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Abstract We examine the properties of ditauonium, an
exotic atom consisting of a pair of opposite-sign τ leptons
bound together by the quantum electrodynamics (QED) inter-
action in a hydrogen-like state. The energy levels, decay
modes and associated partial widths, as well as total widths
and lifetimes of the ortho- and para-ditauonium states are cal-
culated. Higher-order QED effects – including Lamb shifts,
hyperfine splitting structure, and partial decay widths cor-
rections – are incorporated up to approximately next-to-
next-to-leading-order (NNLO) accuracy. Beyond the dom-
inant diphoton and difermion decays, the rates of rare decay
channels – including Dalitz, radiative, triple-photon, double-
Dalitz, four-fermion, and neutrinos final states – are deter-
mined.

1 Introduction

Opposite-charge leptons (�± = e±, μ±, τ±) can form tran-
sient “onium” bound states under their quantum electrody-
namics (QED) interaction. Like for the hydrogen atom, the
various states of such exotic atoms feature a very rich spec-
troscopic structure arising from the relative spin orientation
of their two leptonic spin-1/2 constituents as well as from
various (fine and hyperfine) relativistic and quantum correc-
tions. Using the spectroscopic n2S+1L J notation (for princi-
pal quantum number n, total spin S = 0, 1, orbital angular
momentum L = 0, 1, 2, · · · ≡ S, P, D, . . . , and total angu-
lar momentum J = L ± 1, L for S = 1, and J = L for
S = 0), the leptonium ground state corresponds to the low-
est energy orbital with J = 0 and 1 for para- and ortho-
leptonium states, respectively. In the first case, spin-singlet
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para-leptonium states 11S0 have leptonic constituents with
antiparallel spins, they carry J PC = 0−+ quantum numbers
(where C and P are charge conjugation and parity, respec-
tively) and decay preferentially into two photons. In the sec-
ond case, triplet ortho-leptonium (13S1) states are composed
of leptons with parallel spins, have J PC = 1−−, and decay
into 3γ or, if kinematically accessible, into lighter �+ �− or
quark-antiquark (qq) final states.

Out of six possible exotic leptonic atoms, (e+e−), (μ±e∓),
(μ+μ−), (τ±e∓), (τ±μ∓), and (τ+τ−), only two of them
(e+e−, positronium) [1], and (μ±e∓, muonium) [2] have
been observed to date. The most well-known leptonium sys-
tem is positronium, whose spectroscopy has been thoroughly
studied as a means to provide stringent tests of QED [3], as
well as in searches for violations of the discrete CPT sym-
metries either singly or in various combinations [4,5]. The
muonic counterpart of positronium, called dimuonium or true
muonium (with the true adjective added to avoid confusion
with the muonium state), has never been observed [6], nor
the heaviest leptonium state, true tauonium or ditauonium.
This work focuses on this latter system that has been barely
investigated [7–9] since it was first suggested in [10–12], and
for which first feasibility studies for its measurement at e+e−
and hadron colliders have been recently proposed [13,14].

Since the tau lepton is ∼3500 and ∼17 times more massive
than the electron and muon, respectively, and since all the lep-
tonium basic properties (energy levels, decay widths) are pro-
portional to m�, ditauonium properties will be correspond-
ingly scaled by factors of about 3500 and 17 compared to their
lightest (positronium and dimuonium) siblings. In this light,
the investigation of ditauonium properties can provide, first,
new tests of QED and of CPT symmetries at much higher
masses or, equivalently, at much smaller distances compared
to precision studies of other exotic atoms. Secondly, ditauo-
nium features enhanced sensitivity to any physics beyond
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the standard model (BSM) at a scale �BSM that is either sup-
pressed by powers of O (m�/�BSM) or affected by hadronic
uncertainties, as is the case for, e.g., positronium or muonic-
hydrogen states, respectively. The comparison of positron-
ium, dimuonium, and ditauonium decays can thereby pro-
vide information complementary to any potential BSM effect
(such as e.g., lepton-flavor universality violation) observed
with the corresponding “open” leptons.

This paper presents, for the first time to our knowledge,
a detailed study of the main properties of ditauonium states
(energy levels, partial widths for all relevant decay modes,
as well as total widths and associated lifetimes) including
higher-order QED contributions. In Sects. 2 and 3 we present,
respectively, the basic leading-order (LO) expressions for
all quantities, followed by their more complete and accurate
results including higher-order QED corrections. The wave-
functions of the bound states at the origin are the physical
quantities of interest to perturbatively compute QED onium
spectroscopy properties. The LO wavefunctions are deter-
mined by solving the nonrelativistic Schrödinger equation
with the Coulomb potential. At LO, the square of the nS
wavefunctions at the radial origin (r = 0) depend on the
lepton mass and QED coupling, as1

|ϕnS(r = 0)|2 = (αmτ )
3

8πn3 . (1)

As we will see below, the zeroth-order energy levels and
decay rates are proportional to α2mτ and α5mτ , respectively.
Virtual next-to-leading-order (NLO) and next-to-next-to-
leading-order (NNLO) corrections given by one-loop Feyn-
man diagrams corrections to the Coulomb photon, i.e., the
nonrelativistic Uehling’s potential, have been theoretically
calculated for the light leptonium systems. Because of its
larger mass, the ditauonium system has accessible many
more decay channels that are kinematically forbidden in the
positronium and dimuonium cases, i.e., ditauonium has mul-
tiple higher-order real corrections that are nonexistent for
its lighter siblings. In this work, we compute for the first
time the full spectroscopic properties of ditauonium, includ-
ing real and virtual NLO plus (leading) NNLO corrections to
the energy levels (Lamb shifts of order α3mτ , and hyperfine
splittings proportional to α4mτ , respectively), as well as to
the decay rates (organising them as functions of zeroth-order
widths multiplied by (α/π) and (α/π)2 terms, respectively),
for the para and ortho states separately. The paper is closed
with a summary of the main results in Sect. 4.

1 Natural units, � = c = 1, are used throughout the paper.

2 Energy levels

As particle-antiparticle systems, leptonia are intrinsically
unstable against annihilation, and this feature makes them
markedly different compared to normal atomic systems. The
annihilation rates of leptonia are dependent on the overlap
of the lepton and antilepton wavefunctions and, therefore,
vary for different states. For leptonia in the ground state
(where L = 0), the singlet (S = 0) and triplet (S = 1)
states can only annihilate into even and odd numbers of pho-
tons respectively, because of the Landau–Yang selection rule
[15,16] and C symmetry. Thus, para-ditauonium annihilates
into two real photons via a t-channel process (Fig. 1, left
and center), whereas ortho-ditauonium does it into a pair of
charged fermions via an intermediate s-channel virtual pho-
ton (Fig. 1, right), or into three real photons via the t-channel
process (see Fig. 6 bottom right, later on).

As shown below, higher orbital states prefer to radiatively
decay to the ditauonium ground state(s) rather than do it
through τ+τ− annihilation. The following two subsections
present, respectively, the basic LO results and their higher-
order QED and relativistic corrections, of the energy levels
of the ditauonium spectrum.

2.1 Leading-order results

At LO, the energy levels of the exotic ditauonium atom can
be described by the Schrödinger equation with the Coulomb
potential, yielding the same Bohr expression for a hydrogen
atom with reduced mass mred = mτ /2,

En = −α2mred

2n2 = −α2mτ

4n2 ≈ −23.655 keV

n2 , (2)

where the last numerical expression is obtained using the
values of the tau lepton mass mτ and QED coupling at zero
momentum α listed in Table 1. The binding energy of the
ground state (n = 1) of true tauonium (T ) is, thus, En=1 =
−23.655 keV, and its mass is

mT = 2mτ + En=1 = 3553.696 ± 0.240 MeV, (3)

where the uncertainty is dominated by the current precision of
the tau lepton mass [17]. Note that the ∼23.65 keV binding
energy of the ditauonium ground states is about ten times
smaller than the current uncertainty of the central value of
the ditauonium mass itself.

