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An ideal grey body is a macroscopic object with definite temperature which absorbs only a
fraction of the radiation incident on it. Assuming that a grey body always emits in a mixed state,
and that the radiation density matrix factors into matrices for the various frequency modes, we
employ general arguments to derive the complete statistics of grey-body radiance elicited by incident
radiation. These depend only on the temperature and the absorptivities for the various frequencies
(hence are of universal form), and coincide with the statistics of black-hole radiance first derived a
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decade and a half ago.
PACS numbers: 05.30.—d, 04.70.Dy, 05.40.+j

The origin of quantum mechanics, one of the two pillars
of contemporary theoretical physics, is deeply rooted in
the universality of the form of blackbody radiation. How-
ever, blackbodies are but idealizations. What we mostly
observe in nature are thermal grey bodies—hot systems
that reflect part of the incident radiation. The issue
of grey bodies has usually been regarded as a marginal
question in theoretical physics, perhaps because of the
widespread feeling that they are not subject to universal
rules. In this Letter we show that in a very real sense,
grey-body radiation is universal. By this we mean that
the statistics of grey-body radiance depend only on the
grey body’s temperature and on the absorptivities for the
various modes, but on no other properties.

As is well known, a blackbody at temperature 7" emits
in each radiation mode of frequency w a mean energy (we
use units such that Boltzmann’s k = 1)

(E) = o ®

This can be viewed as a consequence of the canonical
probability distribution for the number of quanta in the
mode in question

p(m) = (1 — e~ M/T)emmh/T, 2)

Together with the stipulation that the different frequency
modes are statistically independent, and that the density
matrix for each is diagonal in the occupation number
representation, this last formula gives the complete sta-
tistical description of blackbody radiance, including the
fluctuations therein.

Macroscopic objects in real life are often in well defined
thermal states, and absorb only part of the radiation that
falls on them; i.e., the absorptivities a for various fre-
quency modes may fall below unity. Because of its ther-
mal state, such an object emits radiation in a mixed state,

whatever the state of the radiation incident on it (except
in the case that the body is absolutely cold). Further,
one expects the corresponding density matrix to factor,
to a good approximation, into matrices for the separate
frequency modes. Indeed, an exactly factorizable mixed-
state density matrix is a hallmark of blackbody radiance.
This does not apply to radiation from individual atoms
or molecules which can be in a pure state. Further, in the
latter case intermode correlations are rampant. Since or-
dinary macroscopic objects are complex systems in which
the repeated interactions of the radiation with the many
constituent atoms are expected to erase phase relations
and couplings between frequencies, these objects should
resemble more the blackbody case than that of individual
atoms in regards to the nature of the density matrix. We
may thus define an ideal grey body as one possesing the
following properties.

(a) An ideal grey body absorbs in the mean a definite
fraction a of the radiation incident on it in each frequency
mode.

(b) It has a well defined temperature T'.

(c) Unless T = 0, the radiation emerging from it is
always described by a mixed-state density matrix.

(d) This density matrix factors into matrices for each
frequency mode.

Evidently grey-body radiance must be more compli-
cated than blackbody radiance because the a’s are not all
equal to unity. Thus the formula analogous to formula (2)
must refer to the conditional probability ps(m|n) for the
emission, in a mode with absorptivity a, of m quanta,
given that n are incident in the same mode.

When the existence of spontaneous black-hole radiance
was theoretically ascertained by Hawking [1], it was im-
mediately clear that a black hole radiates as a grey body
(as we have defined it): it reflects part of the radiation
falling on it, part of the emergent intrinsically thermal
radiation is returned into the black hole by the curvature
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barrier that surrounds it, and only part of it gets out [1],
and the spontaneous radiance density matrix factors into
matrices for the separate frequency modes [2]. Taking
note of the fact that the blackbody radiance described
by formula (2) is the maximal entropy radiance, given
the mean emitted energy per mode, Eq. (1), Bekenstein

