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Abstract

The center-flavor symmetry of a gauge theory specifies the global form of consistent
gauge and flavor bundle background field configurations. For 6d gauge theories which arise
from a tensor branch deformation of a superconformal field theory (SCFT), we determine
the global structure of such background field configurations, including possible continuous
Abelian symmetry and R-symmetry bundles. Proceeding to the conformal fixed point, this
provides a prescription for reading off the global form of the continuous factors of the zero-
form symmetry, including possible non-trivial mixing between flavor and R-symmetry. As
an application, we show that this global structure leads to a large class of 4d N = 2 SCFTs
obtained by compactifying on a T 2 in the presence of a topologically non-trivial flat flavor
bundle characterized by an ’t Hooft magnetic flux. The resulting “Stiefel–Whitney twisted”
compactifications realize several new infinite families of 4d N = 2 SCFTs, and also furnish
a 6d origin for a number of recently discovered rank one and two 4d N = 2 SCFTs.
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1 Introduction

Since their discovery [1–3], 6d SCFTs have been a fount of insight into the non-perturbative

structure of quantum field theory in diverse dimensions. In particular, knowledge of the

six-dimensional theory and the compactification geometry can make hard-to-access non-

perturbative features in lower-dimensional systems manifest. On the other hand, general

arguments indicate that such theories cannot be realized via perturbations of a Gaussian

fixed point, and so in this sense they are intrinsically strongly coupled [4]. This in turn

complicates the construction and study of such theories.

A conjectural classification of all 6d SCFTs was proposed in [5, 6] (see also [7–15]).

The main idea in this classification program is to engineer such theories via F-theory back-

grounds involving a non-compact elliptically fibered Calabi–Yau threefold with a canonical

singularity. This has led to a vast class of new theories, and a remarkably simple unifying

description of nearly all such theories on their partial branch as generalized quiver gauge

theories. This perspective has been used to extract a number of calculable quantities from

such systems, including, for example the anomaly polynomial [16–19], as well as operator

scaling dimensions of certain operator subsectors [8, 20–23]. Compactification of such theo-

ries to four-dimensional systems also provides a systematic way to generate a broad class of

4d SCFTs with varying amounts of supersymmetry [24–58].1

In general terms, global symmetries also play an important role in constraining correlation

functions of local operators, and also figure into the analysis of higher symmetries [60]. This is

no less true in 6d SCFTs, and also plays an important role in in the study of compactifications

of such systems. As a recent example, [61] (see also [29]) demonstrated that starting from

certain 6d N = (1, 0) SCFTs, compactification on a T 2 in the presence of a topologically

non-trivial but flat bundle associated with an ’t Hooft magnetic flux can be used to generate

a class of 4dN = 2 SCFTs. In particular, this requires knowing not just the global symmetry

algebra of the 6d theory, but the actual group.

Our aim in this paper will be to extract the continuous zero-form group symmetries of 6d

SCFTs, and to use this in the construction of 4d N = 2 SCFTs via Stiefel–Whitney twisted

compactifications. Now, although the actual method of constructing such 6d SCFTs involves

the geometry of the F-theory compactification, geometry can sometimes obscure some of the

symmetries [62]. These top down considerations can often be supplemented by various

bottom up considerations, including Higgsing from theories with known flavor symmetry

algebras [13,63–65], and thus in many cases we know the continuous global symmetry algebra.

Consequently, we can specify a corresponding “naive” flavor symmetry G̃flavor, where all

simple non-Abelian factors are simply connected, and there is no finite group action on any

U(1) factors. One can also supplement this by the R-symmetry SU(2)R, which is difficult to

track in the F-theory construction, but which must be present in any 6d SCFT.2 Since we

1A recent overview of superconformal field theories in dimensions three to six is [59].
2Recall that in a supersymmetric theory, the flavor symmetry commutes with the supercharges, whereas
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also have the gauge symmetry on the tensor branch, there is a corresponding “naive” group

of continuous gauge and global zero-form symmetries:

G̃gauge-global ≡ G̃gauge × G̃flavor × SU(2)R , (1.1)

where we have kept implicit the spacetime global symmetries of the field theory. This answer

is “naive”, in the sense that the matter content and effective strings (coupling to the tensor

multiplet chiral two-forms) of the effective field theory may be neutral under some subgroup

of the center of G̃gauge-global. Consequently, the global form may end up being quotiented by

a subgroup of the center C ⊂ G̃gauge-global:

Ggauge-global = G̃gauge-global/C . (1.2)

This quotient can also act on the spacetime symmetries since the supercharges transform as

spacetime spinors and R-symmetry spinors. The combined action on the gauge and flavor

symmetry is often referred to as a “center-gauge-flavor symmetry”, generalizing the notion

of “center-flavor symmetry” [66–83]. Of course, from the perspective of the 6d SCFT, the

defining data only makes reference to the global symmetries, and the same quotient, suitably

projected, realizes the continuous part of the global symmetry group

Gglobal = G̃global/Cglobal , (1.3)

in the obvious notation. In the conformal limit, the possible action of Cglobal on these inter-

nal symmetries can also be accompanied by a quotient on the conformal group. As already

implicitly mentioned, knowing the global form of the zero-form symmetry group has impor-

tant implications for the existence and structure of higher-dimensional defects in the theory,

informing possible higher symmetry structures.

One of our core tasks will be to present a general algorithm for extracting Ggauge-global and

Gglobal of the tensor branch effective field theory. This also amounts (upon projecting onto

the global symmetry factors) to a prediction for the global continuous zero-form group of the

6d SCFT. Extracting this data directly from the corresponding F-/M- theory background

geometry [83] was recently carried out for a number of 5d supersymmetric quantum field

theories obtained from circle reduction of the tensor branch of a 6d SCFT, and the “bottom

up” approach developed here agrees with the “top down” results obtained in [83]. From

a bottom up perspective, we simply work on on the tensor branch where we have access

to the large symmetry transformations of the system, and the correlated response from

transformations on the chiral two-forms of the effective field theory. Such transformations

are in turn sensitive to the global topology of background gauge/global bundle configurations

[84].3 This technique has been used previously to explore some examples of non-Abelian

the R-symmetry (by definition) does not.
3We note that, since this analysis relies solely on the effective field theory description on the tensor branch,
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flavor symmetry in related systems [80,84],4 but as far as we are aware, a systematic study of

all possibilities was not previously undertaken. In particular, we also show how to incorporate

continuous Abelian symmetries.

Moreover, our analysis also extends to the global form of the R-symmetry, and its pos-

sible mixing with the center-flavor symmetry. This is difficult to extract from established

index computations in the much-studied and related case of 4d theories (as obtained by com-

pactification on a T 2 with no background bundles switched on), since in many cases, only

specific R-charge sectors are counted.5 In some cases, however, alternative methods have

been explored for extracting the chiral ring of the corresponding Higgs branch [92,93], which

implicitly also determines a mod 2 constraint on the global form of the center symmetry

mixing with the R-symmetry. In these cases, we find that our analysis agrees with these

constraints.

To illustrate the utility of this approach, we show in a number of examples how to

extract the symmetry groups Ggauge-global and Gglobal. One large class of examples includes

M5-brane probes of an ADE singularity C2/ΓADE as well as their Higgs branch deformations.

These flows are captured by group-theoretic data associated with nilpotent and semi-simple

deformations of the corresponding flavor symmetry algebras. Since the corresponding tensor

branch descriptions for these theories are all known, we can use our method to extract the

corresponding continuous symmetry group, including contributions from Abelian symmetry

factors and mixing with the R-symmetry. Similar considerations hold for the “orbi-instanton

theories” obtained from Higgs branch deformations of M5-branes probing an ADE singularity

C2/ΓADE wrapped by an E8 nine-brane. In this case, deformations of the E8 flavor symmetry

factor are captured by finite group homomorphisms ΓADE → E8.

Analyzing this class of examples, we observe that many breaking patterns wind up gener-

ating a trivial quotienting subgroup C for the global symmetry. This occurs simply because,

in many cases, there is no common center for the simply connected non-Abelian symmetry

group factors. A general rule of thumb for realizing a common center-gauge-flavor symmetry

is that the group-theoretic data such as a nilpotent orbit or a finite group homomorphism

must have a sufficient multiplicity so that there is a non-trivial finite group action on the

deformation parameter itself. This analysis also makes it clear that the vast majority of ex-

amples with non-trivial gauge-flavor symmetry mixing on the tensor branch will necessarily

involve A-type symmetry algebras, simply because the corresponding Lie groups exhibit a

far broader class of possible center subgroups (e.g., SU(N) has center ZN), when compared

with their non-A-type counterparts.

it can also be carried out straightforwardly for theories constructed from frozen singularities [10,12].
4In gravitational theories where there are no global symmetries, the same methods give constraints on

the global form of gauge symmetries [84,85], which for supergravity models in high dimensions are found to
agree with patterns in string compactifications [86–89].

5We note that the possibility of mixing with the center of the R-symmetry resolves some puzzles in various
claimed global forms of the flavor symmetry for certain 4d N = 2 SCFTs which have appeared in earlier
work (e.g., compare [90] with [91]), a point we comment on in more detail later on.
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Once the center-flavor symmetry of a 6d SCFT is known, one can utilize it to generate

a large class of lower-dimensional theories via compactification. To illustrate, we primarily

focus on the case of compactification on a T 2 in the presence of topologically non-trivial

background bundle configurations. The corresponding ’t Hooft magnetic fluxes are charac-

terized by holonomies which commute in Gflavor = G̃flavor/C, but which would not commute

in G̃flavor (see [94, 95]). These have been referred to as Stiefel–Whitney twisted theories

in [61]. This provides a systematic way to generate a large class of 4d N = 2 SCFTs. In

particular, up to a small number of outliers, we show that after including further Higgs

branch and mass deformations, this generates the full list of known rank two 4d N = 2

SCFTs given in [96]. The list of theories we generate in this way also has some overlap with

other top-down constructions such as those based on D3-brane probes of N = 2 S-folds (i.e.,

non-perturbative generalizations of an orientifold plane in the presence of a stack of flavor

seven-branes) [97–101]. While there is indeed some overlap in 4d with suggestive evidence

via string duality, we also find that there are some cases of Stiefel–Whitney twisted com-

pactifications which resist a simple interpretation in terms of S-folds, an issue we leave for

future investigations.

The rest of this paper is organized as follows. We begin by giving a brief review of the

tensor branch of a 6d SCFT, with a particular emphasis on topological terms. In Section

3, we study the global structure of the flavor symmetry group of 6d (1, 0) SCFTs using

the tensor branch description. In particular, we extract the overall center-flavor symmetry,

including Abelian factors, as well as non-trivial mixing with R-symmetry factors, illustrating

with a number of examples. Section 4 serves as an intermezzo between the 6d and 4d analysis;

we extract the center-flavor symmetry for a large class of, so-called, orbi-instanton theories

which we then use in the next section. In Section 5 we turn to the resulting 4d N = 2

SCFTs generated by Stiefel–Whitney twisted compactifications of such 6d SCFTs. This

provides us with a large class of new theories, and we also comment on the similarities and

differences with 4d N = 2 S-fold constructions. In Section 6, we briefly explore the DE-

type generalizations of the A-type 6d and 4d SCFTs that were studied in Sections 4 and 5.

We present our conclusions and areas of future investigation in Section 7. In Appendix A,

we determine the continuous symmetry group for the N = (2, 0) theories and the E-string

theories. In Appendix B, we show how to generate nearly all known rank two 4d N = 2

SCFTs via twisted Stiefel–Whitney compactifications, and we provide a comparison with

previously obtained results in the literature in Appendix C. Appendix D studies the nilpotent

deformations in Stiefel–Whitney twisted theories inherited from the nilpotent deformations

of their 6d parent theory. Finally, in Appendix E, we explore the global form of the flavor

symmetry group for nilpotent deformations of conformal matter theories.
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2 Tensor Branch of 6d SCFTs

In this section, we present a brief review of the tensor branch of a 6d SCFT, with a particular

emphasis on the topological interaction terms. Recently, much progress has been made

in constructing 6d SCFTs by recasting the construction of such theories in terms of non-

compact elliptically-fibered Calabi–Yau threefolds X → B. In this description, one starts

with a collection of curves in the base B, and with it a corresponding elliptic fibration. We

can reach a conformal fixed point if the collection of curves can simultaneously contract to

zero size. This results in a canonical singularity in the elliptic threefold (possibly partially

frozen), and is the most systematic known method for realizing such theories [5, 6].

The configuration of curves prior to collapse gives a geometric realization of the so-called

“tensor branch” of the 6d SCFT. In this regime, we have a collection of tensor multiplets, the

bosonic content of each one consisting of a real scalar and an anti-chiral two-form potential.

This anti-chiral two-form couples to effective strings, with tension controlled by the vacuum

expectation value (vev) of the scalar. We can potentially have 7-branes wrapped over each

curve, and this results in non-Abelian gauge symmetries on the tensor branch. Collisions

of 7-branes result in matter, which can include weakly coupled hypermultiplets, as well as

(if we do not go to the full tensor branch) strongly coupled generalizations known as 6d

conformal matter [7, 8].

Letting Aij denote the intersection pairing matrix for curves in the base, a concise way to

denote the tensor branch configuration is in terms of a quiver-like graph, where each node,

denoted as
gi
ni, encodes the ith gauge algebra gi, whose associated tensor has self-pairing

Aii = −ni. In what follows, we shall allow for the possibility that the gauge algebra is

trivial, i.e., gi = ∅, in which case no decoration is necessary. On the tensor branch, the

condition of 6d gauge anomaly cancellation is, up to a small number of corner cases, enough

to characterize the matter content of the tensor branch theory, including the spectrum of

hypermultiplets.6

Now, the F-theory model directly specifies the gauge symmetry, as associated with 7-

branes wrapped on compact curves of the base B, and this splits up into a collection of

simple non-Abelian gauge symmetries:

ggauge =
⊕
i

gi. (2.1)

Each factor here is a simple Lie algebra. Moreover, there are no gauged Abelian u(1) factors,

as follows directly from the structure of the local F-theory models [5]. Turning next to

the flavor symmetries of the 6d SCFT, the tensor branch description typically provides

a good first approximation of the flavor symmetries of the 6d SCFT. For example, the

hypermultiplets of the effective field theory often rotate under a global symmetry, and this

6There are a small number of cases, such as su6 with ni = 1 where the hypermultiplet spectrum is not
uniquely fixed by the gauge algebra and self-pairing.
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persists at the conformal fixed point. In some cases, certain candidate flavor symmetries only

become apparent once we approach the fixed point. A classic example of this phenomena

is the E-string theory, namely the theory of an M5-brane probing an E8 nine-brane. From

the perspective of [7,8], the E-string, as well as other sub-configurations of matter fields can

be viewed as the tensor branch of a generalized type of matter where the flavor symmetry

is manifest, namely “conformal matter”. All of this is to say that there is by now a general

algorithm to read off the candidate non-Abelian flavor symmetry through a combination of

the top-down F-theory geometry, and additional strong coupling enhancements (see, e.g.,

[6–8, 63] for some examples of such analyses). There is also a general algorithm for reading

off candidate u(1) symmetries which are free from mixed gauge symmetry/u(1) anomalies,

so-called ABJ anomalies [65, 102]. Putting all of this together, the flavor symmetry algebra

is of the general form:

gflavor =
⊕
a

ga ⊕
⊕
f

u(1)f , (2.2)

where each factor ga refers to a simple non-Abelian Lie algebra, and we have also included

possible continuous Abelian symmetry factors. As a general point of notation, we shall

distinguish the non-Abelian gauge and flavor symmetry algebras by the respective indices i

and a, while Abelian flavor symmetry algebras are indexed by f . Indeed, in the corresponding

topological Green–Schwarz–Sagnotti–West terms, we will have couplings to both sorts of

gauge bundle curvatures. Here, we have allowed for the possibility of various enhancements,

as captured by working with conformal matter. Finally, there is also the R-symmetry of the

6d SCFT, and this is also present on the tensor branch since it is unbroken. This provides

an additional su(2)R global symmetry algebra. Putting all of this together, the continuous

global symmetry of the system is:

ggauge-global = ggauge ⊕ gflavor ⊕ su(2)R, (2.3)

where we have left implicit the spacetime symmetries. We again stress that in many cases,

we can deduce the corresponding symmetry algebra from earlier work, so the main task

reduces to determining the symmetry group, rather than just the algebra.

To accomplish this, we will need to know more about the topological sector of the theory.

Much as in [84], we mainly claim that it suffices to study the topological terms of the tensor

branch theory. Some of such terms are necessary for the theory to be free of gauge symmetry

anomalies in the first place, while other terms inform us of global symmetry anomalies. All of

these are captured by couplings between the anti-chiral two-forms and the Chern character of

the non-Abelian gauge field strengths, as required to satisfy 6d anomaly cancellation via the

Green–Schwarz–Sagnotti–West mechanism [103, 104]. Including background field strengths

from global symmetries, we get a set of topological couplings:

2π

∫
M6

Θi ∧ I i , (2.4)
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where Θi refer to the anti-chiral two-forms of the ith tensor multiplet (denoted as ti), and

the I i are a collection of four-forms:

I i =−
∑
j

Aij c2(Fj)−
∑
a

Bia c2(Fa) +
∑
f,f ′

Ci;f,f ′
c1(Ff ) ∧ c1(F ′f )

2

+ yic2(R)− (2 + Aii)1
4
p1(T ) .

(2.5)

Here, the Fj refers to the gauge field strengths, the Fa are the field strengths for the non-

Abelian flavor symmetry factors, and the Ff are the field strengths for Abelian symmetry

factors, all of which we have expressed in terms of the corresponding Chern characters.7

On the second line, we have also included the contribution from the R-symmetry, c2(R),

as well as the first Pontryagin class of the spacetime tangent bundle. Turning next to the

coefficients appearing in I i, the matrix Aij is, in our conventions, negative definite, and

encodes the Dirac pairing for the effective strings, while the Bia are coefficients determined

by the cancellation of all gauge-flavor anomalies, i.e., terms proportional to Tr(F 2
i )Tr(F 2

a ) in

the full anomaly polynomial [16–18,105]

I8 = I1-loop + IGS = I1-loop −
1

2
(A−1)ijI

iIj . (2.6)

As an additional comment, the only u(1) symmetry factors we can include are those which

are free from ABJ-anomalies, which are encoded in the coefficients of Tr(F 3
i )Ff -terms of

the anomaly polynomial. Such terms must vanish at 1-loop for any quantum mechanically

unbroken flavor u(1). For 6d SCFTs on their tensor branch, one can determine all such

flavor u(1)s from a bottom-up approach [65] (see also [102]). We note that, as opposed to

non-Abelian flavor symmetries, these u(1)s are sometimes geometrically delocalized.

The main tool at our disposal for determining the global form of Ggauge-global will be to

track the global bundle structure of background field configurations using large symmetry

transformations. Via the Green–Schwarz–Sagnotti–West mechanism, we know that this will

also involve a non-trivial transformation from the anti-chiral two-forms Θi, and the combined

effect must be such that the full set of topological contributions remains invariant. We now

proceed to the determination of this global structure.

3 Topology of Global Symmetry Group for 6d SCFTs

In this section, we determine the global structure of the symmetry groups for 6d N = (1, 0)

SCFTs, based on their tensor branch characterization as a weakly-coupled gauge theory. In

what follows, we assume that the symmetry algebra ggauge-global has already been specified.

7In our conventions, 1
4TrF 2 = c2(F ) and c1(F ) =

√
−1F .
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There is a corresponding “naive” answer for the zero-form symmetry:

G̃gauge-global = G̃gauge × G̃flavor × SU(2)R , (3.1)

namely, for each non-Abelian Lie algebra, we take the corresponding simply connected Lie

group, and all Abelian factors simply lift to U(1). As before, we leave the spacetime sym-

metries implicit. The answer is naive, in the sense that this analysis does not distinguish

between symmetries acting on genuine local operators, and those which are only defined as

the endpoints of line operators (see [81,83,106,107]). Indeed, on general grounds, we expect

that the actual zero-form symmetry group is quotiented by a subgroup of the common center

for these factors. We shall refer to this as the gauge-global center symmetry, writing it as:

Ggauge-global = G̃gauge-global/C . (3.2)

This leaves us with a residual center which is present in the actual tensor branch theory.

With this in hand, we also have a candidate global symmetry for the 6d SCFT, as given by

projection onto just the global symmetries of this quotient. Note that the group quotient

specified by C has a canonical restriction to just the global symmetries. In the obvious

notation, we then have:

Gglobal = G̃global/Cglobal . (3.3)

Our aim will be to extract Gglobal by determining the corresponding center symmetry

group C. The analysis of this proceeds in several stages. First of all, we must require

that all matter fields, including weakly coupled hypermultiplets as well as generalizations

such as E-strings and conformal matter are all neutral under C. Additionally, precisely

because the group of gauge transformations in the 6d tensor branch theory also requires an

accompanying transformation of the chiral two-forms of the associated tensor multiplets, we

must also require that the corresponding effective strings are neutral under C (see, e.g., [84]).

In practical terms, what this amounts to is analyzing the topological sector of the tensor

branch theory, and the response of the effective action under large field transformations.

This leads to a non-trivial correlation between candidate 0-form symmetry bundles, which

will in turn allow us to read off Gglobal.

In the rest of this section, we spell out the steps for extracting Gglobal directly from

the tensor branch. First, we begin by tracking the mixed gauge-flavor center symmetry

for non-Abelian symmetry factors. We then show how to incorporate continuous Abelian

symmetry factors, and then turn to possible mixing with the R-symmetry factors. The

specific case of the R-symmetry group is particularly subtle, since it can evade detection

via other means such as superconformal index computations. In each step, we present some

illustrative examples, which we revisit to exhibit the full global symmetry structure.
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3.1 Anomalies for Center–Flavor Symmetry

We begin by considering the core example, based on mixing between the center of the gauge

groups and non-Abelian symmetry factors. For now, we therefore suppress the contribu-

tions from Abelian symmetry factors as well as the R-symmetry. For a non-Abelian flavor

symmetry that rotates matter charged under a gauge symmetry, a non-trivial global flavor

symmetry structure generally requires a center-twisted gauge bundle that compensates the

twisted flavor bundle. There is a potential obstruction to turning on such gauge and fla-

vor bundles, which can be quantified from the tensor branch data [84] and the topological

couplings in equation (2.4).

Turning on a center-twisted bundle for a simple algebra g (flavor or gauge), with simply-

connected group G̃ and center Z(G̃) now leads to a fractionalization of c2(F ) [60,77,108,109]:

1
4
Tr(F 2) = c2(F ) ≡ −αgw(F ) ∪ w(F ) mod Z . (3.4)

Here, w(F ) ∈ H2(M6, Z(G̃)) is the Z(G̃)-valued characteristic class (the generalized Stiefel–

Whitney class, also called the Brauer class in the mathematical literature) measuring the

obstruction to lift a G̃/Z(G̃)-bundle to a G̃ bundle, and w∪w ≡ w2 is a 4-cocycle with integer

periods.8 The fractionalization is due to the factors αg, whose fractional values depend g

(with non-trivial center Z(G̃)):

g = sun (Zn) : αg = n−1
2n

, g = spn (Z2) : αg = n
4
,

g = e6 (Z3) : αg = 2
3
, g = e7 (Z2) : αg = 3

4
,

g = so4n+2 (Z4) : αg = 2n+1
8

, g = so2n+1 (Z2) : αg = 1
2
.

(3.5)

In the case g = so4n and G̃ = Spin(4n) with center Z(1)
2 × Z(2)

2 , there are two contributions,

c2 ≡ −
(
n
4
(w(1) + w(2))2 + 1

2
w(1) ∪ w(2)

)
mod Z , (3.6)

originating from the center background w(i) of Z(i). In general, each Z`s factor of the full

center
∏

i Z(G̃i)×
∏

a Z(G̃a) =
∏

s Z`s is accompanied by a background field ws. Again, the

i index refers to the gauge groups and the a index refers to the non-Abelian flavor groups.

Because of the topological couplings in equation (2.4), a general background w̃ = (w1, ..., ws, ...)

8To be precise, c2(F ) ≡ αgP(w) mod Z, where P is the Pontryagin square operation. If w ∈ H2(M,Zn),
then for n odd, P(w) ≡ w ∪ w ∈ H4(M,Zn); for n even, P(w) ∈ H4(M,Z2n) reduces to w ∪ w modulo n.
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for the center
∏

s Z`s9 will lead to a fractional 4-cocycle coupling to the tensor Θi,∑
j

Aij c2(Fj) +
∑
a

Biac2(Fa) =:
∑
g

Aigc2(Fg)

≡ −
∑

gg 6=so(4n)

Aig αggw
2
g −

∑
gg=so(4ng)

Aig
(
ng
4

(w(1)
g + w(2)

g )2 +
1

2
w(1)
g ∪ w(2)

g

)
mod Z ,

(3.7)

where the index g runs over both gauge and flavor factors, and Aig is the combined matrix

of the tensor pairings Aij and non-Abelian flavor coefficients Bia. Because of this fraction-

alization, the action transforms anomalously under a large gauge transformation of the ith

two-form tensor Θi [84], which poses an obstruction to turning on the corresponding twisted

bundles.

However, for subgroups Z ⊂
∏

s Z`s , for which the ws are related to each other, it

may be possible that different fractional contributions cancel, so that equation (3.7) is an

integer class. Concretely, for a cyclic Znr subgroup with generator (k
(r)
1 , k

(r)
2 , ...) ∈

∏
s Z`s ,

the corresponding center background is parametrized by w̃(r) = (k
(r)
1 w(r), k

(r)
2 w(r), · · · ), for a

single independent 2-cocycle w(r). If the fractionalizations vanish for a linear combination

w̃ =
∑

r w̃
(r) = (

∑
r k

(r)
1 w(r),

∑
r k

(r)
2 w(r), ...) with generic backgrounds w(r) for a subgroup

Z =
∏

r Znr , the global structure of the symmetry group is:10

Ggauge-global =

∏
i G̃i ×

∏
a G̃a

Z
. (3.8)

Note that the candidate subgroups Z of interest are in general severely limited by requir-

ing that the hypermultiplet spectrum of the tensor branch theory must transform trivially

under it. Any subgroup Z of the full center which rotates these states by a non-trivial phase

ϕ ∈ U(1) is explicitly broken, i.e., one cannot twist the bundles by Z, regardless of the

anomaly above.

