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We examine the properties of ditauonium, an exotic atom consisting of a pair of opposite-sign τ leptons bound
together by the quantum electrodynamics (QED) interaction in a hydrogen-like state. The energy levels, decay
modes and associated partial widths, as well as total widths and lifetimes of the ortho- and para-ditauonium
states are calculated. Higher-order QED effects –including Lamb shifts, hyperfine splitting structure, and partial
decay widths corrections– are incorporated up to approximately next-to-next-to-leading-order (NNLO) accu-
racy. Beyond the dominant diphoton and difermion decays, the rates of rare decay channels –including Dalitz,
radiative, triple-photon, double-Dalitz, four-fermion, and neutrinos final states– are determined.

I. INTRODUCTION

Opposite-charge leptons (`± = e±, µ±, τ±) can form transient “onium” bound states under their quantum electrody-
namics (QED) interaction. Like for the hydrogen atom, the various states of such exotic atoms feature a very rich
spectroscopic structure arising from the relative spin orientation of their two leptonic spin-1/2 constituents as well as
from various (fine and hyperfine) relativistic and quantum corrections. Using the spectroscopic n2S +1LJ notation (for
principal quantum number n, total spin S = 0, 1, orbital angular momentum L = 0, 1, 2, · · · ≡ S,P,D, . . . , and total
angular momentum J = L ± 1, L for S = 1, and J = L for S = 0), the leptonium ground state corresponds to the
lowest energy orbital with J = 0 and 1 for para- and ortho-leptonium states, respectively. In the first case, spin-singlet
para-leptonium states 11S0 have leptonic constituents with antiparallel spins, they carry JPC = 0−+ quantum numbers
(where C and P are charge conjugation and parity, respectively) and decay preferentially into two photons. In the
second case, triplet ortho-leptonium (13S1) states are composed of leptons with parallel spins, have JPC = 1−−, and
decay into 3γ or, if kinematically accessible, into lighter `+ `− or quark-antiquark (qq) final states.

Out of six possible exotic leptonic atoms, (e+e−), (µ±e∓), (µ+µ−), (τ±e∓), (τ±µ∓), and (τ+τ−), only two of them (e+e−,
positronium) [1], and (µ±e∓, muonium) [2] have been observed to date. The most well-known leptonium system is
positronium, whose spectroscopy has been thoroughly studied as a means to provide stringent tests of QED [3], as
well as in searches for violations of the discrete CPT symmetries either singly or in various combinations [4, 5].
The muonic counterpart of positronium, called dimuonium or true muonium (with the true adjective added to avoid
confusion with the muonium state), has never been observed [6], nor the heaviest leptonium state, true tauonium or
ditauonium. This work focuses on this latter system that has been barely investigated [7–9] since it was first suggested
in [10–12], and for which first feasibility studies for its measurement at e+e− and hadron colliders have been recently
proposed [13, 14].

Since the tau lepton is ∼3500 and ∼17 times more massive than the electron and muon, respectively, and since
all the leptonium basic properties (energy levels, decay widths) are proportional to m`, ditauonium properties will
be correspondingly scaled by factors of about 3500 and 17 compared to their lightest (positronium and dimuonium)
siblings. In this light, the investigation of ditauonium properties can provide, first, new tests of QED and of CPT
symmetries at much higher masses or, equivalently, at much smaller distances compared to precision studies of other
exotic atoms. Secondly, ditauonium features enhanced sensitivity to any physics beyond the standard model (BSM)
at a scale ΛBSM that is either suppressed by powers of O (m`/ΛBSM) or affected by hadronic uncertainties, as is the
case for, e.g., positronium or muonic-hydrogen states, respectively. The comparison of positronium, dimuonium,
and ditauonium decays can thereby provide information complementary to any potential BSM effect (such as e.g.,
lepton-flavor universality violation) observed with the corresponding “open” leptons.

