PS circumference, which is an essential feature of MTE. However, the
beam splitting, achieved when particles are trapped inside the stable islands, induces a reduction of the horizontal
emittance only, i.e. the emittance of each of the five generated beamlets is smaller than that of the initial single-
Gaussian beam, which is related to the 1D character of the resonance used.

We would like to extend this approach by considering the adiabatic crossing of a non-linear coupled resonance, which
should provide a control of the emittances in the horizontal and vertical planes. It is worth mentioning that an in-
termediate step in this direction is performed by crossing the coupling resonance in the presence of linear coupling.
In this case, it is well known [16, 17, 18] that the transverse emittances can be exchanged between the two planes.
Furthermore, a recent paper showed how the process of resonance crossing in the presence of linear coupling can be
best understood by means of the Hamiltonian theory [19].

Crossing a non-linear 2D resonance provides extended capabilities in terms of control and manipulation of transverse
emittances and could be pursued both from the theoretical and experimental point of view. The source of inspiration
is the analysis of the impact of crossing the Walkinshaw, i.e. ωx − 2ωy = 0, resonance [20, 21], and for the 2ωx − ωy
resonance [22]. However, the focus of the analysis performed in Ref. [20] was to estimate the undesired emittance
growth due to the resonance crossing, whereas our aim is to intentionally manipulate the transverse emittances for
specific applications.

In this paper, we propose a general approach to emittance sharing based on adiabatic invariance and separatrix-crossing
theory. If the linear frequencies are slowly modulated so to cross selected resonances, the area of the phase space
enclosed by the separatrix changes and particles can jump between different phase-space regions, which results in a
change of their adiabatic invariant. The statistical analyses show that, starting from a Gaussian distribution of initial
conditions with emittances εx,i, εy,i, at the end of the resonance crossing process the emittances are given by εx,f ∝ εy,i
and εy,f ∝ εx,i, with factors depending on the order of the crossed resonance.

The approach presented in this paper has been assessed by means of a detailed analysis of the phase-space topology of
simple Hamiltonian systems, which is the basis for applying the adiabatic theory. The technique is then probed using
more realistic map models. Extensive numerical simulations have been performed to determine the dependence of the
results on the various system parameters.

The structure of the paper is the following: in Section 2 the models are introduced, and the phase-space topology of
the Hamiltonians described is studied in detail, including considerations on some specific low-order resonances, which
are useful for applications. The results of numerical simulations are presented and discussed in Section 3, while some
conclusions are drawn in Section 4. Moreover, a discussion on which type of magnet excites a given resonance is
given in Appendix A, while a short digression on the motion in the resonant condition is reported in Appendix B.

2 Theoretical framework

2.1 General considerations

The starting point is the choice of the model used for our analyses, which is the Hénon-like [23] 4D symplectic map
that describes the transverse betatron motion in a FODO cell with non-linearities [7]. Such a map, written in Courant-
Snyder normalised co-ordinates, is composed of rotations of frequencies ωx and ωy and a 2(r + 1)-polar kick, i.e.

x′

p′x

y′

p′y


= R(ωx, ωy)



x

px +
√
βx Re

[(
kr + ijr

r!

)(√
βx x+ i

√
βy y

)r]
y

py −
√
βy Im

[(
kr + ijr

r!

)(√
βx x+ i

√
βy y

)r]


, (1)
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where R(ω) is a 2D rotation matrix and R(ωx, ωy) = diag(R(ωx), R(ωy)), while kr and jr are the normal and the
skew strength of the 2(r + 1)-polar magnet, respectively. They are obtained by considering the following expression
for the transverse magnetic field

By + iBx = Bρ

M∑
r=1

(kr + ijr)
(x+ iy)

r

r!
, (2)

where Bρ is the beam magnetic rigidity.

In certain situations, it is interesting to introduce an explicit amplitude-detuning effect in the map of Eq. (1) that
models the case where a magnetic multipole excites the resonance, whereas the effect of other magnetic elements,
not modelled as kicks in the map, is to generate an amplitude-dependent detuning. In this case, the rotation matrix
in Eq. (1) is replaced by a rotation matrix R(ωx + αxxJx + αxyJy, ωy + αxyJx + αyyJy), where the linear actions
Jx = (x2 + p2x)/2, and Jy = (y2 + p2y)/2 have been used, which defines an amplitude-dependent 4D rotation.

We say that ωx, ωy satisfy a (m, n) difference resonance condition if the following holds

mωx − nωy = 2πk m, n ∈ N, k ∈ Z , (3)

and the resonance order is given by m+ n.

Normal Form theory applied to the map of Eq. (1) close to a (m, n) resonance condition allows a resonant Normal
Form to be built, from which a quasi-resonant interpolating Hamiltonian can be derived [7]. The analysis focuses on
the resonances of orders 3 and 4 that, at leading order in the actions, are possible to excite using common magnetic
elements (the details about which magnet type can excite a given resonance are given in Appendix A) according to the
following scheme

• (1, 2) resonance: normal sextupole (j2 = 0);
• (2, 1) resonance: skew sextupole (k2 = 0);
• (3, 1) resonance: skew octupole (k3 = 0);
• (1, 3) resonance: skew octupole (k3 = 0).

We remark that the Normal Form approach provides the resonant terms due to a given non-linearity as perturbations
in the actions Jx and Jy , instead of using the resonance strength as the perturbation parameter.

We also remark that the correspondence between magnet type and resonance is valid for the case of a single kick, i.e.
for a map of the form of Eq. (1). In the case of a system with two non-linear kicks, the fourth-order resonances can
also be excited by using a combination of normal and skew sextupoles.

2.2 Phase-space topology of the Hamiltonian model

The Normal Form Hamiltonian in the resonant case, written in action-angle variables reads

H(φx, Jx, φy, Jy) = ωxJx + ωyJy + αxxJ
2
x + 2αxyJxJy + αyyJ

2
y +GJm/2x Jn/2y cos(mφx − nφy) , (4)

where the amplitude-detuning parameters αxx, αxy , αyy have been introduced and the quasi-resonance condition is
given by mωx − nωy ≈ 0. The resonance-strength parameter G is directly proportional to the magnet strength kr or
jr, as one can verify by computing the resonant Normal Form Hamiltonian for map (1) using, e.g. software presented
in Ref. [24].

The canonical transformation (see [25, p. 410])

Jx = mJ1 , φ1 = mφx − nφy ,
Jy = J2 − nJ1 , φ2 = φy ,

(5)

introduces the fast and slow phases and casts the Hamiltonian into the form

H(φ1, J1) = δJ1 + α12J1J2 + α11J
2
1 +G(mJ1)

m
2 (J2 − nJ1)

n
2 cosφ1 +

[
ωyJ2 + α22J

2
2

]
, (6)

where δ = mωx − nωy is the resonance-distance parameter, and the new constants α11, α12, and α22 are functions
of αxx, αxy and αyy according to

α11 = m2αxx − 2mnαxy + n2αyy ,

α12 = 2(mαxy − nαyy) ,

α22 = αyy .

(7)

3
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We remark that the term in square brackets of Eq. (6) can be discarded as it is a function of J2 only, which is an integral
of motion since ∂H/∂φ2 = 0. Hence, it represents a constant additive term of the Hamiltonian. Furthermore, we
remark that the term α12 induces a shift in the location of the resonance crossing, which occurs for δ + α12J2 = 0,
thus making the resonance-crossing process dependent on the value of J2 ( a time-independent quantity). We remark
also that the condition Jy > 0 constrains the motion within the circle J1 < J2/n, which we call the allowed circle.
We remark that the existence of the allowed circle is a consequence of having chosen a difference resonance, i.e. with
the minus sign in Eq. (3). Sum resonances do not fulfil this property that is essential for emittance exchange.

To study the phase-space structure, it is convenient to express Eq. (6) using the rescaled variable J̃1 = J1/J2, that
gives the Hamiltonian

H̃(φ1, J̃1) =
δ

GJ
m+n−2

2
2

J̃1 +
α12

GJ
m+n−4

2
2

J̃1 +
α11

GJ
m+n−6

2
2

J̃2
1 + (mJ̃1)

m
2 (1− nJ̃1)

n
2 cosφ1 . (8)

It appears that the resonance-crossing process is actually governed by the parameter

η =
δ

GJ
m+n−2

2
2

. (9)

Therefore, there is an interplay between the distance from resonance, δ, the multipole strength, proportional to G, and

the invariant action J2. We also remark that the coefficients α12, α11 are rescaled by the quantity 1/(GJ
m+n−6

2
2 ).

The equations of motion for the Hamiltonian of Eq. (6) are

φ̇1 =
∂H
∂J1

= δ + 2α11J1 + α12J2 +
m

2
G(mJ1)

m
2 −1(J2 − nJ1)

n
2−1

[
mJ2 − n(m+ n)J1

]
cosφ1 ,

J̇1 = − ∂H
∂φ1

= G (mJ1)
m
2 (J2 − nJ1)

n
2 sinφ1 ,

(10)

and the phase-space topology that is originated by them depends both on m and n, although some features do not.