For a simple group G with Z(G) = Zn, a center element x (mod nZ) ∈ Zn acts on an

irreducible representation R by the phase ϕx(R) := (ϕ(R))x, with the phase ϕ(R) for the

generator 1 ∈ Zn computed as follows:11

• for G = SU(n), and R having a Young-tableaux with m boxes, then ϕ(R) = e2πi
m
n ;

• for G = Sp(n), ϕ(R = fund) = −1 and ϕ(R = anti-sym) = 1;

• for G = Spin(2n+ 1), ϕ(R = vector) = 1 and ϕ(R = spinor) = −1;

9Indexing by s the individual cyclic factors distinguishes the two Z2 factors for a factor of G̃g ∼= Spin(4kg).
10A short comment on notation: we reserve C for the full quotienting subgroup, with Z the quotient on

just the non-Abelian symmetry factors.
11In general, any irrep R of G defines an element ϕ(R) ∈ Hom(Z(G), U(1)) = Ẑ(G) ∼= Z(G) of the

Pontryagin-dual. The phase ϕx(R) ∈ U(1) is then just the image of x under ϕ(R).

11



• for G = Spin(4n+ 2), ϕ(R = vector) = −1 and ϕ(R = spinor) = i;

• for G = E6, ϕ(R = fund) = e
2πi
3 ;

• for G = E7, ϕ(R = fund) = −1.

For G = Spin(4n) with Z(G) = Z(1)
2 × Z(2)

2 , the phases associated with the generator

(1, 0) are ϕ(1)(R = vector) = ϕ(1)(R = spinor) = −1, ϕ(1)(R = co-spinor) = 1, and

those associated with (0, 1) ∈ Z(G) are ϕ(2)(R = vector) = ϕ(2)(R = co-spinor) = −1,

ϕ(1)(R = spinor) = 1. For a general element (x1, x2) ∈ Z(G), the phase is then ϕ(x1,x2)(R) =

(ϕ(1)(R))x1 (ϕ(2)(R))x2 .

For the center of a semi-simple group
∏

g Gg 3 x = (xg), one can analogously compute the

phase from acting on a representation R =
⊗

gRg ≡ (R1,R2, ...) as ϕx(R) =
∏

g ϕ
xg
g (R).

Hence, for Z ⊂ Z(
∏

g Gg) =
∏

g Z(Gg) to leave all hypermultiplets invariant, ϕx(R) = 1 for

all x ∈ Z and all representations R that appear. If, in addition, the obstruction in equation

(3.7) vanishes, we propose that it is consistent to turn on the corresponding center twist

(see also [80]). This includes in particular the examples studied in [61], and also agrees with

expectations from explicit geometric constructions, where one can show that excitations of

BPS-strings are invariant under Z [80, 84,110].

3.1.1 Examples

We now turn to examples illustrating how we extract the non-Abelian flavor symmetries.

Let us also note that recently in [83], geometric methods were developed to directly extract

the global symmetry group for 5d conformal matter, i.e., the circle reduction of 6d conformal

matter. Our bottom up analysis agrees with the results found there.

Example 1: Consider the SCFT with tensor branch description:

[su
(L)
N ]

su
(1)
N

2
su

(2)
N

2 · · ·
su

(m−1)
N

2
su

(m)
N

2 [su
(R)
N ] , (3.9)

which consists of m gauge factors su
(i)
N and has two su

(a)
N (a = L,R) flavor factors at each

end of the quiver. The hypermultiplet spectrum consists of bifundamentals between each

adjacent factor of SU(N)L ×
∏

i SU(N)(i) × SU(N)R:

R(1) = (N,N,1,1, . . .) , R(2) = (1,N,N,1, . . .) , · · · . (3.10)

With the tensor pairing matrix Aij being the negative SU(m+1) Cartan matrix, the anoma-

lies proportional to Tr(F 2
i )Tr(F 2

a ) are cancelled by a Green–Schwarz term with BiL = δi,1

and BiR = δm,R. So the relevant part of the GS-coupling in equation (2.4) is

Θi ∧ (−c2(Fi−1) + 2c2(Fi)− c2(Fi+1)) , (3.11)

12



where F0 := FL and Fm+1 := FR.

It is easy to see that the hypermultiplet spectrum is invariant under the diagonal center

ZN with generator

(1, 1, ...) ∈ Z(L)
N ×

∏
i

Z(i)
N × Z(R)

N = Z(SU(N)L ×
∏
i

SU(N)(i) × SU(N)R) . (3.12)

Since for this generator, all −c2(Fi) ≡ N−1
2N

w2 fractionalize equally, they cancel out for each

tensor multiplet ti. Therefore, the non-Abelian symmetry group is [SU(N)L×
∏

i SU(N)(i)×
SU(N)R]/ZN , and the non-Abelian flavor symmetry of the SCFT is [SU(N)L×SU(N)R]/ZN ,

which agrees with known results [36, 83]. As an additional comment, we note that this case

also has an overall u(1) flavor symmetry [36,65], so we will revisit it when we discuss Abelian

symmetry factors.

Example 2: For N ≥ 5, there is an SCFT with tensor branch description:

suN
1

[#
∧2=1]

[suN+8] , (3.13)

with a bifundamental hypermultiplet R(1) = (N,N + 8) under suN ⊕ suN+8, and one anti-

symmetric R(2) = (N(N−1)
2

,1) = (
∧2,1) that is uncharged under the suN+8 flavor. The

Green–Schwarz four-form for the single tensor Θ of self-pairing −1 contains

I ⊃ c2(FN)− c2(FN+8) , (3.14)

which ensures the absence of any Tr(F 2
N)Tr(F 2

N+8) anomaly.

Some basic arithmetic reveals that there can be at most a non-trivial Z2 ⊂ ZN ×ZN+8 =

Z(SU(N) × SU(N + 8)) that acts trivially on the hypermultiplets, and that this can only

occur when N is even. So, for N odd, there is no center-flavor symmetry. Restricting to N

even, the Z2 subgroup is generated by the element (N
2
, N+8

2
) ∈ ZN×ZN+8. For this candidate

subgroup, the center-flavor anomaly indeed vanishes:

c2(FN)− c2(FN+8) ≡
(
−N2

4
N−1
2N

+ (N+8)2

4
N+7

2N+16︸ ︷︷ ︸
=7+2N

)
w2 mod Z . (3.15)

Therefore, the faithfully acting non-Abelian symmetry group for N even is [SU(N)×SU(N+

8)]/Z2, and the non-Abelian flavor symmetry of the SCFT is SU(N + 8)/Z2.

Example 3: Consider next the SCFT with tensor branch description

[su
(L)
3 ]

e6
3 1

su2
2 [so

(R)
7 ] , (3.16)
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which has

− Aij =

 3 −1 0

−1 1 −1

0 −1 2

 , (3.17)

and hypermultiplets in the representations

R(1) = (3,27,1,1) , R(2) = 1
2
(1,1,2,8) , (3.18)

under the symmetry factors su3 ⊕ e6 ⊕ su2 ⊕ so7. In the above, the “1
2
” denotes a half-

hypermultiplet, with matter in the spinor representation of spin7 ' so7. Note also that this

theory contains an undecorated −1 curve, so it provides an example where a subalgebra of

the E-string theory flavor symmetry has been gauged.

Let us now turn to the global structure of the symmetry group. The naive answer is

G̃gauge-global = SU(3) × E6 × SU(2) × Spin(7). Observe that the matter fields are invariant

under a Z3×Z2 subgroup of the full center, where the Z3 is the diagonal of Z(SU(3)×E6) =

Z3 × Z3, and the Z2 the diagonal of Z(SU(2) × Spin(7)) = Z2 × Z2. Consider next the

Green–Schwarz coupling to the tensor Θ2 of the unpaired middle node. This is an E-string

not touching the flavor factors at the ends of the quiver, we find:

Θ2 ∧ (−c2(Fe6)− c2(Fsu2)) ≡ Θ2 ∧
(

2
3
w2

Z3
+ 1

4
w2

Z2

)
mod Z , (3.19)

which would induce an anomaly for the large gauge transformations of Θ2.

As explained in [84, 110], the inconsistency of turning on such a twisted background,

despite the absence of non-invariant hypermultiplets, can be also attributed to the excitations

of the E-string, which transform in E8 representations. By decomposing the adjoint under

e8 ⊃ e6 ⊕ su3 ⊃ e6 ⊕ su2,

248→ (78,1)⊕ (1,8)⊕ (27,3)⊕ (27,3)

→ (78,1)⊕ (1,3)⊕ (1,2)⊕2 ⊕ ((27,2)⊕ (27,1) + c.c)⊕ (1,1) ,
(3.20)

we indeed find states (the fundamentals under E6 and SU(2), respectively), which break the

Z3 and Z2 twists, respectively. Therefore, the non-Abelian flavor group is SU(3)× Spin(7).

However, as we will see below, the two discrete twists can be compensated if we take into

the account the existence of U(1) flavor factors.

3.2 Anomalies for Center Symmetries of Abelian Factors

In the previous subsection we primarily focused on the non-Abelian symmetry factors. In

some cases, there can also be continuous Abelian symmetry factors, which in many cases

are delocalized. The procedure for extracting the global form of the center-flavor symmetry

is to start with the “naive” gauge-global symmetry G̃gauge-flavor, and to then determine large
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symmetry transformations compatible with the presence of these U(1) symmetry factors.

The common center C ⊂ G̃gauge-flavor then specifies the quotient Ggauge-flavor = G̃gauge-flavor/C.
Note that we will also need to determine the overall normalization of u(1) charges, a point

we turn to shortly.

The analysis of the global form again relies on the same sort of topological terms Θi ∧ I i
encountered in our analysis of non-Abelian flavor symmetries. In the present case with

Abelian symmetries, we recall that this includes:

I i = −
∑
j

Aijc2(Fj)−
∑
a

Biac2(Fa) +
∑
f,f ′

Ci;f,f ′
c1(Ff ) ∧ c1(F ′f )

2
. (3.21)

If we now activate a discrete twist Zf ∼= Znf of a U(1)f bundle, then c1(Ff ) = iFf acquires

a fractional part, thus affecting the large gauge transformations of the Θis. From this, we

see that the symmetry group takes the general form

[
∏

i G̃
gauge
i ×

∏
a G̃

flavor
a ]/Z ×

∏
f U(1)f∏

f Zf
, (3.22)

where as before, the G̃s refer to simply connected non-Abelian factors. In particular, notice

that the quotient by Z, which we obtained in the previous subsection, just involves the

condition of neutrality under a restricted set of center-symmetry transformations associated

with the non-Abelian symmetry factors. There can, of course, be more general symmetry

transformations which involve the Abelian factors, and this is accounted for by the Zfs.

Indeed, for each Θi, the fractionalizations of c2(Fi), c2(Fa), and c1(Ff ) from the twists Z

and Zf must cancel. Note in particular that the quotienting procedure worked out for the

non-Abelian symmetry factor is not contaminated by the appearance of the U(1) factors.

Said differently, the quotienting group Z may end up only being a subgroup of the full C
used to reach Ggauge-global = G̃gauge-global/C.

To figure out the global quotient by Zf , we need to know the overall normalization of

the matter fields under the Abelian symmetries. This is rather subtle, because for a U(1)

factor, rescaling the charges is always a possibility. Importantly, such rescaling effects do

not end up affecting the global form of the quotienting procedure. To demonstrate this, we

now turn to an analysis of charge normalization for Abelian factors, and then illustrate how

this works for hypermultiplets and E-string theories.

3.2.1 Abelian Charge Normalization

To determine the overall charge normalization for Abelian symmetry factors, as well as

the contribution from fractional Chern classes, it is instructive to consider bundles with

structure group U(N) = [SU(N)× U(1)f ]/ZN . One can express a U(N) bundle in terms of
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an SU(N)/ZN and a U(1)f bundle, with curvatures F and Ff correlated via:

c1(Ff ) ≡ 1
N
w mod Z , (3.23)

where w is the (generalized) Stiefel–Whitney class of the SU(N)/ZN bundle. In the language

of generalized symmetries, one can think of the two 1-form center symmetries of SU(N)

and U(1)f being correlated through a single 2-cocycle w. Namely, the background gauge

field b
(2)
e of the 1-form symmetry of U(1)f (which is itself U(1)-valued), which imposes∫

Σ2
(c1(Ff ) − b(2)

e ) ∈ Z for any 2-cycle Σ2, is tied to the value of the ZN 1-form symmetry

gauge field of SU(N), which in turn fixes the Stiefel–Whitney class to w. We can verify

explicitly that the fractional parts of the SU(N)/ZN bundle, c2(F ) ≡ −N−1
2N

w2 mod Z, and

of the U(1)f bundle, Nc1(Ff )
2 ≡ 1

N
w2 mod Z, cancel in c2(U(N)) = c2(F )+ N(N−1)

2
c1(Ff )

2,

which is indeed an integer characteristic class.

Importantly, the relation in equation (3.23) holds only in a normalization of the u(1)

generator q̂ where the charges span Z, i.e., the fundamental representation of u(N) has charge

1 in this normalization, and representations that are singlets under su(N) ⊂ u(N) have

charges 0 mod N . In this case, the trivially acting ZN center is generated by (−1, e2πiq̂/N) ∈
ZN × U(1) = Z(SU(N)× U(1)).

More generally, once we fix the U(1)f charges of all representations Rq of a group [
∏

g G̃g×
U(1)f ]/Zf (with R a representation of

∏
g G̃g) to span Z, there is no ambiguity to specify

the generator of Zf as

(k1, k2, ...; e
2πiq̂

uf
lf ) ∈

∏
g

Z(Gg)× U(1)f , (3.24)

where parameters must satisfy ϕ(R)(k1,k2,...) exp(2πiq
uf
lf

) = 1 for any representation Rq of

[
∏

g G̃g ×U(1)f ]/Zf . Then, the corresponding twist of the symmetry bundle is in terms of a

2-cocycle w:

c1(Ff ) ≡
uf
lf
w mod Z , w(Fg) = kgw , (3.25)

with the understanding that when G̃g
∼= Spin(4mg), we have kg ≡ (k

(1)
g , k

(2)
g ), and w(Fg) ≡

(w
(1)
g , w

(2)
g ). Note that it is c1(Ff )c1(Ff ′) that enters the four-forms I i, whose fractional part,

c1(Ff )c1(Ff ′) ≡
ufuf ′

lf lf ′
w ∪ w′ + uf

lf
w ∪ χ′ + uf ′

lf ′
w′ ∪ χ mod Z , (3.26)

may depend on the integral parts, χ and χ′, of c1(Ff ) and c1(Ff ′), respectively.

Now, since we are dealing with Abelian symmetry factors, we can in principle consider

rescaling the charges of the states so that we only span a rescaled subgroup of Z, e.g., Z→
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λZ. Doing so has no effect on the structure of the topological Green–Schwarz couplings.12

Indeed, on general grounds, the fractionality of Ci;f,f ′c1(Ff )c1(Ff ′) does not depend on the

normalization.13 A convenient normalization convention for c1(Ff ) is to first normalize U(1)f
such that the corresponding charges span Z (and rescale Ci;f,f ′ accordingly). We can then

determine the generator in equation (3.24) of the candidate subgroup Zf that acts trivially

on all states, from which the characteristic classes in equation (3.25) follow.

Hypermultiplets To illustrate how this works, consider the case of weakly coupled hy-

permultiplets charged under some U(1)s. Indeed, on the full tensor branch, the only source

of Tr(F 2
i )FfF

′
f -terms in the 1-loop anomaly polynomial are the hypermultiplets in represen-

tation R under
∏

i G̃
gauge
i ×

∏
a G̃

flavor
a and with U(1)-charge vector ~q:

Ihyper(R~q) ⊃
1

24
trR~q

(F4) ⊃
∑
f,f ′,i

hi(R)

4
Tr(F 2

i )qfqf ′ FfFf ′

=−
∑
f,f ′,i

hi(R) qf qf ′ c2(Fi) c1(Ff ) c1(Ff ′) ,
(3.27)

where the decomposition of the curvature F of the full symmetry bundle into those of the

non-Abelian (gauge) part (Fi) and those of the U(1)s (Ff = −ic1(Ff )) introduces the index

of the representation hi(R).14 Much as in our analysis of non-Abelian gauge and flavor

anomalies, requiring the Green–Schwarz contribution IGS = −1
2
(A−1)ijI

iIj to cancel the

above terms of the 1-loop anomaly polynomial uniquely fixes the coefficients Ci;f,f ′ in the

Green–Schwarz four-forms in equation (3.21):

Ci;f,f ′ =
∑
R~q

2hi(R)qfqf ′ . (3.28)

For F-theory models (in particular, those with compact internal geometries describing 6d

supergravity), where U(1)f corresponds to a rational section σf (more precisely, the Shioda-

map of a rational section) of the elliptic fibration, the coefficient Ci;f,f ′ is the geometric

intersection number of the compact curve Ci carrying the gauge algebra gi with the so-called

height pairing divisor π(σf , σf ′) [113,114]. In some cases, this structure persists even in local

models [65, 102].

12In F-theory models there is often a “geometrically preferred” normalization where SU(N)-fundamentals
have charge 1

N mod Z [111].
13From the formulae for Ci;f,f

′
we will discuss shortly, it can be seen explicitly that the effect c1(Ff ) →

1
λc1(Ff ) under a charge rescaling qf → λqf is absorbed by Ci;f,f

′
.

14For R = (R(1),R(2), · · · ) an irrep of a semi-simple group
∏
g Gg, hi(R) =

∏
g 6=i dim(R(g))hgi(R

(i)). In

our normalization of the trace, hsuN
(N) = 1

2 . For values of other representations R, see [112], where these
are denoted hR.
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E-String Contributions In most cases, the U(1) symmetry only acts on weakly coupled

hypermultiplets. The states from an E-string sector can also be charged under a U(1) factor

embedded in the E8 flavor symmetry factor. We can also extract the charge normalization

in this case, and thus track its contribution to the global structure of the symmetry.

Concretely, consider a maximal embedding e8 ⊃
⊕

β≥−d hβ ⊕
⊕

γ u(1)γ with simple al-

gebras hβ, of which the first d ≥ 1 factors hβ<0 are gauged,15 i.e., paired with tensors Θiε

(ε ∈ {−1, ...,−d}) having Aı̂,iε = 1. This leaves the commutant,
⊕

β≥0 hβ ⊕
⊕

γ u(1)γ, as

the flavor symmetry, which receives no 1-loop anomalies from hypermultiplets (hence, in

particular, no ABJ anomaly for the u(1) [65]).16 Nevertheless, besides those of other fla-

vor factors with labels (a, f, f ′) in equation (3.21), there is an E-string contribution to the

Green–Schwarz four-form involving the flavor backgrounds Fβ≥0 and Fγ, with [17,18,30],

Biβ = δi,̂ı `β , Ci;γ,γ′ = −1
2
δi,̂ı rγ,γ′ , (3.29)

associated to the decomposition of the trace

Tr(F 2
e8

)→
−1∑
ε=−d

Tr(F 2
hε) +

∑
β≥0

`βTr(F 2
β ) +

∑
γ,γ′

rγ,γ′FγFγ′ =
∑
β≥−d

`βTr(F 2
β ) +

∑
γ,γ′

rγ,γ′FγFγ′ .

(3.30)

The coefficients `β are the Dynkin indices of hβ associated to the embedding
⊕

β≥−d hβ⊕⊕
γ u(1)γ ⊂ e8, with those of the gauged subalgebras, hβ<0, necessarily being 1.17 To compute

these coefficients, we can consider the decomposition of any representation,

R→
⊕
j

(R
(j)
−d, · · · ,R

(j)
β , · · · )

q
(j)
1 ,··· ,q(j)γ ,··· , (3.31)

interpreted as a decomposition of a vector bundle

V =
⊕

V (j) , with V (j) =
⊗
β≥−d

U
(j)
β ⊗

⊗
γ

W (j)
γ , (3.32)

where U
(j)
β is an hβ-bundle in the representation R

(j)
β , and W

(j)
γ a u(1)γ-bundle in the

charge q
(j)
γ representation. Using the decompositions of the Chern character, ch(A ⊗ B) =

ch(A) ch(B) and ch(A⊕ B) = ch(A) + ch(B), we have (here [·]2 extracts the degree-2 com-

ponent of the total Chern character)

Tr(F 2
e8

) = 1
h(R)

trR(F 2
e8

) = − 2
h(R)

[ch(V )]2 = − 2
h(R)

∑
j

[ch(V (j))]2 , (3.33)

15At most two simple factors can be gauged, thus d ≤ 2 [6].
16For simplicity, we will only consider rank 1 E-strings. However, the generalization to rank Q is straight-

forward with the results from [17,18].
17For the significance of Dynkin index one embeddings in F-theory, see [115].
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with

[ch(V (j))]2 =
∑
β

[ch(U
(j)
β )]2 +

(∏
βrk(U

(j)
β )
)(∑

γ<γ′

[ch(W (j)
γ )]1[ch(W

(j)
γ′ )]1 +

∑
γ

[ch(W (j)
γ )]2

)

=−
∑
β

h(R
(j)
β )

2
Tr(F 2

h ) +
(∏

β dim(R
(j)
β )
)(∑

γ<γ′

q(j)
γ q

(j)
γ′ FγFγ′ +

∑
γ

(q
(j)
γ )2

2
F 2
γ

)
.

(3.34)

We have thus derived the coefficients in equation (3.30) as

`β =
∑
j

h(R
(j)
β )

h(R)
, rγ,γ′ = −

∑
j

∏
β dim(R

(j)
β )

h(R)
q(j)
γ q

(j)
γ′ . (3.35)

Note that the values of `β relevant to gaugings of hβ → e8 can be found in [30]. This result

does not depend on the chosen representation R, as long as the decomposition is done with

a fixed normalization for each u(1)γ.

Candidate subgroups of Z(
∏

β H̃β ×
∏

γ U(1)γ) that can be used to twist the symmetry

bundles must leave the representations resulting from decomposing the 248 of E8 invariant,

as associated with the decomposition of the adjoint-valued moment map operator of the

E-string theory. For this candidate subgroup, we can then verify whether the twist induces

any anomaly for the large gauge transformation of the E-string tensor multiplet.

3.2.2 Examples

Having presented a general prescription for incorporating the contribution from continuous

Abelian symmetries, we now turn to some explicit examples, focusing on the same class of

examples already treated in the case of the non-Abelian flavor symmetries. For illustrative

purposes, we only consider the background field of the center-flavor symmetry involving the

U(1) flavor symmetry. In all cases, it is straightforwardly verified that the fractionalizations

also cancel when we turn on the previously studied center twists involving only the non-

Abelian flavor factors.

Example 1: The example in equation (3.9) of a chain of m suN gauge nodes provides a

simple example with a U(1)f flavor symmetry:

[su
(L)
N ]

su
(1)
N

2
su

(2)
N

2 · · ·
su

(m−1)
N

2
su

(m)
N

2 [su
(R)
N ] . (3.36)
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There is an overall U(1) which is free from ABJ anomalies [65]. The m + 1 bifundamental

hypermultiplets:

R(1) = (N,N,1,1, . . .)1 , R(2) = (1,N,N,1, . . .)1 , . . . (3.37)

have equal charge q, which we normalize to 1. There are 1-loop contributions to the

Tr(F 2
i )F 2

f -terms that come from the anomaly polynomial of the hypermultiplets:

Ihyper(R
(1)) ⊃ 1

4
N TrN(F 2

1 )F 2
f = −N

2
c2(F1)c1(Ff )

2 ,

...

Ihyper(R
(i)) ⊃ 1

4
(N TrN(F 2

i−1) +N TrN(F 2
i ))F 2

f = −N
2

(c2(Fi−1) + c2(Fi)) c1(Ff )
2 ,

...

Ihyper(R
(m+1)) ⊃ 1

4
N TrN(F 2

m)F 2
f = −N

2
c2(Fm)c1(Ff )

2 ,

=⇒ Ihypers =
m+1∑
i=1

Ihyper(R
(m)) ⊃ −N

(
m∑
i=1

c2(Fi)

)
c1(Ff )

2 . (3.38)

Including the Abelian flavor backgrounds in the Green–Schwarz four-form,

I i ⊃
m∑
j=1

(−Aij)c2(Fj)−Bi,Lc2(FL)−Bi,Rc2(FR) + 1
2
Ci;f,fc1(Ff )

2 , (3.39)

with Bi,L = δi,1 and Bi,R = δi,m, one can cancel the above c2(Fi)c1(Ff )
2 terms in the full

anomaly polynomial I8 ⊃ Ihypers − 1
2
(A−1)ijI

iIj, by fixing the coefficients Ci;f,f to be (see

equation (3.28))

Ci,f,f = 2N . (3.40)

Then, the Green–Schwarz mechanism couples each tensor Θi to

I i ⊃ −c2(Fi−1) + 2c2(Fi)− c2(Fi+1) +Nc1(Ff )
2 , (3.41)

again with the convention F0 := FL and Fm+1 = FR being the su
(L/R)
N flavor backgrounds.

Before, we have seen that, with trivial c1(Ff ), one finds that a ZN twist is possible,

leading to the non-Abelian group structure [SU(N)(L) ×
∏

i SU(N)(i) × SU(N)(R)]/ZN . To

extend the analysis to the Abelian flavor factor, we first note that the hypermultiplet charges

in equation (3.37) are already properly normalized, in that the charges of all matter states
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span ZN . The spectrum is invariant under the ZN center-flavor symmetry generated by

(1, 2, ...,m+ 2; e
2πi
N
q̂) ∈ Z(SU(N)(L) ×

∏
i

SU(N)(i) × SU(N)(R) × U(1)) . (3.42)

This means that the first Chern-class of the U(1)f/ZN -bundle and the Stiefel–Whitney class

of the SU(N)/ZN bundles are correlated via a single 2-cocycle w as

c1(Ff ) ≡ 1
N
w mod Z , w(Fi) = (i+ 1)w (i = 0, ...,m+ 1) ,

=⇒ c2(Fi) ≡ −(i+ 1)2N−1
2N

w2 mod Z ,
c1(Ff )

2 ≡ 1
N2w

2 + 2
N
w ∪ χ mod Z ,

(3.43)

with χ an integer 2-cocycle. Plugging these into equation (3.41), one straightforwardly

verifies that the non-integer parts for the tensor couplings vanish:

2c2(Fi)− c2(Fi−1)− c2(Fi+1) +Nc1(Ff )
2 ≡

(
(i2 − 2(i+ 1)2 + (i+ 2)2)N−1

2N
+ 1

N︸ ︷︷ ︸
=1

)
w2 mod Z .