The Bohr radius of the ditauonium ground-state is a0 =
2/(αmτ ) = 30.4 fm, and its Rydberg constant amounts to
R∞ = α/(4πa0) = 3.76 keV. Namely, ditauonium is the
smallest of all leptonium atoms, and has the largest “photon
ionization” energy among them, i.e., it is the most strongly
bound of all leptonia. The velocity of each tau in the nth Bohr
orbit is β = 1/(n mτa0) = α/(2n), which justifies the use
of nonrelativistic bound-state perturbation theory (NRQED)
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Fig. 1 LO diagrams of para- (left and center) and ortho- (right) ditauonium decays

Table 1 Values of the masses of the leptons and (approximate) con-
stituent quarks, tau lifetime, QED coupling, and hadronic photon vac-
uum polarization self-energy for N f = 3 quark flavours, 
α

(3)
had(m

2
T ),

and Rhad(m2
T ) ratio in e+e− collisions, both evaluated at the T mass

scale, used in this work [17]. The quoted value of 
α
(3)
had(m

2
T ) is com-

puted using alphaQED19 [18,19]

me (MeV) mμ (MeV) mτ (MeV) mu (MeV) md (MeV) ms (MeV) τ (fs) α 
α
(3)
had(m

2
T ) Rhad(m2

T )

0.51099895 105.6583745 1776.86 ± 0.12 335 340 490 290.3 ± 0.5 1/137.036 ≈0.0077 ≈2.2

Fig. 2 Leading-order energy
levels and lifetimes of the three
lowest (n = 1, 2, 3) para- (n1S0)
and ortho- (n3S1) ditauonium
states decaying into a pair of
photons and of lighter charged
fermions
( f f = e+e−, μ+μ−, qq),
respectively

[20] to calculate its properties as commonly done for the
lighter positronium and dimuonium systems.

Figure 2 shows the LO energy levels, determined from
Eq. (2), and the LO decay lifetimes determined as explained
in Sect. 3, for the three lowest ditauonium states (n = 1, 2, 3).
The excited spectrum is obtained considering that a n2S+1S1

ditauonium state can decay via an electric dipole transition,
which conserves the spin quantum number, to a n2S+1PJ

state with the emission of a photon with energy En ∝ α2mτ .
The radiative transitions from the 33S1 state to the 23P state,
as well as the transition from the latter to the 13S1 state, have
energies of

En′→n = α2mτ

4

(
n−2 − n′−2

)

=
{

−3.28 keV, for the n = 3 → 2 transitions,

−17.74 keV, for the n = 2 → 1 transitions.
(4)

Namely, the Lyman-α photon line of a ditauonium atom tran-
sitioning between the first excited (n = 2) and the ground

(n = 1) states has an energy of 17.74 keV.

2.2 Higher-order corrections

Equation (2) predicts that all ditauonium states sharing the
same principal quantum number n are degenerate in energy.
However, two types of higher-order corrections are known
to break such a degeneracy for QED bound states:

• The Lamb shift, due to loop quantum corrections of the
Coulomb potential, leads to energy shifts among different
L states (S, P, D,…) with the same principal quantum
number n.

• The hyperfine splittings (hfs) – due to relativistic cor-
rections, the (spin–spin) interaction of the magnetic
moments of the components of the bound system, and
spin-orbit interactions – lead to separations between sin-
glet and triplet states.
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2.2.1 Lamb shift

The Lamb shift is an energy splitting of order O(α3), i.e., it
is an NLO correction to the leading-order energy spectrum
given by Eq. (2), and can be computed via the expression


ELamb=
∫

d3rϕ∗(r)VU (r)ϕ(r), (5)

where ϕ(r) is the ditauonium wavefunction, and VU (r) is the
nonrelativistic Uehling’s potential characterizing difermion
insertions into the Coulomb’s photon propagator, which
is discussed in detail later around Eq. (23). Numerically,
accounting for the three lepton and quark loop contributions,
the energy corrections to the first levels read


E1S
Lamb = −115.4 eV, 
E2S

Lamb = −14.4 eV,


E2P
Lamb = −8.67 eV,


E3S
Lamb = −4.03 eV, 
E3P

Lamb = −2.25 eV,


E3D
Lamb = −1.10 eV. (6)

For the lowest 1S ditauonium states, we see that the Lamb
effect leads to a ∼115 eV downwards shift of their energy
levels. Namely, the ditauonium ground-state mass changes
from mT = 3553.6963 ± 0.2400 MeV (adding one extra
significant digit to Eq. (3) for visualization of the effect) to
mT = 3553.6962 ± 0.2400 MeV, an effect that is one thou-
sand times smaller than the current uncertainty of the ditauo-
nium ground-level mass (driven, as aforementioned, by the
current tau lepton mass precision). The uncertainties of the
numerical values listed in Eq. (6) from missing NLO correc-
tions to the Lamb shift (two-loop contribution to the Uelhing
potential) are of order O(α4 mτ ), and thus a factor of 10–
100 smaller than the values quoted. Such NNLO corrections
to the energy levels only impact the accuracy of the energy
shifts between states of different L , but not the splitting of
different J , S states. In the next section, we consider NNLO
corrections to the ditauonium energy spectrum that lead to
hyperfine splittings among energy levels with different J , S
quantum numbers.

2.2.2 Hyperfine splitting structure

The hyperfine structure of a bound state describes the split-
ting of the singlet and triplet energy levels, as schematically
displayed in Fig. 1 with the separatedn1S0 andn3S1 states. At
its lowest-order, the effect is proportional toO(α4 mτ ), i.e., it
is an NNLO correction to the leading-order energy spectrum
given by Eq. (2). The most generic theoretical expression for
the hfs QED corrections to true tauonium can be written as
an expansion in powers of (α/π) and α ln(1/α), as usually
done for the positronium case,


Ehfs = α4mτ

[
c00 + c10

( α

π

)
+ c20

( α

π

)2

+c21α2 ln(1/α) + c30

( α

π

)3 + c31

( α

π

)3
ln(1/α)

+c32

( α

π

)3
ln2(1/α)

]
, (7)

where ci j indicates the coefficient of the term proportional
to the αi ln j (1/α) correction. All dependencies of the hfs
corrections to mass scales other than mτ are incorporated
into the ci j coefficients. The lowest-order coefficient c00 can
be determined for any state n2S+1L J with discrete parity
P = (−)L+1 and charge C = (−)L+S quantum numbers,
via the following generic expression [21,22],

c00(n2S+1L J ) = 11

64n4 + δS1

n3

(
7

12
δL0 + 1 − δL0

4(2L + 1)
BJ L

)

− 1

2n3(2L + 1)
, withBJ L =

⎧⎪⎨
⎪⎩

3L+4
(L+1)(2L+3)

for J = L + 1,

− 1
L(L+1)

for J = L ,

− 3L−1
L(2L−1)

for J = L − 1,

(8)

where δi j is the delta Kronecker symbol. Using this formula,
the leading hfs energy shifts for the S and P ditauonium states
amount numerically to:


Ehfs(1
1S0) = −1.653 eV,


Ehfs(1
3S1) = +1.286 eV,
Ehfs(2

1S0) = −0.261 eV,


Ehfs(2
3S1) = +0.107 eV,
Ehfs(2

1P1) = −0.051 eV,


Ehfs(2
3P0) = −0.156 eV,
Ehfs(2

3P1) = −0.077 eV,


Ehfs(2
3P2) = −0.014 eV,
Ehfs(3

1S0) = −0.083 eV,


Ehfs(3
3S1) = +0.026 eV,
Ehfs(3

1P1) = −0.020 eV,


Ehfs(3
3P0) = −0.052 eV, (9)


Ehfs(3
3P1) = −0.028 eV,
Ehfs(3

3P2) = −0.0095 eV.

From these results, one can see, first, that the energy split-
tings of the S-wave family are positive (negative) for the n3S
(n1S) states, whereas the mass hierarchy in the P waves start
with n3P2, followed by n1P1 and n3P1, with the lightest state
being n3P0. Figure 3 displays the ditauonium mass spectrum
including the higher-order effects due to Lamb shifts, Eq. (6),
and leading contributions to the hfs structure, Eq. (9), com-
puted here.