The knowledge about the existence of the fixed points of Eq. (10) and their stability is essential for understanding
the phase-space topology. The solutions of the equation ∂H/∂φ1 = 0 that satisfy the condition J2 − nJ1 = 0, are
particularly relevant for our study, since they lie on the border of the allowed circle, and for this reason, these solutions
have to be unstable fixed points and are computed by solving

cosφ1 =
2(δ + 2α11J1 + α12J2)

Gmm/2 [n2J1 −m(J2 − nJ1)] J
m
2 −1

1 (J2 − nJ1)
n
2−1

. (11)

When imposing the condition J1 − nJ2 = 0, the r.h.s. of Eq. (11) is not singular only if n = 1 or n = 2 (the exactly
resonant case will be discussed later).

The separatrix that passes through the unstable fixed points on the border of the allowed circle is called coupling arc
(as in Ref. [20]), and is found by solving the equation

H(φ1, J1) = δ
J2
n

+
(α11

n
+
α12

n

)
J2
2 , (12)

which can be rewritten as

nδ + α11n
2(J2 + nJ1) + nα12J2 = Gmm/2J

m/2
1 (J2 − nJ1)

n
2−1 cosφ1 . (13)

For n = 1, the term (J2 − nJ1)1/2 appears in the numerator of Eq. (11) with a positive power, and when J1 = J2, i.e.
on the allowed circle, cosφ1 = 0, so φ1 = ±π/2. With no amplitude detuning, the equation of the coupling arc reads

δ(J2 − J1)1/2 = Gmm/2J
m/2
1 cosφ1 , (14)

and the existence of solutions requires δ cosφ1 > 0. If δ > 0 the coupling arc lies in the right hemicircle, while for
δ < 0 it lies in the left one. Furthermore, for large values of |δ| the coupling arc is very close to the allowed circle, as
it can be seen from the equation in the limit |δ| → +∞.

For n = 2, the term (J2 − 2J1) disappears from the denominator of Eq. (11), and the coupling-arc intersections are
found for

cosφ1 = 2
m
2 −1

δ + (α11 + α12)J2

Gmm/2J
m/2
2

, (15)

4
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which exist as long as | cosφ1| ≤ 1, and they do not depend on J1. In this case, in the absence of amplitude detuning,
we obtain a simple expression for the coupling arc

J1 =

(
δ

2Gmm/2 cosφ1

)2/m

. (16)

Once the Hamiltonian of Eq. (6) is recast in Cartesian coordinates (X =
√

2J1 cosφ1, Y =
√

2J1 sinφ1), one can
observe that the other fixed points, which could be associated to the presence of other separatrices, can be found only
on the X axis due to symmetry reasons.

First of all, we remark that the origin (X = 0, Y = 0) is a fixed point only if m > 1. In this case, we can study the
isoenergetic surface of the origin from the equationH(φ1, J1) = 0, i.e.

J1(δ + α11J1 + α12J2 +Gmm/2J
m/2−1
1 (J2 − nJ1)n/2 cosφ1) = 0 , (17)

which is solved for J1 = 0 or for

δ + α12J2 = −α11J1 −Gmm/2J
m/2−1
1 (J2 − nJ1)n/2 cosφ1 . (18)

For m = 2, we can solve analytically the case without amplitude-detuning terms, as the equation becomes

δ = −2G(J2 − nJ1)n/2 cosφ1 . (19)

A solution J1(φ1) that passes through the origin when acos
(
δ/(2GJ

n/2
2 )

)
exists, i.e. for |δ| ≤ 2GJ

n/2
2 . The solution

lies in the positive-X domain if δ < 0, and in the negative one if δ > 0. For m > 2, the origin is a genuine fixed point
and the Hamiltonian can be linearised around the origin using the coordinates X , Y . One obtains a simple rotator
Hamiltonian, i.e.Hlin = δ(X2 + Y 2)/2, which shows that the origin is an elliptic fixed point.

Finally, additional fixed points might exist on the axis Y = 0, and they should be solutions of ∂H/∂X = 0, having
set Y = 0. The equation reads

δ + α11X
2 + α12J2 +

G

2

(m
2

)m
2
(
J2 −

n

2
X2
)n

2−1
Xm−2[2mJ2 − 2− n(m+ n)X2

]
= 0 . (20)

The number of real solutions of Eq. (20) that lie inside the allowed circle depends on the degree of the resulting
polynomial in X , which is determined by the order of the resonance condition. Therefore, the topology of the phase
space of higher-order resonances can be very complicated, and its detail is a crucial element for the feasibility of
emittance sharing. A specialised discussion on fixed points on the Y = 0 axis is carried out for each resonance taken
into consideration in our study in Section 2.3.

We remark that when δ+α12J2 = 0, i.e. the resonance condition is met, and α11 = 0, nontrivial solutions of Eq. (20)
are given by

2mJ2 − n(m+ n)X2 = 0 , or X = ±
√

2mJ2
n(m+ n)

. (21)

The two symmetrical solutions are both stable fixed points. For the origin, the previous discussion holds, having set
δ = 0. Moreover, the coupling arc equation at resonance becomes cosφ1 = 0, and the coupling arc is reduced to
the diameter of the allowed circle passing through φ1 = ±π/2, for any value of m and n. Separatrices that are not
coupling arcs approximate the behaviour of a coupling arc close to the resonance (see, e.g. the top-right phase-space
portrait of Fig. 4).

In general, at resonance, the allowed circle is symmetrically divided in two regions. Hence, whatever the resonance is
crossed, if α11 = 0 there is always a neighbourhood of the resonant condition δ+α12J2 = 0 where the phase space is
divided into two regions. This is the ideal condition to perform emittance sharing, as it will be shown in Section 2.4.

In the following, we analyse some resonances that can be excited using magnetic elements commonly installed in
particle accelerators.

2.3 Motion close to low-order resonances

We now compute the most important features of the phase space of the resonant Normal Form Hamiltonian for low-
order resonances excited by sextupole or octupole magnets. The theory of emittance sharing relies on separatrix
crossing, therefore we need to know which fixed points exist in the phase space, their stability, and where separatrices
exist. In general, we will search for unstable fixed points on the allowed circle, which give rise to a coupling arc, for
stable fixed points on φ1 = 0 or φ1 = π, and for possible extra separatrices.

5
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δ = 0.5, α11 = 0 δ = 0.25, α11 = 0.5

−1 −0.5 0 0.5 1

X

−1

−0.5

0

0.5

1

Y

−1 −0.5 0 0.5 1

X

−1

−0.5

0

0.5

1

Y

Figure 1: Phase space portrait of Eq. (22) (resonance (1, 2)) with G = J2 = 1, α12 = 0. The red line delimits the
allowed circle, the blue line is the coupling arc.

2.3.1 Resonance (1, 2)

Resonance (1, 2) Hamiltonian in (φ1, J1) coordinates, corresponding to the resonant Normal Form of a Hénon-like
map with a normal sextupolar kick, reads [20, 21],

H(φ1, J1) = δJ1 + α11J
2
1 + α12J1J2 +GJ

1/2
1 (J2 − 2J1) cosφ1 . (22)

The phase space features an allowed circle given by J1 < J2/2, and a coupling arc. From Eq. (11) one obtains the
unstable fixed points as solutions of

cosφ =
δ + (α11 + α12)J2

G
√

2J2
(23)

and a coupling arc (see Eq. (13)) that, expressed in Cartesian coordinates, reads

4α11(X2 + Y 2)− G√
2
X + 2(δ + α12J2 + 2α11J2) = 0 . (24)

This represents a circumference that crosses the allowed circle when∣∣∣∣δ + (α11 + α12)J2

G
√

2J2

∣∣∣∣ ≤ 1 (25)

dividing it in two regions. When α11 = 0, the coupling arc reduces to the straight line

X =

√
2(δ + α12J2)

2G
(26)

that sweeps through the phase space if δ is varied, defining two equal regions when δ = −α12J2,. The equation of the
stable fixed points for φ1 = 0 or φ1 = π reads

(δ + 2α11J1 + α12J2)J
1/2
1 ±G(J2 − 6J1) = 0 , (27)

and we obtain two real solutions inside the allowed circle, one for each side of the coupling arc. Therefore, the phase
space is always divided into no more than two regions. Some phase space portraits are shown in Fig. 1.

2.3.2 Resonance (2, 1)

The starting point is the Hénon-like 4D map with a skew sextupole kick and the resonant Normal Form provides an
interpolating Hamiltonian up to order 3 of the form

H(φ1, J1) = δJ1 + α11J
2
1 + α12J1J2 + 2GJ1

√
J2 − J1 cosφ1 , (28)

and the motion is limited to the allowed circle J1 < J2. The fixed points on the allowed circle are given by cosφ1 = 0,
i.e. φ1 = ±π/2, whereas the expression of the coupling arc is obtained by solving H(J1, φ1) − H(J1 = J2, φ1 =
±π/2), i.e.