(3.44)

Hence, the structure group admits also a ZN ∼= Zf quotient

[SU(N)L ×
∏
i

SU(N)(i) × SU(N)R × U(1)f ]/Zf . (3.45)

This matches the intuition from M-theory constructions [36], from which one expects the

flavor symmetry group of this SCFT to be S[U(N)L ×U(N)R]/ZN : the ZN in this quotient

is the center-flavor symmetry involving just the SU(N) ⊂ U(N) parts, while the quotient

Zf is encoded in S[U(N)× U(N)] ∼= [SU(N)× SU(N)× U(1)]/ZN .

Example 2: The theory with tensor branch description as in equation (3.13):

suN
1

[#
∧2=1]

[suN+8] , (3.46)

also has a flavor U(1)f free of ABJ anomalies [65], under which the hypermultiplets have the

following charges:

(N,N + 8) : q = N − 4 , (
∧2,1) : q = −(N + 8) . (3.47)

By equation (3.28), the Green–Schwarz mechanism couples, to the single tensor Θ, the four-

form

I ⊃ c2(FN)− c2(FN+8) + 1
2
Ci;f,fc1(Ff )

2 , (3.48)
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with

1
2
Ci;f,f = N(N − 1)(N + 8) . (3.49)

The conditions for an element (k1, k2, e
2πi
l
q̂) ∈ ZN × ZN+8 × U(1)f to act trivially on R are

R = (N,N + 8) : k1
N
− k2

N+8
+ N−4

l
≡ 0 mod Z ,

R = (
∧2,1) : 2k1

N
− N+8

l
≡ 0 mod Z .

(3.50)

For odd N , it turns out that there is no such combined transformation leaving the hyper-

multiplets invariant.

For even N , there is always a trivially acting combination, but the general solution is

cumbersome, so we will focus on an example with N = 6. In this case, the solution is

(k1, k2, l) = (3, 9, 14), so the putative quotient is a Z14 ' Z2×Z7. Notice that the charges of

the hypermultiplets have a greatest common divisor of two, so, in order to be in the proper

U(1) normalization, we have to divide the charges by two, which means that the value of

the coefficient Ci;f,f is divided by four, 1
2
Ci;f,f = 105. In addition, in this normalization the

twist inside the U(1)f is by e2πi/7. Hence, the fractionalization of the Chern classes for this

discrete twist is

c2(FN) ≡ −9× 5
12
w2 mod Z , c2(FN+8) ≡ −81× 13

28
w2 mod Z ,

c1(Ff ) ≡ 1
7
w mod Z ⇒ 1

2
Ci;f,f ′c1(Ff )

2 ≡ 105( 1
49
w2 + 2

7
w ∪ χ) mod Z ,

(3.51)

for an integer cocycle χ. Almost miraculously, the fractional parts cancel out in I, thus

verifying that the full symmetry group is:

Ggauge-flavor =
SU(6)× SU(14)× U(1)

Z14

. (3.52)

The superconformal flavor symmetry group is then

Gflavor =
SU(14)× U(1)

Z14

. (3.53)

Example 3: Finally, let us return to the example in equation (3.16) with tensor branch

configuration

[su
(L)
3 ]

e6
3 1

[u(1)f ]

su2
2 [su

(R)
3 ] , (3.54)

where we now include the Abelian flavor factor. The u(1)f is the commutant of e6 × su2

inside e8, under which the representations resulting from the branching in equation (3.20) of
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the E8-adjoint have charges

248→ (78,1)0 ⊕ (1,3)0 ⊕ (1,2)3 ⊕ (1,2)−3 ⊕ ((27,2)1 ⊕ (27,1)−2 + c.c)⊕ (1,1)0 .

(3.55)

These are uncharged under the non-Abelian flavor factors at the end of the quiver. In turn,

the hypermultiplets

R(1) = (3,27,1,1)0 , R(2) = 1
2
(1,1,2,8)0 , (3.56)

are uncharged under U(1)f . From this we find that the Z3 × Z2
∼= Z6 ⊂ Z(SU(3) ×

E6×SU(2)×Spin(7)) considered previously, which leaves the hypermultiplets invariant but

not the E-string states, can be compensated by a U(1)f twist, such that both sectors are

invariant. This combined Z6 has generator

(2, 2, 1, 1; e
2πiq̂
6 ) ∈ Z2

3 × Z2
2 × U(1) ∼= Z(SU(3)L × E6 × SU(2)× Spin(7)R × U(1)f ) ,

(3.57)

with fractionalizations

c2(FL) ≡ −4
3
w2 , c2(Fe6) ≡ −8

3
w2 , c2(Fsu2) ≡ −1

4
w2 , c2(FR) ≡ −1

2
w2 ,

c1(Ff ) ≡ 1
6
w ⇒ c1(Ff )

2 ≡ 1
36
w2 + 1

3
w ∪ χ mod Z .

(3.58)

From the above decomposition involving the U(1) charges and equation (3.35), we further

find that

Tr(F 2
e8

)→ Tr(F 2
e6

) + Tr(F 2
su2

)− 12F 2
f , (3.59)

where the e6 and su2 are gauged on the left and right, respectively, of the E-string. With

the formulae from [30] applied to the hypermultiplets above, this gives the flavor anomaly

coefficients

BiL = 6δi,1 BiR = δi,3 , Ci;f = 6δi,2 . (3.60)

Together with the matrix

− Aij =

 3 −1 0

−1 1 −1

0 −1 2

 , (3.61)
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we can now verify that the above Z6 twist does not induce any anomaly for the large gauge

transformations of the tensors:

Θ1 : η1jI
(4)
j ⊃ 3c2(Fe6)− 6c2(FL) ≡ (−8 + 8)w2 mod Z ,

Θ2 : η2jI
(4)
j ⊃ −c2(Fe6)− c2(Fsu2) + 3c1(Ff )

2 ≡
(

8
3

+ 1
4

+ 1
12︸ ︷︷ ︸

=3

)
w2 mod Z ,

Θ3 : η3jI
(4)
j ⊃ 2c2(Fsu2)− c2(FR) ≡

(
− 1

2
+ 1

2

)
w2 mod Z .

(3.62)

From this, we conclude that the tensor branch gauge theory has symmetry group:

Ggauge-flavor =
SU(3)× E6 × SU(2)× Spin(7)× U(1)

Z6

, (3.63)

where the group action is specified by equation (3.57). This also provides a prediction for

the SCFT flavor symmetry:

Gflavor =
SU(3)× Spin(7)× U(1)

Z6

. (3.64)

3.3 Center Twists and R-Symmetry

In addition to the flavor symmetries, all 6d N = (1, 0) SCFTs have an su(2)R symmetry.

This, of course, is an additional global symmetry which can in principle also mix with the

center of the gauge group and flavor symmetry. It is also worth noting that this R-symmetry

is not directly manifest in the target space geometry of the corresponding F-theory models,

but is realized geometrically in various M-theory constructions of 6d SCFTs.

Now, before getting to the case of center / R-symmetry mixing in 6d SCFTs, it is already

instructive to note that even in the context of 4d theories, entertaining this possibility resolves

some apparent puzzles, which as far as we are aware have not been previously addressed

in the literature.18 For example, in the context of 4d N = 2 SCFTs, the E6 Minahan–

Nemeschansky was argued to have a non-Abelian E6/Z3 global symmetry [91], which is also

in accord with some superconformal index computations [116]. On the other hand, a direct

analysis of BPS states would appear to detect states in the 27 of E6 [90]. The natural

resolution of this puzzle is that the center of the E6 flavor symmetry mixes with the U(1)R
symmetry of an N = 2 SCFT, namely we have the global structure [E6×U(1)R]/Z3.19 This

also agrees with expectations based on the D3-brane probe of an E6 7-brane.20

18We thank J. Distler for helpful correspondence.
19In this example we make no statement about the global structure involving the SU(2)R R-symmetry.
20For the rank one theory it is possible to construct BPS states on the Coulomb branch as junctions

between an E6 stack of 7-branes and a D3-brane. In this scenario the states carry charge under the gauge
group of the D3-brane so the symmetry group is (E6 × U(1)D3)/Z3. However since a U(1)R transformation
in this construction is simply a rotation in the space transverse to the 7-branes it can be identified with
the U(1) center of mass of the D3-brane; it is possible to identify U(1)R ∼ U(1)D3 with U(1)R being the
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However, this cannot be the full story, since the theory contains, for example, the su-

percharges which are not charged under any flavor symmetries, but do transform under a

discrete R-symmetry twist. This twist can be naturally cancelled if we include the remaining

parts of the superconformal symmetry group [117,118]. We will postpone a detailed analysis

of this interplay in the above 4d example, and turn our attention to 6d SCFTs for now.

For these, the supercharges are in the fundamental representation of su(2)R, but otherwise

uncharged under any flavor symmetry. A natural way to cancel the effects of the Z2 =

Z(SU(2)R) twist would be to activate a Z2 = Z(Spin(1, 5)) twist in the Lorentz group

which acts on spinors such as the supercharges. Therefore, whenever we contemplate turning

on an R-symmetry twist, the minimal requirement for the theory to be invariant is if it is

accompanied by a Z2 twist of the Lorentz symmetry.

Now, we observe that our tensor branch analysis naturally incorporate both twists,

since the topological Green–Schwarz couplings capture the contribution from non-trivial R-

symmetry bundles, as well as the tangent bundle which is associated to Lorentz symmetry.

Indeed, the Green–Schwarz four-form,

I i ⊃ yi c2(R)− (2 + Aii)1
4
p1(T ) , (3.65)

contains the second Chern-class c2(R) of the R-symmetry bundle and the first Pontryagin

class p1(T ) of the tangent bundle. The coefficient yi ≡ h∨gi is fixed to be the dual Coxeter

number of the ith gauge algebra gi by requiring the cancellation of all mixed gauge-R-

symmetry anomalies; if gi = ∅ (which requires Aii = −1 or −2), the coefficient is set

to be yi = 1. For the R-symmetry bundle, the fractionalization is just as for any other

SU(2)/Z2 gauge or flavor bundle, c2(R) ≡ −1
4
w2
R mod Z. To quantify the fractionalization

of the tangent bundle, we will work under the assumption that a Wick rotation to Euclidean

signature does not affect the results. Then, p1(T ) = −1
2
trvec(R2), where the trace over the

curvature R is in the vector, or anti-symmetric representation, of Spin(6) ∼= SU(4). For

SU(4), this is the same as the 1-instanton normalized trace, so we conclude that 1
4
p1(T ) =

−1
2
c2(SU(4)). In Euclidean signature, the corresponding Z2 twist (which leaves the vector

representation invariant) is generated by 2 ∈ Z4 = Z(SU(4)), for which the fractionalization

is

1
4
p1(T ) = −1

2
c2(SU(4)) ≡ 1

2
× 22 × 3

8
w2
R mod Z ≡ 3

4
w2
R mod Z . (3.66)

Then, a twist by a center-flavor symmetry can occur if the fractionalization of the gauge,

flavor, R-symmetry, and tangent bundles cancel out in I i for every i.

We present some examples of R-symmetry / spacetime symmetry mixing for the tensor

branch of the N = (2, 0) and E-string SCFTs in Appendix A. These cases are a bit special

in that the tensor branch has no gauge group factors. For the sake of illustrating this general

symmetry that survives at the conformal point.
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phenomenon, we now turn to some examples with center-flavor symmetry mixing, and no

additional U(1) factors. In this case, the gauge-global 0-form symmetry is of the general

form:

Ggauge-global =
G̃gauge × G̃flavor × [SU(2)R × Spin(1, 5)]

C
, (3.67)

where C is a suitably defined quotienting subgroup. The global symmetry group that acts

on spacetime scalars is then

Gglobal =
G̃flavor × SU(2)R

C
. (3.68)

As a first example, consider the SCFT with tensor branch description

suN
2 [su2N ] . (3.69)

In this case, the p1(T )-term drops out of the Green–Schwarz coupling:

Θ ∧ (2c2(Fgauge)− c2(Fflavor) +N c2(R)) , (3.70)

which fractionalizes, for general center-twisted backgrounds, as

Θ ∧
(
−N−1

N
w2
g + 2N−1

4N
w2
f − N

4
w2
R

)
mod Z . (3.71)

The well-known flavor symmetry group SU(2N)/ZN results from a combined twist of the

gauge and flavor factor, with trivial R-symmetry twist:

wf = −2wg = −2wN , wR = 0 , (3.72)

which leads to an overall integer shift in the GS-coupling.

In order to turn on a Z2 twist of the R-symmetry (which, as discussed above, is always

accompanied by a Lorentz group twist), we must first make sure that the hypermultiplets

are invariant. Since these transform in the fundamental of su(2)R, such a twist acts with a

phase (−1), which must be cancelled by a suitable gauge or flavor symmetry twist. In the

present example, we can turn on the Z2 ⊂ Z2N = Z(SU(2N)) simultaneously to achieve

this. More precisely, we claim that the theory is invariant under the central subgroup with

generators

ZN : a = (1,−2, 0)

Z2 : b = (0, N, 1)

}
∈ ZN × Z2N × Z2 = Z(SU(N)× SU(2N)× SU(2)R) . (3.73)

At the level of background fields, these twists correspond to the following correlations,

wg = wN , wR = w2, wf = −2wN +Nw2 , (3.74)
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where wN and w2 are the background fields associated to the ZN and the Z2 generator,

respectively, in equation (3.73). This indeed shifts the Green–Schwarz four-form by an

integer class,

−N−1
N
w2
g + 2N−1

4N
w2
f − N

4
w2
R = w2

N − (2N − 1)wN ∪ wR + N(N−1)
2

w2
R ≡ 0 mod Z . (3.75)

To write down the global symmetry group structure, note that for odd N , we have

ZN × Z2N × Z2
∼= ZN × ZN × Z2 × Z2, and a generates the diagonal of the two ZN factors,

while b generates the diagonal Z2. For even N = 2n, on the other hand, we can consider the

Z2 generator na+ b = (n, 0, 1) ∈ ZN ×Z2N ×Z2, which maps trivially onto the Z2N factor of

the flavor symmetry. Therefore, the global symmetry group compatible with the large gauge

transformations of the tensor is

Gglobal =


SU(2N)/ZN × SU(2)R

Z2

, N odd,

SU(2N)

ZN
× SU(2)R

Z2

, N even.

(3.76)

Let us compare this with results known from the Higgs branch chiral ring. Elements of this

ring carry representations of the global symmetry of the SCFT, so a center-flavor symmetry

must leave all combinations of flavor and R-symmetry representations that can be found in

the chiral ring invariant. For the SCFT with tensor branch description as in equation (3.69),

it turns out that the chiral ring generator with non-trivial center charges has representation

(∧N ,N + 1) under SU(2N)×SU(2)R [119]. As the N -index anti-symmetric representation,

∧N , of SU(2N) picks up a phase (−1) under the generator of Z2N = Z(SU(2N)), this state is

clearly invariant under the ZN subgroup in equation (3.73). Therefore, the flavor symmetry

group SU(2N)/ZN is also what the Higgs branch data sees. Moreover, (∧N ,N + 1) trans-

forms with phase (−1)N under N ∈ Z2N and with phase (−1)N under 1 ∈ Z2 = Z(SU(2)R).

So it is also invariant under the second generator in equation (3.73). Hence, the global

structure in equation (3.76) is also predicted from the Higgs branch chiral ring.

To illustrate the importance of the fractionalization of the tangent bundle, we consider

the minimal (Dk, Dk) conformal matter theory, whose tensor branch gauge theory is

spk−4

1 [so4k] , (3.77)

containing a half-hypermultiplet h in the bifundamental representation R = 1
2
(2k− 8,4k),

with 4k the vector of so4k. The hypermultiplet h also transforms as the fundamental of

su(2)R. The Higgs branch chiral ring is generated by a moment map µ transforming in

the (adj,3) of the so4k ⊕ su(2)R, thus uncharged under the center, and a generator µ+

transforming in the (S+,k− 1) representation, where S+ is one of the so4k spinor represen-
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tations [92, 93],21 which we pick to be of positive chirality for definiteness.22 Therefore, the

action of an element

(ag, (a+, a−), aR) ∈ Z2 × (Z+
2 × Z−2 )× Z2 = Z(Sp(k − 4))× Z(Spin(4k))× Z(SU(2)R) ,

(3.78)

on the representations of h and µ+ give phases

µ+ : (−1)a++k aR , h : (−1)ag+a++a−+aR , (3.79)

which must be trivial for any element (ag, (a+, a−), aR) of the quotienting subgroup C. For

even k, this requires a+ = 0 mod 2, and ag+a−+aR = 0 mod 2. This leaves two independent

generators,

(ag, (a+, a−), aR) = (1, (0, 1), 0) and (1, (0, 0), 1) (k even) , (3.80)

which correspond to the diagonal Z2 of Z(Sp(k − 4))× Z−2 and Z(Sp(k − 4))× Z(SU(2)R),

respectively. For odd k, we instead have a+ + aR = 0 mod 2, and ag + a− = 0 mod 2, which

has independent solutions corresponding to the generators

(ag, (a+, a−), aR) = (1, (0, 1), 0) and (0, (1, 0), 1) (k odd) , (3.81)

of the diagonal Z2 factors of Z(Sp(4−k))×Z−2 and Z+
2 ×Z(SU(2)R), respectively. Considering

the gauge invariant representations that can appear in the SCFT, the Higgs branch therefore

predicts the global symmetry group

GHB
global =

Spin(4k)/Z−2 × (SU(2)R/Z2) if k even ,

[Spin(4k)/Z−2 × SU(2)R]/Z2 if k odd .
(3.82)

This agrees with the analysis from the Green–Schwarz coupling,

Θ ∧ I4 := Θ ∧
(
c2(Fsp)− c2(Fso) + h∨spk−4

c2(R)− 1
4
p1(T )

)
, (3.83)

which, with h∨spk−4
= k − 3, fractionalizes as

I4 ≡ −k
4
w2
g + k

4
(w+ + w−)2 + 1

2
w+ ∪ w− − k−3

4
w2
R − 3

4
w2
R mod Z , (3.84)

where wg, (w+, w−), and wR are the generic background fields for Z(Sp(k−4)), Z(Spin(4k)),

21Aspects of the Higgs branch of minimal (Dk, Dk) conformal matter have recently been explored from
the perspective of the conformal bootstrap [120].

22In this case, the choice of chirality of the spinor generator is irrelevant, however, it can be relevant when
minimal (Dk, Dk) conformal matter is used as a building block for other 6d SCFTs [15].
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and Z(SU(2)R), respectively, and we have already imposed the correlation between the R-

symmetry and Lorentz group twist. Restricting to the twists in equations (3.80) and (3.81)

predicted by the Higgs branch, we find

k even: wg = w− + wR, w+ = 0 ⇒ I4 ≡ −k
2
(w2

R + w− ∪ wR) ≡ 0 mod Z ,
k odd: wg = w−, w+ = wR ⇒ I4 ≡ k+1

2
wR ∪ w− ≡ 0 mod Z .

(3.85)

4 Intermezzo: Orbi-Instanton Theories

Throughout Section 3, we have demonstrated that, given the quiver description of the generic

point of the tensor branch of a 6d (1, 0) SCFT, one can determine the global structure of

the flavor symmetry group. Since we also wish to generate 4d theories via Stiefel–Whitney

twisted compactifications on a T 2, we now turn to a rich class of examples where we can

systematically study possible center-flavor symmetry mixing.

The theories we now consider are Higgs branch deformations of the “orbi-instanton the-

ories”, as obtained from as obtained in M-theory terms from M5-branes probing an ADE

singularity wrapped by an E8 nine-brane [7]. Via a process of fission and fusion, these turn

out to be the progenitors for all 6d SCFTs [13] realized in a geometric phase of F-theory. As

shown in [6], a large class of Higgs branch deformations are captured by a nilpotent orbit of

g, σ, and a homomorphism ρ : Γg → E8. We denote the resulting theories as

Ωg,N(ρ, σ) . (4.1)

It is natural to ask: does the pair (ρ, σ) capture the presence or absence of center-flavor

symmetry in a straightforward manner? We assume that N is sufficiently large that the

Higgsing by ρ and σ are uncorrelated on the tensor branch, and in this section we will focus

on the case g = suK . Furthermore, we will assume that σ is the maximal nilpotent orbit

given by the trivial embedding su2 → g. As we see, the condition on ρ for Ωg,N(ρ, σ) to have

a non-trivial center flavor symmetry in these cases is straightforward.

We consider the rank N (e8, suK) orbi-instanton 6d SCFT, which has the tensor branch

configuration

12
su2
2

su3
2 · · ·

suK
2

suK
2 · · ·

suK
2︸ ︷︷ ︸

N−1

. (4.2)

This theory can be obtained in M-theory as the worldvolume theory of a stack of N M5-

branes probing a C2/ZK orbifold singularity and on top of an M9-plane [7]. The non-Abelian

part of the flavor symmetry of this theory is generically

e8 ⊕ suK . (4.3)

A Higgsing of the e8 flavor is specified by a choice of homomorphism ρ : ΓsuK
∼= ZK → E8.
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Such homomorphisms, as explained by Kac [121], are captured by a weighted partition of

the Dynkin labels of the affine E8 Dynkin diagram into K:

(a1, a2, a3, a4, a5, a6, a4′ , a2′ , a3′) , (4.4)

such that

a1 + 2(a2 + a2′) + 3(a3 + a3′) + 4(a4 + a4′) + 5a5 + 6a6 = K . (4.5)

We find that Higgsing the e8 by a homomorphism, represented by a tuple as in equation

(4.4) whose non-zero entries are {ai(′)}, leads to a 6d SCFT with center-flavor symmetry

Z` = Zgcd({i}) . (4.6)

As evident from equation (4.5), this Z` is always a subgroup of Z(SU(K)), consistent with

the fact that the Higgsed theory has an suK flavor algebra. For each E8-homomorphism

specified by equations (4.4) and (4.5), there exists an algorithm that determines the tensor

branch configuration [33]. These tensor branch descriptions, for each of the putative Z`-
preserving E8-homomorphisms, are written in Table 1;23 in each case one can then use the

study of the large gauge transformation anomalies to verify that there is indeed a Z` center-

flavor symmetry. As the tensor branch configurations are rather involved, we explicate the

analysis in one example.

The simplest example is the Higgsing induced by a Z6p → E8 homomorphism specified

by a6 = p, and all other labels being zero. The resulting tensor branch gauge theory has the

quiver description

[su3 ⊕ su2] 1
su6
2

su12
2 · · ·

su6p−6

2
su6p

2
[su6]

su6p

2 · · ·
su6p

2︸ ︷︷ ︸
N−1

[su6p] . (4.7)

Between each su gauge and flavor factor on or next to 2-nodes, there is a bifundamental

hypermultiplet,

R(1) = (6,12)0 , R(2) = (12,18)0 , · · · , R(p−1) = (6p− 6,6p)0 ,

R(p) = (6p,6)−p , R(p+1) = (6p,6p)1 , · · · , R(p+N) = (6p,6p)1 .
(4.8)

In addition, there is a U(1)f flavor symmetry without ABJ-anomalies [65], which only charges

the hypermultiplets between the su6p factors (“the plateau”) with the charges indicated in

23In fact, when t 6= 0, the tensor branch description on the first line of Table 1 corresponds to two 6d
SCFTs, depending on the choice of θ-angle for the spq gauge algebra on the (−1)-curve. These theories
have the same central charges and flavor symmetries, but differ in the spectrum of local operators at large
conformal dimension. See [15,33] for more details; we suppress this subtlety in this paper.
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the subscripts. The tensor pairing is the (N + p)× (N + p) matrix

Aij =


−1 1 0 · · ·
1 −2 1

. . .

0 1 −2
. . .

...
. . . . . . . . .

 , (4.9)

and the anomaly coefficients of the flavor factors are

Bi,su3 = Bi,su2 = δi,1 , Bi,su6 = δi,p+1 , Bi,su6p = δi,N+p ,

Ci;f,f =


0 , i ≤ p ,

6p(p+ 1) , i = p+ 1 ,

12p , i > p+ 1 .

(4.10)

Without taking into consideration the U(1)f , one can easily verify that there is a Z3×Z2×
Z6
∼= Z6

(1) × Z6
(2) center-flavor symmetry that leaves all hypermultiplets invariant. These

have generators

Z6
(1) : [

1
su3 ⊕

1
su2] 1

0
su6
2

0
su12
2 · · ·

0
su6p−6

2

0
su6p

2
[su6

0
]

0
su6p

2 · · ·
0

su6p

2︸ ︷︷ ︸
N−1

[
0

su6p] ,

Z6
(2) : [

0
su3 ⊕

0
su2] 1

1
su6
2

2
su12
2 · · ·

p−1
su6p−6

2

p
su6p

2
[su6

1
]

p
su6p

2 · · ·
p

su6p

2︸ ︷︷ ︸
N−1

[
p

su6p] ,

(4.11)

where we have indicated the embedding kg ∈ Z(Gg) by the overset
kg
gg (or underset for the

[su6] flavor factor) on each node of the quiver. However, the presence of the E-string breaks

these individual Z6 factors to the diagonal Z6, with the fractional part of Chern classes given

by24

c2(su3) ≡ −1
3
w2 , c2(su2) ≡ −1

4
w2 , c2(su6l) ≡ − l(6l−1)

12
w2 (l = 1, . . . , p) . (4.12)

24By an abuse of notation, we will write c2(g) for c2(Fg).
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It is straightforward to verify that these cancel for each tensor:

Θ1 : − c2(su3)− c2(su2)− c2(su6) ≡
(

1
3

+ 1
4

+ 5
12

)
w2 ≡ 0 mod Z ,

Θ1+i (1 ≤ i < p) : − c2(su6(i−1)) + 2c2(su6i)− c2(su6(i+1))

≡ (i−1)(6i−7)−2i(6i−1)+(i+1)(6i+5)
12

w2 ≡ 12
12
w2 ≡ 0 mod Z ,

Θp+1 : − c2(su6(p−1)) + 2c2(su6p)− c2(su6p)− c2(su6)

≡ (p−1)(6p−7)−2p(6p−1)+p(6p−1)−5
12

w2 ≡ 12(p−1)
12

w2 ≡ 0 mod Z ,
Θp+i (1 < i ≤ N) : − c2(su6p) + 2c2(su6p)− c2(su6p) ≡ 0 mod Z .

