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Thanks to their highly coherent emission and compact form factor, single axial mode diamond
Raman lasers have been identified as a valuable asset for applications including integrated quantum
technology, high resolution spectroscopy or coherent optical communications. While the fundamen-
tal emission linewidth of these lasers can be Fourier limited, their thermo-optic characteristics lead
to drifts in their carrier frequency, posing important challenges for applications requiring ultra-stable
emission. We propose here a method for measuring accurately the temperature-dependent index of
refraction of diamond by employing standing Stokes waves produced in a monolithic Fabry-Pérot
(FP) diamond Raman resonator. Our approach takes into account the influence of the temperature
on the first-order phonon line and the average lattice phonon frequency under intense stimulated
Raman scattering (SRS) conditions. We further utilize this model to calculate the temperature-
dependent thermo-optic coefficient and the Grüneisen parameter of diamond in the visible spectral
range. The theory is accompanied by the demonstration of tunable Fourier-limited Stokes nanosec-
ond pulses with a stabilized center frequency deviation of less than <4 MHz.

I. INTRODUCTION

Diamond has been fascinating humanity for centuries,
both for its rarity and its exceptional physical proper-
ties. Due to modern breakthroughs in synthetic diamond
production, mostly thanks to chemical vapour deposition
(CVD) technology, diamond is now widely available for
a variety of scientific applications [1]. The everlasting
interest in diamond continues today in step with the de-
velopment of new applications across different fields of
science. As such, diamond holds promise to be one of
the premier materials for quantum applications [2], in-
cluding quantum computing, generation of single photons
[3], quantum sensing [4] and quantum memories [5].

Knowledge of diamond’s optical and mechanical prop-
erties runs deep for most factors with an exception be-
ing the temperature dependence of the refractive index
(also known as thermo-optic coefficient), despite its im-
portance for optical applications or integrated photonic
devices in diamond. In the literature it is usually found
as a single value of (1/n)∂n/∂T = 5× 10−6 K-1 at 300 K
for the low-frequency limit [6], or in the far-infrared range
for a temperature range of up to 925 K [7]. Informa-
tion regarding the thermo-optic coefficient of diamond at
visible wavelengths and at extended temperature ranges
remains elusive.

A thorough theoretical description on the thermo-optic
coefficient in diamond is a great challenge since it re-
quires a working model for the dielectric function and its
re-normalization by the electron-phonon interaction and
the thermal expansion of the lattice [7]. There have been
models using empirical pseudo-potentials for the thermo-
optic coefficients of different semiconductors but since C
has a large Debye temperature ΘD = 1880 K, knowledge
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of the thermo-optic coefficient at 300 K does not provide
meaningful information for higher temperatures [8]. The
inaccuracy is caused by the fact that a linear approxi-
mation of the temperature-dependent index of refraction
n(T ) is permitted at temperatures much larger than ΘD

where the material can be described by a single oscillator
frequency.

Knowledge of the thermo-optic coefficient is of
paramount importance for applications and the present
research was conducted with the purpose of gaining in-
sight in the accurate prediction of the tuning the Stokes
resonant frequency in integrated monolithic diamond res-
onators. This was done with the purpose of employing
diamond resonators in quantum technology and spec-
troscopy. Unfortunately, the existing approximations for
the index of refraction render them insufficient for the
level of accuracy required in these applications.

When it comes to the refractive index of diamond,
there have been many works relative to the optical and
Raman properties of diamond, but there is a scarcity
of information regarding the index of refraction under
strong vibrational fields and at different temperatures.
Ruf et al.’s work provided valuable information in [7]
for estimating the thermo-optic coefficient, however it
did not take into account the overall contribution of the
different temperature-dependent vibrational modes that
can be produced in diamond and thus it needs to be ex-
panded.