(δ + α11(J2 + J1) + α12J2)
√
J2 − J1 = 2GJ1 cosφ1 , (29)

6
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−1.5 −0.75 0 0.75 1.5

X

−1.5

−0.75

0

0.75

1.5

Y

Figure 2: Phase space portrait of Eq. (28) (resonance (2, 1)) with δ = G = J2 = 1, α11 = α12 = 0. The red line
delimits the allowed circle, the blue line is the coupling arc.

which is easily solved when α11 = 0:

J1(φ1) = −
δ̂2 − δ̂

√
16G2J2 cos (φ1)

2
+ δ̂2

8G2 cos (φ1)
2 with δ̂ = δ + α12J2 . (30)

We remark that if δ̂ > 0 we must have cosφ1 > 0, i.e. the coupling arc lies in the positive domain of X , whereas
for δ̂ < 0 in the negative one. Moreover, for δ̂ = 0 the coupling arc reduces to a line that evenly divides the allowed
circle. On the other hand, we can look for solutions when φ1 = 0 and φ1 = π, and when α11 = 0, Eq. (30) reads

δ̂
√
J2 − J1 ±G(2J2 − 3J1) = 0 . (31)

Assuming G > 0, we need to impose conditions on the existence of the solutions before squaring: for φ1 = 0 and
δ̂ > 0, the condition 2J2/3 < J1 < J2 holds, while for δ̂ < 0 we require J1 < 2J2/3. For φ1 = π the conditions are
reversed. Finally, we obtain the solutions

J±1 =
2

3
J2 ±

δ̂

18G2

(√
12G2J2 + δ̂2 ∓ δ̂

)
. (32)

No matter the sign, the quantity inside the brackets is always positive, which implies J+
1 > 2J2/3 if δ̂ > 0 and

J+
1 < 2J2/3 if δ̂ < 0, and this solution is acceptable only for φ1 = 0. Conversely, J−1 > 2J2/3 if δ̂ < 0 and
J−1 < 2J2/3 if δ̂ > 0. This solution is only acceptable when φ1 = π. Finally, we always have a solution in the
positive X semi-axis and one in the negative one, as long as the solution for J1 inside the allowed circle, but, as
J+
1 → J2 when δ̂ →∞, and J−1 → J2 as δ̂ → −∞, this never occurs.

Let us study the trajectory of a point whose initial condition is at the origin. We have to solve the equationH(φ1, J1) =
0, i.e.

J1

(
δ + 2G

√
J2 − J1 cosφ1

)
= 0 , (33)

and we have the solutions J1 = 0 and δ + 2G
√
J2 − J1 cosφ1 = 0. The latter can only be solved for cosφ1 < 0 if

δ > 0, and cosφ1 > 0 if δ < 0. Therefore, there is only one trajectory passing through the origin: it does not alter
the topology of the phase space introducing new islands (see Fig. 2), and the allowed circle is always divided into two
regions, thus making the emittance sharing possible.

We remark that in Fig. 2 and in general in the phase-space portraits of the Hamiltonian functions discussed in this
paper, we used large values of δ and J2, compared to those chosen for the numerical simulations that will be later
discussed. This is justified by the fact that the Hamiltonian models depend on the unique parameter η = δ/(G

√
J2),

for third order resonances, and η = δ/(GJ2), for fourth-order ones (see Eq. 9), hence it is perfectly justified to choose
conditions with η ∼ 1.

7
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0

J2

12

J2

3

−5 −1 0 1 5

J1

δ/(GJ2)

φ1 = 0
φ1 = π

Figure 3: Fixed points of Eq. (34) (resonance (1, 3)) with α11 = α12 = 0 for φ1 = 0 (solid line) and φ1 = π (dashed
line) as a function of δ.

2.3.3 Resonance (1, 3)

For the (1, 3) resonance, which is excited using a skew octupole, we have the quasi-resonant Hamiltonian

H(φ1, J1) = δJ1 + α12J1J2 + α11J
2
1 +GJ

1/2
1 (J2 − 3J1)3/2 cosφ1 . (34)

If we set α11 = α12 = 0, which is the case when the resonance is excited without sextupolar kicks, we have fixed
points for φ1 = 0 or for φ1 = π that are the solutions of

∂H
∂J1

∣∣∣∣
φ1=0,π

= δ ± G

2

(
J
−1/2
1 (J2 − 3J1)3/2 − 9J

1/2
1 (J2 − 3J1)1/2

)
= 0 , (35)

that gives

δJ
1/2
1 = ±G

2

(
9J1(J2 − 3J1)1/2 − J1/2

1 (J2 − 3J1)3/2
)
. (36)

The r.h.s. of Eq. 36 is positive when ±G
(
J1 − J2

12

)
> 0, and we will compare it to the sign of δ. Let us choose G > 0.

For φ1 = 0, we have solutions for δ > 0 and J2/12 < J1 < J2/3, or for δ < 0 and 0 < J1 < J2/12. For φ = π the
conditions are reversed. By squaring the equation, which gives a cubic polynomial, we compute its roots, taking into
account all conditions. The solutions are given in Fig. 3. There are the following possibilities:

• if δ/(GJ2) > 1, there exists only one stable fixed point for φ1 = π that tends to the origin when δ/(GJ2)�
1;

• if 0 < δ/(GJ2) < 1, there are two fixed points on φ1 = 0 and one on φπ . The inner solution on φ1 = 0 (J+
1 )

and the solution on φ1 = π (J−1 ) are stable, while the outer fixed point on φ1 = 0 is unstable, and generates
a separatrix. The phase space is divided into three regions: S± around J±1 , and Ŝ that is the area between
the separatrix which crosses Ĵ1 and the allowed circle. Portraits with δ/(GJ2) = 0.1 and δ/(GJ2) = 0.8 are
shown in Fig. 4;

• if δ = 0, two fixed points are present in J2/12, at φ1 = 0 and φ1 = π. The separatrix degenerates to the
diameter of the allowed circle.

• if δ < 0, one has the same situation as for δ > 0, but exchanging φ1 = 0 and φ1 = π.

2.3.4 Resonance (3, 1)

From the general properties stated before, the allowed circle is J1 < J2 and the coupling arc intersects the border of
the allowed circle at φ1 = ±π/2. Then, we have the origin that, being m > 2, is a stable fixed point.

For what concerns the fixed points on the X axis, we initially consider the case with α11 = α12 = 0. For φ1 = 0 or
φ1 = π, the equation ∂H/∂J1 = 0 reads

2δ
√
J2 − J1 = ±3

√
3GJ

1/2
1 (4J1 − 3J2) . (37)
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Figure 4: Phase space of Eq. (34) (resonance (1, 3)) for different values of δ with G = J2 = 1, α11 = α12 = 0. The
red line delimits the allowed circle, while the blue line is the separatrix. In the bottom-left plot, the extended region
on the left is S+, the one inside the separatrix on the right is S− while the small region between the separatrix and the
allowed circle is Ŝ.

Assuming G > 0, for δ > 0 we can accept solutions on φ1 = 0 for J1 < 3J2/4 and on φ1 = π for 3J2/3 < J1 < J2,
and the opposite for δ < 0. By squaring, we obtain the cubic equation

4δ2(J2 − J1) = 27G2J1(4J1 − 3J2)2 (38)

whose roots can be studied by rewriting the equation as

4δ2

27G2
=
J1(4J1 − 3J2)2

J2 − J1
= f

(
J1
J2

)
, (39)

and by studying f(J1/J2) as a function of J1 in [0, J2]. This function has zeroes in J1 = 0 and J1 = 3J2/4 and
diverges to +∞ as J1 → J2. From its derivative, we find that a local maximum exists for J1 = (3−

√
3)J2/4 and the

9



A PREPRINT - 10TH FEBRUARY 2022

0

4δ∗2
27G2J2

2

0 3−
√
3

4
3/4 1

f
(J

1
/J

2
)

J1/J2

Figure 5: Plot of f(J1/J2) =
(J1/J2)(4J1/J2 − 3)

2

1− J1/J2
, as introduced in Eq. (39). The real solutions of the equation

are found as f(J1/J2) = 4δ2/(27G2J2).
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Figure 6: Phase space of Hamiltonian of Eq. (6), with m = 3, n = 1, expressed in (X =
√

2J1 cosφ1, Y =√
2J1 sinφ1) coordinates, for three values of δ, having set G = J2 = 1 and the amplitude detuning coefficients to

zero. The red line delimits the allowed circle while the blue line is the coupling arc. In plot for δ = 2, the green line
is the extra separatrix which delimits the regions S1 and S2.

corresponding value of δ is (see Eq. (39))

δ∗ = ±9G

2

√
2
√

3− 3J2 ≈ ±3.1GJ2 . (40)

The plot of f(J1/J2) is shown in Fig. 5. Considering the sign conditions on the solution, one has the following
possibilities (some examples of phase-space portraits are shown in Fig. 6):

• if δ > δ∗, there are a stable fixed point at the origin and a stable fixed point at the right of the coupling arc
for φ1 = 0 and J1 > 3J2/4 (see Fig. 6, right);

• if 0 < δ < δ∗, a stable fixed point at the origin, an unstable fixed point for φ1 = π, 0 < J1 < (3−
√

3)J2/4,
and a stable fixed point for φ1 = π and (3−

√
3)J2/4 < J1 < 3J2/4, plus a stable fixed point at the right of

the coupling arc, for φ1 = 0 and J1 > 3J2/4. The separatrix that passes through the unstable fixed point is
the green line in Fig. 6 (centre) delimiting the regions S1 and S2;

10
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• if δ = 0, two stable fixed points at J1 = 3J2/4; the coupling arc is a line that passes through the origin (see
Fig. 6, left);

• if−δ∗ < δ < 0, a stable fixed point at the origin, an unstable fixed point for φ1 = 0, 0 < J1 < (3−
√

3)J2/4,
and a stable fixed point for φ1 = 0 and (3 −

√
3)J2/4 < J1 < 3J2/4, plus a stable fixed point at the left of

the coupling arc, for φ1 = π and J1 > 3J2/4. The topology is the same of Fig. 6 (centre), but horizontally
reversed;

• δ < −δ∗: a stable fixed point at the origin and a stable fixed point at the left of the coupling arc for φ1 = π
and J1 > 3J2/4. Once more, the topology is mirrored w.r.t. the rightmost plot of Fig. 6.