Calculations exist for the higher-order hfs ci j coefficients
of Eq. (7) for (i, j) �= (0, 0), in the case of positronium
and dimuonium [23–25]. Such higher-order ci j coefficients
are of order unity but suppressed by increasing powers of
(α)i ln j (1/α), and therefore they are numerically in the sub-
eV range. Given the short lifetimes of the ditauonium systems
and the difficulty to produce them in very large quantities for
experimental study [13,14], it is unlikely that one will ever be
able to carry out such accurate spectroscopic studies of their
higher-order hyperfine splitting structure. For this reason,
we just retain the first term of Eq. (7), 
Ehfs = α4 mτ · c00,
that indicates an ortho- minus para-state energy difference of
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Fig. 3 Schematic
representation of the ditauonium
mass spectrum with the effects
of the Lamb shift and leading
hyperfine splitting contributions
shown. For each state n2S+1L J ,
we also list their associated
(J PC ) quantum numbers. The
sizes of each individual Lamb
and hyperfine splitting are listed
in Eqs. (6) and (9), respectively


E3S−1S
hfs = 1.286 + 1.653 ≈ 2.94 eV for the ditauonium

ground states.

3 Decay widths, branching fractions, and lifetimes

Two main differences separate ditauonium from its light-
est relatives positronium and dimuonium: the much larger
mass and much shorter lifetime of its constituents leptons.
First, the significantly more massive ditauonium system has
accessible decays to lighter fermion pairs that are kinemat-
ically forbidden in the positronium and dimuonium cases.
Indeed, ortho-ditauonium can decay into five different pairs
of standard model (SM) charged fermions,2 (τ+τ−)1 → f f
(with f = e, μ, u, d, s) via the annihilation of both con-
stituent τ leptons into an intermediate single photon (Fig. 1,
right), whereas ortho-positronium can decay to none (except
to νν with negligible branching ratio [26,27], if one considers
all fermions and not just the charged ones, see Sect. 3.3.2),
and ortho-dimuonium can only decay to e+e− pairs. Sim-
ilarly, para-ditauonium has higher-order (τ+τ−)0 → γ f f
Dalitz decays that are not possible in the positronium and
dimuonium cases. This opens up multiple different decay
partial widths for the ditauonium states, which increase by
a few percent their total width compared to just consider-

2 The cc decay is not kinematically accessible because the lightest
charm (D) mesons have masses that are more than half the ditauo-
nium mass. It is however possible for ditauonium to decay into light
charmonium states plus a photon (such as (τ+τ−)0 → J/ψ + γ and
(τ+τ−)1 → ηc + γ ) [14]. However, such modes are suppressed by
a O(αv3

c ) factor (where vc is the relatively low velocity of the bound
charm quarks) and a small phase space compared to the leading decay
channels, and are therefore ignored here.

ing their leading diphoton and difermion decays as we show
below. Second, whereas positronium is constituted by a pair
of e+e− that are each one of them individually stable, and
whereas the μ± in dimuonium have very large lifetimes
(τ = 2.197 µs) for particle physics standards, the τ leptons
composing ditauonium are short-lived objects (τ = 290.3 fs)
that can individually decay weakly before their bound sys-
tem itself does. When any of the two tau leptons decays
through the weak interaction, the bound state disappears with
an effective decay width3 of

�(2)τ→X = 2/τ = 0.004535 ± 0.000008 eV. (10)

As we show below, this leaves only the two lowest ditauo-
nium states as those that can form actual bound states before
their inner leptons decay freely.

The subsections below present the leading- and higher-
order QED corrections for the para- and ortho-ditauonium
decays. Electroweak corrections are comparatively sup-
pressed by an O(α7mτ ) factor [28], and neglected here.
Higher quantum-chromodynamics (QCD) corrections
impact decay modes involving quark-antiquark pairs, and
they are either phenomenologically incorporated into the
computed ortho-ditauonium decays through the experimen-
tally measured Rhad ratio of hadronic to dimuon cross sec-
tions in e+e− collisions, or suppressed by at least a factor
of αα s with respect to the leading decay width in the para-
ditauonium case, and also neglected hereafter.

3 Numerical conversion of lifetimes and widths in natural units is done
via: � (eV) = 0.658212/τ (fs).
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3.1 Leading-order results

As shown in Fig. 1 (left and center), the dominant para-
ditauonium decay is into two photons. At zeroth order, the
diphoton decay rate of a spin-singlet bound state of principal
quantum number n is given by [21,22]

�(0)(n1S0 → γ γ ) = α5 mτ

2 n3

=

⎧⎪⎨
⎪⎩

0.018384 eV, for the n = 1 state

0.002298 eV, for the n = 2 state

0.000681 eV, for the n = 3 state

. (11)

Ortho-ditauonium decays preferentially into all pairs of
SM fermions lighter than half the ditauonium mass, 13S1 →
f f ( f = e, μ, u, d, s), through τ+τ− annihilation into an
intermediate single photon (Fig. 1, right) with LO partial
widths,

�(0)(n3S1 → f f )=Nc, f Q
2
f

α5 mτ

6 n3

(
1 + m2

f

m2
T

)√
1 − m2

f

m2
τ

,

(12)

where Q f = −1 for charged leptons and Q f = 2
3 ,− 1

3 ,− 1
3

for u, d, s quarks, respectively, and Nc, f is the number of
colours of the fermion, i.e., Nc, f = 1 for leptons and Nc, f =
Nc = 3 for quarks. Given the smallness of the electron and
muon masses compared to the tau one, the product of the
two last terms in Eq. (12) is basically unity for all numerical
purposes, and the zeroth-order dilepton decay width of ortho-
ditauonium reads

�(0)(n3S1 → e+e−, μ+μ−) = α5mτ

6n3

=

⎧
⎪⎨
⎪⎩

0.006128 eV, for the n = 1 state

0.000766 eV, for the n = 2 state

0.000227 eV, for the n = 3 state

. (13)

with decays into e+e− and μ+μ− basically happening at the
same rate. The values of the inclusive quark-pair decay par-
tial widths can be numerically derived from the same dilep-
ton expression above multiplied by the experimentally mea-
sured value of the ratio of hadronic to dimuon cross sec-
tions, Rhad ≡ σ(e+e− → γ ∗ → qq)/σ (e+e− → γ ∗ →
μ+μ−) ≈ ∑

q=u,d,s NcQ2
q evaluated at the ditauonium mass

scale. Namely,

�(0)(n3S1 → qq) = α5mτ

6n3 Rhad(m
2
T ) ≈ 2.2

α5mτ

6n3

=

⎧⎪⎨
⎪⎩

0.013482 eV, for the n = 1 state

0.001685 eV, for the n = 2 state

0.000499 eV, for the n = 3 state

, (14)

where the last approximate numerical equality uses the cur-
rent experimental value of the Rhad ratio (Table 1).

The total LO width of ortho-ditauonium – adding dielec-
tron, dimuon, and diquark decays – amounts thus to:

�(0)(n3S1) = 4.2
α5mτ

6n3

=

⎧⎪⎨
⎪⎩

0.025738 eV, for the n = 1 state

0.003217 eV, for the n = 2 state

0.000953 eV, for the n = 3 state.

. (15)

For excited states with L > 0, the overlap of the wave-
functions is zero resulting in preferential radiative decays to
lower 1S states rather than annihilation decays. The radiative
decay widths of the excited (3S and 2P) states can be derived
from the generic expressions for the ratios of decay widths
of true leptonium states,

�(0)(n1S0 → γ γ )

�(0)(2P → 1S)
=
(

3

2

)8 1

n3 = 25.6

n3 ,

�(0)(2P → 1S)

�(0)(3S → 2P)
=
(

5

3

)9

= 99.2 .

The partial decays widths from higher to lower orbitals are
thus given by

�(0)(2P → 1S) =
(

2

3

)8
α5mτ

2
,

�(0)(3S → 2P) =
(

2

5

)9 3α5mτ

4
. (16)

The annihilation partial decay widths of P-wave states are at
least of order O(α7) and thus comparatively negligible.