This paper presents, for the first time to our knowledge, a detailed study of the main properties of ditauonium
states (energy levels, partial widths for all relevant decay modes, as well as total widths and associated lifetimes)
including higher-order QED contributions. In Sections II and III we present, respectively, the basic leading-order
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(LO) expressions for all quantities, followed by their more complete and accurate results including higher-order QED
corrections. The wavefunctions of the bound states at the origin are the physical quantities of interest to perturbatively
compute QED onium spectroscopy properties. The LO wavefunctions are determined by solving the nonrelativistic
Schrödinger equation with the Coulomb potential. At LO, the square of the nS wavefunctions at the radial origin
(r = 0) depend on the lepton mass and QED coupling, as1

|ϕnS(r = 0)|2 =
(αmτ)3

8πn3 . (1)

As we will see below, the zeroth-order energy levels and decay rates are proportional to α2mτ and α5mτ, respectively.
Virtual next-to-leading-order (NLO) and next-to-next-to-leading-order (NNLO) corrections given by one-loop Feyn-
man diagrams corrections to the Coulomb photon, i.e., the nonrelativistic Uehling’s potential, have been theoretically
calculated for the light leptonium systems. Because of its larger mass, the ditauonium system has accessible many
more decay channels that are kinematically forbidden in the positronium and dimuonium cases, i.e., ditauonium has
multiple higher-order real corrections that are nonexistent for its lighter siblings. In this work, we compute for the
first time the full spectroscopic properties of ditauonium, including real and virtual NLO plus (leading) NNLO correc-
tions to the energy levels (Lamb shifts of order α3mτ, and hyperfine splittings proportional to α4mτ, respectively), as
well as to the decay rates (organising them as functions of zeroth-order widths multiplied by (α/π) and (α/π)2 terms,
respectively), for the para and ortho states separately. The paper is closed with a summary of the main results in
Section IV.

II. ENERGY LEVELS

As particle-antiparticle systems, leptonia are intrinsically unstable against annihilation, and this feature makes them
markedly different compared to normal atomic systems. The annihilation rates of leptonia are dependent on the overlap
of the lepton and antilepton wavefunctions and, therefore, vary for different states. For leptonia in the ground state
(where L = 0), the singlet (S = 0) and triplet (S = 1) states can only annihilate into even and odd numbers of photons
respectively, because of the Landau–Yang selection rule [15, 16] and C symmetry. Thus, para-ditauonium annihilates
into two real photons via a t-channel process (Fig. 1, left and center), whereas ortho-ditauonium does it into a pair
of charged fermions via an intermediate s-channel virtual photon (Fig. 1, right), or into three real photons via the
t-channel process (see Fig. 6 bottom right, later on).

FIG. 1: LO diagrams of para- (left and center) and ortho- (right) ditauonium decays.

As shown below, higher orbital states prefer to radiatively decay to the ditauonium ground state(s) rather than do
it through τ+τ− annihilation. The following two subsections present, respectively, the basic LO results and their
higher-order QED and relativistic corrections, of the energy levels of the ditauonium spectrum.

A. Leading-order results

At LO, the energy levels of the exotic ditauonium atom can be described by the Schrödinger equation with the
Coulomb potential, yielding the same Bohr expression for a hydrogen atom with reduced mass mred = mτ/2,

En = −
α2mred

2n2 = −
α2mτ

4n2 ≈ −
23.655 keV

n2 , (2)

1 Natural units, } = c = 1, are used throughout the paper.
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where the last numerical expression is obtained using the values of the tau lepton mass mτ and QED coupling at
zero momentum α listed in Table I. The binding energy of the ground state (n = 1) of true tauonium (T ) is, thus,
En=1 = −23.655 keV, and its mass is

m
T

= 2mτ + En=1 = 3553.696 ± 0.240 MeV, (3)

where the uncertainty is dominated by the current precision of the tau lepton mass [17]. Note that the ∼23.65 keV
binding energy of the ditauonium ground states is about ten times smaller than the current uncertainty of the central
value of the ditauonium mass itself.