2.4 Emittance-sharing process

2.4.1 General considerations

Let us consider a process described by the Hamiltonian of Eq. (4), with either ωx or ωy , or both, slowly changing as a
function of time to cross the (m, n) resonance. According to the transformations that led to Eq. (6), this is modelled
varying δ from a case where δ̂ = δ + α12J2 � 0 to one where δ̂ � 0, i.e. δ̂ is adiabatically changed from +δmax

to −δmax during a time interval T . The variation of δ̂ changes the position of the coupling arc, that sweeps the disk
J1 < J2/n within which the dynamics is constrained.

A particle starts its orbit far from the resonance, with an action J1,i = Jx,i/m, where, the only fixed point is close to
the origin and the particle orbit is almost a circle, of area 2πJ1,i. This area is an adiabatic invariant, and it is conserved
when δ̂ is slowly varied. As δ̂ is decreased, the moving coupling arc reduces the extent of the region the particle is
orbiting in, dividing the allowed circle in two parts that have equal area when δ̂ = 0. When the area of the initial
region is equal to 2πJ1,i, according to separatrix crossing theory [26], the particle will cross the coupling arc and enter
the other phase-space region with an action corresponding to the area of the arrival region at the jump time divided by
2π.

Since the allowed circle has an area 2πJ2/n, the resulting action will be

J1,f =
J2
n
− J1,i , (41)

and, transforming back to the initial actions

Jx,f = mJ1,f = m

(
Jy,i + nJx,i/m

n
− Jx,i

m

)
=
m

n
Jy,i (42)

and
Jy,f =

n

m
Jx,i . (43)

As δ continues decreasing, the area of the region containing the particle orbit increases and, at the end of the variation
of δ (far from the resonance), the orbit is a circle around the origin whose area corresponds to the new action.

For each particle, this process realises an action sharing between the two degrees of freedom. The product JxJy
remains constant, but the two values are, at the end of the process, reallocated according to a n/m ratio. Note that for
the case of the linear coupling resonance, i.e. n = m = 1, this corresponds to the well-known emittance exchange
process [16, 18, 19]. It is essential to stress that the analysis outlined before holds true only when the phase space
is exactly divided into two regions by the coupling arc, and no other separatrices are present. Otherwise, a different
analysis is needed to assess whether the additional phase-space regions, such as the ones visible in the centre plot of
Fig. 6, interfere with the trapping process leading to the emittance sharing. A discussion on this and how to mitigate
such effects is carried out in Section 2.4.2. If the action sharing is successful, it is possible to verify what happens
in the presence of a set of initial conditions that are Gaussian distributed in both planes (x, px) and (y, py), i.e. an
exponential distribution in Jx and Jy . Using the standard definition, i.e. εx = 〈Jx〉, εy = 〈Jy〉, the initial distribution
reads

ρi(Jx, Jy) =
1

εxεy
exp

(
−Jx
εx
− Jy
εy

)
(44)

and, after the exchange process using Eqs. (42, 43), we obtain the final distribution

ρf(Jx, Jy) =
1

εxεy
exp

(
−m
n

Jy
εx
− n

m

Jx
εy

)
. (45)

11
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The new averages are given by the integrals

εx,f = 〈Jx,f〉 =

∫ ∞
0

dJx

∫ ∞
0

dJy Jx ρf(Jx, Jy) =
m

n
〈Jy,i〉 =

m

n
εy,i

εy,f = 〈Jy,f〉 =

∫ ∞
0

dJx

∫ ∞
0

dJy Jy ρf(Jx, Jy) =
n

m
〈Jx,i〉 =

n

m
εx,i ,

(46)

and it is evident that an emittance sharing occurred.

It is also possible to compute the initial distributions in terms of J1 and J2

ρ1(J1) =

∫ ∞
0

dJy ρi(mJ1, Jy) =
1

εx
exp

(
−mJ1

εx

)
ρ2(J2) =

∫ m
n J2

0

dJx ρi

(
Jx, J2 −

n

m
Jx

)
=

m

mεx − n εy

[
exp

(
−J2
εy

)
− exp

(
−mJ2
n εx

)]
.

(47)

Then, given the dependence of the phase-space topology on the conserved parameter J2, it is useful to consider
the initial Gaussian distribution in Jx and Jy as an ensemble of distributions in J1 dependent on the parameter J2
distributed as ρ2(J2): the distribution of J1 for a given J2 reads

ρ12(J1|J2) =
ρ(mJ1, J2 − nJx/m)

ρ2(J2)
=
mεy − n εx
mεxεy

exp
(
n−m
εx

J1

)
1− exp

(
n εx−mεy
n εxεy

J2

) (48)

where the normalisation ∫ ∞
0

dJ2 ρ2(J2)

∫ J2/n

0

dJ1 ρ12(J1|J2) = 1 (49)

holds.

During the emittance-sharing process, δ is varied between ±δmax, and correspondingly, η (see Eq. (9)) varies between
±ηmax, where ηmax = η(δmax). For any pair (J1,i, J2,i), there exists a value η∗ for which the area of the phase-space
region AJ, i2(η) satisfies 2πJ1,i = AJ2,i(η

∗), and whenever the phase space is divided into two regions, AJ2,i(η)
is a monotonic decreasing function of η (and of δ) during the resonance-crossing process. Therefore, the function
J1(η∗) = A(η∗)/(2π) is monotonic as well. During the resonance crossing, the fraction τ of particles that effectively
undergoes emittance sharing is given by all particles for which η∗ ∈ [−ηmax, ηmax] and it can be obtained by

τ =

∫ ∞
0

dJ2 ρ2(J2)

∫ J1(ηmax)

J1(−ηmax)

dJ1 ρ12(J1) . (50)

The sharing fraction τ will also be a monotonic function of ηmax. The parameter ηmax determines the effectiveness of
the emittance sharing due to geometrical reasons: under the assumption that the initial beam distributions are Gaussian,
one can define the following parameter

κgeom =
δmax

G 〈J2,i〉(m+n−2)/2 . (51)

as the relevant quantity to study the performance of the emittance-sharing process.

The phase-space geometry is certainly important in the emittance-sharing process, but the efficiency is also influenced
by the adiabaticity of the resonance-crossing process. A form for the adiabaticity parameter should therefore be
determined. For this purpose we remark that the Hamiltonian of Eq. (6) can be written, while δ is varied, as

H = εtJ1 +H0(J1) +GH1(φ1, J1) , (52)

where ε = 2δmax/T , and H0, H1 represent the amplitude-dependent and resonant terms, respectively, that appear in
the equations of motion

J̇1 = −G ∂H1

∂φ

φ̇1 = εt+
∂H0

∂J
+G

∂H1

∂J
.

(53)

12
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As shown in Ref. [19], under the rescaling of time t̄ = Gt, one obtains the equations

∂J1
∂t̄

= −∂H1

∂φ

∂φ1
∂t̄

=
ε

G2
t̄+

1

G

∂H0

∂J
+
∂H1

∂J
.

(54)

Therefore, the appropriate adiabaticity parameter is given by ε/G2, i.e. one obtains the same emittance sharing if G
scales as G ∼ √ε, while the amplitude-detuning terms are rescaled by a factor G. Parenthetically, as discussed in
Ref. [19], it is possible to improve the adiabaticity of the resonance-crossing process by using δ ∼ (εt)p with p > 1.
If ε is kept constant and the sharing efficiency is evaluated for different values of δmax, then the parameter that controls
the emittance sharing, including the dynamical effects, is given by

κdyn =

√
δmax

G 〈J2,i〉(m+n−2)/2 . (55)

We remark that κgeom/κdyn =
√
δmax.

Note that an effective resonance strength, which corresponds to the inverse of the parameter κdyn defined above, was
introduced in Ref. [20] and [21] as the unique parameter needed to describe the emittance sharing due to the crossing
of the resonance (1, 2). Our discussion shows that the purely phenomenological choice can be explained by means of
rigorous mathematical arguments.

2.4.2 Effect of phase-space topology on emittance sharing

A general assumption on emittance sharing requires that the allowed circle is divided by the coupling arc in two
regions. From the considerations reported in Section 2.3, this is always true for third-order resonances. However, for
fourth-order resonances, such as (1, 3) and (3, 1), the situation is more complex. Indeed, close to the resonance (1, 3),
an extra phase-space region is present (see Fig. 4), although it does not affect the emittance sharing.

Let us follow the evolution of the system from a state when δ � GJ2 and one with δ � −GJ2. At the beginning,
only a fixed point is present, around which the particle orbits. When δ < GJ2, the region Ŝ appears (see Fig. 4) and
particles orbiting outside the new separatrix are automatically captured into that region, without any jump in J1, since
the area they enclose within their orbit remains the same.

While δ further decreases, however, Ŝ is pushed towards the outer circle. Particles inside it are then captured into S+,
for which Θ+ = dA(S+)/dδ > 0, with the expected change in the adiabatic invariant. However, since in the crossing
of the outer separatrix no change of adiabatic invariant occurs, the passage from Ŝ to S− is perfectly equivalent to the
passage between S+ and S−. Once δ reaches zero, the situation is perfectly symmetric, with two stable fixed points
and a separatrix dividing the allowed circle in two equal parts.