The zeroth-order results for the energy levels and leading
decays of ditauonium states are shown in Fig. 2, where the
lifetime has been derived from each width via τ = 1/�.
From this plot, we see first that only the two lowest-energy
levels, para-ditauonium 11S0 (with τ = 35.8 fs) and ortho-
ditauonium 13S1 (with τ = 25.6 fs) have lifetimes smaller
than half that of its constituent tau leptons (τ = 145.15 fs),
and can thereby form a transient bound state before the weak
decay of any of them. Second, one can observe that the
lifetimes of para- and ortho-states are relatively similar for
ditauonium, at variance with the positronium case where the
ortho-state can only kinematically decay into the 3-photon
mode (which is, at least, α times suppressed compared to the
para-positronium 2-photon decay) and thereby features three
orders-of-magnitude longer lifetime than the para-state.
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3.2 Para-ditauonium decay

3.2.1 Virtual NLO and (partial) NNLO corrections

Figure 4 shows the NLO virtual corrections to the dipho-
ton para-ditauonium partial width, �(n1S0 → γ γ ). They
include virtual photon exchanges between the tau leptons, as
well as modifications of the ditauonium wavefunction at the
origin, |ϕnS(0)|, due to vacuum polarization effects affecting
the common Coulomb potential of the two tau leptons and
that are effectively of order O(α/π). These latter effects are
indicated in the rightmost panel of Fig. 4 by the fermion loop
insertion to the Coulomb potential (dashed line) typical of
NRQED calculations [29]. Calculations for all these higher-
order corrections exist for the dimuonium case [7,28,30–33],
and are extended and applied to ditauonium in this section.

The radiative virtual QED corrections are given by the set
of four leftmost diagrams displayed in Fig. 4. These virtual
NLO corrections were exactly calculated in [34,35] for para-
positronium. In the nonrelativistic limit, the overall sum of
such diagrams amounts to a relative width correction of size


�NLO
virt.exch(n

1S0 → γ γ )

= CNLO
virt.exch

(α

π

)
�(0)(n1S0 → γ γ ), with

CNLO
virt.exch = −20 − π2

4
= −2.5326. (17)

The universality of the correction in this limit justifies its use
also for the para-dimuonium case [30,32], and hence also for
para-ditauonium in the present study.

The loop in the Coulomb’s photon propagator of Fig. 4
(right) represents modifications of order O(α/π) of the
wavefunction at the origin. For para-ditauonium, the correc-
tions incorporate all fermion loops, though they are domi-
nated by the contribution of the lightest electron loop. The
first approach to obtain this correction, according to the
expression


�NLO
Coul (n

1S0 → γ γ ) = 
|ϕnS(0)|2
|ϕnS(0)|2 �(0)(n1S0 → γ γ )

= CNLO,nS
Coul ·

(α

π

)
· �(0)(n1S0 → γ γ ), (18)

was performed in [7] and further improved in [30,32]. This
NLO coefficient for the nS para-ditauonium states can be
computed via the integral

CNLO,nS
Coul ·

( α

π

)
= −2a3

0

∫ +∞
0

d��2KnS(�)gnS(�) VU (a0�),

(19)

where, first, gnS(�) are the reduced Green’s functions of the
dimensionless radial variable � = r/a0 for the nonrelativistic

Coulomb potential, given by the following expressions for
the 1S and 2S states, respectively,

g1S(�) = −αm2
red

e−�

�

[
4�(ln 2� + γE ) + 4�2 − 10� − 2

]
, (20)

g2S(�) = αm2
red

e−�/2

2�

[
4�(�−2)(ln � + γE ) + �3−13�2 + 6� + 4

]
,

(21)

with γE ≈ 0.577216 the Euler’s constant, and where the
integration kernels read

K1S(�)=e−�, K2S(�) = e−�/2(1 − �/2). (22)

Secondly, the VU (r) function in Eq. (19) is the nonrelativis-
tic Uehling’s potential, characterizing polarization insertions
into the Coulomb’s photon propagator [30,32], given by

VU (r) = −
∑
f

Nc, f Q
2
f

( α

π

) ∫ 1

0
dv f

v2
f (1 − v2

f /3)

1 − v2
f

αe−λ f r

r
,

(23)

where v f is the integration variable defined as v2
f = 1 −

4m2
f /s, with s the square of the invariant mass of the fermion

pair in the loop, and where the effective Coulomb’s photon
mass λ f (with dimension L−1) takes the values,

λ f = 2m f√
1 − v2

f

, (24)

upon insertion of a fermion f loop. Such a potential is
known fully analytically expressed in terms of modified
Bessel functions and Bickley functions [36]. It is worth
mentioning that the integral’s kernel term proportional to
v2
f (1−v2

f /3)/(1−v2
f ) does not depend on m f and so do not

either the integration bounds. Hence, the mass dependence
on the type of loop mainly arises from λ f in the argument of
the exponential term. After cross-checking that with Eq. (19)
we can reproduce the same values of the NLO coefficients
derived for the para-dimuonium case in Refs. [30,32], we
determine the numerical coefficients

CNLO,1S
Coul = 5.805, and CNLO,2S

Coul = 4.429, (25)

for S-wave ditauonium by inserting in the loop all fermions
f = {e, μ, τ, u, d, s} with the masses listed in Table 1.
These Coulomb corrections are clearly dominated by the
electron loop (accounting for about 90% of the total value)
and, therefore, the relatively large uncertainties of the con-
stituent masses of the inserted light quarks are not numeri-
cally important.

In addition, virtual NNLO corrections related to the low
energy logarithmic contribution arising from spin-spin con-
tact interactions and pure orbit corrections in the Breit Hamil-
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Fig. 4 Representative diagrams of NLO virtual corrections of the para-
ditauonium diphoton width. The first four diagrams show radiative vir-
tual QED corrections, and the rightmost diagram represents the modi-

fications of the ditauonium wavefunction at the origin due to vacuum
polarization insertions (circle) into the Coulomb’s photon propagator
(dashed line)

tonian [22], which were first derived for para-positronium
[37,38], are found to amount to:


�NNLO
Breit (11S0 → γ γ ) = CNNLO

Breit

( α

π

)2
�(0)(11S0 → γ γ ),

with CNNLO
Breit = 2π2 ln(1/α) = 97.1217, (26)

for the n = 1 (valid also for n = 2) para-ditauonium case.

3.2.2 Real NLO and (partial) NNLO corrections

The higher-order real corrections to para-ditauonium decays
include, first, the splitting of one of the decay photons into any
kinematically allowed fermion-antifermion pair (dielectron,
dimuon, and light diquarks). The corresponding diagrams are
shown in the left and center panels of Fig. 5. Beyond this, the
rightmost panel of Fig. 5 shows the NNLO double photon
splitting into four fermions.

The Dalitz γ f f decay width can be calculated at the low-
est order as

�NLO
Dalitz(n

1S0 → γ f f )

= Nc, f Q
2
f

2α6mτ

9πn3

[
3 ln

(
mτ

m f
+
√

m2
τ

m2
f

− 1

)

−
(

4 − m2
f

m2
τ

)√
1 − m2

f

m2
τ

⎤
⎦ . (27)

Such a perturbative formula applies well for the f = e, μ
leptons, for which we find

�NLO
Dalitz(n

1S0 → γ e+e−) = 22.5414
2α6mτ

9πn3

= CNLO
Dalitz(e

+e−)
( α

π

)

×�(0)(n1S0 → γ γ ), with

CNLO
Dalitz(e

+e−) = 10.0184, (28)

�NLO
Dalitz(n

1S0 → γμ+μ−) = 6.55457
2α6mτ

9πn3

= CNLO
Dalitz(μ

+μ−)
( α

π

)

×�(0)(n1S0 → γ γ ), with

CNLO
Dalitz(μ

+μ−) = 2.9131.

(29)

For the quarks, we need in addition to sum over the three
quark flavour charges as follows,

�NLO
Dalitz(n

1S0 → γ qq)

= 2α6mτ

9πn3 Nc

∑
q

Q2
q

[
3 ln

(
mτ

mq
+
√
m2

τ

m2
q

− 1

)

−
(

4 − m2
q

m2
τ

)√
1 − m2

q

m2
τ

⎤
⎦

≈ 2α6mτ

9πn3

[
9π

2


α
(3)
had(m

2
T )

α
− 3

2
Rhad(m

2
τ )

]
= 11.6

2α6mτ

9πn3

= CNLO
Dalitz(qq)

( α

π

)
· �(0)(n1S0 → γ γ ) with CNLO

Dalitz(qq) = 5.16.

(30)

In the equation above, we have replaced the purely pertur-
bative expression with quark masses of the first line with
the second-line expression that employs the hadronic quan-
tities 
α

(3)
had(m

2
T ) and Rhad(m2

τ ) listed in Table 1, where the

hadronic running of the QED coupling, 
α
(3)
had(m

2
T ), can be

obtained from the experimental Rhad(s) ratio via dispersion
relations.