TABLE I: Values of the masses of the leptons and (approximate) constituent quarks, tau lifetime, QED coupling, and hadronic
photon vacuum polarization self-energy for N f = 3 quark flavours, ∆α(3)

had(m2
T

), and Rhad(m2
T

) ratio in e+e− collisions, both evaluated
at the T mass scale, used in this work [17]. The quoted value of ∆α(3)

had(m2
T

) is computed using alphaQED19 [18, 19].

me (MeV) mµ (MeV) mτ (MeV) mu (MeV) md (MeV) ms (MeV) τ (fs) α ∆α(3)
had(m2

T
) Rhad(m2

T
)

0.51099895 105.6583745 1776.86 ± 0.12 335 340 490 290.3 ± 0.5 1/137.036 ≈0.0077 ≈2.2

The Bohr radius of the ditauonium ground-state is a0 = 2/(αmτ) = 30.4 fm, and its Rydberg constant amounts to
R∞ = α/(4πa0) = 3.76 keV. Namely, ditauonium is the smallest of all leptonium atoms, and has the largest “photon
ionization” energy among them, i.e., it is the most strongly bound of all leptonia. The velocity of each tau in the
n-th Bohr orbit is β = 1/(n mτa0) = α/(2n), which justifies the use of nonrelativistic bound-state perturbation theory
(NRQED) [20] to calculate its properties as commonly done for the lighter positronium and dimuonium systems.

FIG. 2: Leading-order energy levels and lifetimes of the three lowest (n = 1, 2, 3) para- (n1S0) and ortho- (n3S1) ditauonium states
decaying into a pair of photons and of lighter charged fermions ( f f = e+e−, µ+µ−, qq), respectively.

Figure 2 shows the LO energy levels, determined from Eq. (2), and the LO decay lifetimes determined as explained
in Section III, for the three lowest ditauonium states (n = 1, 2, 3). The excited spectrum is obtained considering that a
n2S +1S1 ditauonium state can decay via an electric dipole transition, which conserves the spin quantum number, to a
n2S +1PJ state with the emission of a photon with energy En ∝ α

2mτ. The radiative transitions from the 33S1 state to
the 23P state, as well as the transition from the latter to the 13S1 state, have energies of

En′→n =
α2mτ

4

(
n−2 − n′−2

)
=

 −3.28 keV, for the n = 3→ 2 transitions,
−17.74 keV, for the n = 2→ 1 transitions.

(4)

Namely, the Lyman-α photon line of a ditauonium atom transitioning between the first excited (n = 2) and the ground
(n = 1) states has an energy of 17.74 keV.
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B. Higher-order corrections

Equation (2) predicts that all ditauonium states sharing the same principal quantum number n are degenerate in
energy. However, two types of higher-order corrections are known to break such a degeneracy for QED bound states:

• The Lamb shift, due to loop quantum corrections of the Coulomb potential, leads to energy shifts among different
L states (S, P, D,...) with the same principal quantum number n.

• The hyperfine splittings (hfs) —due to relativistic corrections, the (spin-spin) interaction of the magnetic mo-
ments of the components of the bound system, and spin-orbit interactions— lead to separations between singlet
and triplet states.

1. Lamb shift

The Lamb shift is an energy splitting of order O(α3), i.e., it is an NLO correction to the leading-order energy
spectrum given by Eq. (2), and can be computed via the expression

∆ELamb =

∫
d3~rϕ∗(~r)VU(r)ϕ(~r), (5)

where ϕ(~r) is the ditauonium wavefunction, and VU(r) is the nonrelativistic Uehling’s potential characterizing
difermion insertions into the Coulomb’s photon propagator, which is discussed in detail later around Eq. (23). Numer-
ically, accounting for the three lepton and quark loop contributions, the energy corrections to the first levels read

∆E1S
Lamb = −115.4 eV, ∆E2S

Lamb = −14.4 eV, ∆E2P
Lamb = −8.67 eV,

∆E3S
Lamb = −4.03 eV, ∆E3P

Lamb = −2.25 eV, ∆E3D
Lamb = −1.10 eV. (6)

For the lowest 1S ditauonium states, we see that the Lamb effect leads to a ∼115 eV downwards shift of their energy
levels. Namely, the ditauonium ground-state mass changes from m

T
= 3553.6963 ± 0.2400 MeV (adding one extra

significant digit to Eq. (3) for visualization of the effect) to m
T

= 3553.6962 ± 0.2400 MeV, an effect that is one
thousand times smaller than the current uncertainty of the ditauonium ground-level mass (driven, as aforementioned,
by the current tau lepton mass precision). The uncertainties of the numerical values listed in Eq. (6) from missing
NLO corrections to the Lamb shift (two-loop contribution to the Uelhing potential) are of order O(α4 mτ), and thus a
factor of 10–100 smaller than the values quoted. Such NNLO corrections to the energy levels only impact the accuracy
of the energy shifts between states of different L, but not the splitting of different J, S states. In the next section, we
consider NNLO corrections to the ditauonium energy spectrum that lead to hyperfine splittings among energy levels
with different J, S quantum numbers.