We propose here an alternative methodology for mea-
suring and calculating the thermo-optic coefficient. Our
methodology includes the use of a monolithic single-
frequency FP diamond Raman resonator operating at
visible wavelengths. Here, the accurate measurement of
the output Stokes frequency as a function of temperature
allowed us to retrieve the temperature-dependent index
of refraction that produced a frequency shift in the Stokes
field output. For this method to be efficient, the use
of diamond Raman monolithic resonators is important
because it provides an ultra-stable environment that de-
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pends exclusively on the resonator opto-mechanical prop-
erties and not the pumping laser characteristics or the
environment.

Stimulated Raman Scattering (SRS) provides key ad-
vantages when compared to other resonant measurement
methods: first, it is not subjected to spatial hole burning
and therefore it produces an intrinsically stable single-
frequency output [9], and second, it is an automatically
phase-matched nonlinear process. This means that there
is no direct relation between the phases of pump and
Stokes waves, and therefore many characteristics of the
Stokes output are correlated with the material proper-
ties rather than the pump laser allowing us to study the
material in a decorrelated manner.

II. MEASUREMENT PRINCIPLE

In terms of using the diamond bulk as a Raman laser
material, its unique optical properties enabled the de-
velopment of lasers operating over a wide spectrum due
to its giant Raman frequency shift (1332 cm-1), large
Raman gain (>40 cm/GW @ 532 nm) and ultra-wide
transparency window (from DUV all the way to the
THz, except for a lossy window from 2.6 – 6 µm due to
multiphonon-induced absorption [10–15]). Furthermore,
the excellent thermal properties afforded by diamond
(unsurpassed thermal conductivity of 1800 W/m/K at
300 K and low thermo-optic coefficient of the order of
10-5 K-1) along with negligible birefringence [16] make
it an ideal material for high-power Raman lasing with
greatly reduced thermal lensing effects at the kW aver-
age power level [17].

The generation of single longitudinal mode (SLM) or
narrow linewidth light via SRS in diamond remained
elusive until relatively late [9, 18–21]. Such bulk cav-
ity systems also require precise alignment, elaborated
feedback loops and maintenance of optical components
for the laser to function robustly. The further inte-
gration of SLM Raman lasers in diamond was recently
demonstrated in [22], showing that by embedding the
laser resonator in the Raman media, it was possible
to produce frequency stable output from a Fabry-Pérot
(FP) diamond resonator without the need of external
mechanical feedback loops to control the cavity length.
Moreover, these resonators performed complex functions
such as ”linewidth squeezing” when pumped by few
GHz linewidth multi-mode lasers. Such mechanism, sup-
ported by phonon-resonant Raman interactions, directly
enhanced the available power spectral density (PSD) of
broadband nanosecond lasers by several orders of magni-
tude.

The frequency stabilization of these FP diamond res-
onators was carried out by adjusting the temperature of
the diamond substrate, which simultaneously influenced
the index of refraction, size, and Raman shift of the Ra-
man resonator [23]. In this work we shine light into that
complex interplay of thermo-optical and Raman effects

by study their dependency on temperature, allowing us to
construct a theoretical model capable of predicting with
accuracy the resonating Stokes frequency. Our model is
accompanied by an experimental demonstration showing
excellent agreement with the proposed theory.
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FIG. 1: Schematic depiction of: (a) main thermal
effects influencing the resonant Stokes frequency in a

monolithic Raman resonator, and (b) depicts the
temperature effect on the photon and optical phonon

energies.

We start by identifying the main factors affecting the
resonant Stokes frequency as well as their temperature
dependency. Those are depicted in Fig. 1, where we
have separated the temperature effects on the material
optical properties and size (Fig. 1(a)), and on the Ra-
man shift center frequency ωR (Fig. 1(b)). In terms of
the Stokes resonating frequency, the index of refraction
depends simultaneously on the temperature and the chro-
matic dispersion (n(T, λ)) due to the shifted Stokes wave-
length λ′S = λS +∆λ(T ). Note that all wavelengths used
in this work are in vacuum. The thermal expansion pro-
cess simultaneously affects the resonating wavelength due
to the variable boundary condition (the diamond length
L(T ) shifts to L(T + ∆T )). Likewise, the Raman shift
center frequency ωR(T ) tuning with temperature does
not establish the resonating wavelength nor the tuning
slope as a function of temperature but it does affect the
location of the boundaries of the longitudinal mode hop-
ping in frequency. We describe all these effects in detail
in the following sections, followed by the experimental
results.