(4.13)

Therefore, the non-Abelian structure group is

[SU(3)× SU(2)]×
∏

i<p SU(6i)× SU(6p)N × [SU(6)]× [SU(6p)]

Z6

, (4.14)

and the non-Abelian flavor symmetry of the SCFT is

SU(3)× SU(2)× SU(6)× SU(6p)

Z6

. (4.15)

This Z6 center-flavor symmetry will allow us to perform a Stiefel–Whitney twisted T 2 com-

pactification down to 4d, which we will turn to in the next section.

To complete the characterization of the full symmetry structure, we include possible U(1)f
twists, in which case the hypermultiplets are invariant under a further center transformation

of order 6p, with generator

Z6p : [
0

su3 ⊕
0

su2] 1

0
su6
2

0
su12
2 · · ·

0
su6p−6

2

0

su
(0)
6p

2
[su6
−1

]

1

su
(1)
6p

2

2

su
(2)
6p

2 · · ·

N−1

su
(N−1)
6p

2︸ ︷︷ ︸
N−1

[
N

su
(N)
6p ] and e−

2πiq̂
6p ∈ U(1)f ,

(4.16)

where we have enumerated, for convenience, the su6p factors. The resulting non-trivial Chern

class fractionalizations are then

c2(su6) ≡ − 5
12
w2 , c2(su

(k)
6p ) ≡ −k2 6p−1

12p
w2 , c1(Ff )

2 ≡ 1
36p2

w2 + 1
3p
w ∪ χ mod Z .

(4.17)

For the tensors of the su
(k)
6p factors with k ≥ 1, the cancellation of the fractionalizations is

analogous to that appearing in equation (3.44) for the simple A-type quiver example. For
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k = 0, the cancellation is due to

− c2(su6p−6) + 2c2(su
(0)
6p )− c2(su6)− c2(su

(1)
6p ) + 3p(p+ 1)c1(Ff )

2

≡
(
0 + 0 + 5

12
+ 6p−1

12p
+ p+1

12p

)
w2 ≡ 0 mod Z .

(4.18)

Lastly, we also incorporate the R-symmetry. Again, the main constraint is to have

the bifundamental hypermultiplets being invariant, which all transform in the fundamental

representation of su(2)R. To cancel the phase (−1) which these states acquire upon a Z2 =

Z(SU(2)R) twist, we turn on a corresponding Z2 ⊂ Z(SU(6k)) in every second su-factor.

These two a priori different twists are related by adding the Z2 subgroup of the Z6 center-

flavor symmetry responsible for the non-Abelian flavor group structure in equation (4.14),

so do not give rise to two new and independent center-flavor symmetries when we include

the R-symmetry, as expected. For concreteness, we take the generator that compensates the

Z(SU(2)R) twist to be

p even : [
0

su3 ⊕
0

su2] 1

0
su6
2

6
su12
2

0
su18
2

12
su24
2 · · ·

0
su6p−6

2

3p
su6p

2
[su6

0
]

0
su6p

2

3p
su6p

2 · · ·︸ ︷︷ ︸
N−1

[
∗

su6p] ,

p odd : [
0

su3 ⊕
0

su2] 1

0
su6
2

6
su12
2

0
su18
2

12
su24
2 · · ·

3p−3
su6p−6

2

0
su6p

2
[su6

3
]

3p
su6p

2

0
su6p

2 · · ·︸ ︷︷ ︸
N−1

[
∗

su6p] ,

(4.19)

where the ∗ is either 3p if p+N is even, or 0 if p+N is odd. For this quiver, the tangent bundle

enters only in the first tensor multiplet t1 associated to the E-string, whose corresponding

Green–Schwarz four-form contains c2(R) and p1(T ):

Θ1 : −c2(su3)− c2(su2)− c2(su6) + c2(R)− 1
4
p1(T ) ≡ −1

4
w2 − 3

4
w2 ≡ 0 mod Z . (4.20)

For the other tensors, the topological coupling to the R-symmetry bundle is through the

term h∨c2(R), where h∨(su6k) = 6k. Since these tensors all have Aii = −2, the coupling to

p1(T ) is trivial. Let us first examine those on a generic position on the ramp (i.e., a 2-node

with su6i<6p). Here, we have

Θ1+i (i even) : − c2(su6(i−1)) + 2c2(su6i)− c2(su6(i+1)) + 6i c2(R)

≡
(

2× 9i(6i−1)
12

+ 3
2
i
)
w2 ≡ 0 mod Z ,

(4.21)

Θ1+i (i odd) : − c2(su6(i−1)) + 2c2(su6i)− c2(su6(i+1)) + 6i c2(R)

≡
(
−9(i−1)(6i−7)+9(i+1)(6i+5)

12
+ 3

2
i
)
w2 ≡ 0 mod Z ,

(4.22)

where the fractional part of c2(su6(i−1)) is automatically zero for i = 1. For the node that
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connects the ramp to the plateau (i.e., the first node with su6p gauge algebra), we have

Θp+1 (p even) : − c2(su6p−6) + 2c2(su6p)− c2(su6p)− c2(su6) + 6p c2(R)

≡
(

2× 9p(6p−1)
12

+ 3
2
p
)
w2 ≡ 0 mod Z ,

(4.23)

Θp+1 (p odd) : − c2(su6p−6) + 2c2(su6p)− c2(su6p)− c2(su6) + 6p c2(R)

≡
(
−9(p−1)(6p−7)+9p(6p−1)+9(6−1)

12
+ 3

2
p
)
w2 ≡ 0 mod Z .

(4.24)

For the other nodes on the ramp, there is either a Z2 twist only in the corresponding gauge

factor, or only in the two adjacent gauge / flavor factors:

Θp+i (p+ i odd) : − c2(su6p) + 2c2(su6p)− c2(su6p) + 6p c2(R) ≡(
2× 9p(6p−1)

12
+ 3

2
p
)
w2 ≡ 0 mod Z ,

(4.25)

Θp+i (p+ i even) : − c2(su6p) + 2c2(su6p)− c2(su6p) + 6p c2(R) ≡(
−2× 9p(6p−1)

12
+ 3

2
p
)
w2 ≡ 0 mod Z .

(4.26)

Again, we omit the straightforward, but somewhat tedious crosscheck that we can activate

simultaneously the Z6 twist in the non-Abelian flavor factors, the Z6p twist involving the

U(1)f flavor, and the Z2 R-symmetry twist. From this analysis, we conclude that the 6d

SCFT with tensor branch description as in equation (4.7) has global symmetry group

SU(3)× SU(2)× SU(6)× SU(6p)× U(1)f × SU(2)R
Z6 × Z6p × Z2

. (4.27)

The analysis of the structure for the global symmetry for the other tensor branch descriptions

in Table 1 follows directly from the application of the methods described in this example.

5 4d N = 2 SW-folds

Having shown how to extract the global symmetry group of 6d SCFTs, we now turn to

a specific application in the context of constructing 4d N = 2 SCFTs. To reach such a

theory from a 6d N = (1, 0) SCFT, one can consider compactification on a T 2. Activating

background gauge bundle configurations with vanishing flux provides a general template

for realizing 4d N = 2 SCFTs. In fact, one can also consider compactifications which are

sensitive to the global topology of the 6d global symmetries, namely by switching on an

’t Hooft magnetic flux [122] in the T 2 directions [61].25 In [61] this was referred to as a

25One can in principle consider various generalizations, as obtained from compactifying on a more general
genus g Riemann surface with marked points, with non-trivial contributions from the R-symmetry bundle
also switched on. In this broader setting, one would expect to get 4d N = 1 SCFTs, along the lines of [29,123]
(see also, for example, [24, 26,27,35–53,55,57,58] and references therein).
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Stiefel–Whitney (SW) twisted compactification. These are a specific class of configurations

involving background flat bundle configurations with non-trivial holonomies which commute

in Gglobal = G̃global/C, but which would not have commuted as holonomies of bundles with

structure group G̃. Treated as a bundle with structure group G̃, we would have a non-zero

flux valued in a subgroup of C, i.e., the holonomies commute up to a specific element of this

flux. We shall loosely speaking refer to such holonomies as being “charged under an element

of C” since this has a clear meaning when treating these backgrounds as G̃ bundles. Owing

to their similarities with S-fold constructions, we often refer to these theories as “SW-folds”

in what follows.

We consider SW-folds obtained from the 6d theories considered in Section 4, namely

the theories of the form ΩsuK ,N(ρ, 1), where ρ is an E8-homomorphism that leads to a Z`
center-flavor symmetry. The tensor branch descriptions of such 6d (1, 0) SCFTs were given

in Table 1. Compactification on a torus with a Z` Stiefel–Whitney twist then leads to the

4d SCFTs we consider herein; furthermore, many of the properties of the 4d theories can

be obtained from a knowledge of the 6d (1, 0) parent theory. We emphasize that when we

say we turn on a Z` Stiefel–Whitney twist, we are turning on a non-commuting holonomy

charged under the element p of Z` such that gcd(p, `) = 1. All of these Stiefel–Whitney

twisted theories are listed in Table 2.

As a general comment, while we could in principle extract the global symmetry group

of the resulting 4d theory, there can be additional structures which emerge from extended

objects which can now wrap on the T 2 directions. For this reason, we primarily focus on just

the global symmetry algebra of the resulting 4d theories, leaving a more complete analysis

of their global structure group to future work.

The rest of this section is organized as follows. We first explain how to extract the

central charges and flavor symmetries for the resulting SW-fold theories. This is followed

by an extensive list of examples, as given in Table 2. As an independent cross-check, we

also directly study the Coulomb branch operator spectrum for these theories. In some cases,

there are alternative ways to generate some of these theories.26 We discuss some examples

of this in the context of class S constructions, as well as 4d N = 2 S-folds [97–100], and

we comment on the overlap as well as differences from these other methods of generating 4d

N = 2 SCFTs.

5.1 Central Charges and Flavor Symmetries

Having specified a construction for an infinite family of 4d N = 2, we now turn to some of

their properties. As each of the SW-folds we study arises from the compactification of a 6d

SCFT that is very Higgsable, we can apply the methods from [61] to determine the central

charges and the flavor central charges.

26A recent and detailed review of both the features of N = 2 SCFTs, and of the various different con-
structions, is [124].
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SW-fold SCFT Orbi-instanton E8-Homomorphism SW Twist

S(N)
2 (p, s, u, 2t+ 1, q) (e8, su2q+8t+6u+4s+2p+4) (0, p, 0, s, 0, u, 2t+ 1, q, 0)

Z2
T (N)

2 (p, s, u, 2t, q) (e8, su2q+8t+6u+4s+2p) (0, p, 0, s, 0, u, 2t, q, 0)

R(N)
3 (p, s, 3q + 2) (e8, su9q+6s+3p+6) (0, 0, p, 0, 0, s, 0, 0, 3q + 2)

Z3S(N)
3 (p, s, 3q + 1) (e8, su9q+6s+3p+3) (0, 0, p, 0, 0, s, 0, 0, 3q + 1)

T (N)
3 (p, s, 3q) (e8, su9q+6s+3p) (0, 0, p, 0, 0, s, 0, 0, 3q)

S(N)
4 (p, 2q + 1) (e8, su8q+4p+4) (0, 0, 0, p, 0, 0, 2q + 1, 0, 0)

Z4
T (N)

4 (p, 2q) (e8, su8q+4p) (0, 0, 0, p, 0, 0, 2q, 0, 0)

T (N)
5 (p) (e8, su5p) (0, 0, 0, 0, p, 0, 0, 0, 0) Z5

T (N)
6 (p) (e8, su6p) (0, 0, 0, 0, 0, p, 0, 0, 0) Z6

Table 2: The 4d N = 2 SW-folds that we consider in this paper. Each SCFT is obtained
by starting with the 6d rank N orbi-instanton SCFT of type (e8, suK), where K is as in the
second column. Higgsing the e8 flavor symmetry by the homomorphism ZK → E8, given via
(a1, a2, a3, a4, a5, a6, a4′ , a2′ , a3′) in the third column, yields each of the 6d SCFTs in Table
1, which have a Z` center-flavor symmetry. Compactifying the resulting 6d SCFT on a T 2

with a Z` Stiefel–Whitney twist, where ` is as in the fourth column, produces the 4d N = 2
SW-fold SCFT which we denote by the naming that appears in the first column.

To determine the central charges of the SW-folds we carry out the following procedure.

First we compute the anomaly polynomial of the origin 6d SCFT, I8. Next, we compute

the 1-loop contribution on the full tensor branch from just the vector multiplets, tensor

multiplets and hypermultiplets, and refer to this as Ifields
8 :27

Ifields
8 ≡ I1-loop,vector

8 + I1-loop,tensor
8 + I1-loop,hyper

8 . (5.1)

Both I8 and Ifields
8 is a formal eight-form polynomial in the characteristic classes of the

symmetries of the 6d SCFT. As required, the anomaly polynomial does not contain any terms

proportional to the characteristic classes of the gauge symmetries on the tensor branch, as

the 6d SCFT is non-anomalous, but the quantity Ifields
8 does contain such gauge-anomalous

terms. We write

I8 − Ifields
8 = Ap1(T )2 +Bc2(R)p1(T ) +

∑
a

Cap1(T ) TrF 2
a + · · · , (5.2)

27We note that especially in the case of generalized quivers with conformal matter one sometimes refers to
this as a “1-loop” contribution as well. Here, we are referring to the full tensor branch, where the conformal
matter has also been decomposed into standard 6d N = (1, 0) supermultiplets.
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where p1(T ) is the first Pontryagin class of the spacetime tangent bundle, c2(R) is the SU(2)

R-symmetry bundle, and TrF 2
a is the curvature of the flavor symmetry bundles. The sum

is over the simple non-Abelian flavor symmetries of the SCFT. In terms of these quantities,

A, B, and Ca,
28 we can write the central charges of the SW-fold SCFTs as

a− ageneric = 32

(
3

2`
− 3

4

)
A− 12

`
B ,

c− cgeneric = 32

(
3

`
− 1

)
A− 12

`
B ,

κa − κageneric =
192

`
CaIa ,

(5.3)

where ` is the order of the Stiefel–Whitney twist, and Ia is the Dynkin index of the embedding

of the 4d flavor symmetry as a subalgebra of the 6d flavor symmetry. Here ageneric, cgeneric,

and κageneric are the central charges and flavor central charges of the 4d theory at the generic

point of the Coulomb branch. We can rewrite the central charges in terms of the numbers

of vector and (full) hypermultiplets at the generic point of the Coulomb branch as

ageneric =
5

24
nV +

1

24
nH , cgeneric =

1

6
nV +

1

12
nH . (5.4)

For all SW-folds the quantities A, B, Ca and the generic central charges can be determined

from the 6d origin and the knowledge of the Z` center-flavor symmetry. Thus we can always

determine the central charges of the SW-fold SCFT.

In this section, we are interested in specific 6d SCFTs, those that appear in Table 1,

which all have tensor branch configurations of the form

g

1
su`k1

2
su`k2

2 · · ·
su`kr

2 , (5.5)

where the possible choices for g and the ki are specified via their 6d origin in Table 1. For

each `, we summarize the possible g, together with their below-mentioned numerical data,

in Table 3. First, we will discuss the contributions to I8 − Ifields
8 for such 6d SCFTs. The

result differs depending on whether g is trivial or not. Let us first consider the simplest case

where g 6= ∅. Then

I8 − Ifields
8 = IGS

8 = −1

2
AijI

iIj , (5.6)

where the tensor indices i, j run over the nodes of the tensor branch configuration in equation

28As we will not include holonomies of 6d Abelian flavor factors, their anomaly coefficients Ci;f,f
′

will not
appear in the following, and Ca will exclusively denote the coefficients in the anomaly polynomial (5.2).
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(5.5) from left to right.29 Recall from equation (2.4) that in the four-form I i,

I i =
1

4

(
− Aij TrF 2

j −Bia TrF 2
a − (2 + Aii)p1(T )

)
+ yic2(R) . (5.7)

the index i in the p1(T ) term is not summed over. In this case, we have yi = h∨gi , the dual

Coxeter number of the gauge algebra associated to the ith tensor. We see that the only

contributions to p1(T )2 arise when i = j = 1, and thus

A =
r + 1

32
. (5.8)

The c2(R)p1(T ) term is rather more involved to determine, but it can be found to be:

B =
1

4
Aij
(
2 + Aii

)
yj

= −1

4
(r + 1)h∨g −

1

4
`

r∑
j=1

(r + 1− j)kj ,
(5.9)

where we again need to be careful with the sum over i, and we emphasize that the tensor

pairing matrix Aij and its inverse Aij are both symmetric. Finally, we consider the terms

proportional to p1(T ) TrF 2
a . We find

Ca = − 1

16
Aij
(
(2 + Aii)Bja

)
=
r + 1− k(a)

16
,

(5.10)

where k(a) is the position of the node in the tensor branch quiver diagram that “intersects”

the flavor factor ga, i.e., Bja = 0 for j 6= k(a).30 In all cases under consideration we have

Bk(a)a = 1. Thus, we have determined A, B, and Ca for tensor branch configurations of the

form in equation (5.5) when g 6= ∅.

Let us now consider the slightly more complicated configuration where g = ∅, in which

case the left-most node in equation (5.5) becomes an E-string. For this configuration we

have

I8 − Ifields
8 = IE-string

8 − Itensor
8 + IGS

8 , (5.11)

where

IGS
8 = −1

2
ÃijI

iIj , I i =
1

4

(
− Ãij TrF 2

j − B̃ia TrF 2
a − (2 + Ãii)p1(T )

)
+ yic2(R) . (5.12)

29We emphasize that the tensor pairing matrix Aij , whose diagonal entries are the negative of the values
attached to the nodes in equation (5.5), is negative-definite.

30This would not apply to baryonic su2 flavor symmetries, which we are not considering in this work. Such
flavor factors are only relevant for very specific SW-folds, which have already been worked out in [98].
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Here, the matrix of coefficients Ã and B̃ can be interpreted as the contributions from a

generalized quiver, where we allow conformal matter between nodes of the quiver. In this

case, the indices now run over i, j = 1, · · · , r. The coefficients yi remain h∨su`ki
, except for y1

which is now 1 + h∨su`k1
. We can see immediately that

A =
1

32
+

r

32
=
r + 1

32
. (5.13)

Furthermore, the c2(R)p1(T ) coefficient is

B = −1

4
+

1

4
Ãij

(
(2 + Ãii)yj

)
= −1

4
− 1

4
(r)(`k1 + 1)− 1

4
`

r∑
j=2

(r + 1− j)kj

= −1

4
(r + 1)− 1

4
`

r∑
j=1

(r + 1− j)kj .

(5.14)

Finally, we need to discuss the flavor symmetry terms. The coefficient Ca of p1(T ) TrF 2
a is

Ca =
r + 1− k(a)

16
, (5.15)

where k(a) is the index of the quiver node that intersects the flavor symmetry indexed by a.

Further, we have again used that, in all cases of relevance of this work, Bk(a)a = 1.

` g n0
V n0

H d0 k0

2
spq≥0

q(q−1)
2

q(q + 4) q + 1 q

su2q+4≥4 q2 + 4q + 3 3
2
(q + 2)(q + 5) 2q + 4 q + 2

3

su′6 3 12 6 2

su3 0 4 3 1

∅ 0 0 1 0

4
su4 0 3 4 1

∅ 0 0 1 0

5 ∅ 0 0 1 0

6 ∅ 0 0 1 0

Table 3: The possible decorations on the (left-most) tensor with self-pairing 1 in equation
(5.5).

While it was necessary that we do the calculation slightly differently for the cases where
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g 6= ∅ and g = ∅, we see that the resulting coefficients appearing in I8 − Ifields
8 relevant for

the central charges of the compactification can be written succinctly as

A =
r + 1

32
,

B = −1

4

(
(r + 1)d0 + `

r∑
j=1

(r + 1− j)kj
)
,

Ca =
r + 1− k(a)

16
,

(5.16)

where d0 is as written in Table 3; it is 1 if g = ∅ and h∨g otherwise.

Next, let us determine the numbers of vector and hypermultiplets at the generic point of

the 4d Coulomb branch. We recall here how the Stiefel–Whitney twist acts on the weakly

coupled 6d spectrum on the tensor branch. When doing a Z` Stiefel–Whitney twist, we need

to know the following 6d → 4d transformations:

su`k vector multiplet → suk vector multiplet ,

su`k1 ⊕ su`k2 bifund. hypermultiplet → suk1 ⊕ suk2 bifund. hypermultiplet ,

tensor multiplet → vector multiplet .

(5.17)

The subtleties arise from the possible “decorations” g on the node
g

1 in equation (5.5), which

we will often refer to as the 1-node of the quiver.31 How the SW-fold acts on such a tensor

with the possibilities for the gauge algebra g has been studied in [61]. Putting all this

together we see that the number of vector multiplets and hypermultiplets at the generic

point of the Coulomb branch is

nV = 1 + n0
V +

r∑
i=1

k2
i ,

nH = n0
H +

r∑
i=1

ki(2ki − ki−1) .

(5.18)

Here, 1 +n0
V is the number of vector multiplets that are associated to g and survive the SW-

fold. Similarly, k0 is the dimension of the fundamental representation of this gauge algebra

after SW-folding, and k1 + n0
H is the total number of surviving hypermultiplets from the

g

1-node. These quantities follow directly from the action of the Stiefel–Whitney twist and

they are summarized in Table 3. Finally, we determine the contribution to the flavor central

31In geometric terms that describe F-theory constructions of 6d SCFTs, such a node is usually called a
(−1)-curve.
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charges at the generic point of the 4d Coulomb branch. We have

κgeneric
a = 2kk(a) , (5.19)

where, again, k(a) is the index of the tensor that intersects the ath flavor factor. This follows

from the existence of the bifundamental (full) hypermultiplet after the Stiefel–Whitney twist

described in equation (5.17).32 In the case of flavor symmetries that intersect the
g

1-node,

the value of k0 is written in Table 3; it comes from the surviving gauge algebra on that node

after the Stiefel–Whitney twist.

5.2 Examples

Putting everything together, we can see that the 4d N = 2 SW-fold SCFT obtained via

the Stiefel–Whitney twist of 6d (1, 0) tensor branch configuration as in equation (5.5) has

central charges a, c, and κa given as in equation (5.3). These quantities can thus be worked

out for each of the theories listed in Table 2, and we now do so. The central charges

a and c become rather lengthy expressions, especially as one decreases the order of the

Stiefel–Whitney twist, `, which thus gives rise to to more parameters describing the discrete

homomorphism Z` → E8. Therefore, we have attached a Mathematica notebook containing

these expressions to the arXiv submission of this paper for the ease of the reader.

5.2.1 Z6 SW-folds: T (N)
6 (p)

We begin by studying the Z6 SW-folds: T (N)
6 (p). The 6d SCFT origin, with the flavor

symmetry included, is

[su3] 1
[su2]

p︷ ︸︸ ︷
su6
2 · · ·

su6p

2
[su6]

N−1︷ ︸︸ ︷
su6p

2 · · ·
su6p

2 [su6p] . (5.20)

As we determined in Section 4, the non-Abelian flavor symmetry of the 6d SCFT is generi-

cally

Gflavor = [SU(3)× SU(2)× SU(6)× SU(6p)]/Z6 , (5.21)

however in the special case where N = 1, the last two factors combine and one has

Gflavor = [SU(3)× SU(2)× SU(6(p+ 1))]/Z6 . (5.22)

32When considering the flavor algebras attached to the
g

1-node, the matter many not simply be a bifun-
damental hypermultiplet, but some other bi-representation. In these cases, the contribution from a generic
hypermultiplet on the 4d Coulomb branch must be worked out individually.
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In terms of the quiver written in equation (5.5), here we have g = ∅ and

ki = (1, 2, · · · , p, p, · · · , p︸ ︷︷ ︸
N−1

) . (5.23)

In this case, we shall write each of the quantities, A, B, Ca, nV , nH , and κgeneric
a necessary

to determine the central charges. After the Stiefel–Whitney twist the only surviving flavor

symmetry is either sup arising from the su6p in the case of generic N , or sup+1 coming from

the su6(p+1) factor when N = 1; as there is only one simple non-Abelian flavor algebra we

shall drop the index a. Note, when p = 1 and N > 1 there is no surviving flavor symmetry.

For the quantities determined from the 6d anomaly polynomial we find

A =
p+N

32
, B = −1

4
(p3 + 3Np2 + 3N2p+N) , C =

1

16
. (5.24)

At the generic point of the 4d Coulomb branch we have

nV =
1

6
(6 + p− 3p2 + 6Np2 + 2p3) , nH =

1

3
p(2 + 3Np+ p2) , κgeneric = 2p . (5.25)

Plugging these values into equation (5.3), we find that the central charges of the resulting

4d N = 2 SCFTs are

a =
1

48

(
28p3 + 84Np2 − 5p2 + 72N2p− 21p+ 10

)
, (5.26)

c =
1

12

(
7p3 + 21Np2 − p2 + 18N2p− 5p+ 2

)
, (5.27)

κ = 12p+ 2 . (5.28)

We emphasize that, regardless of whether the residual flavor symmetry algebra is sup or

sup+1, the flavor central charge is identical. As it is required often throughout this section,

we will explain the Dynkin indices for the special subalgebras that we consider. We have

su`k → su` ⊕ suk , (5.29)

such that

`k→ (`,k) . (5.30)

The index of the embedding can be worked out from this decomposition of the fundamental

representation,33 and we find that the su` factor has index k, and the suk factor has index `.