We then continue reducing δ in the negative domain. A new unstable fixed point appears at φ1 = π, and a topology
akin to the third plot of Fig. 4, although mirrored, appears. The problem is whether the new outer region will trap
particles, and this turns out not to be possible. The outer region is maximal at δ = −GJ2, and the unstable fixed
point is at J1 = J2/4 and φ1 = π. We can thus estimate the area of the outer region as the difference between the
outer circle at J1 = J2/3, and the circle at J1 = J2/4, which gives πJ2/6. On the contrary, particles inside Ŝ have
a minimum action of J2/4, i.e. their orbit area is at least πJ2/2. Hence, since the area of Ŝ is always smaller than
πJ2/2, no particle can reach the minimum action required when crossing from S+ to Ŝ. Thus, Ŝ remains void until,
at δ = −GJ2 it disappears completely.

Finally, the extra fixed point does not affect the emittance exchange process, as all particles pass from S− to S+,
which results, according to our previous generic analysis, in an emittance exchange.

In the case of the resonance (3, 1), the presence of extra stable fixed points (see Fig. 6) translates in an extra (and
unavoidable) phase-space region that can, in principle, trap particles, thus spoiling the emittance sharing. Neverthe-
less, numerical observations discussed in Section 3) show that emittance sharing is still feasible, although with some
reduction in performance due to the particles trapped in the extra region.

3 Results of numerical simulations

To assess the performance of the emittance-sharing process for different resonances, we compute the evolution of
a Gaussian distribution of initial conditions ρ(Jx, Jy) under the dynamics generated by the map of Eq. (1) iterated
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for a number N of turns, with or without amplitude-detuning terms, where ωx is kept constant while ωy is linearly
varied between an initial value ωy,f = mωy/n + δmax and the final one ωy,f = mωy/n − δmax, to cross the (m, n)
resonance. The initial and final emittance values are then compared, and a figure of merit is introduced to evaluate how
well the emittance sharing occurred. To do so, we adapt the definition of Pna, introduced in Ref. [18] for the (1, 1)
resonance crossing leading to emittance exchange when a (m, n) resonance is crossed, and emittance sharing occurs.
The generalised definition is

Pna = 1− 〈Jx,f〉 − 〈Jx,i〉
(m/n) 〈Jy,i〉 − 〈Jx,i〉

. (56)

The value of Pna is 1 when no emittance sharing is achieved and zero when the sharing is perfect, i.e. according to the
Eq. (46).

Note that in Ref. [20] a different figure of merit is introduced, the so-called fractional emittance growth (FEG), defined
as

FEG =

∣∣∣∣ 〈Jx,f〉〈Jx,i〉
− 1

∣∣∣∣+

∣∣∣∣ 〈Jy,f〉〈Jy,i〉
− 1

∣∣∣∣ , (57)

which is 0 when no exchange is performed and
∣∣∣∣m 〈Jy,i〉n 〈Jx,i〉

− n 〈Jx,i〉
m 〈Jy,i〉

∣∣∣∣ for a perfect emittance sharing. The reason of

this definition is that the goal of [20] is to avoid emittance sharing, and therefore to minimise the FEG, whereas our
goal is the opposite, as we are looking to perform emittance sharing, and hence Pna is the best choice for our study.

When not stated differently, we set βx = βy = 1 and 〈Jx,i〉 = 〈Jy,i〉 = 1× 10−4 and α = 0, generating distributions
of initial conditions with Np = 1× 104 particles. For the (1, 2) and (2, 1) resonances we use δmax = 0.1, k2 (or j2)
equal to 1, N = 1× 106. For the (1, 3) and (3, 1) resonances we set δmax = 0.01, j3 = 10, N = 1× 107. The
initial and final distributions of x, y, px, py for the four resonances are plotted in Fig. 7, and they show clearly the
effectiveness of the emittance sharing using these default parameters. Fits of Gaussian distributions with zero average
are performed for the final distributions of the phase-space variables. The excellent agreement between the numerical
results and the fitted functions shows that the emittance-sharing process preserves the Gaussian nature of the beam,
acting only on the standard deviation.

We proceed with the quantitative evaluation of the performance of the proposed technique by analysing how Pna
changes as a function of the parameters. In particular, we have concentrated our analyses on the dependence of Pna
on: (i) the excursion of ωy , i.e. δmax; (ii) the strength of the non-linear magnets j2, k2, and j3, depending on the
resonance crossed; (iii) the number of map iterations (turns) N ; (iv) the detuning parameter α (that has been chosen as
α = αxx = αyy = −2αxy to mimic the amplitude detuning generated by normal octupoles as done in Ref. [19]); (v)
the initial values of 〈Jx〉 and 〈Jy〉; (vi) the ratio between 〈Jy,i〉 and 〈Jx,i〉. It is worth stressing that in our numerical
investigation of the 4D parameter space, the dependence of Pna is probed by changing one parameter at a time while
keeping the others set to their nominal values.

Figure 8 (left) shows the plot of Pna as a function of δmax whereas in the right part the dependence on the strength of
the non-linear magnets is reported for the various resonances considered. A difference between the behaviour of the
third- and fourth-order resonances is clearly seen. While for the former it is possible to determine the optimal value of
δmax, or the strength of the non-linear magnets, such that Pna = 0, i.e. the emittance sharing is perfect, this is not the
case for the latter resonances, for which Pna reaches a non-zero minimum value.

We remark that when δmax approaches 0, Pna does not converge to 1. This is due to the fact that, when δ ≈ 0, the
motion of all particles is very close to resonant conditions, and all particles revolve around one of the two stable fixed
points in the phase space. Taking the average of the coordinate J1 along the orbit, allows estimating the value of Pna
when δmax → 0 (the details are found in Appendix B).

Other effects need to be taken into account, e.g. the adiabaticity of the system. Weak non-linear coupling, which
corresponds to a small value of G in the Hamiltonian of Eq. (6), means a faster resonance crossing. For instance,
for a particle moving close to the (1, 2) resonance, the coupling arc, given by the line of equation X = δ/(

√
2G),

moves, over one map iteration, by δX = δmax/(
√

2GN). This means that the adiabaticity condition is not met when
the strength of the non-linear magnets is small, and for this reason Pna goes to 1. The same effect accounts for the
lower sharing efficiency at large δmax, when N is kept constant.

We remark that when the strength of the non-linear magnets becomes large, the quasi-resonant Hamiltonian may be
no longer a good approximation of the dynamics generated by the map as the higher-order terms cannot be neglected
anymore. This observation will be particularly relevant when we will discuss the results shown in Figs. 10 later in this
Section.
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Figure 7: Histograms of the initial and final distribution of x, y (left plots) and px, py (right plots) after the resonance-
crossing process for the four resonances under study. The initial distribution is Gaussian, with a standard deviation
〈Jx,i〉 = 〈Jy,i〉 = 0.01. The map of Eq. (1) has been used, with parameters δmax = 0.1, j2 = 1 or k2 = 1, N = 106,
α = 0 for the third-order resonances; δmax = 0.01, j3 = 10, N = 107, α = 0 for the fourth-order ones. The thick
blue and green lines represent the Gaussian fits with zero average of the final distributions. The values of σ printed
on the plots represent the standard deviation of the Gaussian fits of the final distributions (for the initial distributions,
σ(x) = σ(y) = σ(px) = σ(py) = (100± 1)× 10−4).
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Figure 8: Left: Pna as a function of the excursion ωy , i.e. δmax. Right: Pna as a function of the strength of the non-linear
magnets (k2, j2 or j3 depending on the resonance used). In both plots the map (1) has been used, setting α = 0, and
N = 106 (for the third-order resonances) and N = 107 (for the fourth-order ones), and using initial distributions with
〈Jx,i〉 = 〈Jy,i〉 = 0.01. In the left plot, depending on the resonance, we set either k2 = 1, j2 = 1, or j3 = 10. In the
right plot, δmax = 0.1 has been chosen for (1, 2) and (2, 1) while δmax = 0.01 for (1, 3) and (3, 1).

Figure 9 shows the dependence of Pna on the initial emittance values and the ratio between vertical and horizontal
emittances. On the left plot, we keep 〈Jx,i〉 = 〈Jy,i〉 and we change their value, while on the right plot we keep
〈Jx,i〉 = 1× 10−4 and we vary 〈Jy,i〉 from 1× 10−6 to 1× 10−2. As observed before, the behaviour for the third-
and fourth-order resonances are different. The first type of resonances features a virtually zero Pna over a rather wide
range of parameters under consideration. On the other hand, the fourth-order resonances feature a non-zero minimum
for Pna, and that is achieved for well-defined values of the parameters under consideration.

Furthermore, for all the four resonances Pna increases (therefore that the emittance sharing is less effective) for large
values of the initial emittances. This is due to a lower number of particle effectively performing the adiabatic jump. It
also increases for small values of the initial action, as this translates to a more difficult onset of adiabatic conditions.
It is also observed that achieving emittance sharing for fourth-order resonances is far more difficult than for the third-
order ones when 〈Jy,i〉 6= 〈Jx,i〉. In particular, we remark that for (1, 3) and (3, 1) the situation is reversed, as
emittance sharing fails for (1, 3) when 〈Jy,i〉 � 〈Jx,i〉, whereas this occurs for 〈Jy,i〉 � 〈Jx,i〉 in the case of the
(3, 1) resonance. This fact will be discussed later.