III. SINGLE FREQUENCY OPERATION OF
MONOLITHIC FABRY-PÉROT DIAMOND

RAMAN RESONATORS

The production of single frequency resonant Stokes
fields depends on many factors, but most importantly
on the characteristics of the pump laser intensity, wave-
length and linewidth, the resonator optical length, and
the temporal envelope of the inter-playing pump and
Stokes pulses.

The temporal features of these laser fields – both in
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amplitude and phase on timescales shorter than the res-
onator round-trip time, is caused by the interference of
its spectral longitudinal modes. These modes, however,
generally vary in amplitude and phase on the timescale
of the round-trip time or slower. Since the longitudinal
modes vary slowly (much slower than the phonon dephas-
ing time, in diamond 6.8 ps), we can use steady-state Ra-
man theory, even if interference of the modes produces
structures that would need transient Raman theory if
modelled in the time domain. This approach has been
used widely used to analyze SRS with broad-band lasers
[24–30], and here we employ this method to model the
diamond Raman resonator.

To construct the frequency domain model we start by
writing the general equations for a fundamental field (or
’pump’) with 2m+ 1 modes spaced in frequency by ΩF ,
and a multi-mode Stokes field with 2m+ 1 modes spaced
in frequency by ΩF :

ẼF =

m∑

l=−m

Fle
i(ωF (l)t−kF (l)z) + cc (1)

ẼS =

m∑

l=−m

Sle
i(ωS(l)t−kS(l)z) + cc (2)

in which cc represents the complex conjugate of the
preceding term, ωS(l) = ωS(0) +ΩF l, and ωF (l) = ωF (0) +
ΩF l. In these equations, Sl and Fl are complex ampli-
tudes describing the amplitude and phase of the modes
travelling inside the diamond. The approximations for
the mode wavevector kF (l) ≈ kF (0) + ΩF l/uF accounts
for the group velocity difference between the fundamental
wavepackets, but neglect group velocity dispersion within
each wavepacket. And analogously for the Stokes field
the mode wavevector kS(l) ≈ kS(0) + ΩF l/uS .

In the following we assume that the central Stokes
mode S0 is centered within the Raman gain linewidth
so that it accesses the highest or monochromatic Raman
gain. Note that in our model the following identity is
always true:

ωF (l) = ωS(l) + ωR (3)

here ωR is the frequency of the Raman shift at the
line center. This, essentially, is to say that the modes
of fundamental and Stokes fields are paired. In order to
describe the coupling between this set of modes, we rely
on steady-state Raman formalism and write it in a non-
degenerate mode for four generic modes Fl1 , Fl2 , Sl3 and
Sl4 :

1

uS

∂Sl4
∂t
± ∂Sl4

∂z
∝ Fl1(F ∗l2Sl3) (4)

This was interpreted in [24] as two modes (F ∗l2Sl3) driv-
ing a phonon field and a third mode Fl1 scattering off
the phonon field to drive a fourth mode Sl4 . For funda-
mental and Stokes pulsed fields with many longitudinal
modes or broadband modes, in principle all types of in-
teractions can drive a polarization at the frequency of a
generic mode Sr2 , given that they satisfy the equation:

ωSr2 = ωFl1 − ωFl2 + ωSr1 (5)

Now equation (4) can be used as model to formulate
the amplification of a generic Stokes mode Sl and the
depletion of the fundamental modes Fl as a function of
the other three interacting modes as follows:

1

uS

∂Sl
∂t

+
∂Sl
∂z

= 2cnF ε0
g0

2

∑

r

∑

j

Fl−r(SjF
∗
j−r)

∆ωR
∆ωR − irΩF

ei(l−j)µ±ΩF )z (6)