The theory T (N)
6 (p = 1) has been previously studied in [100]. In that case, there is no

33See [115] for an explanation of the embedding indices applicable to the special subalgebras.
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remaining flavor symmetry and we can see from equation (5.26) that the central charges are

a = c =
1

4
(6N + 1)(N + 1) . (5.31)

The result for this special case matches that found in [100].34 In this particular case the

central charges are equal as the theory enjoys supersymmetry enhancement, either to N = 4

supersymmetry when N = 1, or else to N = 3 when N > 1. When p = 1 and N = 1 the

theory is N = 4 super-Yang–Mills with gauge group G2; in this case there is an su2 flavor

symmetry and we can see that the flavor central charge is κ = 14 = dimG2, as expected. In

the generic case where p > 1 there is no such supersymmetry enhancement.

5.2.2 Z5 SW-folds: T (N)
5 (p)

We now study the Z5 SW-folds: T (N)
5 (p). The tensor branch configuration describing the 6d

SCFT origins of these 4d theories are

[su5]1

p︷ ︸︸ ︷
su5
2 · · ·

su5p

2
[su5]

N−1︷ ︸︸ ︷
su5p

2 · · ·
su5p

2 [su5p] . (5.32)

We have here written the flavor algebras that exist for generic values of p and N , however

there is a flavor symmetry enhancement when considering a single M5-brane, N = 1. The

full global structure of the non-Abelian part of the flavor symmetry group was determined

in Section 4 and we find

Gflavor =

{
(SU(5)× SU(5(p+ 1)))/Z5 when N = 1 ,

(SU(5)× SU(5)× SU(5p))/Z5 when N > 1 .
(5.33)

To determine the central charges we must determine the ki when the tensor branch config-

uration is written in the form in equation (5.5); observe that these ki are the same as those

appearing in equation (5.23) in the T (N)
6 (p) case. Using the formula in equation (5.3) leads

to the following central charges:

a =
1

240

(
140p3 + 420Np2 − 25p2 + 360N2p− 69p+ 36N + 50

)
, (5.34)

c =
1

60

(
35p3 + 105Np2 − 5p2 + 90N2p− 13p+ 12N + 10

)
. (5.35)

34To aid in comparison, we note that our T (N)
6 (p = 1) theory is equivalent to the T (r+1)

∅,6 theory of [100].

44



Finally, we determine the non-Abelian flavor algebra that survives after the Stiefel–Whitney

twisted compactification. Denoting the central charges by subscripts, one finds

g4d
flavor =

{(
sup+1

)
12p+2

when N = 1 ,(
sup
)

12p+2
when N > 1 .

(5.36)

Similarly to the ` = 6 case, the theories that we have T (N)
5 (p = 1) have been previously

studied in [100], where they were referred to as the T (r+1)
∅,5 theories. As we can see, the

Z5 SW-folds that are written here constitute a broad generalization of the hitherto known

theories.

5.2.3 Z4 SW-folds: T (N)
4 (p, 2q) and S(N)

4 (p, 2q + 1)

There are two classes of ` = 4 SW-folds: T (N)
4 (p, 2q) and S(N)

4 (p, 2q + 1). Recall that a

Higgs-branch deformation by the homomorphism ZK → E8 preserves a Z4 center-flavor

symmetry of the 6d SCFT only if the only non-zero entries in equation (4.4) are a4 and

a4′ . The distinction between the T and S theories depends on whether a4′ is even or odd,

respectively. First, we consider the T (N)
4 (p, 2q) theories, which arise from 6d (1, 0) SCFTs

with tensor branch configuration

1

q︷ ︸︸ ︷
su8
2 · · ·

su8q

2
[su4]

p︷ ︸︸ ︷
su8q+4

2 · · ·
su8q+4p

2
[su4]

N−1︷ ︸︸ ︷
su8q+4p

2 · · ·
su8q+4p

2 [su8q+4p] . (5.37)

In this generalized quiver, we have written the flavor algebras for generic values of the

parameters p, q, and N . From the analysis in Section 3, we can see that the non-Abelian

part of the global symmetry group is

Gflavor =



(SU(8q + 8))/Z4 when p = 0, q ≥ 1, N = 1 ,

(SU(8)× SU(8q))/Z4 when p = 0, q ≥ 1, N > 1 ,

(Spin(10)× SU(4p+ 4))/Z4 when p ≥ 1, q = 0, N = 1 ,

(Spin(10)× SU(4)× SU(4p))/Z4 when p ≥ 1, q = 0, N > 1 ,

(SU(4)× SU(8q + 4p+ 4))/Z4 when p ≥ 1, q ≥ 1, N = 1 ,

(SU(4)× SU(4)× SU(8q + 4p))/Z4 when p ≥ 1, q ≥ 1, N > 1 .

(5.38)

We can see that if we write the models in equation (5.37) in the generic form for the tensor

branch configurations that we study, as in equation (5.5), then the ki are given by

ki = ( 2, 4, · · · , 2q︸ ︷︷ ︸
q

, 2q + 1, 2q + 2, · · · , 2q + p︸ ︷︷ ︸
p

, 2q + p, · · · , 2q + p︸ ︷︷ ︸
N−1

) . (5.39)
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We observe that there is a steep ramp, of length q, where ki increases by 2 each step, followed

by a shallower length p ramp where the ki increases by 1, and finally a plateau of length

N −1. Although it starts to become somewhat tedious, it is straightforward to work out the

central charges using equation (5.3). We find

a =
1

48

(
64q3 + 192pq2 + 192Nq2 − 20q2 + 168p2q + 336Npq − 20pq (5.40)

+ 144N2q − 18q + 28p3 + 84Np2 − 5p2 + 72N2p− 3p+ 18N + 10

)
,

c =
1

12

(
16q3 + 48pq2 + 48Nq2 − 4q2 + 42p2q + 84Npq − 4pq (5.41)

+ 36N2q − 2q + 7p3 + 21Np2 − p2 + 18N2p+ p+ 6N + 2

)
.

To determine the flavor symmetry that survives the Stiefel–Whitney twisting procedure, it

is necessary to understand how, in the cases with q = 0, the so10 flavor algebra intersecting

the E-string is acted on by the Z4 center-flavor symmetry. Writing

so10 → su4 ⊕ su2 ⊕ su2 , (5.42)

we can see that the Z4 is embedded via the generator (1, 1, 0) inside of the combined Z4 ×
Z2 × Z2 center [100]. As such, the only surviving subalgebra from the so10 factor is an su2,

with embedding index 1. The Stiefel–Whitney twisting of the remaining flavor symmetry

factors can be determined as for the ` = 5, 6 cases. The flavor central charges (denoted in

subscript) can also be computed using the formula in equation (5.3); the result is

g4d
flavor =



(su2q+2)4q+12 p = 0, q ≥ 1, N = 1

(su2)4q+12N ⊕ (su2q)4q+12 p = 0, q ≥ 1, N > 1

(su2)3(p+1) ⊕ (sup+1)2p+12 p ≥ 1, q = 0, N = 1

(su2)3(p+N) ⊕ (sup)2p+12 p ≥ 1, q = 0, N > 1

(su2q+p+1)4q+2p+12 p ≥ 1, q ≥ 1, N = 1

(su2q+p)4q+2p+12 p ≥ 1, q ≥ 1, N > 1 .

(5.43)

Again, similarly to the ` = 5 and ` = 6 SW-folds, the theories T (N)
4 (p = 1, 2q = 0) have been

studied afore in [100], where they are called the T (r+1)
A2,4

theories.

There is another class of ` = 4 SW-folds, which are obtained by starting with the

6d A-type orbi-instanton SCFT Higgsed by a Z4 center-flavor symmetry preserving E8-

homomorphism where the embedding into a′4, as in equation (4.4), is odd. The SW-fold

SCFTs obtained from the Z4 Stiefel–Whitney twist of these 6d SCFTs are referred to as
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S(N)
` (p, 2q + 1). The tensor branch configurations of these 6d SCFTs have the form

su4
1

q︷ ︸︸ ︷
su12
2 · · ·

su8q+4

2
[su4]

p︷ ︸︸ ︷
su8q+8

2 · · ·
su8q+4p+4

2
[su4]

N−1︷ ︸︸ ︷
su8q+4p+4

2 · · ·
su8q+4p+4

2 [su8q+4p+4] , (5.44)

where, as usual, the flavor symmetry can enhance when the parameters p, q, and N ob-

tain their limiting values. The flavor groups, including how the Z4 quotient acts, can be

determined from the algorithm described in Section 3. Computing the central charges is a

straightforward application of equation (5.3):

a =
1

48

(
64q3 + 192pq2 + 192Nq2 + 76q2 + 168p2q + 336Npq

+ 172pq + 144N2q + 192Nq + 10q + 28p3 + 84Np2 (5.45)

+ 79p2 + 72N2p+ 168Np+ 35p+ 72N2 + 66N + 4

)
,

c =
1

12

(
16q3 + 48pq2 + 48Nq2 + 20q2 + 42p2q + 84Npq

+ 44pq + 36N2q + 48Nq + 6q + 7p3 + 21Np2 (5.46)

+ 20p2 + 18N2p+ 42Np+ 11p+ 18N2 + 18N + 2

)
.

Similarly, the flavor algebras that survive the Stiefel–Whitney twist can be determined, and

their flavor central charges are again given by equation (5.3). We find

g4d
flavor =


(su2q+3)4q+14 p = 0, q ≥ 0, N = 1

(su2)4q+12N+2 ⊕ (su2q+1)4q+14 p = 0, q ≥ 0, N > 1

(su2q+p+2)4q+2p+14 p ≥ 1, q ≥ 0, N = 1

(su2q+p+1)4q+2p+14 p ≥ 1, q ≥ 0, N > 1 .

(5.47)

The theories S(N)
4 (p = 0, 2q + 1 = 1) were studied in [100], where they were called the S(r)

A2,4

theories. The central charges and flavor symmetries that we compute here agree with what

was found in that particular limiting case. We have similarly labelled these generalized S-

fold SCFTs by S and T to match with the notation for the special cases that have been

previously studied.

In this paper, we have mainly been concerned with the identification of the 4d non-

Abelian flavor symmetry that descends from the 6d non-Abelian flavor symmetry. In fact,

the 6d SCFTs under consideration also contain Abelian symmetries that arise from the ABJ-

anomaly-free combinations of the u(1)s rotating the bifundamental hypermultiplets. Under

certain circumstances, these u(1)s can enhance, and then we expect a further non-Abelian

factor in the 4d flavor symmetry. This occurs when the 4d Coulomb branch description of
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the SW-fold contains a plateau of neighboring su2 gauge algebras: then the u(1) enhances

to an su2 under which the gauge bifundamentals are charged. The SW-folds with this extra,

enhanced, baryonic su2 flavor symmetry are

T (N)
4 (0, 2) , S(N)

4 (1, 1) , T (N)
3 (0, 1, 0) ,

S(N)
3 (1, 0, 1) , R(N)

3 (0, 0, 2) , S(N)
2 (0, 0, 0, 1, 0)

T (N)
2 (0, 0, 0, 0, 2) , T (N)

2 (0, 1, 0, 0, 0) , T (N)
2 (2, 0, 0, 0, 0) , T (N)

2 (1, 0, 0, 0, 1) .

(5.48)

In each case, we can see that they correspond to theories obtained from an orbi-instanton

theory involving M5-branes probing C2/Z2`; after the Z` Stiefel–Whitney twist, the orbifold

is reduced to C2/Z2, and the additional su2 global symmetry comes from the exceptional

isometry of this particular orbifold. For low values of N we expect that this baryonic

su2 can combine with other non-Abelian factors in the flavor symmetry, and cause further

enhancement. In rare cases there can also be dehancement. We discuss some instances where

this enhancement occurs in Section 5.4.1.

5.2.4 Z3 SW-folds: T (N)
3 (p, s, 3q), S(N)

3 (p, s, 3q + 1), and R(N)
3 (p, s, 3q + 2)

There are three distinct ways that one can construct a Higgs-branch flow from the rank N

(e8, suK) orbi-instanton theory such that the resulting SCFT has a Z3 center-flavor symmetry.

From Section 4, we see that K must be a multiple of three and the homomorphism ZK → E8

must be specified by the vector

(a1, a2, a3, a4, a5, a6, a4′ , a2′ , a3′) = (0, 0, a3, 0, 0, a6, 0, 0, a3′) . (5.49)

In all cases, the resulting 6d SCFTs have tensor branch configurations of the form in equa-

tion (5.5), however the algebra g associated to the left-most 1-node in equation (5.5), de-

pends on the parity modulo three of a3′ . Respectively, we find that the 1-node has no

gauge algebra; su3 with twelve fundamental and one antisymmetric hypermultplets; and an

su6 algebra with fifteen fundamental hypermultiplets and one further hypermultiplet in the

triple-antisymmetric representation. As in Table 2, we label these theories by T , S, and R,

respectively. The tensor branch configurations for each of these configurations are shown in

Table 1, and we do not repeat them here.

We begin our journey into the Z3 SW-folds with the T (N)
3 (p, s, 3q) theory, whose 6d

origins have g = ∅ for the 1-node. The central charges can be determined straightforwardly

from the tensor branch configuration by application of the formulae in equation (5.3). One

finds

a =
1

48

(
72N2p+ 216N2q + 144N2s+ 84Np2 + 504Npq + 336Nps

+ 324Nq2 + 576Nqs+ 192Ns2 + 36N + 252p2q + 168p2s (5.50)
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+ 28p3 − 5p2 + 324pq2 + 576pqs− 30pq + 192ps2 − 20ps

+ 15p+ 324q2s+ 108q3 − 45q2 + 288qs2 − 60qs− 9q + 64s3 − 20s2 + 10

)
,

c =
1

12

(
18N2p+ 54N2q + 36N2s+ 21Np2 + 126Npq + 84Nps

+ 81Nq2 + 144Nqs+ 48Ns2 + 12N + 63p2q + 42p2s+ 7p3 (5.51)

− p2 + 81pq2 + 144pqs− 6pq + 48ps2 − 4ps+ 7p+ 81q2s

+ 27q3 − 9q2 + 72qs2 − 12qs+ 3q + 16s3 − 4s2 + 4s+ 2

)
.

To determine the flavor algebra for the theory after Stiefel–Whitney twist, we need to un-

derstand how the Z3 quotient acts on the e6 flavor symmetry. The decomposition is

e6 → g2 ⊕ su3

27→ (7,3)⊕ (1,6) ,
(5.52)

where the Z3 acts on the su3 factor and only the g2 survives. From the decomposition

of the fundamental representation in equation (5.52), we see that the Dynkin index of the

g2 subalgebra is one. Similarly, when there is an su3 ⊕ su2 flavor algebra attached to the

undecorated 1-node, we note that the Z3 acts only on the su3 factor and leaves the su2

factor untouched. The remaining flavor factors are quotiented by the Stiefel–Whitney twist

exactly as in the ` > 3 cases that we have discussed. In the end, one discovers that the flavor

symmetries, and the flavor central charges of these 4d SCFTs are:

q = s = 0, p ≥ 1, N ≥ 1 : (g2)4(N+p) ⊕ (su1)12N+2p ⊕ (sup)12+2p

q = 0, s ≥ 1, p ≥ 0, N ≥ 1 : (su2)4(N+p+s) ⊕ (su1)12(N+p)+4s

⊕ (su1)12N+4s+2p ⊕ (su2s+p)12+4s+2p

q ≥ 1, s ≥ 0, p ≥ 0, N ≥ 1 : (su1)12(N+p+s)+6q ⊕ (su1)12(N+p)+6q+4s

⊕ (su1)12N+6q+4s+2p ⊕ (su3q+2s+p)12+6q+4s+2p .

(5.53)

We have introduced a shorthand notation here as the number of combinations of p, q, s, and

N where there are flavor symmetry enhancements becomes large. In this way, if we write the

flavor symmetry as (suk1)κ1 ⊕ (suk2)κ2 then for κ1 6= κ2 the flavor symmetry is as written,

but if κ1 = κ2 then there is an enhancement to (suk1+k2)κ1 . Of course, if there is an su1

factor where the flavor central charge is such that it does not combine with another flavor

symmetry factor, then that symmetry is, of course, trivial.

Next, we turn to the S(N)
3 (p, s, 3q+1) SCFTs, originating from a 6d theory with g = su3.

From the tensor branch description of the 6d origin and the formulae in equation (5.3), one

can determine the central charges. As these expressions are rather lengthy, we remind the

reader that they also appear in the Mathematica notebook attached to the arXiv submission

49



for this paper. The central charges for these theories are

a =
1

48

(
72N2p+ 216N2q + 144N2s+ 72N2 + 84Np2 + 504Npq + 336Nps+ 168Np

+ 324Nq2 + 576Nqs+ 216Nq + 192Ns2 + 192Ns+ 72N + 252p2q + 168p2s

+ 28p3 + 79p2 + 324pq2 + 576pqs+ 186pq + 192ps2 + 172ps+ 41p (5.54)

+ 324q2s+ 108q3 + 63q2 + 288qs2 + 156qs− 3q + 64s3 + 76s2 + 16s+ 6

)
,

c =
1

12

(
18N2p+ 54N2q + 36N2s+ 18N2 + 21Np2 + 126Npq + 84Nps

+ 42Np+ 81Nq2 + 144Nqs+ 54Nq + 48Ns2 + 48Ns+ 21N (5.55)

+ 63p2q + 42p2s+ 7p3 + 20p2 + 81pq2 + 144pqs+ 48pq + 48ps2 + 44ps

+ 14p+ 81q2s+ 27q3 + 18q2 + 72qs2 + 42qs+ 6q + 16s3 + 20s2 + 9s+ 3

)
.

As expected, the generic four-dimensional flavor algebra experiences enhancement at the

lower limits of the parameters describing the E8-homomorphism, p, q, and s, and also when

one has only a single M5-brane, N = 1. The resulting flavor symmetries, together with the

flavor central charges, are

q, s, p ≥ 0, N ≥ 1 : (su1)12(N+p+s)+6q+2 ⊕ (su1)12(N+p)+6q+4s+2

⊕ (su1)12N+6q+4s+2p+2 ⊕ (su3q+2s+p+1)12+6q+4s+2p+2 .
(5.56)

Here, we use an F-theoretic convention for keeping track of trivial symmetry factors such

as “su1” since the parameters can sometimes conspire such that two of the su flavor factors

have the same flavor central charges. In such situations, the flavor symmetry enhances as

described around equation (5.53).

Finally, we turn to the third class of ` = 3 SW-folds, which we refer to as theR(N)
3 (p, s, 3q+

2) SW-folds. The central charges are again determined from the tensor branch configuration

of the 6d SCFT of which these SW-folds are the Z3 Stiefel–Whitney twisted torus compact-

ification. They are

a =
1

48

(
72N2p+ 216N2q + 144N2s+ 144N2 + 84Np2 + 504Npq

+ 336Nps+ 336Np+ 324Nq2 + 576Nqs+ 432Nq + 192Ns2

+ 240Ns+ 180N + 252p2q + 168p2s+ 28p3 + 163p2 + 324pq2 (5.57)

+ 576pqs+ 402pq + 192ps2 + 220ps+ 139p+ 324q2s+ 108q3

+ 171q2 + 288qs2 + 372qs+ 75q + 64s3 + 100s2 + 176s+ 16

)
,
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c =
1

12

(
18N2p+ 54N2q + 36N2s+ 36N2 + 21Np2 + 126Npq + 84Nps+ 84Np

+ 81Nq2 + 144Nqs+ 108Nq + 48Ns2 + 60Ns+ 48N + 63p2q + 42p2s (5.58)

+ 7p3 + 41p2 + 81pq2 + 144pqs+ 102pq + 48ps2 + 56ps+ 39p+ 81q2s

+ 27q3 + 45q2 + 72qs2 + 96qs+ 27q + 16s3 + 26s2 + 50s+ 8

)
.

The flavor symmetries and flavor central charges can also be worked out using equation (5.3),

and we find the following result:

q, s, p ≥ 0, N ≥ 1 : (su1)12(N+p+s)+6q+4 ⊕ (su1)12(N+p)+6q+4s+4

⊕ (su1)12N+6q+4s+2p+4 ⊕ (su3q+2s+p+2)12+6q+4s+2p+4 .
(5.59)

While the T (N)
3 (p = 1, s = 0, 3q = 0) and S(N)

3 (p = 0, s = 0, 3q + 1 = 1) S-fold SCFTs have

been studied before in [100], where they are referred to as the T (r+1)
D4,3

and S(r)
D4,3

theories,

respectively, the theories R(N)
3 (p, s, 3q + 2) have not been studied in the context of S-folds

before. The theory R(1)
3 (p = 0, s = 0, 3q + 2) has appeared previously in [61], where the

authors point out that, at the generic point of the 4d Coulomb branch, there is a half-

hypermultiplet transforming in the 4 of the rightmost su2 gauge algebra; this arises from

the action of the Stiefel–Whitney twist on the triple-antisymmetric representation of the

su6 associated to the 1-node. We refer the reader to Appendix C, where we list all of the

limiting cases of the Stiefel–Whitney twists and S-folds that have previously appeared in the

literature.

5.2.5 Z2 SW-folds: T (N)
2 (p, s, u, 2t, q) and S(N)

2 (p, s, u, 2t + 1, q)

The last class of SW-folds which we wish to consider are those involving a Z2 Stiefel–Whitney

twist. These theories depend on five E8-homomorphism parameters, associated to the five

different nodes of the E8 Dynkin diagram with even Dynkin label, and one positive integer

counting the number of M5-branes. This proliferation of parameters leads to very com-

plicated and unwieldy expressions for the central charges, which are typically degree three

polynomials in these parameters. For posterity, we present these expressions here, however,

we refer the reader to the attached Mathematica notebook for a more practical format.

We begin with the T (N)
2 (p, s, u, 2t, q) theories, which arise from 6d SCFTs obtained from

E8-homomorphisms of the rank N (e8, suK) orbi-instanton where the parameter a4′ , as in

equation (4.4) is even. The generalized quivers describing the 6d SCFTs are depicted in

Table 1, and from there one can determine the central charges using equation (5.3). We find

a =
1

48

(
72N2p+ 72N2q + 144N2s+ 288N2t+ 216N2u+ 84Np2 + 168Npq

+ 336Nps+ 672Npt+ 504Npu+ 12Nq2 + 192Nqs+ 240Nqt+ 216Nqu
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+ 192Ns2 + 768Nst+ 576Nsu+ 480Nt2 + 864Ntu+ 324Nu2 + 72N

+ 84p2q + 168p2s+ 336p2t+ 252p2u+ 28p3 − 5p2 + 12pq2 + 192pqs

+ 240pqt+ 216pqu− 10pq + 192ps2 + 768pst+ 576psu− 20ps+ 480pt2 (5.60)

+ 864ptu− 40pt+ 324pu2 − 30pu+ 51p+ 12q2s+ 12q2t+ 12q2u− 5q2

+ 96qs2 + 240qst+ 216qsu− 20qs+ 120qt2 + 240qtu− 40qt+ 108qu2

− 30qu+ 3q + 384s2t+ 288s2u+ 64s3 − 20s2 + 480st2 + 864stu− 80st

+ 324su2 − 60su+ 36s+ 480t2u+ 160t3 − 80t2 + 432tu2 − 120tu

+ 24t+ 108u3 − 45u2 + 27u+ 10

)
,

c =
1

12

(
18N2p+ 18N2q + 36N2s+ 72N2t+ 54N2u+ 21Np2 + 42Npq + 84Nps

+ 168Npt+ 126Npu+ 3Nq2 + 48Nqs+ 60Nqt+ 54Nqu+ 48Ns2

+ 192Nst+ 144Nsu+ 120Nt2 + 216Ntu+ 81Nu2 + 24N + 21p2q + 42p2s

+ 84p2t+ 63p2u+ 7p3 − p2 + 3pq2 + 48pqs+ 60pqt+ 54pqu− 2pq + 48ps2

+ 192pst+ 144psu− 4ps+ 120pt2 + 216ptu− 8pt+ 81pu2 − 6pu+ 19p (5.61)

+ 3q2s+ 3q2t+ 3q2u− q2 + 24qs2 + 60qst+ 54qsu− 4qs+ 30qt2 + 60qtu

− 8qt+ 27qu2 − 6qu+ 3q + 96s2t+ 72s2u+ 16s3 − 4s2 + 120st2 + 216stu

− 16st+ 81su2 − 12su+ 16s+ 120t2u+ 40t3 − 16t2 + 108tu2

− 24tu+ 16t+ 27u3 − 9u2 + 15u+ 2

)
.

To determine the flavor symmetries after the Z2 Stiefel–Whitney twist, it is necessary to

know how the Z2 acts on the flavor factor that is attached to the 1-node in the description

of the 6d origin. First, we consider the special case where q = 0, then the flavor symmetry

attached to the undecorated 1-node (i.e., with g = ∅) is either e7, so10, su3 ⊕ su2, or ∅,

depending on which combinations of parameters t, u, s, p attain their lower limits, if any.

When we have e7, we consider the special subalgebra

e7 → f4 ⊕ su2 , (5.62)

where the Dynkin index of the f4 factor is one, and the Z2 acts as the center of the su2.

When the flavor algebra is so10 we have the decomposition

so10 → su4 ⊕ su2 ⊕ su2

10→ (6,1,1)⊕ (1,2,2) .
(5.63)

The Z2 quotient is generated by the element (2, 0, 0) of the combined center Z4 × Z2 × Z2

Note that this is the Z2 subgroup of the Z4 discussed around equation (5.42). Thus we can
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see that the surviving flavor algebra in 4d is

su
(2)
2 ⊕ su

(1)
2 ⊕ su

(1)
2 , (5.64)

where we have written the Dynkin indices as superscripts, as determined from the decomposi-

tion of the vector representation. We can see from the Dynkin indices and the decomposition

of the representations that the surviving flavor algebra from the so10 after turning on this

particular Z2 is in fact the enhanced so
(1)
7 . Finally, when the 6d flavor symmetry attached

to the 1-node is su3 ⊕ su2, we are considering the same decomposition as we did in the

` = 3 case; the Z2 quotient acts on the su2, and leaves the su3 as a flavor symmetry of the

Stiefel–Whitney twisted theory. When q ≥ 1, the flavor symmetry attached to the 1-node is

so4n, where n is fixed in terms of the parameters p, q, s, t, u. The relevant decomposition

appears in [61], and we have

so4n → su
(n)
2 ⊕ sp(1)

n

4n→ (2,2n) .
(5.65)

The action of the Z2 is on the su2 factor, and the flavor symmetry left after the Stiefel–

Whitney twist is spn. As we can see, the embedding index of the surviving factor is one.