Note that, in Fig. 9 (right), some discontinuities are present. They are due to the initial condition, for which Jx,i ≈
n/mJy,i and then Pna (see Eq. (56)) has a small denominator and tends to diverge.

Some common observations can be drawn from Figs. 8 and 9. First of all, it is clear that, in general, third-order
resonances achieve smaller values of Pna, than fourth-order ones. In the observed conditions, the best results for
resonances (1, 2) and (2, 1) correspond toPna ≈ 0.01, while for (1, 3) and (3, 1) the best performance corresponds
to Pna ≈ 0.06. This is explained by the fact, as can be seen from the higher values of Pna at low initial action in
the left plot of Fig. 9, that fourth-order resonances are more affected than third-order ones by adiabaticity (note that
the numerical simulations for fourth-order resonances were performed with a number of turns an order of magnitude
higher than those of the third-order resonances).

In Fig. 10, we combine data from both plots of Fig. 8 and the left plot of Fig. 9, using as independent variables one of

κ̂geom =
δmax

g
√
〈Jx,i〉m+n−2

(58a)

κ̂dyn =
1

g

√
δmax

〈Jx,i〉m+n−2 , (58b)

where g stands for the generic strength of the non-linear magnets, which, according to the resonance, is k2, j2 or j3.
The two new parameters differ from those introduced in Eqs. (51) and (55) only for their adaptation to the configuration
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Figure 9: Left: Pna as a function of the initial 〈Jx,i〉 (chosen to be equal to 〈Jy,i〉), for the four resonances. Right:
Pna as a function of the ratio between 〈Jy,i〉 and 〈Jy,i〉, using 〈Jx,i〉 = 0.01. In both plots the map (1) has been used,
setting α = 0, and δmax = 0.1, j2 = 1 or k2 = 1, N = 106 (for the third-order resonances) and δmax = 0.01, j3 = 10,
N = 107 (for the fourth-order ones).

of the numerical simulations that feature initial distributions where 〈Jx,i〉 = 〈Jy,i〉. The goal of this analysis is to
identify in which regime these global parameters are the relevant quantities to describe the emittance-sharing process:
in that case, the data obtained by varying each parameter entering in the expression of the global parameters should lie
on the same curve.

It is clearly visible that, when κ̂geom and κ̂dyn are small (i.e. δmax is small, the strength of the non-linear magnets is large,
and the distribution of initial conditions is wide), Pna depends primarily on κ̂geom: the performance of the emittance
sharing is only limited by the fact that the tune is varied only over a finite range.

The disagreement between the data collected while varying δmax and the other quantities is visible when considering the
resonance (1, 2), but it can be understood by considering that when transforming the map (1) with a normal sextupole
to a resonant normal form, and truncating at second order in the action variables, contributions to the amplitude
detuning are present, even in the absence of an octupolar term. Indeed, the coefficients α11 and α12 are proportional
to k22 . As α12 6= 0, the separatrix crossing in [δmax,−δmax] is no longer symmetric, and a lower number of particles
undergoes emittance sharing.

For large values of the two parameters, κ̂dyn captures the correct scaling, as in this regime, corresponding to large δmax,
low g, and small initial emittance with constant value of 1/N , the emittance sharing effectiveness is limited by the
degree of adiabaticity of the process.

We remark that the scaling g 〈Jx,i〉(r−2)/2 always holds, since the strength of the non-linear magnets, for the model
considered in this paper that features a single multipole, can always be normalised to unity under a convenient co-
ordinate rescaling, therefore changing the average value of Jx,i.

In Fig. 11 (top-left) the role of the amplitude-detuning parameter α is probed. Very different behaviours are observed
depending on the resonance order. For the case of third-order resonances, a rather broad minimum of Pna is ob-
served around α = 0, which indicates that the presence of amplitude-detuning effects does not spoil the emittance
sharing process. The situation is radically different for the case of the fourth-order resonances, where the presence
of a non-zero amplitude detuning changes the number and the stability type of the fixed points of the systems under
consideration. This is indicated by the presence of a very sharp minimum of Pna around α = 0 with a steep increase
in the close neighbourhood.

In the top-right plot of Fig. 11, the dependence of Pna on the number of turns N is shown. A fit using a power law
Pna = am,nN

−bm,n + cm,n provides an excellent agreement with the numerical data. This observation is crucial,
as it reveals the intrinsic difference between the behaviour of the crossing of these non-linear 2D resonances with
respect to that of the linear (1, 1) resonance studied in Ref. [19]. For the case of the linear coupling resonance, an
exponential law for Pna was found in the absence of amplitude detuning. The difference can be explained since the
Hamiltonian describing the crossing of the linear coupling resonance is analytic, as the unstable fixed points in the
action-angle coordinates are only a pathology of the coordinate system, while the Hamiltonian describing the 2D non-
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Figure 10: Plots obtained by combining the numerical data presented in Fig. 8 (left and right) and in Fig. 9 (left), using,
as independent variable, κ̂geom, introduced in Eq. (58a), for the left plots, and κ̂dyn, from Eq. (58b), for the right ones.
The top plots refer to third-order while the bottom plots to fourth-order resonances. The colours encode the resonance
considered, while the different point styles the variable that is varied in the data set, namely δmax, the strength of the
non-linear magnets or the initial distribution width.

linear resonances features real unstable fixed points, The separatrices related with these unstable fixed points introduce
an error in the action, which is the adiabatic invariant of the system, after the jump from one region to the other one
of the phase space. Such a jump in the value of the adiabatic invariant has a power-law dependence on the number of
turns. The values of the exponent of the fit law for Pna are: b1,2 = 1.56± 0.02, b2,1 = 1.84± 0.08, b1,3 = 0.43± 0.01
and b3,1 = 0.60± 0.01, which reveal that they are strongly model dependent.

The bottom plot of Fig. 11 shows the scaling between the strength of the non-linear magnets and the inverse of the
number N of turns, which is a direct measurement of the adiabaticity of the emittance sharing process. The data show,
for different values of k2, j2 and j3 (depending on the resonance considered), the value of N for which one obtains
a small value for Pna, i.e. Pna = 0.2 for third-order resonances and Pna = 0.3 for fourth-order ones. The curves
represent quadratic functions that fit in an excellent way the numerical data, thus confirming the quadratic scaling
found in Eq. (54), which is independent on m and n.

Finally, in Fig. 12 we analyse the emittance sharing process by generating uniform distributions of 104 initial con-
ditions at a fixed value of Jx,i, in the range 0 ≤ Jx,i ≤ mJ2/n, having fixed J2 = 1× 10−4. In the plots in the
left column, we compare, for each resonance (m, n), 〈Jx〉 at the end of the process with the expected value from the
theory, namely

Jx,f =
m

n
J2 − Jx,i , (59)
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Figure 11: Top-left: Pna as a function of the amplitude-detuning parameter α, for the four resonances. Top-right: Pna
as a function of the number of turns N . Power-law fits Pna = am,nN

−bm,n + cm,n are provided for each (m, n)
resonance. Bottom: the inverse of the number of turns for which Pna reaches the value Pna = 0.2 (for third-order
resonances) and Pna = 0.3 (for fourth-order ones) as a function of the strength of the non-linear magnets. Quadratic
fit between N−1 and the strength of the non-linear magnets are presented, confirming the scaling of Eq. (54). The
parameters used for the plots are: 〈Jx,i〉 = 0.01, δmax = 0.1 for resonance (1, 2) and (2, 1) and δmax = 0.01 for (1, 3)
and (3, 1). For the top-left plot N = 106, k2 = 1 or j2 = 1 (for third-order resonances), N = 107, j3 = 10 (for
fourth-order ones) are used. The same values for the strength of the non-linear magnets are used in the to-right plot.
Both the top-right and the bottoms plots use α = 0.

computed for the case of a perfect emittance-sharing process. The results of numerical simulations are presented for
different number of turns N (for N = 1× 108, only 103 initial conditions have been used due to constraints on the
available CPU time). In the plots in the right column, the standard deviation of the values of Jx,f is shown. The rows
correspond to the various resonances considered. When increasing the number of turns, the average jump becomes
closer to the theoretical expectation. For the resonances (1, 2) and (2, 1) we remark that the data oscillate around the
expected value, in a similar fashion to what was observed in Ref. [19] for an analogous situation with linear coupling.
For the fourth-order resonances, the effects of the more complicated phase-space topology are clearly visible. For
instance, resonance (1, 3) suffers from a slow convergence of the data towards the expected values for large Jx,i,
while for resonance (3, 1) the same occurs, but rather at low values of Jx,i. This is consistent with what found when
analysing initial conditions with 〈Jx,i〉 6= 〈Jy,i〉: resonance (1, 3) fails at high values of Jx,i, while (3, 1) at small
ones. In the latter case, also, a variance bump is observed for Jx,i > 1.5× 10−4 also at high adiabaticity: this is
an effect of the presence of extra regions in the phase space. Finally, the plots of fourth-order resonances show how
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Figure 12: Average (left column) and variance (right column) of Jx,f, from initial uniform distributions at fixed Jx,i
chosen in the allowed interval 0 ≤ Jx,i ≤ J2,i/n, having fixed J2 = 1× 10−4. The average of Jx,f is compared to the
theoretical value Jx,f = mJ2/n− Jx,i. The map (1) has been used with no amplitude-detuning terms, using different
numbers of turns N . For the third-order resonances, δmax = 0.1, j2 = 1 or k2 = 1 have been used, whereas for the
fourth-order ones δmax = 0.01, j3 = 10 have been used.
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slowly the emittance sharing converges to the expected value when the number of turns is increased, which explains
the lower performance for emittance sharing for fourth-order resonances.