1

uF

∂Fl
∂t

+
∂Fl
∂z

= −2cnF ε0
g0

2η

∑

r

∑

j

Sl−r(FjS
∗
j−r)

∆ωR
∆ωR + irΩF

ei(j−l)µ±ΩF )z (7)

The parameter µ± is the group delay difference per
meter between the fundamental and Stokes waves. The
positive part µ+ accounts for co-propagating waves or
forward SRS while the negative µ− for the backward SRS:

µ± =
1

uF
∓ 1

uS
(8)

Equations (6) and (7) account for all the possible in-

teractions between fundamental and Stokes modes. The
resulting spectra for the Stokes field is dependant on the
relative magnitudes of resonant and non-resonant terms.
The resonant terms (r = 0) have the phonon driving term
exactly resonant with the phonon frequency and can ac-
cess the highest gain, while other non-resonant interac-
tions have a detuning rΩF that reduces gain and causes
a phase rotation. For our model, both resonant and non-
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resonant interactions need to be taken into account since
∆ωR > ΩF .

Degenerate terms (j = l) have no phase mismatch
terms (∆k = 0) even in the presence of dispersion,
and because of the degeneracy these terms must always
have the correct phase to provide gain. Non-degenerate
modes, however, can be neglected in dispersive media
where the phase mismatch is ∆k ≈ (l − j)ΩFµ±, and so
these terms will oscillate in and out of phase with the
waves they drive. Here we assume that dispersion in di-
amond is large enough in the UV and visible spectral
ranges to neglect non-degenerate mixing modes without
loss of accuracy. With this approximation, we can rewrite
equations (6) and (7) forcing j = l. Likewise, for the
specific case of single longitudinal mode pumping, the
equations can be further simplified to:

1

uS

∂Sl
∂t

+
∂Sl
∂z

= 2cnF ε0
g0

2
F0(SlF

∗
0 )

∆ωR
∆ωR + ilΩF

(9)

1

uF

∂F0

∂t
+
∂F0

∂z
=

= −2cnF ε0
g0

2η

∑

r

Sr(F0S
∗
r )

∆ωR
∆ωR + irΩF

(10)

The term ∆ωR/(∆ωR − irΩF ) reduces the gain of off-
resonant terms by a Lorentzian factor 1 + (rΩF /∆ωR)2,
and therefore the most efficient interaction is always for
doubly-degenerate resonant interactions.

Let’s assume now that the combination of pump inten-
sity and resonator losses is adequate so that the amplifi-
cation is highly preferential for the central mode S0, and
is capable of effectively deplete the fundamental field.
This configuration will produce the minimal linewidth
for a given resonator round-trip loss. This can also occur
when the FSR of the diamond resonator is larger than
the effective Raman gain linewidth. A way of calculating
the resulting Stokes linewidth is by further simplifying
equations 9 and 10, by implying {Sl = 0 ∀ l 6= 0}:

1

uS

∂S0

∂t
+
∂S0

∂z
= 2cnF ε0

g0

2
|F0|2S0 (11)

1

uF

∂F0

∂t
+
∂F0

∂z
= −2cnF ε0

g0

2η
|S0|2F0 (12)

We can now use equation (11) and (12) to model
the dynamic interplay between fundamental and Stokes
waves in the Raman resonator when the fields are located
at the Raman gain line center. Intuitively, it is possible
to see in equation (11) that the temporal envelope of the
Stokes field depends only on the amplitude of the funda-
mental pumping pulse and not its phase, whereas the res-
onating Stokes wavelength will depend on the resonator
geometry and opto-mechanical characteristics. The re-
sulting Stokes linewidth, therefore, will be directly linked

to the temporal envelope and dispersion characteristics
of the resonator, being relatively straightforward the gen-
eration of nearly Fourier-limited pulses.

For the case of a temperature tuned Stokes frequency,
the mismatch between the Raman gain line center and
the resonating Stokes field will produce a reduced gain by
a factor 1 + (∆ωS(T )/∆ωR)2 due to the detuned Stokes
mode. Here ∆ωS(T ) is the frequency shift produced in
the resonator due to temperature. The calculation of this
shift is described in the next section.