To proceed further, it is helpful to split up our analysis into the cases q > 0 and q = 0.

q > 0 We begin by studying the flavor symmetry when q > 0. Due to the presence of

the symplectic gauge algebra the flavor symmetries surviving after the Stiefel–Whitney twist

have rather complex dependences on the E8-homomorphism parameters. The most generic

case occurs when t > 0, and we find

(su1)12(N+p+s+u)+2q+8t ⊕ (su1)12(N+p+s)+2q+8t+6u ⊕ (su1)12(N+p)+2q+8t+6u+4s

⊕ (su1)12N+2q+8t+6u+4s+2p ⊕ (suq+4t+3u+2s+p)12+2q+8t+6u+4s+2p .
(5.66)

When t = 0, but u > 0, the flavor symmetry is

(sp1)6(N+p+s+u)+q ⊕ (su1)12(N+p+s)+2q+6u ⊕ (su1)12(N+p)+2q+6u+4s

⊕ (su1)12N+2q+6u+4s+2p ⊕ (suq+3u+2s+p)12+2q+6u+4s+2p .
(5.67)

Next, we must consider the case where t = u = 0, but s > 0. The flavor symmetry becomes

(sp2)6(N+p+s)+q ⊕ (su1)12(N+p)+2q+4s ⊕ (su1)12N+2q+4s+2p ⊕ (suq+2s+p)12+2q+4s+2p . (5.68)

When t = u = s = 0 and p > 0, one finds that the flavor algebra is

(sp3)6(N+p)+q ⊕ (su1)12N+2q+2p ⊕ (suq+p)12+2q+2p . (5.69)
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Finally, when all of the E8-homomorphism parameters, except q, vanish, the flavor is{
(sp4)6N+q ⊕ (suq)12+2q , when N > 1 ,

(spq+4)6+q , when N = 1 .
(5.70)

q = 0 A similar analysis can be carried out when q = 0, and again one finds a variety of

special cases. When t > 0 the flavor symmetry is

(su1)12(N+p+s+u)+8t ⊕ (su1)12(N+p+s)+8t+6u ⊕ (su1)12(N+p)+8t+6u+4s

⊕ (su1)12N+8t+6u+4s+2p ⊕ (su4t+3u+2s+p)12+8t+6u+4s+2p .
(5.71)

When t = 0, but u > 0, the flavor symmetry is

(su3)6(N+u+s+p) ⊕ (su1)12(N+p+s)+6u ⊕ (su1)12(N+p)+6u+4s

⊕ (su1)12N+6u+4s+2p ⊕ (su3u+2s+p)12+6u+4s+2p .
(5.72)

Next, we consider the case where t = u = 0, but s > 0. The flavor symmetry is

(so7)6(N+p+s) ⊕ (su1)12(N+p)+4s ⊕ (su1)12N+4s+2p ⊕ (su2s+p)12+4s+2p . (5.73)

Finally, when t = u = s = 0 and p > 0, one finds that the flavor algebra is

(f4)6(N+p) ⊕ (su1)12N+2p ⊕ (sup)12+2p . (5.74)

Note that this last expression is not valid when p = N = 1 due to an exceptional enhancement

of the associated 6d SCFT, which we discuss below. This analysis exhausts the non-Abelian

flavor symmetries of the T (N)
2 (p, s, u, 2t, q) SW-fold SCFTs. In rare occasions, the flavor

symmetry can be enhanced further, either because an Abelian u(1) flavor symmetry of the

6d SCFT can enhance to an su2 as described around equation (5.48), or else because the 6d

SCFT has a baryonic su2 flavor symmetry, in addition to the flavor symmetries that we have

considered here. We discuss this latter case at the end of this subsection. Finally, it appears

that in a small number of exceptional circumstances, there can also be flavor symmetry

dehancement ; we explore these examples further in Section 5.4.1.

To conclude this subsection, we turn to the last class of SW-folds that we wish to consider.

These are the Z2 SW-folds: S(N)
2 (p, s, u, 2t+1, q). As usual, the central charges can be worked

out from the formulae in equation (5.3), and one finds:

a =
1

48

(
72N2p+ 72N2q + 144N2s+ 288N2t+ 216N2u+ 144N2 + 84Np2

+ 168Npq + 336Nps+ 672Npt+ 504Npu+ 336Np+ 12Nq2 + 192Nqs

+ 240Nqt+ 216Nqu+ 120Nq + 192Ns2 + 768Nst+ 576Nsu+ 384Ns
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+ 480Nt2 + 864Ntu+ 480Nt+ 324Nu2 + 144Nu+ 192N + 84p2q + 168p2s

+ 336p2t+ 252p2u+ 28p3 + 163p2 + 12pq2 + 192pqs+ 240pqt+ 216pqu (5.75)

+ 110pq + 192ps2 + 768pst+ 576psu+ 364ps+ 480pt2 + 864ptu+ 440pt

+ 324pu2 + 114pu+ 151p+ q2 + 12q2s+ 12q2t+ 12q2u+ 96qs2 + 240qst

+ 216qsu+ 100qs+ 120qt2 + 240qtu+ 80qt+ 108qu2 + 98qu+ 13q + 384s2t

+ 288s2u+ 64s3 + 172s2 + 480st2 + 864stu+ 400st+ 324su2 + 84su+ 116s

+ 480t2u+ 160t3 + 160t2 + 432tu2 + 392tu+ 64t+ 108u3

+ 39u2 + 239u+ 22

)
,

c =
1

12

(
18N2p+ 18N2q + 36N2s+ 72N2t+ 54N2u+ 36N2 + 21Np2 + 42Npq

+ 84Nps+ 168Npt+ 126Npu+ 84Np+ 3Nq2 + 48Nqs+ 60Nqt+ 54Nqu

+ 30Nq + 48Ns2 + 192Nst+ 144Nsu+ 96Ns+ 120Nt2 + 216Ntu

+ 120Nt+ 81Nu2 + 36Nu+ 54N + 21p2q + 42p2s+ 84p2t+ 63p2u+ 7p3

+ 41p2 + 3pq2 + 48pqs+ 60pqt+ 54pqu+ 28pq + 48ps2 + 192pst+ 144psu(5.76)

+ 92ps+ 120pt2 + 216ptu+ 112pt+ 81pu2 + 30pu+ 45p+
1

2
q2 + 3q2s+ 3q2t

+ 3q2u+ 24qs2 + 60qst+ 54qsu+ 26qs+ 30qt2 + 60qtu+ 22qt+ 27qu2

+ 28qu+
13

2
q + 96s2t+ 72s2u+ 16s3 + 44s2 + 120st2 + 216stu+ 104st

+ 81su2 + 24su+ 38s+ 120t2u+ 40t3 + 44t2 + 108tu2 + 112tu+ 30t

+ 27u3 + 15u2 + 73u+ 11

)
.

With generic values for the number of M5-branes and the E8-homomorphism parameters,

we find that the flavor symmetries of the resulting 4d N = 2 SCFTs are as follows:

q > 0; t, u, s, p ≥ 0;N ≥ 1 : (su1)12(N+p+s+u)+2q+8t+4 ⊕ (su1)12(N+p+s)+2q+8t+6u+4

⊕ (su1)12(N+p)+2q+8t+6u+4s+4

⊕ (su1)12N+2q+8t+6u+4s+2p+4

⊕ (suq+4t+3u+2s+p+2)12+2q+8t+6u+4s+2p+4 .

(5.77)

Again, we use a compact notation where sua ⊕ sub enhances to sua+b if the flavor central

charges are identical. When q = 0 there is an additional su2 flavor symmetry in the 6d

SCFT as the anti-symmetric hypermultiplet attached to the su4 gauge algebra on the 1-node

is pseudo-real. The Z2 center-flavor symmetry does not embed inside of this su2, and thus

this flavor factor survives the Stiefel–Whitney twist intact. We find that the non-Abelian
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flavor symmetry of the SW-fold in the q = 0 case is

t, u, s, p ≥ 0;N ≥ 1 : (su2)6(N+p+s+u+t)+3 ⊕ (su1)12(N+p+s+u)+8t+4

⊕ (su1)12(N+p+s)+8t+6u+4 ⊕ (su1)12(N+p)+8t+6u+4s+4

⊕ (su1)12N+8t+6u+4s+2p+4

⊕ (su4t+3u+2s+p+2)12+8t+6u+4s+2p+4 .

(5.78)

As discussed around equation (5.48), there can be further enhancement when p = s = u =

t = 0, as in those cases it is expected that the baryonic u(1) global symmetry enhances to an

su2, and this factor can further combine with the other non-Abelian factors for low values

of N . We discuss some of these baryonic enhancements further in Section 5.4.1.

There are also two classes of Z2 SW-folds where the 6d SCFT origin itself has a baryonic

su2 flavor symmetry. These 6d theories correspond to the tensor branch configurations

sp1
1

su2
2 · · ·

su2
2 , and 1

su2
2 · · ·

su2
2 . (5.79)

The Z2 center-flavor symmetry embeds trivially inside of the center of the baryonic su2,

and thus this additional non-Abelian factor is unbroken by the Stiefel–Whitney twist. In

addition to the above flavor symmetries, these SW-folds then have the following additional

flavor algebras:

T (N>1)
2 (0, 0, 0, 0, 1) : (su2)6N2+N ,

T (N>1)
2 (1, 0, 0, 0, 0) : (su2)6N2+7N+1 .

(5.80)

In the latter case, there is a further exceptional enhancement when N = 1.35 Let us discuss

this special case of T (1)
2 (1, 0, 0, 0, 0), which arises from the 6d SCFT with tensor branch

configuration

1
su2
2 . (5.81)

This 6d SCFT has an e7⊕so7 flavor symmetry, instead of the naively expected e7⊕so8 flavor

algebra. Taking into account the embedding of the Z2 center-flavor symmetry inside of the

so7, we find that the flavor carried by the resulting SW-fold theory is

(f4)12 ⊕ (su2)7 ⊕ (su2)7 . (5.82)

The SW-folds T (N)
2 (1, 0, 0, 0, 0) and T (N)

2 (0, 0, 0, 0, 1) have been discussed previously in [100]

where they were referred to as T (r+1)
E6,2

and S(r)
E6,2

, respectively.

35For the former case, the flavor symmetry when N = 1 is captured by equation (5.70).
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5.3 Coulomb Branch Operator Spectrum

In [61], the authors developed a heuristic method for determining the scaling dimensions of

the Coulomb branch operators of the 4d SCFT obtained from the Stiefel–Whitney twisted

compactification of a very Higgsable 6d SCFT. In this section, we test the consistency of

the method described therein when applied to the SW-folds. In [61], the authors verify their

method by testing that the Coulomb branch spectrum they obtain agrees with the known

spectrum from the dual twisted-class S theory; in our cases no such class S theory is known,

and we rely on the weaker test that

4(2a− c) =
∑
i

2∆(ui)− 1 , (5.83)

where the LHS is determined using the anomaly polynomial as in Section 5.1. From the

anomaly polynomial we expect that this quantity is:

4(2a− c) = nV − 64A− 48

`
B . (5.84)

We find that the method in [61] is consistent with this formula in most cases, but that it

must be extended in a few special cases beyond the ones considered in [61]. These special

cases occur for the E-type SW-folds that we discuss in Section 6. We hope that this analysis

will be useful in the determination of a closed-form top-down method for understanding the

Coulomb branch spectrum from the 6d origin.

We are interested in 6d SCFTs with tensor branch configurations of the form given in

equation (5.5). We recall that in equation (5.5) we index the quiver nodes from 0 to r going

from left-to-right. The algorithm presented in Appendix B of [61] for the Coulomb branch

operator dimensions of the 4d N = 2 theory obtained from the Z` Stiefel–Whitney twist of

6d SCFTs of the form in equation (5.5) is as follows. From each node of the form
su`ki
2 the

spectrum of operator dimensions is

∆i = {6(r + 1− i)} ∪ {6(r + 1− i) + d | d = 2, · · · , ki} , (5.85)

where i is the index of that quiver node. We can directly work out the contribution to

4(2a− c) from each of these 2-nodes:

4(2a− c)i =
∑
u∈∆i

(2u− 1) = k2
i + 12ki(r + 1− i)− 2 . (5.86)

Summing over all contributions to 4(2a− c), we find

4(2a− c) = 4(2a− c)0 +

(
1− n0

V −
12(r + 1)d0

`

)
+ nV − 64A− 48B

`
, (5.87)
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where we have used the expressions for nV , A, and B in equations (5.18) and (5.16). It

remains for us to determine the contribution from the 1-nodes in equation (5.5); there are

four distinct cases which we must consider. For each of the following g, the Coulomb branch

operator dimensions coming from the 1-node with gauge algebra g are proposed to be

g = ∅ :

{
6(r + 1)

`

}
,

g = su`k0 : {6(r + 1)} ∪ {6(r + 1) + d | d = 2, · · · , k0} ,
g = sp2m+1 : {6(r + 1)} ∪ {6(r + 1) + 2d | d = 1, · · · ,m} ,
g = sp2m : {6(r + 1)} ∪ {6(r + 1) + 2d | d = 1, · · · ,m− 1} ∪ {3(r + 1) +m} ,

(5.88)

where we remind the reader that the latter two options can only occur when ` = 2. In each

of the four cases, we can see that

4(2a− c)0 =
12(r + 1)d0

`
+ n0

V − 1 , (5.89)

and thus we see that equation (5.87) determining 4(2a−c) from the putative Coulomb branch

spectrum proposed in [61] matches the value of 4(2a− c) determined in equation (5.84) from

the 6d anomaly polynomial and tensor branch configuration.

5.4 Alternative Constructions

In some cases, the theories we can generate via SW-folds have alternative constructions. In

this section we compare with class S constructions, as well as methods based 4d N = 2

S-folds.

5.4.1 Exceptional Twisted Class S and Flavor Symmetry

In contrast to constructing 4d N = 2 SCFTs via compactification of 6d (1, 0) SCFTs on a

T 2, one can also explore the class S construction [125,126]. This class of theories is obtained

via the twisted-compactification of the 6d (2, 0) SCFT of type g on a punctured Riemann

surface.

It has been established in [31,32] that the 4d N = 2 SCFT that arises from compactifying

minimal (e6, e6) conformal matter on a T 2 with Z3 Stiefel–Whitney twist is dual to a class S
theory. The latter is obtained from compactification of the 6d (2, 0) SCFT of type so8 on a

sphere with two maximal Z3-twisted punctures and one simple puncture. Similarly, minimal

(e7, e7) conformal matter on a T 2 with Z2 Stiefel–Whitney twist is dual to the 6d (2, 0) SCFT

of type e6 on a sphere with two maximal Z2-twisted punctures and one simple puncture. In

rare limiting cases, some of the 6d SCFTs written in Table 1 can also be obtained by

starting from minimal (en, en) conformal matter, with n = 6, 7, and performing nilpotent
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Higgs branch deformations of the g⊕ g flavor symmetry. Compactifying these theories with

Stiefel–Whitney twist then gives rise to 4d N = 2 SCFTs that can also be obtained by

partial closure of the maximal punctures in the aforementioned class S construction.36

Class S theories of type so8 with Z3-twisted punctures have been studied in [127]. Sim-

ilarly, class S of type e6 with Z2-twisted punctures has been explored in [128]. We list the

SW-fold SCFTs from Table 2 that can be realized in class S, as described, in Table 4. In all

cases, bar one, the flavor symmetry determined from the dual class S construction matches

the flavor symmetry that was determined from the Stiefel–Whitney twisted description in

Section 5.1. There is one special case, the SW-fold theory T (1)
2 (0, 1, 0, 0, 0), for which the

analysis in Section 5.1 predicts that the non-Abelian flavor symmetry should be

(so7)12 ⊕ (so7)16 , (5.90)

but the dual class S theory has non-Abelian flavor algebra

(so7)12 ⊕ (g2)16 . (5.91)

This kind of dehancement occurs in the context of 6d SCFTs when one has an su2 gauge

algebra associated to a tensor with self-pairing 2 [129]. In this case, the Coulomb branch

description of the 4d SW-fold SCFT has a single su2 gauge algebra, and a parallel argument

to that in 6d may explain why the flavor symmetry is smaller than expected. We would

similarly suspect that the SW-fold SCFTs T (1)
4 (0, 1) and T (1)

3 (0, 1, 0), whose 4d Coulomb

branch descriptions also involve a single su2 gauge algebra coming from a 2-node decorated

algebra in 6d, to evince similar dehancement. It would be interesting to understand the

physical mechanism behind this rare but curious effect.

5.4.2 Relation to 4d N = 2 S-fold Theories

In the previous sections we studied the properties of 4dN = 2 SW-folds, and we also observed

that in some cases, the resulting theories can be realized via 4d N = 2 S-fold theories. In

this section we discuss some suggestive hints that such a top-down correspondence may be

at work, but leave a more complete treatment for future work.

To frame the discussion to follow, recall that an S-fold in Type IIB / F-theory backgrounds

is a non-perturbative generalization of an orientifold plane in which a quotient on the target

space is combined with a group action from the SL(2,Z) duality group of Type IIB string

theory. Now, for such a quotient to exist we must work at specific values of the axio-dilaton

compatible with this group action, e.g. τ = i and τ = exp(2πi/6). In the presence of a

probe D3-brane, this can be used to realize N = 3 SCFTs, as noted in [130] (see also [131]).

One can also introduce 7-branes provided they are compatible with a specific value of τ , and

36See [30] for an in depth analysis of the relationship between the nilpotent Higgs branch deformations
and the partial closure of the punctures in the untwisted case.
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SW-fold SW Twist Class S Type Punctures Flavor

T (1)
2 (2, 0, 0, 0, 0)

Z2 e6

[0, A2]I (f4)18 ⊕ (su3)16

T (2)
2 (1, 0, 0, 0, 0) [0, A2 + Ã1]I (f4)18 ⊕ (su2)39

T (1)
2 (1, 0, 0, 0, 1) [A2, A1]I (sp3)13 ⊕ (su3)16

T (2)
2 (0, 0, 0, 0, 1) [A2 + Ã1, A1]I (sp4)13 ⊕ (su2)26

T (1)
2 (0, 1, 0, 0, 0) [A2, Ã1]I (so7)12 ⊕ (g2)16

T (1)
2 (1, 0, 0, 0, 0) [A2 + Ã1, Ã1]M (f4)12 ⊕ 2(su2)7

S(1)
2 (0, 0, 0, 0, 0) [A2, A1 + Ã1]M (su6)16 ⊕ (su2)9

T (1)
2 (0, 0, 0, 0, 1) [A2 + Ã1, A1 + Ã1]M (sp5)7

T (1)
3 (1, 0, 0) Z3 so8

[0, A1]I (g2)8 ⊕ (su2)14

S(1)
3 (0, 0, 1) [A1, A1]I (su4)14

Table 4: Twisted punctures are usually denoted with an underline, however, since all of the
punctures that we write in this table are twisted, we have chosen to drop this notational
feature. The subscripts I (interacting) and M (mixed) denote whether the class S theory
is an interacting SCFT, or whether it is coupled to free hypermultiplets, respectively. In
the latter case, the SW-fold SCFT matches the interacting part of the class S theory. In
the flavor column we write the non-Abelian flavor algebra as determined from the class S
perspective.

this leads to 4d N = 2 S-folds. D3-brane probes of such systems then realize 4d N = 2

SCFTs [97–101]. As a general comment, the global symmetry in these systems also depends

on the presence (or absence) of a torsional flux, and this effect can be detected via open

string junctions which extend from the D3-brane to the 7-brane flavor stack [99].

As we now explain, there are reasons to suspect that the 4d SW-fold theories considered

in this paper, and 4d S-fold theories are potentially related by a chain of dualities. To see

why, it is helpful to first consider some of the different top-down realizations of the rank

N E8 Minahan–Nemeschansky theory [132, 133]. One way is to first start with the rank

N E-string theory 6d SCFT. Compactification on a T 2 then yields the 4d N = 2 SCFT.

Observe that in M-theory, this is engineered from the T 2 compactification of N M5-branes

probing an E8 nine-brane in M-theory. On the other hand, we can also directly relate this to

Type IIB/F-theory backgrounds with N D3-branes probing an E8 seven-brane. Intuitively,

there is a generalized notion of T-duality at play which allows us trade the E8 nine-brane of

M-theory for the E8 seven-brane of F-theory.37

There is a natural extension of this generalized T-duality which makes any proposed

correspondence quite suggestive. On the M-theory side, our 6d SCFT orbi-instanton theories

were realized by small instantons probing an ADE singularity wrapped by an E8 nine-brane.

37Indeed, this figures prominently in the standard Fourier–Mukai transformation of heterotic vector bundles
on an elliptically fibered Calabi–Yau threefold and their characterization in the associated spectral cover
construction for gauge theory on the base Kähler surface (see, e.g., [134]).
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Likewise, we note that D3-branes probing an ADE singularity wrapped by an E8 seven-brane

will give rise to 4d N = 2 SCFTs. In both cases, the worldvolume theory of the probe brane

is specified as an instanton solution in the directions filled by the ambient brane. As such, we

can generate a wide class of examples by specifying the boundary data of a flat connection

at the boundary S3/ΓADE, which are in turn captured by discrete group homomorphisms

Hom(ΓADE → E8) [6,7]. So, from this perspective, we see that the T 2 compactification of the

6d orbi-instanton theories provides us with a direct way to match the two sets of theories.

So far, our discussion has made no reference to switching on an SW-fold on the orbi-

instanton side of this correspondence. Now, on the SW-fold side we consider a pair of

holonomies which commute in G̃ up to a flux valued in the quotienting subgroup. These

profiles make direct reference to the T 2 direction on which we have compactified the orbi-

instanton theory. To make sense of such deformations in the D3-brane probe theories, we

would need to have a notion of generalized T-duality which extends to such configurations as

well. The fact that there are known examples where SW-folds and S-folds produce the same

conformal fixed point is of course suggestive [98], but without a suitable generalization of

T-duality, it is unclear whether it should be expected to persist for all SW-folds and S-folds,

or just some subset. Exploring this issue further would be of great interest and would likely

lead to a better understanding of both sorts of constructions.

6 SW-folds of Type DE

In Section 4, we have enumerated the 6d SCFTs that have non-trivial center-flavor symmetry

and arise from a Higgsing, by homomorphisms ZK → E8, of the rank N orbi-instanton theory

of type (e8, suK). In Section 5, we considered the compactification of the 6d SCFTs found

in Section 4 on a T 2 together with a Stiefel–Whitney twist in the center-flavor symmetry.

We refer to the resulting 4d N = 2 SCFTs as the A-type SW-folds, due to the suK factor in

the orbi-instanton origin. In this section we consider the rank N orbi-instanton theories of

type (e8, g), where g is any ADE Lie algebra. We consider homomorphisms Γ→ E8, where

Γ is the finite ADE group of the same type as g, and such that the Higgsed 6d SCFT has a

non-trivial center-flavor symmetry. For generic values of N , this center-flavor symmetry can

be, at most
Z4 for g = so4k+2 ,

Z2 × Z2 for g = so4k ,

Z3 for g = e6 ,

Z2 for g = e7 .

(6.1)

We can now consider the T 2 compactifications of these 6d SCFTs with a non-trivial Stiefel–

Whitney class inside of the center-flavor symmetry turned on. This opens up a vast new vista

of D-type and E-type SW-folds. We will not consider all such families of SW-folds here, but

we highlight a few choice examples; the remaining cases can be determined straightforwardly
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from the methods utilized throughout this paper.

6.1 E6-type SW-folds

We begin with the (e8, e6) orbi-instanton, of rank N . The tensor branch configuration has

the form

1 2
su2
2

g2
31

f4
51

su3
3 1

e6
61

su3
3 1

N−1︷ ︸︸ ︷
e6
61

su3
3 1 · · ·

e6
61

su3
3 1 , (6.2)

which has an e8 ⊕ e6 flavor symmetry, and no center-flavor symmetry. We will consider the

6d SCFTs obtained by the finite group homomorphism:

Γe6 → E8 , (6.3)

with ΓE6 the binary tetrahderal finite subgroup of SU(2). The Higgs branch flows induced by

such homomorphisms have been studied in [135]. There are fifty-two such SCFTs, however

we are only interested in those that have a non-trivial center-flavor symmetry. There are

only seven such Higgsings which give rise to a center-flavor symmetry, which is always a

Z3.38 These correspond to the seven tensor branch geometries

su3
3 1

su3
3 1

e6
61

su3
3 1

e6
61

su3
3 1 · · ·

e6
61

su3
3 1︸ ︷︷ ︸

N−1

, (6.4)

su3
2

su3
2 1

e6
61

su3
3 1

e6
61

su3
3 1 · · ·

e6
61

su3
3 1︸ ︷︷ ︸

N−1

, (6.5)

1
su3
3 1

e6
6
1
1
su3
3 1

e6
61

su3
3 1 · · ·

e6
61

su3
3 1︸ ︷︷ ︸

N−1

, (6.6)

su3
2 1

e6
6
1
1
su3
3 1

e6
61

su3
3 1 · · ·

e6
61

su3
3 1︸ ︷︷ ︸

N−1

, (6.7)

1

1
e6
6
1
1
su3
3 1

e6
61

su3
3 1 · · ·

e6
61

su3
3 1︸ ︷︷ ︸

N−1

, (6.8)

e6
31

su3
3 1

e6
61

su3
3 1 · · ·

e6
61

su3
3 1︸ ︷︷ ︸

N−1

, (6.9)

su6
2

su3
2 1

e6
61

su3
3 1 · · ·

e6
61

su3
3 1︸ ︷︷ ︸

N−1

. (6.10)

To work out the central charges of the 4d N = 2 SW-folds obtained from the Stiefel–Whitney

twisted compactification of these 6d SCFTs we will again use the formulae of [61], which we

have summarized in equations (5.2) and (5.3).