(€% — 1)emamtn ™™ (_1)k(m 4 n — k)l

and Meisels [3] derived the p,(m|n) for a Kerr-Newmann
black hole by assuming that, when exposed to incident
thermal radiation, it will return outward maximal en-
tropy radiance, mode for mode, given the emitted and
reflected mean energies. For a Schwarzschild (nonrotat-
ing and uncharged) black hole, their result reduces to
34)

pa(min) = 752

1+ g)mtn+l
where T}y, is the black-hole temperature, and a and = =
hw /Ty, are the black-hole absorptivity and dimensionless
frequency for the mode in question. Panangaden and
Wald (5] checked this distribution by extending Hawk-
ing’s quantum field theoretic calculation of mean occu-
pation numbers to the statistics. Earlier Page [6] had
concluded that a large collection of oscillators all at one
temperature reacts to incident radiation in accordance
with this same distribution. The purpose of this Letter
is to show that the distribution (3) is not confined to
black holes and particular models of matter, but applies
to any ideal grey body, as here defined. In other words, in
the occupation number representation, the diagonal part
of the conditional grey-body radiance density matrix is
always given by distribution (3).

The distribution (3) yields expected results in some
easy limits. Thus when a — 0 (perfect reflection) the
dominant term in the sum makes a contribution to
pa(m|n) proportional to lim,_ga™+n—2min(mn) o 5 .
Working out the prefactors we find po(m|n) = 6mn
as expected. In the limit a — 1 (perfect absorption)
the square bracket in distribution (3) is unity. Al-
though we have not succeeded in evaluating it analyt-
ically, the sum over the combinatoric factors is shown
to be unity in all cases by numerical evaluation. Hence,
p1(m|n) = (1—e~%)e~™F for all n, as expected for black-
body radiance. For intermediate a in the T' — 0 (z — 00)
limit, the dominant term in the sum makes a contribu-
tion to p,(m|n) proportional to lim,_,, emir(mn)z—mz,
For m > n this vanishes so that p,(m|n) = 0: as ex-
pected, for T = 0, no more quanta go out than went in.
For m < n the contribution is evidently nonzero. Work-
ing out the combinatoric factors for & = m shows that
p(m|n) = (J;)(1 — a)™a™"™ which is the expected dis-
tribution of reflected indistinguishable quanta for albedo
1-a.

Since the derivation of formula (3) in Ref. [3] makes
almost no use of specific black-hole properties, it could
be construed as establishing formula (3) for grey bodies.
However, the assumption is made in Ref. [3] that incident
thermal radiation at temperature © in a given mode elic-
its the perfectly thermal (maximum entropy) emission in
that mode for the available energy. Reasonable though
it seems, it actually amounts to assuming that the radia-
tive properties of each grey-body mode are determined
by a single parameter. For the p,(m|n) of Ref. [3] are

kl(n — k)l(m —k)!

[1 _4lze sinh2(:::/2)] . 3)

a?

those that maximize the mode entropy subject to the
constraint

Z hwpa(m,n)(l_e—M/e)e—nM/e
m,n
Rl N
et —1 ew/®_1
In the language of information theory, the probabilities
Da(m|n) are the least biased given the one piece of infor-
mation represented by a. If two numbers rather than just
a were necessary to describe the radiative properties of
each mode, two constraints would be needed, e.g., mean
energy and its variance, and the p,(m|n) obtained would
be different. Thus to show by an alternative procedure
that formula (3) is correct is tantamount to proving that
all statistical properties of the radiation of an ideal grey
body are completely determined by its absorptivities a
in all modes. This we do now.

In view of the factorization of the density matrix of
grey-body radiance with respect to the frequency modes,
we concentrate on a single mode, and on its conditional
probability distribution p,(m|n), where we display the
dependence on absorptivity explicitly. Implicit is a de-
pendence on the grey-body temperature T', and perhaps
on other parameters describing the mode. We shall as-
sume the trivial conditions of positivity of the p,(m|n)
and normalization in the sense ) p.(m|n) = 1. We
further note that for a pair of grey bodies of tempera-
ture T possessing absorptivities a and a’ for the mode in
question, the conditional probabilities will automatically
satisfy three additional conditions, namely (henceforth
z = w/T), (1) 3, mpa(m|n) = b+ (1—-a)n  and
similarly with a — a’; (2) pa(m|n)e™*" = p,(n|m)e~*™
and similarly with a — a’; and (3) > pa(m|k)pa (k|n) =
Pa(m|n).