4 Conclusions

In this paper, a novel beam manipulation technique is presented, based on the crossing of a 2D non-linear resonance to
induce a sharing of the transverse emittances. The foundations of this technique have been discussed using Hamilto-
nian models and the adiabatic theory applied to resonance crossing. The performance of this manipulation has been
assessed by means of detailed numerical simulations using map models, which are more realistic than the Hamiltonian
ones. The results of the numerical simulations indicate that it is indeed possible to control the proposed process so to
achieve a sharing of the transverse emittances. The final distributions of initial conditions retain the Gaussian character
of the initial ones, which is an excellent feature. Scans of the various system parameters have been performed, thus
achieving a good understanding of the details of the proposed mechanism.

Differences in the behaviour and performance of the emittance-sharing process have been found and when comparing
third- and fourth-order resonances, although these observations can be fully understood and explained in terms of the
phase-space topology linked with each of the resonances under study.

As far as applications are concerned, this study shows clearly the theoretical feasibility of an emittance sharing process
where the target emittance is met at up to ≈ 99%, using third-order resonances, and up to ≈ 90%, using fourth-order
ones. These results are extremely encouraging, also in consideration of the fact that the resonances under consideration
can be excited by widespread magnetic elements, such as normal and skew sextupoles, or skew octupoles (that can
also be substituted by pairs of normal and skew sextupoles).

In summary, the novel beam manipulation passed successfully through theoretical and numerical tests and it is now
ready for experimental validation.
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A Magnet type and resonances: analysis using Normal Forms

The goal of this appendix is to compute, using Normal Form theory, which resonance can be excited by a certain
nonlinearity in an Hénon-like map as the one of Eq. (1).

We start the analysis by considering which monomial appears in the complex representation of the generic polynomial
map. When dealing with 4D complex coordinates (z1, z

∗
1 , z2, z

∗
2), we use the vector notation (`1,m1, `2,m2) to

identify a monomial z`11 z∗1
m1 z`22 z∗2

m2 , and we indicate a 4D complex function as F = (F1, F
∗
1 , F2, F

∗
2 ).

Starting from an Hénon-like map, we replace the real variables with complex ones, defined according to z1 = x −
ipx, z2 = y − ipy , together with the corresponding complex conjugate relationships, and we obtain, expanding all
binomials, the following complex map

z′1 = eiω1

[
z1 +

√
βx
krβ

r
2
x

2rr!

∑
q≤r/2

r−2q∑
`=0

2q∑
p=0

(−1)q
(
βy
βx

)q (
r

2q

)(
r − 2q

`

)
×

×
(

2q

p

)
zr−2q−`1 z∗1

`z2q−p2 z∗2
p+

−
√
βy
jrβ

r
2
x

2rr!

∑
q≤(r−1)/2

r−2q−1∑
`=0

2q+1∑
p=0

(−1)q
(
βy
βx

)q (
r

2q + 1

)
×

×
(
r − 2q − 1

`

)(
2q + 1

p

)
zr−2q−`−11 z∗1

`z2q−p+1
2 z∗2

p

]
(60)

and

z′2 = eiω2

[
z2 −

βy√
βx

krβ
r
2
x

2rr!

∑
q≤(r−1)/2

r−2q−1∑
`=0

2q+1∑
p=0

(−1)q
(
βy
βx

)q (
r

2q + 1

)
×

×
(
r − 2q − 1

`

)(
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p

)
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n
2
x

2rr!
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q≤r/2
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2q∑
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)q (
r
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)(
r − 2q

`

)
×

×
(

2q

p

)
zr−2q−`1 z∗1

`z2q−p2 z∗2
p

]
,

(61)

and we express the map action as z′ = F(z). F1 includes the following monomials

• for a normal multipole kr, the generic term (r − 2q − `, `, 2q − p, p) with

0 ≤ q ≤ r

2
, 0 ≤ ` ≤ r − 2q, 0 ≤ p ≤ 2q ;

• for a skew multipole jr, the generic term (r − (2q + 1)− `, `, 2q + 1− p, p) with

0 ≤ q ≤ r − 1

2
, 0 ≤ ` ≤ r − (2q + 1), 0 ≤ p ≤ 2q + 1 ;

while for F2 we obtain

• for a normal multipole kr, the generic term (r − (2q + 1)− `, `, 2q + 1− p, p) with

0 ≤ q ≤ r − 1

2
, 0 ≤ ` ≤ r − (2q + 1), 0 ≤ p ≤ 2q + 1 ;

• for a skew multipole jr, the generic term (r − 2q − `, `, 2q − p, p) with

0 ≤ q ≤ r

2
, 0 ≤ ` ≤ r − 2q, 0 ≤ p ≤ 2q ,
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and we remark that the form of the monomials for the normal and skew components exchanges between F1 and F2.

The Normal Form map U contains all the terms that are needed to solve the functional equation F ◦Φ = Φ ◦U, and,
at order k, we have the functional equation

∆[Φ]k(ζ) + [U]k(ζ) = [Q]k(ζ)

where [Q]k = [F ◦Φ]k, the symbol [·]k indicates the truncation of the homogeneous polynomial at order k, while U
contains all monomials that are in the kernel of the Normal-Form operator ∆, defined as ∆Φ(ζ) = eiωΦ(ζ)−Φ(eiωζ),
which, following [7, p. 128], occurs for monomials satisfying

F1 : ωx(`1 −m1) + ωy(`2 −m2) = ωx ,

F2 : ωx(`1 −m1) + ωy(`2 −m2) = ωy .
(62)

For a (m, n) resonance (with m, n coprimes), we can rewrite the previous relations as

F1 : `1 −m1 +
m

n
(`2 −m2) = 1 , (63a)

F2 :
n

m
(`1 −m1) + `2 −m2 = 1 . (63b)

A condition for the resonant terms to be present in the interpolating Hamiltonian is that the corresponding monomials
in the kernel of ∆ are present in either F1 or F2 at order r.

To satisfy the condition for F1, we need

`2 −m2 ≡ 0 (mod n) , (64)
which for a normal multipole translates to

2(q − p) ≡ 0 (mod n) , (65)

while for a skew one to
2(q − p) + 1 ≡ 0 (mod n) . (66)

The condition is always satisfied when `2 = m2 and in this case `1 = m1 + 1 and the form of the corresponding
monomial is (

m+ n

2
− p, m+ n

2
− p− 1, p, p

)
, (67)

which is a valid solution only if m and n are both odd.

Solutions are also found whenever `2 −m2 = s n with s 6= 0. For a normal multipole, 2(m − p) ≤ 2(m + p) ≤ r
and we can restrict s to 0 < s ≤ (m− 1)/n+ 1.

If m < n, then only s = 1 is possible and if n is odd, no other solution can be found. If n is even, we have
2(q − p) = n for which the resonant condition (63a) becomes m − p − ` = 1 and the form of the generic monomial
reads (−p, m − p − 1, p + n, p), from which we can only choose p = 0, so that the solution for n even and m < n
reads

(0, m− 1, n, 0) . (68)

If m > n, again two cases should be considered. If n is odd, then s must be even and the resonant condition (63a) is

m+ n+ s(m− n) = 2(1 + p+ `) (69)

and m must be odd. Let m = 2m′ + 1, n = 2n′ + 1 and s = 2s′. Substituting, we get the relation p + ` =
m′ + n′ + 2s′(m′ − n′), and `1 becomes `1 = m′(1− 2s′) + n′(1− 2s′)− p+ 1− 2s′. Since s′ > 0, `1 is always
negative and no solution can be found.

If, on the other hand, n is even, then m has to be odd, and from Eq. (69), s is necessarily odd. Therefore, we substitute
n = 2n′,m = 2m′+1, s = 2s′+1 and we obtain p+` = 2m′+2m′s′+s′−2n′s′ and `1 = −p−2n′s′−2m′s′−s′.
The only possibility, since `1 ≥ 0, is given by p = 0 and s′ = 0 (i.e. s = 1), which gives ` = 2m′ = m− 1, 2q = n,
and the general form of the resonant monomial is therefore

(0, m− 1, n, 0) , (70)
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which is the same as for the previous case (68)

We proceed in a similar fashion in the case of a skew multipole. The first point to note is that the special solution of
Eq. (64) for s = 0 does not exist in this case. Hence, the resonant condition (66) 2q−2p+ 1 = s n provides a solution
only if both s and n are odd. Hence, letting n = 2n′+1 and s = 2s′+1 and performing the usual substitutions, we get
q = 2s′n′+s′+n′+p and ` = m−2s′n′−s′−p−1+s′m and the condition `1 ≥ 0 becomes−2s′n′−p−s′m ≥ 0,
which requires p = 0 and s′ = 0, and the generic skew monomial is of the form

(0, m− 1, n, 0) . (71)

In summary, the monomials of U1 are:

Normal multipoles:


(
m+ n

2
− p, m+ n

2
− p− 1, p, p

)
, 0 ≤ p ≤ r − 1

2
if m,n are odd,

(0, m− 1, n, 0) if n is even ,

Skew multipoles: (0, m− 1, n, 0) if n is odd.