38Much as in Section 4, we emphasize that if N = 1 then many more of the E8-homomorphisms lead to
theories with center-flavor symmetry, and it is not restricted to be Z3.
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We consider the compactification of the tensor branch configuration in equation (6.4)

in detail. The 6d SCFT has an (SU(3)2 × E6)/Z3 flavor symmetry group, and after the

Stiefel–Whitney twist there remains only a G2 subgroup of the E6. For the 6d SCFT from

which this SW-fold originates, the relevant terms in the anomaly polynomial are

I8 ⊃
1

24

((
7N

8
+

35

12

)
p1(T )2 −

(
72N2 + 209N + 102

)
c2(R)p1(T )

)
+

3

16
p1(T ) TrF 2 ,

(6.11)

where we have only written the mixed-gravitational-flavor anomaly for the e6 flavor algebra.

Next, we find that the contribution from the weakly-coupled multiplets is

Ifields
8 ⊃

(
−17N

192
− 1

288

)
p1(T )2 +

(
−41N

24
− 1

4

)
c2(R)p1(T ) . (6.12)

Putting this altogether we find that

a−ageneric = 12N2 +27N +15 , c− cgeneric = 12N2 +28N +16 , κ−κgeneric = 12 , (6.13)

where we have used that the Dynkin index of the g2 inside of the e6 is one, as explained

around equation (5.52). It remains for us to determine what the contributions to the central

charges are from the 4d theory at the generic point of the Coulomb branch. The Z3 Stiefel–

Whitney twist breaks the su3 gauge algebras completely, and it breaks each e6 down to a

g2. As such, at the generic point of the Coulomb branch, we have (4(N − 1) + 8) vector

multiplets from the 6d tensors, and N dim(g2) vector multiplets from the surviving g2 gauge

symmetries. We end up with

ageneric =
5

24
(18N + 4) , cgeneric =

1

6
(18N + 4) . (6.14)

Furthermore, since there are no hypermultiplets charged under the residual g2 flavor sym-

metry we find that

κgeneric = 0 . (6.15)

The central charges of the SW-fold are thus:

a = 12N2 +
123N

4
+

95

6
, c = 12N2 + 31N +

50

3
, (6.16)

and the flavor symmetry and flavor central charge is

(g2)12 . (6.17)

The central charges from each of the 6d SCFTs with tensor branch descriptions given in

equations (6.4) to (6.10) can be determined, and we do not belabor the computation here.

The central charges, flavor symmetries, and flavor central charges for the seven families of
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E6-type Z3 SW-folds are given in Table 5.

6d Origin a c Flavor

su3
3 1

su3
3 1

e6
61

su3
3 1

e6
61

su3
3 1 · · ·

e6
61

su3
3 1︸ ︷︷ ︸

N−1

12N2 + 123N
4 + 95

6 12N2 + 31N + 50
3 (g2)12

su3
2

su3
2 1

e6
61

su3
3 1

e6
61

su3
3 1 · · ·

e6
61

su3
3 1︸ ︷︷ ︸

N−1

12N2 + 111N
4 + 97

8 12N2 + 28N + 13 (g2)12

1
su3
3 1

e6
6
1

1
su3
3 1

e6
61

su3
3 1 · · ·

e6
61

su3
3 1︸ ︷︷ ︸

N−1

12N2 + 91N
4 + 47

6 12N2 + 23N + 26
3 (g2)12 ⊕ (g2)4N+8

su3
2 1

e6
6
1

1
su3
3 1

e6
61

su3
3 1 · · ·

e6
61

su3
3 1︸ ︷︷ ︸

N−1

12N2 + 87N
4 + 145

24 12N2 + 22N + 41
6 (g2)12 ⊕ (su2)12N+20

1

1
e6
6
1

1
su3
3 1

e6
61

su3
3 1 · · ·

e6
61

su3
3 1︸ ︷︷ ︸

N−1

12N2 + 75N
4 + 23

8 12N2 + 19N + 7
2 (g2)12

e6
31

su3
3 1

e6
61

su3
3 1 · · ·

e6
61

su3
3 1︸ ︷︷ ︸

N−1

12N2 + 63N
4 + 7

12 12N2 + 16N + 7
6 (g2)12

su6
2

su3
2 1

e6
61

su3
3 1 · · ·

e6
61

su3
3 1︸ ︷︷ ︸

N−1

12N2 + 27N
4 −

31
12 12N2 + 7N − 5

3 (g2)12 ⊕ (su3)12N+16

Table 5: In this table, we write the central charges, non-Abelian flavor algebras, and flavor
central charges of the E6-type SW-folds.

6.2 Coulomb Branch Scaling Dimensions

In Section 5.3, we determined the conformal dimensions of the spectrum of Coulomb branch

operators of the 4d N = 2 SCFTs arising from the Stiefel–Whitney twisted torus compactifi-

cations of the (Higgsed) rank N (e8, suK) orbi-instanton theories. In such cases, the Coulomb

branch spectrum was determined by following the heuristic proposal in Appendix B of [61];

therein the scaling dimensions were determined in terms of each curve/algebra combination,
g
m, in the tensor branch description, together with the knowledge of the residual gauge alge-

bra after the Z` Stiefel–Whitney twist. The contributions were proposed on a case-by-case

basis for certain combinations of (g, `), however, theories involving (e6, 3) and (e7, 2) were

not explored in [61].

When studying the E-type SW-folds, as we are doing here, it is necessary to extend

the proposal of [61] to include the (e6, 3) and (e7, 2) cases. We make the following, again

heuristic, proposal for the Coulomb branch scaling dimensions of the operators that arise in

the (e6, 3) case39

6J 6J × 1 + 2 6J × 2 + 6 . (6.18)

39The quantity J is a number associated to each curve in the tensor branch configuration which, roughly,
counts where that curves lies in the order of blow-downs required to reach the origin of the tensor branch.
This was referred to as n in Appendix B of [61], and we refer the reader there for the definition.
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Here, the multiplicative factors of 1 and 2 that we have introduced are the comarks of the

residual g2 gauge algebra; furthermore, the additive factors of 2 and 6 are the degrees of the

Casimir invariants of g2.40 Similarly, when the 6d tensor branch contains a curve/algebra

combination of the form
e7
8, then, after a Z2 SW-twist one obtains a residual f4 gauge al-

gebra on the Coulomb branch. We propose that the contribution from this curve/algebra

combination to the 4d Coulomb branch consists of five operators with scaling dimensions:

6J 6J × 1 + 2 6J × 2 + 6 6J × 3 + 8 6J × 2 + 12 (6.19)

Here the multiplicative factors 1, 2, 3, and 2 are the comarks, and 2, 6, 8, and 12 are the

degrees of the Casimir invariants, of the surviving f4 gauge algebra.41

We first consider the 6d (1, 0) SCFT with tensor branch configuration as given in equation

(6.4). We have determined that the central charges of the Z3 SW-twisted torus compactifi-

cation satisfy

4(2a− c) = 48N2 + 122N + 60 . (6.20)

This quantity can also be recovered from the scaling dimensions of the Coulomb branch

operators:

4(2a− c) =
r∑
i=1

(2D(ui)− 1) , (6.21)

where r is the rank of the Coulomb branch and ui are the Coulomb branch operators.

Combining the analysis in Appendix B of [61] with our proposal in equation (6.18), we

conjecture that the Coulomb branch operators dimensions are

6

12

8

6J 6J × 1 + 2 6J × 2 + 6

6J + 6

12J + 12

6J + 8

 J = 1, · · · , N

6(N + 1) .

(6.22)

In this way, we find that 4(2a − c) as worked out from the anomaly, as written in Table 5,

matches with 4(2a − c) as worked out from the Coulomb branch spectrum using equation

(6.21). In fact, this matching occurs for all of the SW-twisted theories appearing in Table 5.

40We note that, because we are only checking the matching of 4(2a− c), which is given by equation (6.21),
then 6J , 6J × 2 + 2, and 6J × 1 + 6 also work equally well.

41Again, we emphasize that the level of analysis here is insensitive to which comark is paired with which
Casimir degree.
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Unfortunately, we do not know of any dual class S description of a 4d N = 2 SCFT obtained

from a Z3 Stiefel–Whitney twist of the 6d theory containing such an e6 algebra, and thus we

do not have any independent verification of the proposal given in equation (6.18).

To further explore the association between the tensor branch configuration and the di-

mensions of the Coulomb branch operators of the Stiefel–Whitney twisted theory, we now

study one example of an E7-type SW-fold. The tensor branch configuration

1
su2
2

so7
3

su2
2 1

e7
8
1

1
su2
2

so7
3

su2
2 1

e7
81

su2
2

so7
3

su2
2 1 · · ·

e7
81

su2
2

so7
3

su2
2 1︸ ︷︷ ︸

N−1

, (6.23)

has a Z2 center-flavor symmetry, and arises via Higgsing the e8 flavor symmetry of the rank

N (e8, e7) orbi-instanton by a homomorphism Γe7 → E8. The flavor group of this 6d SCFT

is (E7 ×E7 × SU(2))/Z2. Using the anomaly polynomial of the 6d SCFT associated to this

tensor branch configuration, and the Coulomb branch theory in 4d after Z2 Stiefel–Whitney

twist, one finds from equation (5.3) that

4(2a− c) = 144N2 + 316N + 120 . (6.24)

We propose that the scaling dimensions of the Coulomb branch operators are

9N + 9

12N + 12

6N + 6 6N + 8 3N + 5

6N + 12

3N + 9

6J 6J × 1 + 2 6J × 2 + 6 6J × 3 + 8 6J × 2 + 12

12J + 6

18J + 6

12J 12J + 2 6J + 2

18J

12J


J = 1, · · · , N

3(N + 1) ,

(6.25)

where we have written the contributions from different curves on different lines. Here, we

have used our proposal in equation (6.19) for the curves with residual f4 gauge algebras. We

can see that ∑
u

2D(u)− 1 = 144N2 + 316N + 120 , (6.26)

where the sum is taken over all of the Coulomb branch operators. As we can see, this matches

the anomaly polynomial result in equation (6.24).
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A uniform expression for the Coulomb branch scaling dimensions associated to a pair

(g, `), combining the proposals in Appendix B of [61] and equations (6.18) and (6.19), has

been observed in [136].42 As discussed in [61], when considering a Z` Stiefel–Whitney twist

that breaks the gauge algebra, g, to a residual gauge algebra, h, then the coefficients that

appear in the Coulomb branch scaling dimensions may be expected to be some c̃i satisfying

1 +

rank(h)∑
i=1

c̃i =
h∨g
`
. (6.27)

For a pair (g, `), such c̃i have been studied from the perspective of the supersymmetric index

of 4d N = 1 pure Yang–Mills in [137], where the mathematical results on almost commuting

holonomies for compact Lie groups [95] were utilized, which we now review briefly.

Consider (g, `), where Z` is a subgroup of the center of the simply-connected Lie group G̃

associated to g. The subgroup Z` can be identified with a particular graph automorphism of

the extended Dynkin diagram of g, Γ. One can construct a second extended Dynkin diagram,

Γ′, via the action of Z` on Γ; each collection of nodes of Γ lying within the same Z` orbit maps

to the same node of Γ′. Furthermore, each node of Γ′ has a “generalized comark”, obtained

by summing the comarks of all the nodes of Γ which map to that particular node of Γ′.

These Γ′ together with the generalized comarks are shown explicitly in the appendix of [95].

We refer to these generalized comarks as ci, and then c̃i = ci/`. The uniform expression for

the dimensions of the Coulomb branch operators arising from the residual gauge algebra is

then

6J × c1

`
+ d1 · · · 6J × cr

`
+ dr , (6.28)

where di are the Casimirs of the residual gauge algebra.43 We note that, while the ci/`

sometimes are identical with the comarks of the residual gauge algebra, this is not always

the case. Equation (6.28) appears to produce the correct answer in all known cases of Stiefel–

Whitney twisted torus compactifications of very Higgsable 6d (1, 0) SCFTs; we consider it

an interesting open question to understand such a formula from a top-down perspective.

7 Conclusion

The global symmetries of a quantum field theory constitute some of its most basic data. In

this paper we have presented a general prescription for reading off the continuous zero-form

symmetry group for 6d SCFTs based on the topological structure of the effective field theory

on the tensor branch. Using this, we have determined the continuous part of the zero-form

symmetry group on the tensor branch, including the center-flavor symmetry, the contribution

42We thank Y. Tachikawa for sharing this observation, and for encouraging us to include it here.
43Recall that there, in addition, exists a Coulomb branch operator arising from the torus reduction of the

6d tensor multiplet associated to each curve.
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from Abelian symmetry factors, as well as possible mixing with R-symmetry factors. Using

this data, we have also determined the continuous zero-form symmetry group for a large

class of orbi-instanton theories as obtained from small instantons probing an E8 nine-brane.

Making use of this global structure, we have also shown that such theories provide a fruitful

starting point for generating a large class of 4d N = 2 SCFTs via Stiefel–Whitney twisted

compactifications on a T 2. In the remainder of this section we discuss some avenues of future

investigation.

In this work we have primarily focused on the structure of the global zero-form symme-

tries, but one can in principle also study higher symmetries that act on extended objects.

For example, the one-form symmetries of some 6d SCFTs were recently studied in [82,110],

and the corresponding 0-form, 1-form and 2-group symmetries of the 5d theories obtained

from a reduction on an S1 were recently calculated using the geometry of the associated non-

compact elliptically fibered Calabi–Yau threefold [83]. Some aspects of these issues have also

been explored in [80,138,139]. It would be interesting to use our bottom up approach based

on the effective field theory on the tensor branch to provide an independent cross-check on

these results.

One of the operating assumptions in much of our work is that the effective field theory on

the tensor branch provides an accurate characterization of the resulting flavor symmetries of

an SCFT. In some cases, the SCFT may have enhanced flavor symmetry, and in others, there

can even be a dehancement. For example, su2 gauge theory on a −2 curve with eight half

hypermultiplets in the fundamental representation has an so8 flavor symmetry algebra on the

tensor branch, but only a so7 flavor symmetry at the fixed point (see, e.g., [6,30,32,119,129]).

Similarly, when one of the half-hypermultiplets is eaten up by a neighboring undecorated

self-pairing 2 tensor, the naive so7 flavor symmetry is dehanced to a g2. Geometrically, this

curiosity is related to the complicated nature of the I∗0 singular fiber, which engineers so8,

so7, and g2 algebras; some of the geometric properties and subtleties in these cases have been

studied in [62,140,141]. In this paper, we have seen evidence that 6d SCFTs of the form

· · ·
su2`
2 , (7.1)

compactified on a T 2 with a Z` Stiefel–Whitney twist also feature these type of dehancements.

These observations have mainly come from dual class S descriptions, as in Section 5.4.1,

where there are alternative methods to calculate the exact superconformal flavor symmetry;

in configurations of the form in equation (7.1) without a known class S dual, the flavor

symmetry is at present not convincingly known. It would be worthwhile to understand

both the field theoretic and the geometric origin of these rare and exceptional dehancements

directly from a 6d or F-theory perspective.

We have explicitly shown that the global form of the R-symmetry can potentially mix

with the flavor symmetries of a 6d SCFT. Now, in the context of compactification to lower-

dimensional spaces, a partial topological twist is often used to correctly capture the resulting
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supersymmetries which are retained. It would be quite interesting to track this data in the

resulting compactifications of theories. Indeed, in the broader context of generating 4d

SCFTs from compactification 6d SCFTs, it is natural to consider Stiefel–Whitney twists on

a genus g curve with marked points. Here, we can in principle consider more than just a

single pair of holonomies which commute up to a center-valued flux in G̃. Since we now have

a large class of 6d SCFTs which can generate such theories, it is natural to consider this

more general situation.
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further thank M. Hübner, K. Intriligator, M.J. Kang, G. Moore, E. Sharpe, and E. Torres

for helpful discussions. Part of this work was performed at the conference “Geometrization

of (S)QFTs in D ≤ 6” held at the Aspen Center for Physics, which is supported by Na-

tional Science Foundation grant PHY-1607611. The work of JJH is supported by the DOE

(HEP) Award DE-SC0013528. CL acknowledges support from DESY (Hamburg, Germany),

a member of the Helmholtz Association HGF. HYZ acknowledges support from the Simons

Foundation Collaboration grant #724069 on “Special Holonomy in Geometry, Analysis and

Physics”. The work of GZ is supported by the FWO project G.0926.17N.

A Symmetries of E-String and N = (2, 0) Theories

In this Appendix, we examine the global symmetry structure of the E-string and (2, 0)

theories, including the R-symmetry. As earlier, we leave implicit the action on the spacetime

symmetries, as dictated by the group action on the supercharges of the theory.

At the level of the algebra, the symmetry of the rank N E-string is e8⊕ su(2)L⊕ su(2)R,

which reduces to e8 ⊕ su(2)R for N = 1. Starting from the latter case, which has the simple

tensor branch configuration

[e8] 1 , (A.1)

the global symmetry is encoded in the Green–Schwarz four-form:

I = −c2(Fe8) + c2(R)− 1
4
p1(T ) , (A.2)

where −c2(Fe8) is always integer since E8 is simply-connected. Following the discussion of

Section 3.3, we can consider a Z2-twist of the R-symmetry and tangent bundle, which indeed
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leads to an integer shift,

c2(R)− 1
4
p1(T ) ≡ −1

4
w2
R − 3

4
w2
R ≡ 0 mod Z . (A.3)

So we conclude that the global symmetry group of the rank 1 E-string is

E8 × SO(3)R . (A.4)

Now, the additional su(2)L flavor symmetry of the rank N > 1 E-string couples to all nodes

of self-pairing 2 in the quiver,

[e8] 1

[su(2)L]︷ ︸︸ ︷
2 2 · · · 2︸ ︷︷ ︸

N−1

, (A.5)

but does not enter the topological coupling of the left-most tensor multiplet, which by itself

would just be a rank one E-string. Therefore, its topological coupling is formally identical to

that in equation (A.2), and allows a Z2 twisted SU(2)R bundle. Meanwhile, the undecorated

nodes of self-pairing 2 all have topological couplings of the same form [18],

I i>1 = c2(L)− c2(R) , (A.6)

which, when c2(R) is fractional, also forces c2(L) ≡ c2(Fsu(2)L) to be fractional. Hence, we

conclude that the rank N E-string has global symmetry group

E8 × [SU(2)L × SU(2)R]/Z2
∼= E8 × SO(4) . (A.7)

An N = (2, 0) theory has a tensor branch quiver that takes the form of an ADE-type

Dynkin diagram, with nodes being undecorated and having self-pairing 2. While the SCFT

has R-symmetry sp2
∼= so5, the tensor branch description sees only the so4

∼= su(2)L⊕su(2)R
subalgebra, where, from a (1, 0) perspective, the su(2)L appears as a flavor symmetry while

the su(2)R is the (1, 0) R-symmetry. This is analogous to the self-pairing-2 nodes of the

rank N E-string, including the form of the Green–Schwarz four-form in equation (A.6),

which does not couple to p1(T ). Therefore, we can naturally consider a diagonal Z2 ⊂
Z(SU(2)L × SU(2)R) twist with background field w, such that

c2(L)− c2(R) ≡ 1
4
w2 − 1

4
w2 ≡ 0 mod Z . (A.8)

This would imply that the global symmetry of (2, 0) theories on the tensor branch is

SO(4) ∼= (SU(2)L × SU(2)R)/Z2 . (A.9)

Since this is a subgroup of SO(5), but not Spin(5) ∼= Sp(2), we predict that the (2, 0) SCFTs
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have SO(5) R-symmetry group.

B SW-folds and Rank Two 4d N = 2 SCFTs

In this Appendix we show that SW-folds can be used to construct nearly all of the known

rank two 4d N = 2 SCFTs. In recent years, there has been much progress in the program

of classifying low rank 4d N = 2 SCFTs by studying the complex geometry of the Coulomb

branch [142–151]. An enumeration and analysis of the known rank two theories has appeared

recently in [96, 152–155]. As has been emphasized in [96], this enumeration is by no means

a classification, and there are many reasons to believe that there remain undiscovered rank

two theories. Nevertheless, recent progress has unveiled an intricate structure to the rank

two 4d N = 2 SCFT landscape.

Rank two SCFTs can be arranged into families that are connected via renormalization

group flows. Each family possesses a collection of “parent” or “top” theories from which all

other theories in the family can be obtained by mass deformation. We note that it is not

necessary that each SCFT in the family comes from all top theories, only that it comes from

a mass deformation of at least one top theory. All of the “top” rank two theories of [96] are

given in Table 6. In this section, we study which of the known rank two theories can be

interpreted as arising from the Stiefel–Whitney twisted compactifications that have formed

the topic of this paper. It is necessary only to provide an origin for the top theories, as those

theories obtained via 4d mass deformation follow from the addition of continuous Wilson

lines, breaking the flavor symmetry, on the T 2.

When considering a Stiefel–Whitney twisted compactification, the Coulomb branch di-

mension of the resulting four-dimensional theory is always at least the number of tensor

multiplets, i.e., compact curves in the geometric construction, of the parent 6d theory. As

such, the 4d SCFTs of low rank can only come from a highly restrictive set of 6d SCFTs.

There are two ways of engineering theories with a Coulomb branch of rank two. We can

consider
g

1/Z` , (B.1)

where the Z` Stiefel–Whitney quotient breaks the gauge algebra to gub which is either

so2 or su2 . (B.2)

In either case, the methodology of [61] allows us to determine that the Coulomb branch
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Flavor Algebra {∆u,∆v} (24a, 12c) SW-fold

(e8)24 ⊕ (su2)13 {6, 12} (263, 161)
“Trivial SW-folds”

(so20)16 {6, 8} (202, 124)

(usp12)8 {4, 6} (130, 76) T (1)
2 (0, 0, 0, 0, 2)

(usp4)7 ⊕ (usp8)8 {4, 6} (128, 74) I

(su2)2
7 ⊕ (f4)12 {6, 6} (156, 90) T (1)

2 (1, 0, 0, 0, 0)

(su6)16 ⊕ (su2)9 {6, 8} (179, 101) S(1)
2 (0, 0, 0, 1, 0)

(usp14)9 {6, 8} (185, 107) T (1)
2 (0, 0, 0, 0, 3)

(su5)16 {6, 8} (170, 92) R(1)
3 (0, 0, 2)

(usp8)13 ⊕ (su2)26 {6, 12} (232, 130) T (2)
2 (0, 0, 0, 0, 1)

(su2)2 ⊕ (su2)8 {3, 6} (102, 54) T (1)
4 (1, 0)

(g2)8 ⊕ (su2)14 {4, 6} (120, 66) T (1)
3 (1, 0, 0)

(su3)26 ⊕ u(1) {6, 12} (219, 117) S(2)
3 (0, 0, 1)

(su2)16 ⊕ u(1) {6, 12} (212, 110) S(2)
4 (0, 1)

(usp4)14 ⊕ (su2)8 {4, 6} (118, 64) II

(su2)14

{
12
5
, 6
}

(456
5
, 234

5
) T (1)

5 (1)

(su2)14 {2, 6} (84, 42) T (1)
6 (1)

(usp12)11 {4, 10} (188, 110) III

∅ {2, 4} (58, 28) IV

Table 6: All the “top” theories from [96]. We list their Coulomb branch operator dimensions
and their 6d origin, if known. There are four theories, labelled by I–IV, for which no SW-fold
description is known. The theories marked as “Trivial SW-folds” are those which are obtained
via compactification of a 6d (1, 0) SCFT on T 2 without turning on a Stiefel–Whitney twist.
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operators, u and v, have dimensions44

{∆u,∆v} =

{{
6, 6

`
+ 1
}

if gub = so2

{6, 8} if gub = su2 .
(B.3)

On the other hand, we can have
g

1
h

2/Z` , (B.4)

where the quotient breaks the entirety of the gauge algebra. In this case, we allow g and h

to be trivial, and we also allow ` = 1. We can determine that

{∆u,∆v} =

{{
6, 12

`

}
if g = ∅

{6, 12} if g 6= ∅ .
(B.5)

Putting this together, and using that fact that ` = 1, · · · , 6 are the only valid options, we

find that the possible Coulomb branch operator spectra are highly constrained. Specifically,

all rank two theories obtained by Stiefel–Whitney twisted compactification have a Coulomb

branch operator with scaling dimension ∆ = 6.

In view of these restrictions on the scaling dimensions of the Coulomb branch operators,

let us consider the theories I–IV from Table 6; that is, those that do not have a known

SW-fold description. Theories I and II have Coulomb branch operators of dimensions {4, 6},
which are consistent with them arising from a Z3 Stiefel–Whitney twisted compactification

of 6d SCFTs of the form
g

1 , or 1
g

2 , (B.6)

however, it is unclear that additional 6d SCFTs of this form admitting a Z3 center-flavor

symmetry exist. The theory labelled III has Coulomb branch operators with dimensions

{4, 10}, which does not include the requisite dimension six operator for it to be able to arise

from a Stiefel–Whitney twisted compactification. There are two possibilities: either theory

III is not a top theory, or else it is a theory that cannot be obtained from a Stiefel–Whitney

twisted torus compactification. The analysis of [156] appears to rule out any currently

unknown theory with Coulomb branch dimensions {6, 12}, which would be expected for a

putative top theory that mass deforms to a theory with Coulomb branch operator spectrum

{4, 10}, and thus we conclude that this SCFT probably does not arise from a Stiefel–Whitney

twisted compactification.45 Finally, we turn to theory IV. This is the Lagrangian theory with

gauge algebra sp2 and a single half-hypermultiplet in the 16 representation, and it is also

the only theory in [96] that does not have any known construction in string theory. As

emphasized therein, one may speculate that this SCFT sits as a descendant inside of a

44We do not need to worry about the subtleties with the prescription of [61] that were highlighted in Section
6.2, as the rank two requirement on the Coulomb branch ensures that the gauge algebra after Stiefel–Whitney
twist is at most rank one.

45We thank M. Martone for discussions on this point.
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currently unknown family of rank two SCFTs.

At rank two it appears that almost all of the 4d N = 2 SCFTs can be obtained from torus

compactifications of 6d (1, 0) SCFTs. Of the sixty-nine 4d SCFTs listed in [96], there are only

seven for which it is not known how to obtain them in this manner. It would be interesting

to understand whether other ingredients can be included in the torus compactifications to

generate the complete list of rank two theories, and to determine if the preponderance of

Stiefel–Whitney twists persists to higher rank 4d SCFTs.