The first condition expresses the expectation that the
grey body returns outward, in the mean, a fraction (1—a)
of the number 7 of incident quanta, plus those it spon-
taneously emits, here quantified by the mean emission
coefficient b, which may in principle be a function of T,
a, and some other parameters implicit in the p,(m|n)’s.
The first condition is evidently necessary for a grey body
to attain equilibrium with thermal radiation at the same
temperature. However, it is not sufficient; from Ein-
stein’s work [7] we know that detailed balance must hold

2513




VOLUME 72, NUMBER 16

PHYSICAL REVIEW LETTERS

18 APRIL 1994

in addition. This is exactly what our second condition
stands for: the probability for the absorption of n quanta
by a grey body in a blackbody environment with conse-
quent emission of m quanta [see Eq. (2)] equals the prob-
ability for the absorption of m quanta with emission of
n quanta.

The third condition claims that the effect of two ideal
grey bodies at the same temperature T', but having dif-
ferent a’s, which process incoming radiation in sequence,
is equivalent to the effect of a third ideal grey body at
temperature T', but having some other absorptivity. This
is a reasonable expectation because, as we now show, the
combined system satisfies all the defining conditions for
an ideal grey body at the common temperature T'. First,
since the radiation incident on the second grey body from
the first is partially reflected back, the combined system
must have absorptivity below unity. Second, since each
grey body emits in a mixed quantum state, so should the
combined system. And since the radiation density ma-
trix emerging from each of the two bodies factors, the
matrix describing their joint action must also factor. Fi-
nally consider the probability distribution guq/(min) =
Yk Pa(m|k)pas (k|n) generated by the two grey bodies
acting in sequence. Obviously ) gsa/(m|n) = 1 and
daa’(m|n) > 0. By using the detailed balance (second
condition) for both p, and p,s, and exchanging n and
m, one easily sees that ggq/(m|n)e™2" = guq(n|m)e==™.
Thus the combined system can be put in detailed bal-
ance with blackbody radiation at temperature T' (the
exchange of a and o’ is necessary because inverse pro-
cesses involve the grey bodies in opposite orders). Thus
the combined system behaves exactly as expected of a
system at temperature T. In summary, a system of two
ideal grey bodies at like temperature in tandem posesses
all the defining properties of an ideal grey body at tem-
perature T, and the probability distribution ggq/(m|n)
describing the statistics of its radiation should thus be
identical to the grey-body conditional probability distri-
bution pg~(m|n) for temperature T, for some effective
absorptivity a”, and for some values of the extra param-
eters implicit in the individual p,(m|n)’s. This validates
the assumed condition (3).

Before demonstrating the universality of the grey-body
radiation, let us extract some preliminary results. The
first one is that the mean spontaneous emission by an
ideal grey body is uniquely determined by its absorptivity
and temperature. Indeed, summing the second condition
over n and recalling the normalization of probability, we
obtain

e M = Zpa(m|n)e"’". (5)

Now, if we multiply both sides by m, sum over m, and
use the first condition, we get

Z me” "™ = Z b+ (1 —a)n]e ™" (6)
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After a trivial algebra, if follows that

a
er—1°

b= (M)
This result for the mean number of spontaneously emit-
ted quanta reproduces Kirchhoff’s law that the emissivity
of a hot body equals its absorptivity a: the mean number
of quanta spontaneously emitted, b, depends only on T'
and a, and is a fraction a of the Planckian value.

To deduce the probability distribution for the number
of spontaneously emitted quanta, we appeal to the second
condition. For n =0

Pa(m|0) = pa(0m)e™*™. (8)

Now the probability p,(0|1) that a quantum is incident on
the grey body and none reemerges should be decompos-
able as p,(0]|0)e™*, where e is the actual probability of
absorption which has to be multiplied by the probability
that no quantum gets emitted in the mode, p,(0]0), to
get p,(0]1). By analogy since the absorption of various
quanta are uncorrelated events, p, (0lm) = p,(0]0)e™™.
Substituting this in Eq. (8) and determining p,(0|0) by
the requirement of normalization we obtain

Pa(m|0) = (1 — e'ﬁ)e—ﬁ"‘, 9)

where § = p + z. Now comparing the mean number of
quanta spontaneously emitted implied by Eq. (9) with
our previous result, Eq. (7), we find that g is determined
by
1 a

-1 e -1
It is easy to check that the spontaneous emission distribu-
tion p,(m|0) is that which maximizes the entropy emitted
given the mean energy b(z, a). It is precisely by using the
maximum entropy principle that the results (9) and (10)
were earlier derived in the context of black holes [8]. Our
alternative derivation here certifies that the spontaneous
emission of an ideal grey body is fully determined by the
absorptivities (and temperature) alone, and that there
are no second parameters.