2. Hyperfine splitting structure

The hyperfine structure of a bound state describes the splitting of the singlet and triplet energy levels, as schemat-
ically displayed in Fig. 1 with the separated n1S0 and n3S1 states. At its lowest-order, the effect is proportional to
O(α4 mτ), i.e., it is an NNLO correction to the leading-order energy spectrum given by Eq. (2). The most generic
theoretical expression for the hfs QED corrections to true tauonium can be written as an expansion in powers of (α/π)
and α ln(1/α), as usually done for the positronium case,

∆Ehfs = α4mτ

[
c00 + c10

(
α

π

)
+ c20

(
α

π

)2
+ c21α

2 ln(1/α) + c30

(
α

π

)3
+ c31

(
α

π

)3
ln(1/α) + c32

(
α

π

)3
ln2(1/α)

]
, (7)

where ci j indicates the coefficient of the term proportional to the αi ln j(1/α) correction. All dependencies of the hfs
corrections to mass scales other than mτ are incorporated into the ci j coefficients. The lowest-order coefficient c00 can
be determined for any state n2S +1LJ with discrete parity P = (−)L+1 and charge C = (−)L+S quantum numbers, via the
following generic expression [21, 22],

c00(n2S +1LJ) =
11

64n4 +
δS 1

n3

(
7
12
δL0 +

1 − δL0

4(2L + 1)
BJL

)
−

1
2n3(2L + 1)

, with BJL =


3L+4

(L+1)(2L+3) for J = L + 1,

− 1
L(L+1) for J = L,

− 3L−1
L(2L−1) for J = L − 1,

(8)
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where δi j is the delta Kronecker symbol. Using this formula, the leading hfs energy shifts for the S and P ditauonium
states amount numerically to:

∆Ehfs(11S0) = −1.653 eV, ∆Ehfs(13S1) = +1.286 eV, ∆Ehfs(21S0) = −0.261 eV, ∆Ehfs(23S1) = +0.107 eV,
∆Ehfs(21P1) = −0.051 eV, ∆Ehfs(23P0) = −0.156 eV, ∆Ehfs(23P1) = −0.077 eV, ∆Ehfs(23P2) = −0.014 eV,
∆Ehfs(31S0) = −0.083 eV, ∆Ehfs(33S1) = +0.026 eV, ∆Ehfs(31P1) = −0.020 eV, ∆Ehfs(33P0) = −0.052 eV, (9)
∆Ehfs(33P1) = −0.028 eV, ∆Ehfs(33P2) = −0.0095 eV.

From these results, one can see, first, that the energy splittings of the S-wave family are positive (negative) for the n3S
(n1S) states, whereas the mass hierarchy in the P waves start with n3P2, followed by n1P1 and n3P1, with the lightest
state being n3P0. Figure 3 displays the ditauonium mass spectrum including the higher-order effects due to Lamb
shifts, Eq. (6), and leading contributions to the hfs structure, Eq. (9), computed here.

FIG. 3: Schematic representation of the ditauonium mass spectrum with the effects of the Lamb shift and leading hyperfine splitting
contributions shown. For each state n2S +1LJ , we also list their associated (JPC) quantum numbers. The sizes of each individual
Lamb and hyperfine splitting are listed in Eqs. (6) and (9), respectively.

Calculations exist for the higher-order hfs ci j coefficients of Eq. (7) for (i, j) , (0, 0), in the case of positronium
and dimuonium [23–25]. Such higher-order ci j coefficients are of order unity but suppressed by increasing powers
of (α)i ln j(1/α), and therefore they are numerically in the sub-eV range. Given the short lifetimes of the ditauonium
systems and the difficulty to produce them in very large quantities for experimental study [13, 14], it is unlikely that
one will ever be able to carry out such accurate spectroscopic studies of their higher-order hyperfine splitting structure.
For this reason, we just retain the first term of Eq. (7), ∆Ehfs = α4 mτ · c00, that indicates an ortho- minus para-state
energy difference of ∆E3S−1S

hfs = 1.286 + 1.653 ≈ 2.94 eV for the ditauonium ground states.