IV. RELATIONSHIP BETWEEN THE STOKES
CENTER FREQUENCY AND THE

REFRACTIVE INDEX

Here we present a methodology for the calculation of
the Stokes frequency and its tuning slope for a generic
monolithic Raman resonator longitudinal mode and its
relation to the refractive index. The condition for reso-
nance within the diamond FP resonator is:

νS(T0) = q
c

2Leff(T0, νS)
(13)

where q is the mode number, c is the speed of
light in vacuum, and Leff(T0, νS) is the effective length
of the resonator at the Stokes resonating frequency
νS and at temperature T0. Leff can be calculated
as Leff(T0, νS) = L(T0)n(λS , T0), being n(λS , T0) the
wavelength-temperature dependent index of refraction,
and L(T0) the resonator physical length at temperature
T0. In [7], the temperature dependent part of the re-
fractive index nT (T ) was separated from the wavelength
dependent part nλ (λ). The two terms are added together
to give the total index of refraction as:

n (λ, T ) = n0
λ (λ) + nT (T ) (14)

We note that n0
λ (λ) refers to the Sellmeier equation

at 0 K and nT (T ) represents the change of index due
to temperature at a fixed wavelength. For small shifts
in temperature (∆T ) we can use a perturbation theory
approach to estimate the resulting wavelength shift of the
Stokes by:

λS(T0 + ∆T ) =
2

q

(
L(T0) +

∂L

∂T
∆T

)
·

·
(
n(T0, λS) +

∂n

∂T
∆T +

∂n

∂λ
∆λS

) (15)

Here the term ∂L/∂T can be expressed in terms of the
linear thermal expansion coefficient (α in the following)
as ∂L/∂T = αL(T0). The shift in wavelength can be
directly calculated by ∆λS = λS(T0 + ∆T ) − λS(T0).
The terms ∂n/∂T and ∂n/∂λ correspond to the thermo-
optic coefficient at T0 and the chromatic dispersion at
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λS , respectively. Here we assume that dispersion terms
do not change for small temperature increments ∆T .

Reorganizing equation (15) and neglecting second or-
der differential terms, we can obtain an approximate tun-
ing slope of the center Stokes wavelength as a function
of temperature:

∂νS
∂T

∣∣∣
T0

= −c
1
n
∂nT
∂T + α(T )

λS
(
1− λS

n
∂nλ
∂λ

) (16)

where c is the speed of light in vacuum, n the index
of refraction of diamond at the Stokes wavelength and
at temperature T0 and α(T ) the temperature dependent
thermal expansion coefficient of CVD diamond. Jacob-
son et al. modeled α(T ) in [31], having the following
form:

α(T ) =

n∑

i=1

XiE

(
Θi

T

)
(17)

where E(x) corresponds to the function given by:

E(x) =
x2ex

(ex − 1)
2 (18)

Experimental values for Xi and Θi can be found in
reference [31], and those are the ones used here for the
calculations.

Continuing, 1
n
∂nT
∂T is the thermo-optic coefficient. Typ-

ical values for this coefficient in the literature are approx-
imately 5× 10−6 K−1 [6].

The key part here is in the understanding of the tem-
perature dependent term nT (T ), which requires to iden-
tify the effects that influence it. In general, the index
of refraction depends on the lattice energy, which here
it is assumed proportional to the internal energy of the
system [32]. For diamond, it is possible to use a Bose-
Einstein distribution to describe the unit cell infra-red
active vibration [33]. As a consequence, we can refer to
the approximation of the temperature dependent index
of refraction as nT (T ) described in [7]:

nT (T ) = A

(
1

e
~ω0
kT − 1

+
1

2

)
(19)

with the first term being the Bose-Einstein distribu-
tion. Ruf et al. estimated the values of A and ~ω0 based
on fits of the data to their experimental measurements
[7]. Their results retrieved a value of A = 0.01902 and
an average phonon frequency of ~ω0 = 711 cm−1, in-
dependent of temperature. Even though the results in
that work fit well their experiments, the influence of the
thermal expansion of the lattice to the vibrational eigen-
frequencies was not taken into account, and neither its
contribution to the line shift of the average phonon fre-
quency ω0.