Finally, we compute the NNLO double-real correction
given by the “double Dalitz” diagram shown in Fig. 5 (right).
The partial widths can be cast into the following generic form:

�NNLO
2Dalitz(n

1S0 → f f f ′ f ′
)

= CNNLO
2Dalitz( f f f

′ f ′
)
(α

π

)2
�(0)(n1S0 → γ γ ) , (31)

with the values of CNNLO
2Dalitz( f f f

′ f ′
) calculated numerically

with the phase space integrator of HELAC- Onia [39,40],
and amounting to

CNNLO
2Dalitz(e

+e−e+e−) = 23.40,

CNNLO
2Dalitz(e

+e−μ+μ−) = 13.87,

CNNLO
2Dalitz(e

+e−qq)=12.07,

CNNLO
2Dalitz(μ

+μ−μ+μ−) = 1.66,

CNNLO
2Dalitz(μ

+μ−qq) = 2.74,

CNNLO
2Dalitz(qqq

′q ′)=0.83. (32)

In the above equation, the notation “qqq ′q ′” indicates the
sum of all four quark final states, including both same flavour
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Fig. 5 Left and center: Diagrams for Dalitz decays of para-ditauonium (NLO real corrections to the diphoton n1S0 width). Right: “Double Dalitz”
(4-fermions) NNLO real correction of the para-ditauonium decay

and different flavour channels. It is interesting to notice that
in the asymptotic heavy-mτ limit, the coefficients for the
same-flavour 4-lepton final states approach the results of the
expression

CNNLO
2Dalitz(�

+ �−�+ �−) = 4

9
ln2

(
mτ

m�

)
−ln

(
mτ

m�

)

+2 + O
(
m�

mτ

)
, (33)

with the double logarithm term matching that given in Refs.
[32,37,38] for positronium and dimuonium. Similarly, the
asymptotic formulas read,

CNNLO
2Dalitz(qqqq) =

∑
q=u,d,s

Q4
q

[
4

9
N 2
c ln2

(
mτ

mq

)
− N 2

c ln

(
mτ

mq

)

+2
(
1.0762(N 2

c − Nc) + Nc
)+ O

(
mq

mτ

)]
, (34)

for the same-flavour 4-quark final states, and,

CNNLO
2Dalitz( f f f

′ f ′
) = Q2

f Q
2
f ′ Nc, f Nc, f ′

[
4

9
ln

(
mτ

m f

)
ln

(
mτ

m f ′

)

+3

(
ln

(
mτ

m f

)
+ ln

(
mτ

m f ′

))
− 28.5 + O

(
m f

mτ

,
m f ′

mτ

)]
, (35)

for the generic different-flavour double-Dalitz case.

3.2.3 Combined higher-order corrections

The total annihilation decay width of para-ditauonium (we
focus just on the n = 1 state hereafter) can be written in a
compact form, by combining all previous results, as follows

�tot(1
1S0) =

(
1 + PNLO

1S,tot

( α

π

)
+ PNNLO�

1S,tot

( α

π

)2
)

�(0)(11S0).

(36)

The LO total annihilation decay width of para-ditauonium
has a single one-channel contribution, i.e.,

�(0)(11S0) = �(0)(11S0 → γ γ ), (37)

which is given by Eq. (11). The PNLO
1S,tot parameter accounts

for the numerical NLO coefficients derived in Eqs. (17), (18),
(25), (28), (29), and (30), i.e.,

PNLO
1S,tot = CNLO

virt.exch + CNLO,1S
Coul +

∑
f

CNLO
Dalitz( f f )

= −2.533 + 5.805 + 10.018 + 2.913 + 5.16 = 21.36,

(38)

where one can see that the largest higher-order contribution is
from the γ e+e− Dalitz decay, which accounts for about half
of all NLO corrections. PNNLO�

1S,tot is a numerical coefficient
accounting for the partial virtual and real NNLO corrections
given, respectively, by Eqs. (26), (31) and (32),

PNNLO�

1S,tot = CNNLO
Breit +

∑
f, f ′

CNNLO
2 Dalitz( f f f

′ f ′
)

= 97.12 + 54.57 = 151.69 . (39)

The corresponding values of all individual coefficients are
listed in Table 2.

To visualize the relative size of the real and virtual higher-
order corrections, Table 3 displays the partial annihilation
decay widths of para-ditauonium grouped by LO, NLO, and
NNLO contributions, where

�NLO
γ γ = �(0)

γ γ + 
�NLO
virt.exch + 
�NLO

Coul ,

and �NNLO
γ γ = �NLO

γ γ + 
�NNLO
Breit , (40)

and where �NLO
Dalitz and �NNLO

2Dalitz sum up, respectively, all indi-
vidual Dalitz and double-Dalitz decays. From these results,
a few quantitative facts can be highlighted: (i) altogether, the
higher-order corrections augment the total 11S0 annihilation
decay width by +5.0%, (ii) the virtual NLO+NNLO cor-
rections increase the dominant diphoton decay by +0.8%,
and (iii) the single- and double-Dalitz decays occur with a
combined B = 3.25% rate (over the total width including
single-τ weak decays, given by Eq. (41) below). Although the
impact of the higher-order effects computed here may seem
relatively small, the presence of final states with charged par-
ticles can facilitate the first experimental detection of para-
ditauonium as discussed in Refs. [13,14].

Table 4 summarizes all the properties of the 11S0 state
including all individual partial widths, up to the highest
NLO+NNLO� accuracy computed here, and associated
BX = �X/�tot branching fractions. The total ditauonium
width is determined by adding all individual partial widths
plus the effective width due to the weak tau decay, i.e.,
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Table 2 Coefficients for the sum of all NLO and partial NNLO corrections of each partial para-ditauonium decay channel, CNLO,NNLO
part , and final

PNLO
1S,tot and PNNLO�

1S,tot correction terms as defined in Eqs. (38) and (39) for its total annihilation decay width

CNLO
part : γ γ γ e+e− γμ+μ− γ qq PNLO

1S,tot CNNLO
part : γ γ 2e+e− e+e−μ+μ− e+e−qq 2μ+μ− μ+μ−qq qqq ′q ′ PNNLO�

1S,tot

3.2725 10.018 2.913 5.16 21.36 97.12 23.40 13.87 12.07 1.66 2.74 0.83 151.69

Table 3 Numerical values of the partial para-ditauonium decay widths grouped by individual LO, NLO, and NNLO contributions to its total width.
The last column gives the total NNLO para-ditauonium annihilation width

T state �
(0)
γ γ �NLO

γ γ �NLO
Dalitz �NNLO

γ γ �NNLO
2Dalitz �NNLO

γ γ+Dalitz+2Dalitz

11S0 0.018384 eV 0.018524 eV 0.000772 eV 0.018533 eV 5.42 · 10−6 eV 0.01931 eV

Table 4 Main properties (mass mX , J PC quantum numbers, total width �tot, lifetime, as well as partial decay widths �X and associated BX
branching fractions) of the lowest-energy para-ditauonium bound state computed in this work

T state mX (MeV) J PC �tot (eV) Lifetime (fs) Decay mode �X (eV) BX (%)

11S0 3553.696 ± 0.240 0−+ 0.02384 27.60 γ γ 0.018533 77.72

γ e+e− 4.28 · 10−4 1.79

γμ+μ− 1.24 · 10−4 0.52

γ qq 2.20 · 10−4 0.92

e+e−e+e− 2.32 · 10−6 0.0094

e+e−μ+μ− 1.38 · 10−6 0.0058

e+e−qq 1.20 · 10−6 0.0050

μ+μ−μ+μ− 1.65 · 10−7 0.00069

μ+μ−qq 2.72 · 10−7 0.0011

qqq ′q ′ 8.23 · 10−8 0.00035

(2)τ → X 0.004535 19.02

�tot = �NNLO
γ γ + �NLO

Dalitz + �NNLO
2Dalitz + �(2)τ→X , (41)

The last significant figures of all values listed in Table 4
have been rounded off to approximately match the associated
theoretical accuracy of each width. Theoretical uncertainties
due to missing higher-order corrections are very small for
the total width and main diphoton decay channel, as they
have been computed here including up to the most impor-
tant NNLO corrections. The uncertainty is therefore at the
NNLO level, (α/π)2 ≈ 10−4 accounting for O(10) coef-
ficient prefactors (this is a realistic order-of-magnitude esti-
mate, although partial cancellations between the complete set
of NNLO virtual and real corrections, which have not been
fully computed here, are not excluded). For the Dalitz γ f f
para-ditauonium decays, since they are LO for this mode,
their relative uncertainty is O(α/π) ≈ 10−2. The propa-
gated parametric uncertainty due to the tau mass precision is
around 7 · 10−5 for all quantities, which linearly depend on
mτ through the LO widths. The uncertainty of the tau decay
width due to the tau lifetime, Eq. (10), is around 2 · 10−3,
which propagates into 4·10−4 relative uncertainty of the para-
ditauonium total width. As one can see, theoretical uncertain-
ties (intrinsic and parametric) are very small and very likely

well beyond the reach of any potential experimental preci-
sion.