III. DECAY WIDTHS, BRANCHING FRACTIONS, AND LIFETIMES

Two main differences separate ditauonium from its lightest relatives positronium and dimuonium: the much larger
mass and much shorter lifetime of its constituents leptons. First, the significantly more massive ditauonium system has
accessible decays to lighter fermion pairs that are kinematically forbidden in the positronium and dimuonium cases.
Indeed, ortho-ditauonium can decay into five different pairs of standard model (SM) charged fermions2, (τ+τ−)1 → f f

2 The cc decay is not kinematically accessible because the lightest charm (D) mesons have masses that are more than half the ditauonium mass. It
is however possible for ditauonium to decay into light charmonium states plus a photon (such as (τ+τ−)0 → J/ψ+ γ and (τ+τ−)1 → ηc + γ) [14].
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(with f = e, µ, u, d, s) via the annihilation of both constituent τ leptons into an intermediate single photon (Fig. 1,
right), whereas ortho-positronium can decay to none (except to νν with negligible branching ratio [26, 27], if one
considers all fermions and not just the charged ones, see Section III C 2), and ortho-dimuonium can only decay to
e+e− pairs. Similarly, para-ditauonium has higher-order (τ+τ−)0 → γ f f Dalitz decays that are not possible in the
positronium and dimuonium cases. This opens up multiple different decay partial widths for the ditauonium states,
which increase by a few percent their total width compared to just considering their leading diphoton and difermion
decays as we show below. Second, whereas positronium is constituted by a pair of e+e− that are each one of them
individually stable, and whereas the µ± in dimuonium have very large lifetimes (τ = 2.197 µs) for particle physics
standards, the τ leptons composing ditauonium are short-lived objects (τ = 290.3 fs) that can individually decay
weakly before their bound system itself does. When any of the two tau leptons decays through the weak interaction,
the bound state disappears with an effective decay width3 of

Γ(2)τ→X = 2/τ = 0.004535 ± 0.000008 eV. (10)

As we show below, this leaves only the two lowest ditauonium states as those that can form actual bound states before
their inner leptons decay freely.

The subsections below present the leading- and higher-order QED corrections for the para- and ortho-ditauonium
decays. Electroweak corrections are comparatively suppressed by an O(α7mτ) factor [28], and neglected here. Higher
quantum-chromodynamics (QCD) corrections impact decay modes involving quark-antiquark pairs, and they are either
phenomenologically incorporated into the computed ortho-ditauonium decays through the experimentally measured
Rhad ratio of hadronic to dimuon cross sections in e+e− collisions, or suppressed by at least a factor of αα s with respect
to the leading decay width in the para-ditauonium case, and also neglected hereafter.

A. Leading-order results

As shown in Fig. 1 (left and center), the dominant para-ditauonium decay is into two photons. At zeroth order, the
diphoton decay rate of a spin-singlet bound state of principal quantum number n is given by [21, 22]

Γ(0)(n1S0 → γγ) =
α5 mτ

2 n3 =


0.018384 eV, for the n = 1 state
0.002298 eV, for the n = 2 state
0.000681 eV, for the n = 3 state

. (11)

Ortho-ditauonium decays preferentially into all pairs of SM fermions lighter than half the ditauonium mass, 13S1 →

f f ( f = e, µ, u, d, s), through τ+τ− annihilation into an intermediate single photon (Fig. 1, right) with LO partial
widths,

Γ(0)(n3S1 → f f ) = Nc, f Q2
f
α5 mτ

6 n3

1 +
2m2

f

m2
T


√

1 −
m2

f

m2
τ

, (12)

where Q f = −1 for charged leptons and Q f = 2
3 ,−

1
3 ,−

1
3 for u, d, s quarks, respectively, and Nc, f is the number of

colours of the fermion, i.e., Nc, f = 1 for leptons and Nc, f = Nc = 3 for quarks. Given the smallness of the electron and
muon masses compared to the tau one, the product of the two last terms in Eq. (12) is basically unity for all numerical
purposes, and the zeroth-order dilepton decay width of ortho-ditauonium reads