C Stiefel–Whitney Twists and the Literature

In this Appendix we present a brief survey in table format of earlier work on Stiefel–Whitney

compactifications. 4d N = 2 SCFTs have been constructed from Stiefel–Whitney twisted

torus compactifications of very Higgsable 6d (1, 0) SCFTs in previous literature [61,97–101].

These theories form a small subset of the landscape of Stiefel–Whitney twisted theories that

we discuss in the present paper, and we highlight for which values of the E8-homomorphism

parameters they have been studied. These particular theories are listed in Table 7, together

with the reference to where they were first explored.

D Nilpotent Orbits and Higgsing SW-folds

In this Appendix we track the structure of a particular class of Higgs branch flows in 6d, and

their 4d descendants after a SW-twist. Take the original 6d rank N orbi-instanton SCFT of

type (e8, g) which can be expressed on its partial tensor branch as

[e8]
g

1
g

2 · · ·
g

2[g] . (D.1)

Consider, as we did in Section 3, a Higgsing via an E8-homomorphism Γg → E8 that leads to

an SCFT with a non-trivial center-flavor symmetry Z`. Instead of immediately compactifying

it on a T 2 with a Z` Stiefel–Whitney twist, we first perform a nilpotent Higgsing in 6d of

the g flavor symmetry on the right of the tensor branch quiver:46

µ6d : su2 → g . (D.2)

Particular choices for the nilpotent orbit lead to 6d SCFT where the Z` center-flavor sym-

metry is preserved. We can then take this Higgsed theory, and compactify it on a T 2 with

a Z` Stiefel–Whitney twist. In this way, we end up with a larger family of SW-fold theories

in 4d, going beyond the scope of the theories listed in Table 1.

46Higgs branch renormalization group flows of 6d SCFTs triggered by nilpotent deformations have been
studied in great detail in [13,15,30,63,64,157,158].
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SW-fold 6d Origin Z` Alternate Name Reference

T (r)
2 (0, 0, 0, 0, 1)

su2
1

su2
2 · · ·

su2
2︸ ︷︷ ︸

r−1

Z2 S(r)
E6,2

[98]

S(r)
3 (0, 0, 1)

su3
1

su3
2 · · ·

su3
2︸ ︷︷ ︸

r−1

Z3 S(r)
D4,3

S(r)
4 (0, 1)

su4
1

su4
2 · · ·

su4
2︸ ︷︷ ︸

r−1

Z4 S(r)
A2,4

T (r−1)
2 (1, 0, 0, 0, 0) 1

su2
2 · · ·

su2
2︸ ︷︷ ︸

r−1

Z2 T (r)
E6,2

T (r−1)
3 (1, 0, 0) 1

su3
2 · · ·

su3
2︸ ︷︷ ︸

r−1

Z3 T (r)
D4,3

T (r−1)
4 (1, 0) 1

su4
2 · · ·

su4
2︸ ︷︷ ︸

r−1

Z4 T (r)
A2,4

T (r−1)
5 (1) 1

su5
2 · · ·

su5
2︸ ︷︷ ︸

r−1

Z5 T (r)
∅,5

[100]
T (r−1)

6 (1) 1
su6
2 · · ·

su6
2︸ ︷︷ ︸

r−1

Z6 T (r)
∅,6

S(1)
2 (0, 0, 0, 2r − 1, n− 2)

su2n
1

su2n+8

2 · · ·
su2n−8r−8

2︸ ︷︷ ︸
r−1

Z2 —

[61]

S(1)
3 (0, 0, 3r − 2)

su3
1

su12
2 · · ·

su9r−6

2︸ ︷︷ ︸
r−1

Z3 —

R(1)
3 (0, 0, 3r − 1)

su′6
1

su15
2 · · ·

su9r−3

2︸ ︷︷ ︸
r−1

Z3 —

T (1)
3 (0, 0, 3r − 3) 1

su9
2 · · ·

su9r−9

2︸ ︷︷ ︸
r−1

Z3 —

S(1)
4 (0, 2r − 1)

su4
1

su12
2 · · ·

su8r−4

2︸ ︷︷ ︸
r−1

Z4 —

T (1)
4 (0, 2r − 2) 1

su8
2 · · ·

su8r−8

2︸ ︷︷ ︸
r−1

Z4 —

T (1)
5 (r − 1) 1

su5
2 · · ·

su5r−5

2︸ ︷︷ ︸
r−1

Z5 —

T (1)
6 (r − 1) 1

su6
2 · · ·

su6r−6

2︸ ︷︷ ︸
r−1

Z6 —

Table 7: The Stiefel–Whitney twisted 4d N = 2 SCFTs that have appeared afore.
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Nonetheless, we can still analyze these extra theories by computing their central charges

and flavor central charges as in Section 5. We also point out that, these extra SW-fold

theories can also be obtained by taking the SW-fold theories that we have obtained in the

main text as in Table 2 and performing the following “induced” nilpotent Higgsing in 4d:

µ4d : su2 → g̃ (D.3)

where g̃ is the flavor symmetry algebra in 4d that descended from the g flavor symmetry on

the right of the 6d SCFT. The nilpotent orbit µ4d is then the nilpotent deformation in 4d

which can be thought of as a “folded” version of the nilpotent deformation in 6d.

For the nilpotent Higgsings of the 6d SCFTs that were discussed in Section 4, we have

g = suK . Nilpotent orbits of suK are in one-to-one correspondence with integer partitions

of K. We write

P = [1n1 , 2n2 , · · · , KnK ] , (D.4)

where ni ≥ 0 and
K∑
i=1

ini = K , (D.5)

to denote a partition of K. We are interested in the case where K = `K̃ and where there

exists a Z` center-flavor symmetry. The RHS of the tensor branch configurations written in

Table 1 all have the form

· · ·
suK
2

suK
2 · · ·

suK
2

suK
2 , (D.6)

and it is well-known how the tensor branch configuration is modified when Higgsing by a

nilpotent orbit as in equation (D.4). One finds47

· · ·
suKK

2
[sunK ]

suKK−1

2
[sunK−1

]
· · ·

suK2

2
[sun2 ]

suK1

2
[sun1 ]

. (D.7)

The ranks of the flavor algebras are fixed by the exponents of the partition, and the Ki are

fixed from that data by anomaly cancellation. They are each required to satisfy

2Ki − ni −Ki−1 −Ki+1 = 0 , (D.8)

where we have defined K0 = 0 and KK+1 = K. It is easy to see that the anomaly of the

large gauge transformations of the two-forms fields, as discussed in Section 3, rules out a Z`
center-flavor symmetry unless

ni = `ñi , (D.9)

47For ease of exposition, we do not focus here on the cases where the plateau is too short and the nilpotent
Higgsing starts to correlate with the E8-homomorphism Higgsing.
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for all i. The converse also can be shown. It is easy to see that a partition

[1`ñ1 , 2`ñ2 , · · · , (`K̃)`ñ(`K̃) ] , (D.10)

of `K̃ can equivalently be written as a partition

[1ñ1 , 2ñ2 , · · · , K̃ ñ
K̃ ] , (D.11)

of K̃. More succinctly, Z` center-flavor symmetry preserving nilpotent orbits of suK are in

one-to-one correspondence with nilpotent orbits of suK̃ . Physically, this reflects the fact that

one can either first perform the nilpotent Higgsing by a (Z`-preserving) partition of K in

6d and then compactify with Stiefel–Whitney twist to 4d, or else first perform the Stiefel–

Whitney twisted compactification to 4d and then the nilpotent Higgsing by the associated

partition of K̃; either way, one ends up with same 4d N = 2 SCFT.

The family of theories obtained by nilpotent deformations forms a partially ordered set,

capturing the network of renormalization group flows amongst the theories, that follows from

the partial ordering of the nilpotent orbit inclusion: µ ≺ ν when Orbit(µ) ⊂ Orbit(ν). For

suK nilpotent orbits, such partial ordering can be characterized by the “dominant ordering”

of two partitions of K; let µ = [r1, · · · , r`r ], ν = [s1, · · · s`s ] be weakly-decreasing partitions

of K, then

µ ≺ ν ⇔
j∑
i=1

ri ≤
j∑
i=1

si, 1 ≤ j ≤ max(`r, `s) , (D.12)

where the partition with fewer elements is extended by zeroes until they are of equal length.

To be more specific, let us illustrate this construction by analyzing the network of theories

obtained by starting from the SCFT in family T (N)
3 (p, s, 3q) with p = s = q = 1. The 6d

origin of this theory is given by the tensor branch description:

[e8]1
su9
2

[su3]

su15
2

[su3]

su18
2

[su3]

su18
2 · · ·

su18
2︸ ︷︷ ︸

N−1

[su18] . (D.13)

We label each theory in the nilpotent network via

T (N)
3 (p, s, 3q;µ4d) , (D.14)

where µ4d = [118] corresponds to the T (N)
3 (p, s, 3q) SCFT discussed in Section 5.

We first discuss the nilpotent network formed by the Z3 center-flavor preserving nilpotent

deformations of the su18 flavor symmetry. As discussed, these are specified by partitions of

eighteen such that each exponent is a multiple of three. Exhaustively, there are eleven such

partitions:

[118], [23, 112], [26, 16], [29], [33, 19], [33, 23, 13], [36], [43, 16], [43, 23], [53, 13], [63] . (D.15)
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Bala–Carter Label Weighted Dynkin Diagram 6d Quiver f f̃

0 00
0
000 · · ·

e6
61

su3
3 1

e6
61

su3
3 1 e6 g2

A1 00
1
000 · · ·

e6
61

su3
3 1

e6
61

su3
2 su6 su2

3A1 00
0
100 · · ·

e6
61

su3
3 1

e6
612 su3 ⊕ su2 su2

A2 00
2
000 · · ·

e6
61

su3
3 1

e6
6
1

1 su3 ⊕ su3 ∅

D4 00
2
200 · · ·

e6
6
1

1
su3
3 su3 ∅

Table 8: The nilpotent orbits of e6 that are consistent with a Z3 center-flavor symmetry.
The column labelled f, we write the subalgebra of the e6 flavor symmetry that survives
the nilpotent Higgsing, and in the f̃ column, we write the remnant algebra after the Z3

Stiefel–Whitney twisted compactification down to 4d.

The nilpotent network/Higgs branch flows amongst the generated 6d SCFTs is depicted in

Figure 1. Similarly, one can consider the network formed by performing nilpotent Higgsing

of the su6 flavor algebra belonging to the 4d T (N)
3 (p = 1, s = 1, 3q = 3) SCFT. These are

described by partitions of six, and the generated nilpotent hierarchy of these 4d theories is

shown in Figure 2. The nilpotent Higgsing in 6d and 4d commutes when combined with the

Z3 Stiefel–Whitney twisted compactification of the theories in Figure 1 to the theories in

Figure 2.

D.1 Exceptional SW-folds and Nilpotent Higgsing

In Section 6, we considered a generalization of the SW-fold theories discussed in Section 5 to

those obtained from the rank N orbi-instanton theory of type (e8, g), where g is an algebra

of type DE. In particular, in Section 6.1, we showed that there exist seven homomorphisms

Γe6 → E8 such that Higgsing the e8 flavor symmetry of the orbi-instanton leads to a theory

with Z3 center-flavor symmetry. The 6d SCFTs obtained by such Higgsing retain the e6

flavor symmetry on the right of the tensor branch quiver.

As in the spirit of this Appendix, the e6 flavor symmetry can be Higgsed by a choice

of nilpotent orbit of e6, and if that nilpotent orbit is compatible then the Z3 center-flavor

symmetry can be preserved. There are only five such nilpotent orbits, which we have listed

in Table 8.48 Similarly to the case where g is a special unitary algebra, the e6 nilpotent orbits

that are compatible with the Z3 center-flavor symmetry are in one-to-one correspondence

with the nilpotent orbits of g2. Again, the 4d N = 2 SCFT obtained by the operation of

48We label the exceptional nilpotent orbits using the Bala–Carter notation [159, 160]; see [161] for the
standard reference on nilpotent orbits, and [162] for a useful summary for the exceptional Lie algebras from
the perspective of nilpotent Higgsing.
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1
su9
2

su15
2

su18
2 · · ·

su18
2

su18
2

su18
2

su18
2

su18
2

su18
2 : [118]

1
su9
2

su15
2

su18
2 · · ·

su18
2

su18
2

su18
2

su18
2

su18
2

su15
2 : [23, 112]

1
su9
2

su15
2

su18
2 · · ·

su18
2

su18
2

su18
2

su18
2

su18
2

su12
2 : [26, 16]

1
su9
2

su15
2

su18
2 · · ·

su18
2

su18
2

su18
2

su18
2

su18
2

su9
2 : [29]

1
su9
2

su15
2

su18
2 · · ·

su18
2

su18
2

su18
2

su18
2

su15
2

su12
2 : [33, 19]

1
su9
2

su15
2

su18
2 · · ·

su18
2

su18
2

su18
2

su18
2

su15
2

su9
2 : [33, 23, 13]

1
su9
2

su15
2

su18
2 · · ·

su18
2

su18
2

su18
2

su18
2

su12
2

su6
2 : [36]

1
su9
2

su15
2

su18
2 · · ·

su18
2

su18
2

su18
2

su15
2

su12
2

su9
2 : [43, 16]

1
su9
2

su15
2

su18
2 · · ·

su18
2

su18
2

su18
2

su15
2

su12
2

su6
2 : [43, 23]

1
su9
2

su15
2

su18
2 · · ·

su18
2

su18
2

su15
2

su12
2

su9
2

su6
2 : [53, 13]

1
su9
2

su15
2

su18
2 · · ·

su18
2

su15
2

su12
2

su9
2

su6
2

su3
2 : [63]

Figure 1: The subsector of the nilpotent hierarchy of the 6d SCFT in equation (D.13) in
which each theory enjoys a Z3 center-flavor symmetry. We listed the quiver description of
the tensor branch and the partition defining the nilpotent orbit in each case. The Z3 Stiefel–
Whitney twisted torus compactification of the theories appearing here gives rise to the 4d
N = 2 SCFTs whose nilpotent network is depicted in Figure 2.
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T (N)
3 (1, 1, 3;µ4d = [16])

T (N)
3 (1, 1, 3;µ4d = [2, 14])

T (N)
3 (1, 1, 3;µ4d = [22, 12])

T (N)
3 (1, 1, 3;µ4d = [23])

T (N)
3 (1, 1, 3;µ4d = [3, 13])

T (N)
3 (1, 1, 3;µ4d = [3, 2, 1])

T (N)
3 (1, 1, 3;µ4d = [32])

T (N)
3 (1, 1, 3;µ4d = [4, 1, 1])

T (N)
3 (1, 1, 3;µ4d = [4, 2])

T (N)
3 (1, 1, 3;µ4d = [5, 1])

T (N)
3 (1, 1, 3;µ4d = [6])

Figure 2: The nilpotent hierarchy of 4d N = 2 SCFTs obtained from nilpotent deformations
breaking the su6 flavor symmetry of T (N)

3 (1, 1, 3). The structure of the network matches that
of the 6d SCFTs in Figure 1, and the Z3 Stiefel–Whitney twisted compactifications of each
of those 6d SCFTs yields the associated 4d SCFT in this figure.
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nilpotent Higgsing of the e6 flavor symmetry and then compactifying with Z3 Stiefel–Whitney

twist can alternatively be obtained by first performing the Z3 Stiefel–Whitney twisted com-

pactification and then Higgsing the g2 flavor symmetry by the appropriate nilpotent orbit.

Further, we consider the case where g = e7. There are fifteen nilpotent orbits of e7 that are

compatible with a Z2 center flavor symmetry, as depicted in Table 9. The sub-Hasse diagram

formed by the subset of e7 nilpotent orbits appears here almost matches the Hasse diagram

for f4 nilpotent orbits that appears in [163]. Similarly, the flavor symmetries surviving after

the Stiefel–Whitney twist and those of the f4 nilpotent orbits almost always match. The

one subtlety is the line denoted in red in Table 9; this appears to be associated to one e7

nilpotent orbit, but two f4 nilpotent orbits. This case involves the Z2 Stiefel–Whitney twist

of a 6d theory containing an
su4
2 factor. As we discussed at the conclusion of Section 5.4.1,

this leads to curious features, similar to those that occur in six dimensions when one has
su2
2 [129]. We expect that a deeper understanding of these highly special configurations will

lead to the resolution of this subtlety in the e7 and f4 nilpotent orbits, however, we leave

such a study for future work.

One can use the same methods from the 6d perspective to determine the central charges,

flavor symmetries, Coulomb branch operator dimensions and so forth of the 4d N = 2

SCFTs obtained from the torus compactification. A similar analysis can be carried out

when g = so2k, however we leave such an enumeration to the reader.49

E Flavor Group for Conformal Matter & Deformations

In Section 3, we expanded upon the proposal to determine the global structure of the global

symmetry group of a 6d (1, 0) SCFT that was put forth in [84]. This proposal is based on

the weakly-coupled spectrum of the effective theory that lives on the generic point of the

tensor branch, together with the knowledge of the Green–Schwarz couplings. In Section 4,

we applied this prescription to the 6d SCFTs obtained from the Higgsing of the e8 flavor

symmetry, by a choice of E8-homomorphism ρ : ZK → E8, of the rank N (e8, suK) orbi-

instanton; we found that the resulting global structure of the non-Abelian part of the flavor

symmetry was encoded in a simple manner in the choice of ρ. We highlighted an extension

of this analysis to the 6d (1, 0) SCFTs obtained via the e8 Higgsing of the rank N (e8, g)

orbi-instanton in Section 6. Furthermore, in Appendix D, we demonstrated that, when we

consider the Higgsing of the orbi-instanton by both an E8-homomorphism, ρ, and a nilpotent

orbit of g, σ, there is a simple prescription for the non-Abelian center-flavor symmetry of

the resulting SCFT in terms of ρ and σ.

Throughout this paper, we have focused on the 6d (1, 0) SCFTs known as the rank N

(e8, g) orbi-instantons and the theories further obtained via Higgs branch renormalization

49For g = so2k there is a subtlety with the fact that two distinct SCFTs, obtained from very even nilpotent
Higgsing, are associated to the same tensor branch description [15].
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e7 Orbit f4 Orbit 6d Quiver f, f̃

0 0 · · ·
e7
81

su2
2

so7
3

su2
2 1

e7
81

su2
2

so7
3

su2
2 1

e7
81

su2
2

so7
3

su2
2 1 e7 → f4 ⊕��su2

A1 A1 · · ·
e7
81

su2
2

so7
3

su2
2 1

e7
81

su2
2

so7
3

su2
2 1

e7
81

su2
2

so7
3

su2
1 so12 → sp3 ⊕��su2

2A1 Ã1 · · ·
e7
81

su2
2

so7
3

su2
2 1

e7
81

su2
2

so7
3

su2
2 1

e7
81

su2
2

so7
3 1 (so9 → su4 ⊕��su2)⊕��su2

3A′1 A1 + Ã1 · · ·
e7
81

su2
2

so7
3

su2
2 1

e7
81

su2
2

so7
3

su2
2 1

e7
81

su2
2

so7
2 (sp3 → su2 ⊕��su2)⊕ su2

A2 A2 and Ã2 · · ·
e7
81

su2
2

so7
3

su2
2 1

e7
81

su2
2

so7
3

su2
2 1

e7
81

su2
2

su4
2 su6

A2 + 2A1 A2 + Ã1 · · ·
e7
81

su2
2

so7
3

su2
2 1

e7
81

su2
2

so7
3

su2
2 1

e7
81

su2
2

su2
2 su2 ⊕��su2 ⊕��su2

A3 B2 · · ·
e7
81

su2
2

so7
3

su2
2 1

e7
81

su2
2

so7
3

su2
2 1

e7
8
1

1
su2
2 (so7 → su2 ⊕ su2 ⊕��su2)⊕��su2

2A2 + A1 Ã2 + A1 · · ·
e7
81

su2
2

so7
3

su2
2 1

e7
81

su2
2

so7
3

su2
2 1

e7
8122 su2 ⊕��su2

(A3 + A1)′ C3(a1) · · ·
e7
81

su2
2

so7
3

su2
2 1

e7
81

su2
2

so7
3

su2
2 1

e7
8
1

12 su2 ⊕��su2 ⊕��su2

D4(a1) F4(a3) · · ·
e7
81

su2
2

so7
3

su2
2 1

e7
81

su2
2

so7
3

su2
2 1

1
e7
8
1

1 ��su2 ⊕��su2 ⊕��su2

A′5 B3 · · ·
e7
81

su2
2

so7
3

su2
2 1

e7
81

su2
2

so7
3 1

so9
4 su2 ⊕��su2

D4 C3 · · ·
e7
81

su2
2

so7
3

su2
2 1

e7
81

su2
2

so7
3

su2
1

so12
4 sp3 → su2 ⊕��su2

E6(a3) F4(a2) · · ·
e7
81

su2
2

so7
3

su2
2 1

e7
81

su2
2

so7
3 1

so8
4 ��su2

D5 F4(a1) · · ·
e7
81

su2
2

so7
3

su2
2 1

e7
8
1

1
su2
2

so7
3 ��su2 ⊕��su2

E6 F4 · · ·
e7
8
1

1
su2
2

so7
3

su2
2 ��su2

Table 9: The nilpotent orbits of e7 that are consistent with a Z2 center-flavor symmetry. In
the f, f̃ column we write the flavor symmetry in 6d, and the remnant subalgebra in 4d after
the SW-twisted compactification. Scored-out algebras are removed by the SW-twist. The
remnant algebra, f̃ matches the flavor symmetry associated to the f4 nilpotent orbit. The
red line is exceptional, and is discussed in the text.
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group flows. Another broad class of 6d (1, 0) SCFTs are those commonly referred to as the

“Higgsable to (2, 0) of type AN−1” SCFTs [32]. These include the rank N (g, g) conformal

matter theories [7], corresponding to the worldvolume theory on a stack of N M5-branes

probing a C2/Γg orbifold singularity, and the theories obtained via Higgsing of the g ⊕ g

flavor symmetry of the conformal matter theory by a pair of nilpotent orbits σL and σR of

g. The former have frequently been referred to in the literature as Tg,N , and the latter as

Tg,N(σL, σR).50 In Section 3.1, we determined that the non-Abelian flavor group of rank N

(suK , suK) conformal matter is

(SU(K)× SU(K))/ZK . (E.1)

It is straightforward to see, again from the methods presented in Section 3, that when suK
is generalized to an arbitrary ADE Lie algebra g, the non-Abelian flavor group is

(G̃× G̃)/Z(G̃) , (E.2)

where G̃ is the simply-connected group with Lie algebra g, and Z(G̃) is the center of G̃.

Now we turn to the determination of the global structure of the non-Abelian flavor

symmetry after Higgsing via the pair of nilpotent orbits (σL, σR). The nilpotent orbit σL
breaks the left g flavor algebra to the semi-simple algebra hL,51 and we let H̃L denote the

associated simply-connected Lie group; and similarly for the Higgsing of the right g by σR.

Both hL and hR can be read off directly from the nilpotent orbits [63]. Similarly, it is well-

known how each nilpotent Higgsing modifies the tensor branch description, and thus one can

use the analysis of Section 3 to determine the subgroup of the center Z(G̃) that is preserved

after Higgsing; we refer to these subgroups as ZL(G̃) and ZR(G̃) for σL and σR, respectively.

For G̃ = SU(K), E6, and E7 these subgroups have been discussed in Appendix D.

Putting all this together, the global structure of the non-Abelian flavor group of the

Higgsed conformal matter theory, Tg,N(σL, σR), can be shown to be

(H̃L × H̃R)/(ZL(G̃) ∩ ZR(G̃)) . (E.3)

Here the quotient is by the common subgroup of ZL(G̃) and ZR(G̃) inside Z(G̃). In particular,

if we consider G̃ 6= Spin(4K), then we have

Z(G̃) = ZK , ZL(G̃) = ZKL , ZR(G̃) = ZKR , (E.4)

for some K, and KL, KR divisors of K. The quotient is then by

(ZL(G̃) ∩ ZR(G̃)) = Zgcd(KL,KR) . (E.5)

50We emphasize that these 6d SCFTs are distinct from the 4d SW-fold theories also labelled by T in
Section 5.

51We ignore u(1) factors in this Appendix.
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For G̃ = Spin(4K) it is a little more technical due to the product structure of the center.

We now make this explicit in one example. Consider the rank N (su18, su18) conformal

matter theory.52 As is by now familiar, the tensor branch description is

N−1 (−2)-curves︷ ︸︸ ︷
su18
2

[su18]

su18
2 · · ·

su18
2

su18
2

[su18]
. (E.6)

We consider the Higgs branch deformations triggered by turning on vacuum expectation

values associated to the nilpotent orbits

σL = [16, 43] , σR = [16, 26] , (E.7)

of the su18 flavor algebras on the left and right. It is clear from the analysis in Appendix

D that σL preserves a Z3 center-flavor subgroup, as the exponents of the partition are all

multiples of three, and similarly, σR preserves a Z6 center-flavor subgroup:

ZL(SU(18)) = Z3 , ZR(SU(18)) = Z6 . (E.8)

After performing the nilpotent Higgsing, the renormalization group flow ends at an interact-

ing 6d (1, 0) SCFT with tensor branch description

N−1 (−2)-curves︷ ︸︸ ︷
su9
2

[su6]

su12
2

su15
2

su18
2

[su3]

su18
2 · · ·

su18
2

su18
2

[su6]

su12
2

[su6]
. (E.9)

To determine the global structure of the non-Abelian flavor symmetry, we can apply the

procedure described in Section 3. From that perspective, we determine that the non-Abelian

flavor group is

(SU(6)× SU(3)× SU(6)× SU(6))/Z3 , (E.10)

as expected from equation (E.3).
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[81] M. Del Zotto, I. Garćıa-Etxebarria, and S. Schafer-Nameki, “2-Group Symmetries

and M-Theory,” arXiv:2203.10097 [hep-th].

[82] M. Hubner, D. R. Morrison, S. Schafer-Nameki, and Y.-N. Wang, “Generalized

Symmetries in F-theory and the Topology of Elliptic Fibrations,” arXiv:2203.10022

[hep-th].
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