3.3 Ortho-ditauonium decays

3.3.1 Real and virtual NLO and (partial) NNLO corrections

Figure 6 shows the most important virtual and real higher-
order QED corrections to the LO ortho-ditauonium decay
width, �(13S1). They include virtual photon exchanges (two
top left panels), vacuum polarization loops of the annihi-
lating virtual photon (top third panel), and modifications of
order O(α/π) of the ditauonium wavefunction at the ori-
gin (top right panel) affecting the difermion partial width,
�(13S1) → f f . The bottom panels of the figure show real
radiative corrections (left and center) of the difermion decays,
and the 3-photon decay channel (right).

Let us deal first with the NLO virtual corrections to
the 13S1 wavefunction at the origin (Fig. 6, top right),
which can be calculated through fermion loop insertions
in the Coulomb’s photon propagator, as done for the para-
ditauonium case in Eq. (18),
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Fig. 6 Higher-order corrections to ortho-ditauonium 13S1 decays. The five leftmost diagrams show NLO virtual (top) and real (bottom)
bremsstrahlung corrections to the 13S1 difermion decays. Top right: Wavefunction at the origin corrections to the 13S1 difermion decays. Bottom
right: 3-photon decay


�NLO
Coul (1

3S1 → f f ) = 
|ϕ1S(0)|2
|ϕ1S(0)|2 �(0)(13S1 → f f )

= CNLO,1S
Coul

(α

π

)
�(0)(13S1 → f f ). (42)

Here, the CNLO,1S
Coul = 5.805 coefficient has the same numer-

ical value as computed before, Eq. (25).
We address next the ortho-ditauonium radiative correc-

tions. The two γ -emission diagrams in Fig. 6 (bottom left
and center) produce divergent infrared double logarithms that
need to be canceled out against similar terms produced by
the virtual correction diagrams shown in the three first top
panels of the figure. The real and virtual radiative corrections
can be calculated with the standard techniques by defining
x f ′ = m2

f ′/m2
τ , and ignoring power corrections of the form

O(αx f ), as follows:


�NLO
rad. (13S1 → f f (γ ))

=
⎧⎨
⎩−13

4
+ 1

3

∑
f ′

Q2
f ′Nc, f ′

[(
2 + x f ′

)�
(√

1 − x f ′ ln

(√
1 − x f ′ + 1√
1 − x f ′ − 1

))
−
(

10

3
+ 2x f ′

)]⎫⎬
⎭

×
(α

π

)
�(0)(13S1 → f f )

=
{

− 13

4
+ 1

3

∑
�=e,μ,τ

[
(2 + x�) �

(√
1 − x� ln

(√
1 − x� + 1√
1 − x� − 1

))
−
(

10

3
+ 2x�

)]
+2π


α
(3)
had(m

2
T )

α

}

×
(α

π

)
�(0)(13S1 → f f ) = CNLO

rad.

(α

π

)
�(0)(13S1 → f f ), with CNLO

rad. = 15.860. (43)

The first terms of this equation account for inclusive photon
exchanges/emissions and leptonic vacuum polarization loops
(the � symbol indicates the real part of the expression in
parenthesis), whereas the last term of the inner sum stands
for the hadronic vacuum polarization contributions of the
virtual photon at the ditauonium mass (i.e., for the N f = 3
hadronic loop contributions of the third top diagram of Fig. 6)
quantified by the 
α

(3)
had(m

2
T ) = 0.0077 term (Table 1).

Equation (43) determines the NLO contribution to the
ortho-ditauonium width from photon emissions and
exchanges inclusively. Here, next, we evaluate the size of
the contributions from 13S1 decays with photons explicitly
tagged or measured in the final state, shown in the bottom
(left and center) diagrams of Fig. 6, where a photon energy
cutoff needs to be introduced to avoid infrared divergences.
We restrict ourselves to the case of the dilepton decays4 with
one final-state photon, 13S1 → �+ �−γ . Collinear diver-
gences can be regularised by keeping the outgoing lepton
masses nonzero, while a threshold on the photon energy in
the ditauonium rest frame is required to remove soft diver-
gences, which we take as Eγ > E thr

γ ≈ O(m�). By intro-

ducing two variables, x� = m2
�/m

2
τ and ε = E thr

γ /mτ , the
partial width then reads,

4 Photon emission in ortho-ditauonium diquark decays are not con-
sidered here given that, first, they are suppressed by the square of the
smaller charges of the quarks compared to the leptons, and are further
complicated by the hadronization of the quarks that prevent a pertur-
bative calculation of a hadronic final state including a potential quark-
emitted photon.
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�(0)(13S1 → �+ �−γ ) =
[

11

4
− π2

3

+(2 − 4 ln 2) ln ε + (3/2 + 2 ln ε) ln x� − 3 ln 2

+O(ε, x�)

] (α

π

)
�(0)(13S1 → �+ �−), (44)

with the collinear ln x� and soft ln ε logarithms appear-
ing, and where we have ignored power corrections of order
O(ε, x�). We have also computed the full expression with
the ε and x� dependencies, which is a bit lengthy and we
refrain ourselves from writing it here. The numerical values
for ε = m�/mτ are

�(0)(13S1 → �+ �−γ )

= CNLO
�+ �−γ

(α

π

)
�(0)(13S1 → �+ �−), with

CNLO
�+ �−γ

=
{

245.13 for � = e,
23.76 for � = μ.

(45)

To estimate the size of the purely virtual NLO corrections of
ortho-ditauonium, we can combine Eqs. (43) and (45) and
determine the NLO partial width for 13S1 → �+ �− without
real photon emission (with an energy above m�), as follows,

�NLO(13S1 → �+ �−) =
[
�(0)(13S1 → �+ �−)

+
�NLO
rad. (13S1 → �+ �−(γ ))

+
�NLO
Coul (1

3S1 → �+ �−) − �(0)(13S1 → �+ �−γ )
]

=
[
1 +

(α

π

)
CNLO

virt.exch,�

]
�(0)(13S1 → �+ �−)

with

CNLO
virt.exch,� =

{−223.47 for � = e,
−2.092 for � = μ.

(46)

The leading NNLO virtual contribution from the wavefunc-
tion correction from the Breit Hamiltonian [22] is


�NNLO
Breit (n3S1 → f f ) =CNNLO

Breit

( α

π

)2
�(0)(n3S1 → f f ), with

CNNLO
Breit = −π2

3
ln (1/α) = −16.187. (47)

This (small) NNLO virtual correction is negative and will
slightly decrease the partial � f f (γ ) decay widths although,
as we see next, there are extra real NLO+NNLO contribu-
tions (3-photons and 4-fermions final states) that contribute
positively to the total ortho-ditauonium decay rate.

Figure 6 (bottom right) shows the 3-photon decay channel
of ortho-ditauonium, which is suppressed by an extra α factor
compared to the diphoton para-ditauonium decay given by
Eq. (11). At its lowest order, this partial decay width is

�(0)(n3S1 → γ γ γ ) = 2(π2 − 9) α6mτ

9π n3

= C3γ

(α

π

)
�(0)(n3S1), with C3γ = 4(π2 − 9)

3 · 4.2
= 0.2761.