Γ(0)(n3S1 → e+e−, µ+µ−) =
α5mτ

6n3 =


0.006128 eV, for the n = 1 state
0.000766 eV, for the n = 2 state
0.000227 eV, for the n = 3 state

. (13)

with decays into e+e− and µ+µ− basically happening at the same rate. The values of the inclusive quark-pair decay
partial widths can be numerically derived from the same dilepton expression above multiplied by the experimentally

However, such modes are suppressed by a O(αv3
c ) factor (where vc is the relatively low velocity of the bound charm quarks) and a small phase

space compared to the leading decay channels, and are therefore ignored here.
3 Numerical conversion of lifetimes and widths in natural units is done via: Γ (eV) = 0.658212/τ (fs).
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measured value of the ratio of hadronic to dimuon cross sections, Rhad ≡ σ(e+e− → γ∗ → qq)/σ(e+e− → γ∗ →
µ+µ−) ≈

∑
q=u,d,s NcQ2

q evaluated at the ditauonium mass scale. Namely,

Γ(0)(n3S1 → qq) =
α5mτ

6n3 Rhad(m2
T

) ≈ 2.2
α5mτ

6n3 =


0.013482 eV, for the n = 1 state
0.001685 eV, for the n = 2 state
0.000499 eV, for the n = 3 state

, . (14)

where the last approximate numerical equality uses the current experimental value of the Rhad ratio (Table I).
The total LO width of ortho-ditauonium —adding dielectron, dimuon, and diquark decays— amounts thus to:

Γ(0)(n3S1) = 4.2
α5mτ

6n3 =


0.025738 eV, for the n = 1 state
0.003217 eV, for the n = 2 state
0.000953 eV, for the n = 3 state.

. (15)

For excited states with L > 0, the overlap of the wavefunctions is zero resulting in preferential radiative decays to
lower 1S states rather than annihilation decays. The radiative decay widths of the excited (3S and 2P) states can be
derived from the generic expressions for the ratios of decay widths of true leptonium states,

Γ(0)(n1S0 → γγ)
Γ(0)(2P→ 1S)

=

(
3
2

)8 1
n3 =

25.6
n3 ,

Γ(0)(2P→ 1S)
Γ(0)(3S→ 2P)

=

(
5
3

)9

= 99.2 .

The partial decays widths from higher to lower orbitals are thus given by

Γ(0)(2P→ 1S) =

(
2
3

)8
α5mτ

2
, Γ(0)(3S→ 2P) =

(
2
5

)9 3α5mτ

4
. (16)

The annihilation partial decay widths of P-wave states are at least of order O(α7) and thus comparatively negligible.
The zeroth-order results for the energy levels and leading decays of ditauonium states are shown in Fig. 2, where

the lifetime has been derived from each width via τ = 1/Γ. From this plot, we see first that only the two lowest-energy
levels, para-ditauonium 11S0 (with τ = 35.8 fs) and ortho-ditauonium 13S1 (with τ = 25.6 fs) have lifetimes smaller
than half that of its constituent tau leptons (τ = 145.15 fs), and can thereby form a transient bound state before the
weak decay of any of them. Second, one can observe that the lifetimes of para- and ortho-states are relatively similar
for ditauonium, at variance with the positronium case where the ortho-state can only kinematically decay into the
3-photon mode (which is, at least, α times suppressed compared to the para-positronium 2-photon decay) and thereby
features three orders-of-magnitude longer lifetime than the para-state.

B. Para-ditauonium decay

1. Virtual NLO and (partial) NNLO corrections

Figure 4 shows the NLO virtual corrections to the diphoton para-ditauonium partial width, Γ(n1S0 → γγ). They
include virtual photon exchanges between the tau leptons, as well as modifications of the ditauonium wavefunction
at the origin, |ϕnS(0)|, due to vacuum polarization effects affecting the common Coulomb potential of the two tau
leptons and that are effectively of order O(α/π). These latter effects are indicated in the rightmost panel of Fig. 4 by
the fermion loop insertion to the Coulomb potential (dashed line) typical of NRQED calculations [29]. Calculations
for all these higher-order corrections exist for the dimuonium case [7, 28, 30–33], and are extended and applied to
ditauonium in this section.