This effect is well known for other crystals such as sil-
icon but has yet to be studied experimentally for dia-
mond. In this work we follow a similar rationale to the
one described in [34], and we express the temperature-
dependent average phonon frequency that can be calcu-
lated as:

ω(T ) = ω0 + ∆(1)(T ) (20)

here ω0 is equivalent to the Raman shift at 0 K, and
∆(1)(T ) is the thermal-expansion contribution. Note that
we did not consider coupling of phonons to higher or-
der multi-phonon states, which in principle can have a
temperature dependency. In our simplified model, the
quantity ∆(1)(T ) is directly calculated by:

∆(1)(T ) = ω0

[
e−3γ

∫ T
0
α(T ′) dT ′ − 1

]
(21)

where γ is the Grüneisen parameter, and α(T ′) is the
coefficient of linear thermal expansion [34]. In practice,
we experimentally found values for ω(T ) by measuring
the tuning slope fitted it to equation (16) with high ac-
curacy.

When it comes to the wavelength dependent part of
the index of refraction nλ (λ), we are basing our model in
the most recent single-term Sellmeier equation found for
synthetic diamond [35]. The Sellmeier equation is usually
calculated at room temperature (300 K), however the
separable equation for the index of refraction in equation
(14) requires the index at absolute zero temperature. To
that end, we approximated n0

λ (λ) as follows:

n0
λ (λ) = nλ(λ)− nT (300) (22)

The factor nT (300) was calculated using equation (14)
at 300 K. This way we also guarantee that the index of
refraction is the one commonly known at room tempera-
ture.

In terms of the temperature dependence of the Raman
shift, it defines the spectral range where the monolithic
resonator will lase, although not the specific frequency
of the Stokes standing waves. Having this in mind, we
present here for completeness the dependency of the first
order phonon frequency (or Raman shift) on tempera-
ture. The Klemens anharmonic approximation assumes
that the zone-center phonon decays into two acoustical
phonons of opposite momentum is appropriate to de-
scribe the effects in the diamond lattice [36, 37]. In that
model the relaxation time τ is

τ ' 1 +
2

e
~
KT

ωR
2 − 1

(23)

where ωR is the Raman shift. The relaxation time τ
is proportional to the Raman linewidth ∆ωR and that
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later is linearly connected to the Raman shift [38]. The
temperature-dependent Raman shift is then given by:

ωR(T ) = 1332.7−AR
(

2

e
~ωR
2KT − 1

)
107

c
[cm-1] (24)

where AR depends on the dispersion lines of diamond
[38]. A fit to the experimental data shown in [39] resulted
in AR = 2.6 × 103 GHz. We are now ready to experimen-
tally measure ∂νS/∂T and fit it to our model, allowing
us to extract the thermo-optical coefficient of diamond.

V. EXPERIMENT

In order to confirm our method, we have setup an ex-
periment to analyze the Stokes resonant frequency in the
resonator as a function of temperature with high accu-
racy. From this data we can then relate the constants
and tuning slopes related physical parameters.

Δ𝑇<0.01℃Monolithic diamond 
Fabry-Pérot resonator

HWP1    HWP2 FL
PM

Beam 
profiler

PD

4 x Fizeau

100 𝑀𝐻𝑧

Stokes

Pump laser

PBS

Spectrum analyzer

L(T0)

FIG. 2: Schematic layout of the experimental setup: A
monolithic diamond resonator is pumped by a

frequency-doubled Q-switched Nd:YAG laser. The
output Stokes nanosecond pulse was characterized
temporally and spectrally with a set of four high

resolution Fizeau interferometers, and a photodiode
(PD) connected to a large bandwidth 16 GHz

oscilloscope. HWP1, HWP2: half-wave-plates, PBS:
polarizing beam splitter, FL: focusing lens, PM: power

meter.