(72)

Thus far, only Eq. (63a) has been considered. For F2, we proceed in the same way. We need to apply the resonant
condition (63b), which requires `1 −m1 ≡ 0 (mod m), i.e.

n

m
(`1 −m1) = s n . (73)

For a normal multipole, the divisibility condition and the resonant correspond to{
m(1− s) + n = 2(q + `+ 1)

2(q − p) = s n ,
(74)

and solving for ` and q, and substituting in `1 we obtain `1 = 1
2 (m + n)(1 + s) − 1 − p. We have 0 ≤ `1 ≤ r =

m + n − 1, because (m + n)(1 + s) ≥ 2(p + 1) ≥ 0 implies s ≤ 0, and (m + n)(1 + s) ≤ 2(r + 1 + p) implies
1 + s ≤ 2(1 + r/(r − 1)) ≤ 2, therefore s ≤ 1. This means that we can restrict s to the two values s = 0 or s = 1.

For s = 0, we obtain the solution(
m+ n

2
− p− 1,

m+ n

2
− p− 1, p+ 1, p

)
for 0 ≤ p ≤ r/2 , (75)

which only exists if m+ n is even, so both m and n must be odd, while, for s = 1

(m+ n− p− 1, n− p− 1, p− n+ 1, p) . (76)

The only way to ensure both m1 ≥ 0 and `2 ≥ 0 is setting m1 = `2 = 0, so p = n−1, whence we obtain the resonant
solution

(m, 0, 0, n− 1) (77)

In the case of a skew multipole, we have the equations{
m+ n− 1− 2q − 2` = sm

2q = 1 + 2p− sn (78)

and the same condition for `1, which imposes as before, s = 0 or s = 1. For s = 0, we have the same solution (if m
and n are odd) (

m+ n

2
− p− 1,

m+ n

2
− p− 1, p+ 1, p

)
, (79)

while, for s = 1, as before
(m, 0, 0, n− 1) . (80)

Now, if we substitute `1 = m, m1 = `2 = 0 and m2 = n − 1 in the generic Normal Form term in U2, we need
2q = n − 2, so q = (n − 2)/2, which is possible only if n is even. In the skew case, on the other hand, we have
2q = n− 1, which is solved only for odd n. Thus, summarising:

Normal multipoles:


(
m+ n

2
− p− 1,

m+ n

2
− p− 1, p+ 1, p

)
if m,n are odd

(m, 0, 0, n− 1) if n is even ,

(81)
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Skew multipoles:


(
m+ n

2
− p− 1,

m+ n

2
− p− 1, p+ 1, p

)
if m,n are odd

(m, 0, 0, n− 1) if n is odd ,

(82)

The next step is to consider how the resonant monomials in the Normal Form U contribute to the interpolating Hamilto-
nian. The first point consists in showing that monomials of type(

m+ n

2
− p, m+ n

2
− p− 1, p, p

)
(83)

do not contribute to the resonant part of the interpolating Hamiltonian. In fact, given a 4D Normal Form U(ζ, ζ∗) =
(U1, U

∗
1 , U2, U

∗
2 ), and writing polynomials as:

A(ζ1, ζ
∗
1 , ζ2, ζ

∗
2 ) =

∑
`1,m1, `2,m2

A(`1, m1, `2, m2)ζ`11 ζ
∗
1
m1ζ`22 ζ

∗
2
m2 , (84)

the construction of the interpolating Hamiltonian of order r is done as follows:

H(`1 + 1, m1, `2, m2) = − 1

`1 + 1
U∗1 (`1, m1, `2, m2) for `1 +m1 + `2 +m2 = r ,

H(0, m1 + 1, `2, m2) =
1

m1 + 1
U1(0, m1, `2, m2) for m1 + `2 +m2 = r ,

H(0, 0, `2 + 1, m2) = − 1

`2 + 1
U∗2 (0, 0, `2, m2) for `2 +m2 = r ,

H(0, 0, 0, r + 1) =
1

r + 1
U2(0, 0, 0, r) .

The monomials in U∗1 and U∗2 are the same in U1 and U2, but with the exchanges `1 ↔ m1 and `2 ↔ m2. Hence, the
U1 terms can be (0, m− 1, n, 0) or (`2 + 1, `2, m1, m1) and in U∗1 we will have either (m− 1, 0, 0, n) or (`2, `2 +
1, m1, m1). If this latter form is present in U∗1 , it gives rise to the Hamiltonian coefficientH(`2 +1, `2 +1, m1, m1),
and by performing the transformation to the action-angle coordinates (J , φ), i.e. ζ1 =

√
Jxe

iφx , ζ2 =
√
Jye

iφy , the
angular parts of these terms vanish, and we obtain a J`2/2x J

m1/2
y monomial, which is clearly non resonant.

For what concerns the second component of the map, we see from the construction of the interpolating Hamiltonian
that we need to restrict our search to monomials with `1 = m1 = 0. We can have terms in U2 of the form(

0, 0,
r + 1

2
,
r − 1

2

)
(85)

owing to the resonant condition `2 −m2 = 1 with `2 + m2 = r. Since such a term contributes to the Hamiltonian
via U∗2 , it gives rise to the Hamiltonian termH(0, 0, (r − 1)/2 + 1, (r + 1)/2) = H(0, 0, (r + 1)/2, (r + 1)/2), and,
as we discussed before, this does not give origin to a resonant term since the angular parts of ζ2 and ζ∗2 are cancelled.
Finally, we could look for monomials in U2 of the form (0, 0, 0, r), but the resonant condition would be −r = 1
which is never satisfied.

In conclusion, we have the following relationships between the parity of m and n and the type of multipole element
that gives origin to quasi-resonant Hamiltonian terms:

Multipole type m n U1 non-trivial monomials H resonant monomials

Normal

even odd no no
odd odd no no
odd even (0, m− 1, n, 0) (0, m, n, 0); (m, 0, 0, n)

Skew

even odd (0, m− 1, n, 0) (0, m, n, 0); (m, 0, 0, n)
odd odd (0, m− 1, n, 0) (0, m, n, 0); (m, 0, 0, n)
odd even no no

Therefore, if we restrict our search to sextupoles and octupoles (r = 2 or r = 3) we therefore find that a normal
sextupole can excite the (1, 2) resonance, while a skew sextupole the (2, 1) one. A skew octupole, on the other hand,
is needed for both the (1, 3) and (3, 1) resonances.
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B Computation of Pna in resonant conditions

The motion in the resonant condition is governed by the Hamiltonian (6) with δ = 0 (for the sake of simplicity,
we neglect the amplitude-detuning terms in the following considerations). The analysis of the phase space topology
shows that, independently of the resonance order, the allowed circle is symmetrically divided in two regions by the
coupling arc. The trajectory of a particle with initial condition (φ1,i, J1,i), in one of the two hemicircles (let us choose
cosφ > 0) is given by the solution of the equationH(φ1, J1) = H(φ1,i, J1,i), i.e.

J
m/2
1 (J2 − nJ1)n/2 cosφ1 = J

m/2
1,i (J2 − nJ1,i)n/2 cosφ1,i (86)

whose solution gives rather straightforwardly the function φ1(J1) given the initial conditions.

To compute Pna for an emittance sharing process when δmax → 0, ultimately, we should consider a motion when δ is
equal to zero, and since Pna depends on 〈Jx,i〉, our goal is to compute the trajectory J1(φ1).

For generic values of (m, n) one cannot easily invert analytically φ1(J1) from Eq. (86), yet this task can be carried
out numerically. To compute the final mean J1 for a given initial distribution, we can use the time average of J1 over
a (long) time interval T . This is given by

J1 =
1

T

∫ T

0

dt J1(φ1) =
1

T

∫ φ+

φ−

dφ1
J1(φ1)

φ̇1
=

∫ φ+

φ−

dφ1

(
J1(φ1)/φ̇1

)
∫ φ+

φ−

dφ1 (1/φ̇1)

, (87)

where φ± are the inversion points of the trajectory and φ̇1 is taken from the equations of motion with δ = 0. Note that
the strength G of the resonant term never appears in the integral.

Then, the averaging of the result of J1 over the initial conditions (φ1,i, J1,i) provides the expected value of 〈Jx,i〉 as
δ → 0, and therefore of Pna.

For resonance (1, 2), if the Cartesian coordinate X is used instead of the angle φ1 to parametrise the motion, J1(X)
can be written as

J1 =
1

2

(
J2 −

Xi(J2 −X2
i )

X

)
(88)

and the time average J1

J1 =
J2
2

+
Ci

2

∫ X+

X−

dX
1

X2
√
J2 −X2 + Ci/X∫ X+

X−

dX
1

X
√
J2 −X2 + Ci/X

(89)

where Ci = Xi
√
X2

i − J2 and the inversion points areX− = Xi =
√

2J1,i cosφ1,i,X+ = −(Xi +
√

4J2 − 3X2
i )/2.

A numerical evaluation of this integral, averaged on a Gaussian distribution for (φ1,i, J1,i) with 〈Jx,i〉 = 1× 10−4

gives J1 = 8.115× 10−5, which replaced into the definition of Pna gives a values, when δ → 0

Pna = 0.623, (90)

which is consistent with the value observed in Fig. 8 (left). This procedure can be used to explain the values observed
for other resonances, too.
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