Moving on we note that there is a useful relation be-
tween the absorptivities in a mode of two ideal grey bod-
ies at the same temperature and that of the grey body
obtained by combining them. Multiplying the third con-
dition by m and summing over m gives

> m Y pa(mlk)pa (kln) = > mpar(min).  (11)
m k m

(10)

Interchanging the order of the summations, making re-
peated use of the first condition in the left hand side of
this equation, and recalling Eq. (7) gives

a +(1—-d)a

>~ mpar(min) = ————— + (1 ~a)(1 - a)n.

(12)
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A comparison of this result with the first condition and
Eq. (7) reveals that the effective absorptivity of the com-
posite grey body is
a"=a+a' —ad. (13)
Note that if both a and o’ lie in the range (0,1), so does
a”.
‘We now prove that formula (3) is the universal p, (m|n)

given = and a. In the third condition, let us take n = 0
thus obtaining

Par(m|0) = Zpa(mln)pa:(nIO), (14)
which with the aid of Egs. (9) and (10) reads
(1-e)e "™ = pa(mn)(1 —e e "  (15)
n

where a and « are determined by

1 a
ex—1 er—1

(16)

and

1 aII

e —1 e —1

(17)

Recalling the law of composition of absorptivities,
Eq. (13), we can alternatively express v as a function
of a:

l1-a

1 a
= . 18
e’ -1 e‘°—1+e°‘—1 (18)

Equations (15) and (18) say that each mode of an ideal
grey body responds to thermally distributed incident ra-
diation by emitting thermally distributed radiation (at a
different effective temperature). Let us regard z and a in
the last five equations as fixed, while a, or alternatively
z = e~ 9, is variable. Then Eq. (15) is equivalent to the
identity of two functions of z:

—_ e (z
E)MMMW=17%L¥”WmEﬂ4. (19)

z

The conditional probabilities now follow from repeated
differentiations of this expression at the origin:
1d"f(2)

pa(mln) = m dZ" z=0'

(20)

The calculation was done in [3] and led uniquely to
Eq. (3) with z = hw/T.

The above shows that the statistical properties of grey-
body radiance depend only on T' and the absorptivities,
and are in this sense universal. This extends Kirchhoff’s
law—the absorptivities completely determine the mean

emission—to the statistics of quanta.

As an application, suppose a spherical grey body is en-
closed inside an also spherical perfectly reflecting cavity
perforated with a tiny hole through which radiation of ar-
bitrary character is allowed to enter. This radiation will
be absorbed and reflected by the grey body which will
also emit. The combined radiation will then be reflected
back by the cavity towards the grey body thus iterating
the process. In the limit the distribution of the radia-
tion is that obtained by processing the initial radiation
through an infinite convolution of identical p,(m|n)’s.
Now it is easy to see from Eq. (13) that after N reflec-
tions, the effective absorptivity isay =1 — (1 —a)N. In
the limit N — oo,any — 1. But, as mentioned earlier, for
a =1 the p,(m|n) in Eq. (3) reduces, for any n, to the
Planckian distribution, Eq. (2). Thus over a sufficiently
long time, any radiation gets converted by interaction
with a grey body into blackbody radiation.

All the above results are for boson radiation. Fermions,
if emitted by the grey body, will also be described by a
conditional probability distribution p(m|n), with m,n =
0,1 because of the Pauli principle. However, as shown
in Ref. [3], the Fermi-Dirac analog of Eq. (1) forces the
result

a

p(lin) =

+ (1 —a)bin,  p(On) =1-p(1|n),

(21)

without any special assumptions. For fermions we thus
get universality in a trivial way.
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