A temperature adjustable monolithic FP diamond res-
onator was used in our experiments as the tool for mea-
suring the optical properties of diamond under stimu-
lated Raman scattering conditions. The Raman medium
was a synthetic diamond cuboid crystal with dimensions
of 7 × 2 × 2 mm3 (FSR @ 573 nm ≈ 8 GHz), plane-cut
for beam propagation along the 〈110〉 axis and end-faces
re-polished with a parallelism better than 0.5 µm/mm.
The experimental setup can be appreciated in Fig. 2.

Thanks to the high Raman gain of diamond at
532 nm, the Fresnel reflectivity of the un-coated surfaces
(R1, R2 ≈ 18%) was sufficient to ensure highly efficient
Raman operation. The diamond crystal was placed on
a copper mount inside a high precision oven (Covesion
Ltd), with a temperature standard deviation of less than

<10 mK. Note that the relatively small thermal expan-
sion coefficient of diamond [31, 40] and dispersion [41],
provided the necessary stability and robustness to per-
form our measurements accurately.

The pump is a frequency-doubled Nd:YAG 532 nm
laser generating 10 ns pulses at a repetition rate of 100 Hz
with an energy of 50 µJ. The pulses passed through
a power control system consisting in a half-wave-plate
(HWP1) and polarizing beam splitter (PBS). The po-
larization was controlled by means of another half-wave-
plate (HPW2), note that the SRS process efficiency de-
pends on polarization and is maximized when the pump
polarization angle is parallel to the 〈111〉 crystallographic
axis. The pump then arrives at the resonator and goes
through the SRS process.
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=
10

0
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H
z

FIG. 3: Active temperature stabilization of the Stokes
resonant frequency over more than 16 hours. The RMS
fluctuation of the Stokes frequency is less than 4 MHz.

Inset: measured Stokes field spectrum.

The pump was focused into the diamond crystal by
a 150 mm focal length lens (FL), producing a waist
of 50 ± 5 µm in diameter and a resulting intensity of
0.1 GW/cm2. After the generation of the 1st and 2nd

Stokes we used dichroics to filter the undesired Stokes
orders. The resulting 573 nm beamn was then guided to
the wavemeter, callibrated power meter (PM), photodi-
ode (PD) and beam profiler. The linewidth (FWHM) of
the 573 nm Stokes light was measured with a wavelength
meter LM-007 wavemeter and was 100 ± 20 MHz aver-
aged over ∼1000 shots (shown inset in Fig. 3), whereas
the center frequency deviation (δνS) had an RMS value
below < 4 MHz over more than 16 hours when actively
stabilized using temperature as shown in Fig. 3.

The results of the measurement of the resonating
Stokes wavelength with temperature are shown in Fig. 4
(a). The tests were carried out by adjusting the tempera-
ture setting of the oven in increments of 10 mK. The aver-
age frequency-temperature tuning slope within a FSR of
the resonator was approximately ∂νS/∂T ≈ - 2.3 GHz/K,
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whereas the temperature dependence of the first-order
Raman phonon line was about ∂νR/∂T ≈ +0.23 GHz/K.
This agrees reasonably with calculations resulting from
the Klemens model (≈ +0.2 to 0.25 GHz/K between 300
and 400 K).

a)

b) c)

FIG. 4: (a) Stokes center frequency (νS) detuning as a
function of measured diamond temperature. Dashed
blue line represents the tuning range (FSR) of the
Stokes frequency as a function of temperature. (b)

Measured tuning slope for each FSR as a function of
temperature. (dotted) Calculated tuning slope using

the model for the thermo-optic coefficient in [7]
(dashed) Fit using the model presented in this paper
using the temperature dependent phonon frequencies.

(c) Estimated average phonon frequencies as a function
of temperature.