(48)

The (infrared-finite) NLO virtual contribution of this channel
can be calculated by the standard perturbative techniques, and
amounts to


�NLO
virt.exch(n

3S1 → γ γ γ )

= −13.44
(α

π

)
�(0)(n3S1 → γ γ γ )

= CNLO
virt.exch,3γ

(α

π

)2
�(0)(n3S1),

with CNLO
virt.exch,3γ = −13.44 · C3γ = −3.71. (49)

The NLO correction from the wavefunction at the origin for
the 3-γ decay is


�NLO
Coul (n

3S1 → γ γ γ )

= CNLO,nS
Coul

(α

π

)
�(0)(n3S1 → γ γ γ )

= CNLO,nS
Coul,3γ

(α

π

)2
�(0)(n3S1) ,

with CNLO,nS
Coul,3γ = CNLO,nS

Coul · C3γ = 1.6026 for n = 1. (50)

One can see that the net effect of the NLO corrections to
the 3-photon decay, combining Eqs. (49) and (50), leads to a
small decrease (by about −1.8%) of this rate.

Finally, the ortho-ditauonium can also have 4-fermion
decay channels contributing at real NNLO accuracy to the
total width (Fig. 7). The partial widths can be again cast into
the following generic form

�NNLO
4 f (n3S1 → f f f ′ f ′

) = CNNLO
4 f ( f f f ′ f ′

)

×
(α

π

)2
�(0)(n3S1) , (51)

with the numerical values of the CNNLO
4 f ( f f f ′ f ′

) coeffi-
cients, derived with the help of HELAC- Onia [39,40], given
by

CNNLO
4 f (e+e−e+e−) = 40.0,

CNNLO
4 f (e+e−μ+μ−) = 30.3,

CNNLO
4 f (e+e−qq)=13.3,

CNNLO
4 f (μ+μ−μ+μ−) = 0.886,

CNNLO
4 f (μ+μ−qq) = 0.530

CNNLO
4 f (qqq ′q ′)=0.070. (52)
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Fig. 7 Representative Feynman
diagrams of (real NNLO)
ortho-ditauonium decays into
four fermions

3.3.2 Rare weak decays

Of the two spin states of ditauonium, only5 the ortho state can
decay weakly into a pair of neutrinos. The two amplitudes
that contribute to the decayT1 → ν�ν�, are W exchange in the
t channel and Z annihilation in the s-channel (Fig. 8). The Z
diagram is a tiny correction to the virtual photon annihilation
(Fig. 1, right), and there is a destructive interference between
the W and Z exchange amplitudes. The corresponding partial
widths were found negligible for positronium and dimuo-
nium – for positronium they are O(10−18) and O(10−21)

for decays into like- and unlike-flavour between the e+e−
and neutrinos respectively [27] –, but they are comparatively
enhanced by powers of the tau to electron (or muon) masses
for ditauonium, and it is worth to estimate their importance
here.

For ortho-ditauonium, the neutrino-pair decay widths read

�(0)(n3S1 → ντ ν̄τ ) = α5mτ

6n3

m4
τ

[
m2

W

(
m2

W + m2
τ

) (
1 − 4s2

w

)− (
2m2

W + m2
τ

) (
m2

Z − 4m2
τ

)
c2
w

]2

8s4
wc

4
wm

4
W

(
m2

W + m2
τ

)2 (
m2

Z − 4m2
τ

)2

= 2.147 · 10−6 · �(0)(n3S1 → e+e−),

�(0)(n3S1 → νeν̄e, νμν̄μ) = α5mτ

6n3

m4
τ

(
1 − 4s2

w

)2

8s4
wc

4
w

(
m2

Z − 4m2
τ

)2 = 7.015 · 10−9 · �(0)(n3S1 → e+e−),

where mW,Z are the W and Z boson masses, and sw and cw

are the sine and cosine of the Weinberg angle. Both channels
turn out to be also very rare for ditauonium due to the strong
suppression driven by the m4

τ /m
4
W,Z factors.

3.3.3 Combined higher-order corrections

The total annihilation decay width for n = 1 ortho-
ditauonium can be now obtained from all previous results
and written in the compact form

�tot(1
3S1) =

(
1 + ONLO

1S,tot

( α

π

)
+ ONNLO�

1S,tot

( α

π

)2
)

�(0)(13S1),

(53)

where �(0)(13S1) is given in Eq. (15). The coefficient
ONLO

1S,tot sums up all numerical NLO coefficients derived in

5 This holds assuming that neutrinos are massless, and without emission
of photons in the potential para-ditauonium decay process.

Eqs. (42), (43), and (48), namely

ONLO
1S,tot = CNLO,1S

Coul + CNLO
rad. + C3γ = 5.805

+15.860 + 0.276 = 21.94 , (54)

whereas ONNLO�

1S,tot sums up the partial NNLO corrections
given by Eqs. (47), (49), (50), (51) and (52), as follows

ONNLO�

1S,tot = CNNLO
Breit + CNLO

virt.exch,3γ + CNLO,1S
Coul,3γ

+
∑
f, f ′

CNNLO
4 f ( f f f ′ f ′

) = −16.19 − 3.71 + 1.60 + 85.1

= 66.8 . (55)

The corresponding values of all individual coefficients are
listed in Table 5. Compared to the para-ditauonium case,
one can see that the size of the NLO corrections are
numerically very similar – the (α/π) prefactor coefficients

are PNLO
1S,tot = 21.36 from Eq. (38) vs. ONLO

1S,tot = 21.94 from
Eq. (54), respectively –, whereas the (small) NNLO correc-
tions are larger for the para- than for the ortho-state as one
can see comparing Eqs. (39) and (55). This implies that the
total NLO+NNLO� corrections increase by almost the same
amount, about 5.0%, the LO annihilation rates of both states.

Table 6 displays the partial annihilation decay widths of
ortho-ditauonium grouped by LO, NLO, and NNLO accu-
racies to visualize the relative size of the real and virtual
higher-order corrections, where we define

�NLO
�+ �−(γ )

=
∑

�=e,μ

[
�(0)(13S1 → �+ �−) + 
�NLO

rad. (13S1 → �+ �−(γ ))

+
�NLO
Coul (1

3S1 → �+ �−)
]
,

�NNLO
�+ �−(γ )

= �NLO
�+ �−(γ )

+
∑

�=e,μ


�NNLO
Breit (13S1 → �+ �−),

�NLO
qq(γ ) =

∑
q=u,d,s

[
�(0)(13S1 → qq) + 
�NLO

rad. (13S1 → qq(γ ))

+
�NLO
Coul (1

3S1 → qq)
]
,
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Fig. 8 LO diagrams of
ortho-ditauonium decays into
neutrinos

Table 5 Coefficients for the sum of all NLO and NNLO corrections
of each partial ortho-ditauonium decay channel, CNLO,NNLO

part , and final

ONLO
1S,tot and ONNLO�

1S,tot correction terms as defined in Eqs. (54) and (55) for

its total annihilation decay width. The numerical values for the exclu-
sive e+e−γ and μ+μ−γ modes are given for different threshold photon
energies, E thr

γ > me,μ respectively (see text for details)

CNLO
part : e+e− μ+μ− qq(γ ) γ γ γ e+e−γ μ+μ−γ ONLO

1S,tot
−53.21 −0.498 11.348 0.276 58.364 5.657 21.94

CNNLO
part : e+e− μ+μ− qq γ γ γ 4 f ONNLO�

1S,tot

−3.854 −3.854 −8.479 −2.107 85.1 66.8

Table 6 Numerical values of the partial ortho-ditauonium decay widths (in eV) grouped by individual LO, NLO, and NNLO contributions to its
total width. The last column gives the total NNLO� ortho-ditauonium annihilation width. For the �+ �−(γ ) partial widths, dielectron and dimuon
channels are added up

T state �
(0)

�+ �− �
(0)
qq �NLO

�+ �−(γ )
�NLO
qq(γ ) �

(0)
3γ �NNLO

�+ �−(γ )
�NNLO
qq(γ ) �NLO

3γ �NNLO
4 f �NNLO

f f (γ )+3γ+4 f

11S0 0.01226 0.0135 0.0129 0.0142 1.65 · 10−5 0.0129 0.0142 1.62 · 10−5 1.18 · 10−5 0.02706

�NNLO
qq(γ ) = �NLO

qq(γ ) +
∑

q=u,d,s


�NNLO
Breit (13S1 → qq),

�NLO
3γ = �(0)(13S1 → γ γ γ ) + 
�NLO

virt.exch(1
3S1 → γ γ γ )

