

Novel Measurements of Dijet Quenching with ATLAS

Timothy Rinn On behalf of the ATLAS Collaboration

Dijets as probes of energy loss

Back-to-back jet pairs provide access to asymmetric energy loss

Can provide constraint on the contributions from:

- Path length dependent energy loss
- Energy loss fluctuations

Provide enhanced sensitivity to small amounts of jet quenching

Previous ATLAS results of dijet balance

Modifications of the x_J **shape** are measured in both Pb+Pb and Xe+Xe

In central Pb+Pb a peak structure is observed at intermediate x_I

A persistent challenge for the theory community

Dijet analysis overview:

Two-dimensional $(p_{T,1}, p_{T,2})$ distributions are measured for the leading dijet pair

$$\geq \Delta \phi_{1,2} > \frac{7\pi}{8}$$
$$\geq |\eta| < 2.1$$

Corrected for combinatoric dijets, then unfolded for detector effects using 2D Bayesian unfolding

Unfolded
$$\frac{dN_{pair}}{dp_{T,1}dp_{T,2}}$$
 distribution projected across selections of $p_{T,1}$ to extract $\frac{dN}{dx_J}$ distributions

Uncertainties on per dijet pair x_I distributions

In peripheral events the uncertainty from the jet energy scale and resolution are dominant

Timothy Rinn QM-2022

Dijet x_I observables

Per dijet pair normalized x_J distributions: $\frac{1}{N_{pair}} \frac{dN_{pair}}{dx_J}$

 \succ Enables direct comparison of the x_I shape across centrality in Pb+Pb and in pp

Never Betore Measured Absolutely normalized x_J distributions: $\frac{1}{N_{evt}\langle T_{AA}\rangle} \frac{dN_{pair}}{dx_I}$

 \succ Enables evaluation of the dijet per event yields as a function of x_I

Provides insight into the dynamics of dijet energy loss

Dijet x_J observables

Per dijet pair normalized x_J distributions: $\frac{1}{N_{pair}} \frac{dN_{pair}}{dx_J}$

Enables direct comparison of the x_J shape across centrality in Pb+Pb and in pp

Absolutely normalized x_J distributions: $\frac{1}{N_{evt}\langle T_{AA}\rangle} \frac{dN_{pair}}{dx_J}$ \geq Enables evaluation of the dijet per event yields as a function of x_J \geq Provides insight into the dynamics of dijet energy loss

lever Before Mei

Data consistent with previous results measured in $\sqrt{s_{NN}} = 2.76$ TeV collisions \geq Peak observed at intermediate x_I at low $p_{T,1}$ in central events, although milder

Significant modifications from pp collisions observed even at the highest $p_{\mathrm{T,1}}$

LIDO calculations well predicts the behavior across $p_{\mathrm{T,1}}$ for peripheral events

 \succ Reproduces the x_J shape for intermediate and high $p_{T,1}$ in central events

LIDO does not reproduce the peak observed at intermediate x_J at low $p_{T,1}$

Dijet x_I observables

Per dijet pair normalized x_J distributions: $\frac{1}{N_{nair}} \frac{dN_{pair}}{dx_J}$

 \succ Enables direct comparison of the x_I shape across centrality in Pb+Pb and in pp

Never Betore Measured Absolutely normalized x_J distributions: $\frac{1}{N_{evt}\langle T_{AA}\rangle} \frac{dN_{pair}}{dx_I}$ \succ Enables evaluation of the dijet per event yields as a function of x_I

> Provides insight into the dynamics of dijet energy loss

Using a $\frac{1}{\langle T_{AA} \rangle N_{evt}}$ normalization enables the study of dijet yields as a function of x_I

The peak structure observed at intermediate x_I stems from the favorable suppression of symmetric dijets

No evidence for enhancement over *pp* of intermediate x_I

with CTEQL1 PDF used in LIDO

LIDO qualitatively predicts the depletion of symmetric dijets observed across $p_{\rm T,1}$ $_{\rm 4/4/2022}$

Dijet nuclear modification factor: R_{AA}^{pair}

 $R_{AA}^{pair}(\mathbf{p_{T,1}})$ quantifies the suppression of the **leading jet** in a dijet

 $R_{AA}^{pair}(p_{T,2})$ quantifies the suppression of the subleading jet in a dijet

Dijet threshold condition of
$$\frac{p_{T,2}}{p_{T,1}} > 0.32$$

In peripheral Pb+Pb no significant suppression is observed for leading jets

Across centrality and p_T a relative suppression of subleading to leading jets is observed 4/4/2022 Timothy Rinn QM-2022 16

Evidence for suppression of subleading jets relative to leading jets is observed

> 3σ significant relative suppression observed in peripheral Pb+Pb

LIDO calculations with a $\mu_{min} = 1.8$ well reproduces the measurement

Summary

Novel measurements of dijets in Pb+Pb collisions have been presented

- Measurements of the absolutely normalized x_J distributions provide evidence of preferable depletion of balanced dijets
- > Measurements of $R_{AA}^{pair}(p_{T,1})$ and $R_{AA}^{pair}(p_{T,2})$ quantify the suppression of leading and subleading jets
- > A 3σ suppression of subleading jets to leading jets is observed in peripheral Pb+Pb

Timothy Rinn QM-2022

backups

Dijet fraction of inclusive jets

Measured fractions of inclusive jets which are part of the leading **dijet**, the **leading jet** of the dijet, or the subleading jet of the dijet

At 100 GeV: 83% of inclusive jets are part of the leading dijet \blacktriangleright Over 95% for $p_T^{reco} > 200 \text{ GeV}$

Fraction of inclusive jets

distribution in pp collisions across $p_{T,1}$

Timothy Rinn QM-2022

Notable deviations from pp is observed up through 60% central Pb+Pb events for 398 < $p_{\rm T,1}$ < 562 GeV

Subleading jets are systematically suppressed relative to leading jets across all measured p_T

The inclusive jet R_{AA} above 150 GeV is bracketed by the $R_{AA}^{pair}(p_{T,1})$ and $R_{AA}^{pair}(p_{T,2})$

> Below 150 GeV the inclusive jet R_{AA} is consistent with the $R_{AA}^{pair}(p_{T,1})$

Timothy Rinn QM-2022