Figure 4 (b) shows the measured slope in each FSR
as a function of temperature. It can be appreciated that
the overall tuning slope increases in absolute value as a
function of temperature due to the temperature depen-
dency of the thermo-optic coefficient. The slope in the
tuning curves varies significantly from -1.8 GHz/K to -
2.8 GHz/K in about 70 K. The experimental results are
compared with the model in [7] (dashed green line, con-
stant average phonon frequency ~ω0 ≈ 711 cm-1) and the
model presented in this work (solid blue, resulting from
using the estimated ω(T ) instead).

We used the values of the slope to estimate then the av-
erage phonon frequency ~ω(T ) of each FSR by fitting the

data to equation (16) infering the phonon frequency as
in equation (20). Figure 4 (c) shows the fitted values for
the phonon frequency ~ω(T ) for each FSR. From these
results we can see that the average phonon frequency un-
der strong SRS has a linear decreasing dependency with
temperature. The linear extrapolation shows a rate of
change of −0.9 ± 0.05 cm-1/K at the given temperature
range, starting at 805 ± 32 cm-1 at 300 K down to 740
cm-1 at 370 K.

Compare the fitted linearly decreasing tendency of the
phonon frequency with temperature with the predictions
calculated using equation (21). As it can be inferred, the
dependency should be relatively linear for small temper-
ature increments, where the lattice expands uniformly
in all directions and the thermal expansion coefficient is
nearly constant. The resulting phonon frequency then
linearly decays with temperature, which is expected by
approximating ω0e

−3γαT ≈ ω0(1 − 3γαT ). From this
trend it is then possible to estimate the Grüneisen pa-
rameter for diamond γ = 4715 and ~ω0 = 600 cm-1.
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FIG. 5: Calculated thermo-optic coefficient of diamond
as a function of temperature between 0 – 900 K using
the model presented in this work (red solid), and the

model presented in [7] (dotted blue). The experimental
measured range corresponds to 300 – 370 K.

We can now proceed to estimate the thermo-optic co-
efficient directly by derivating equation (19) with the
values measured for the temperature-dependent average
phonon frequency ~ω(T ). The result of this extrapola-
tion is shown in Fig. 5 (solid red), alongside with the
previously estimated values found in [7] (dashed blue).

It is clear that for the overall thermo-optic coefficient
at room temperature is approximately 3.5 × 10-6 for
both cases, however, for our model the second moment
of the index of refraction ∂2n/∂T 2 with respect to the
temperature is appreciably larger. Interestingly, the
range where the index of refraction is nonlinear is most
severe for temperatures in the range from 200–400 K.
Below 200 K, (1/n)∂n/∂T is nearly zero, whereas for
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values above 400 K it asymptotically tends to 8×10-6 K-1.

VI. CONCLUSIONS

In this work we studied the rate of change of the res-
onant Stokes wavelength inside a monolithic Raman res-
onator with temperature. We found that existing mod-
els for the temperature dependency of the refractive in-
dex correspond approximately to observed experimental
processes, however the accuracy in their predictions is
poorer in the 300 – 400 K range. Here, since ∂νS/∂T
depends directly on the thermo-optic coefficient, we pro-
posed to scan the temperature while measuring the res-
onant Stokes wavelength to re-calculate the thermal de-
pendency of the index of refraction. We call this ap-
proach ”the resonant Stokes field” method.

Regarding the flexibility of the proposed method, the
combination of very narrow spectral bandwidth and re-
sulting high spectral density from the resonator, along-
side with the large transparency range of diamond, make
it very versatile and useful at a large range of wavelengths
and temperatures. In fact, the modest requirements in
terms of resonator quality factors readily allow for stable
and portable operation readily usable in scientific appli-
cations.

Furthermore, we propose a model for estimating the
average lattice phonon frequency based on the thermal
expansion and the Grüneisen parameter. We showed that
for small temperature increments the dependency of av-
erage phonon frequency with temperature is linearly de-
creasing. We expect that the presented method and mea-
sured diamond thermo-optical parameters will be useful
for research related to the development of temperature-
sensitive integrated photonic devices in diamond.
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