+
�NLO
Coul (1

3S1 → γ γ γ ),

�NNLO
4 f =

∑
f, f ′

�(0)(13S1 → f f f ′ f ′
) . (56)

Table 7 lists all the properties of the 13S1 state computed
here. The total ortho-ditauonium width listed is determined
by adding all individual partial widths plus the effective width
due to the constituent tau weak decays, i.e.,

�tot = �NNLO
�+ �−(γ )

+ �NNLO
qq(γ ) + �NLO

3γ + �NNLO
4 f + �(2)τ→X ,

(57)

Our main findings about ortho-ditauonium decay rates can
be summarized as follows: (i) the radiative real and virtual
NLO corrections increase the difermion decays by +5.0%,
(ii) the virtual NNLO corrections are tiny and negative but
“compensated” in the total width by positive real NNLO
corrections from new 4-fermion channels that open up at
this level of accuracy (with combined branching fractions of
B ≈ 0.04%), and (iii) the decays into a pair of neutrinos
have O(10−7–10−9) rates. The ortho-ditauonium branching
fractions are thus dominated by decays into a pair of light
diquarks (with or without γ emission), Bqq(γ ) = 44.82%,
with the actual hadronic final states mostly consisting of a
few charged and neutral pions and/or, to a less extent, kaons.

The combined dilepton final states with or without photon
emission, 13S1 → e+e−(γ ), μ+μ−(γ ), have a branching
fraction ofB�+ �−(γ ) = 2×20.37% = 40.74%. The presence
in the ortho-ditauonium decays of final states with different
charged particles can facilitate the measurement of this exotic
atom, given that the experimental momentum and vertex res-
olutions are better for them than for photons [13,14].

As discussed for the para-ditauonium case, theoretical
uncertainties due to missing higher-order corrections for the
total width and main difermion decay channels are very
small, since we have computed them including up to the most
important NNLO corrections. The uncertainty is therefore at
the NNLO level, α2 ≈ 10−4 (this is a realistic order-of-
magnitude estimate, although partial cancellations between
the complete set of NNLO virtual and real corrections, which
have not been fully computed here, are not excluded). For the
decay to hadrons, the perturbative uncertainty is also NNLO
(i.e., 10−4), but the uncertainty of 
α

(3)
had(m

2
T ) and Rhad(m2

τ )

can propagate into a larger/dominant value. Since we have
provided the analytic result, Eq. (14), the numbers can be eas-
ily updated whenever the experimental value of Rhad(m2

τ ) is
refined. In all numerical evaluations, which linearly depend
on mτ via the LO widths, the propagated parametric uncer-
tainty due to the tau mass precision is around 7 · 10−5.
The uncertainty in the tau decay width propagates into a
3 · 10−4 relative uncertainty of the ortho-ditauonium total
width. Therefore, theoretical uncertainties (both of intrinsic
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Table 7 Main properties (mass mX , J PC quantum numbers, total
width �tot, lifetime, as well as partial decay widths �X and associ-
ated BX branching fractions) of the lowest-energy ortho-ditauonium
bound state computed in this work. The two inclusive decay modes

�+ �−(γ ) have been also broken-down into the exclusive modes �+ �−
and �+ �−γ (where the latter require threshold photon energies E thr

γ >

me,μ for the dielectron and dimuon channels, respectively, see text for
details)

T state mX (MeV) J PC �tot (eV) Lifetime (fs) Decay mode �X (eV) BX

13S1 3553.696 ± 0.240 1−− 0.03159 20.83 e+e−(γ ) 0.006436 20.37%

◦ e+e− 2.95 · 10−3 9.33%

◦ e+e−γ 3.49 · 10−3 11.04%

μ+μ−(γ ) 0.006436 20.37%

◦ μ+μ− 6.10 · 10−3 19.30%

◦ μ+μ−γ 3.38 · 10−4 1.07%

qq(γ ) 0.01416 44.82%

γ γ γ 1.62 · 10−5 0.051%

e+e−e+e− 5.55 · 10−6 0.0176%

e+e−μ+μ− 4.21 · 10−6 0.0133%

e+e−qq 1.85 · 10−6 0.0058%

μ+μ−μ+μ− 1.23 · 10−7 O(10−6)

μ+μ−qq 7.36 · 10−8 O(10−6)

qqq ′q ′ 9.73 · 10−9 O(10−7)

ντ ν̄τ 1.32 · 10−8 O(10−7)

νe ν̄e 4.30 · 10−11 O(10−9)

νμν̄μ 4.30 · 10−11 O(10−9)

(2)τ → X 0.004535 14.35%

and parametric nature) are very small, and very likely well
beyond the precision of any actual experimental measure-
ment.

4 Summary

We have presented the first study of the spectroscopic struc-
ture of the purely leptonic system consisting of two τ leptons,
bound by their mutual QED interaction, known as ditauo-
nium. First, the basic zeroth-order expressions for its energy
levels and dominant decay widths have been presented. The
ground state (1S) has a binding energy of −23.655 keV, lead-
ing to a ditauonium mass of mT = 3553.696 ± 0.240 MeV
(where the uncertainty is dominated by the current tau lep-
ton mass precision). Ditauonium decays dominantly through
annihilations into pairs of photons and of lighter charged
fermions for para- (11S0) and ortho- (13S1) states, respec-
tively. Secondly, QED corrections at NLO and (partially)
NNLO accuracy have been calculated for the energy levels
and for the rates of all decay modes kinematically accessible
at each level of accuracy. For the ground state, we find that the
Lamb shift decreases its binding energy by about 0.115 keV,
whereas the hyperfine splitting separates the para- and ortho-
states by O(3 eV).

A detailed study of all partial decay widths of para- and
ortho-ditauonium has been carried out. Including all NLO

and the most important NNLO corrections, the annihilation
decay widths of 11S0 and 31S1 ditauonium states increase
both by +5.0% compared to the LO results. The total decay
widths of the para and ortho ground states (adding in both
cases an effective width of �(2)τ→X = 0.004535 eV from
the weak decay of any of its constituent leptons) amount
to �NNLO�

tot = 0.02384 eV and 0.03159 eV, corresponding
to lifetimes of τ = 27.60 fs and 20.83 fs, respectively. In
the para-ditauonium case, its leading diphoton decay mode
receives +0.8% contributions from virtual NLO+NNLO
corrections, for a total final branching fraction of Bγ γ =
77.72%. The real NLO corrections for this decay correspond
to “Dalitz” final states, 11S0 → γ e+e−, γμ+μ−, γ qq
with branching ratios of Bγ f f = 1.79%, 0.52%, 0.92%,
respectively, whereas NNLO “double Dalitz” decays have
a tiny B f f f ′ f ′ = 0.02% combined rate. The presence of
final states with charged leptons, although at a few per-
cent rate, can facilitate the experimental observation of
para-ditauonium. The calculated ortho-ditauonium branch-
ing fractions in dilepton final states with or without pho-
ton emission, 13S1 → e+e−(γ ), μ+μ−(γ ), are B�+ �−(γ ) =
20.37% each, about half the rate expected for similar decays
with light diquarks, Bqq(γ ) = 44.82%. The existence of dif-
ferent charged-particle decay modes in the ortho-ditauonium
decays can also facilitate the measurement of this exotic
atom by exploiting the better experimental momentum and
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secondary vertex resolutions for e±, μ±, π±, and K± com-
pared to photons. Ortho-ditauonium decays into three pho-
tons or four fermions (combined) have tiny branching ratios
of B3γ, f f f f

′ ≈ 0.05% each, and decays into neutrinos are

at the O(10−7) level.
Ditauonium is the heaviest and most compact purely lep-

tonic “atomic” system and remains experimentally unob-
served to date. The results presented here are of usefulness
to carry out potential experimental measurements of its pro-
duction and studies of its properties at current and future
colliders via multiple different final states whose decay rates
have been quantified here for the first time. Concrete feasibil-
ity cases, beyond those described in [13], will be presented
in an upcoming work [14]. Ditauonium studies can provide
novel tests of bound-state QED that are sensitive to physics
beyond the standard model at higher energies than those of
its lighter siblings positronium and dimuonium.
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