FIG. 4: Representative diagrams of NLO virtual corrections of the para-ditauonium diphoton width. The first four diagrams show
radiative virtual QED corrections, and the rightmost diagram represents the modifications of the ditauonium wavefunction at the
origin due to vacuum polarization insertions (circle) into the Coulomb’s photon propagator (dashed line).
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The radiative virtual QED corrections are given by the set of four leftmost diagrams displayed in Fig. 4. These
virtual NLO corrections were exactly calculated in [34, 35] for para-positronium. In the nonrelativistic limit, the
overall sum of such diagrams amounts to a relative width correction of size

∆ΓNLO
virt.exch(n1S0 → γγ) = CNLO

virt.exch

(
α

π

)
Γ(0)(n1S0 → γγ), with CNLO

virt.exch = −
20 − π2

4
= −2.5326. (17)

The universality of the correction in this limit justifies its use also for the para-dimuonium case [30, 32], and hence
also for para-ditauonium in the present study.

The loop in the Coulomb’s photon propagator of Fig. 4 (right) represents modifications of order O(α/π) of the
wavefunction at the origin. For para-ditauonium, the corrections incorporate all fermion loops, though they are dom-
inated by the contribution of the lightest electron loop. The first approach to obtain this correction, according to the
expression

∆ΓNLO
Coul (n

1S0 → γγ) =
∆|ϕnS(0)|2

|ϕnS(0)|2
Γ(0)(n1S0 → γγ) = CNLO,nS

Coul ·

(
α

π

)
· Γ(0)(n1S0 → γγ), (18)

was performed in [7] and further improved in [30, 32]. This NLO coefficient for the nS para-ditauonium states can be
computed via the integral

CNLO,nS
Coul ·

(
α

π

)
= −2a3

0

∫ +∞

0
d%%2KnS(%)gnS(%) VU(a0%), (19)

where, first, gnS(%) are the reduced Green’s functions of the dimensionless radial variable % = r/a0 for the nonrela-
tivistic Coulomb potential, given by the following expressions for the 1S and 2S states, respectively,

g1S(%) = −αm2
red

e−%

%

[
4%(ln 2% + γE) + 4%2 − 10% − 2

]
, (20)

g2S(%) = αm2
red

e−%/2

2%

[
4%(% − 2)(ln % + γE) + %3 − 13%2 + 6% + 4

]
, (21)

with γE ≈ 0.577216 the Euler’s constant, and where the integration kernels read

K1S(%) = e−%, K2S(%) = e−%/2(1 − %/2). (22)

Secondly, the VU(r) function in Eq. (19) is the nonrelativistic Uehling’s potential, characterizing polarization insertions
into the Coulomb’s photon propagator [30, 32], given by

VU(r) = −
∑

f

Nc, f Q2
f

(
α

π

) ∫ 1

0
dv f

v2
f (1 − v2

f /3)

1 − v2
f

αe−λ f r

r
, (23)

where v f is the integration variable defined as v2
f = 1 − 4m2

f /s, with s the square of the invariant mass of the fermion
pair in the loop, and where the effective Coulomb’s photon mass λ f (with dimension L−1) takes the values,

λ f =
2m f√
1 − v2

f

, (24)

upon insertion of a fermion f loop. Such a potential is known fully analytically expressed in terms of modified
Bessel functions and Bickley functions [36]. It is worth mentioning that the integral’s kernel term proportional to
v2

f (1−v2
f /3)/(1−v2

f ) does not depend on m f and so do not either the integration bounds. Hence, the mass dependence on
the type of loop mainly arises from λ f in the argument of the exponential term. After cross-checking that with Eq. (19)
we can reproduce the same values of the NLO coefficients derived for the para-dimuonium case in refs. [30, 32], we
determine the numerical coefficients

CNLO,1S
Coul = 5.805, and CNLO,2S

Coul = 4.429, (25)

for S-wave ditauonium by inserting in the loop all fermions f = {e, µ, τ, u, d, s} with the masses listed in Table I. These
Coulomb corrections are clearly dominated by the electron loop (accounting for about 90% of the total value) and,
therefore, the relatively large uncertainties of the constituent masses of the inserted light quarks are not numerically
important.
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In addition, virtual NNLO corrections related to the low energy logarithmic contribution arising from spin-spin
contact interactions and pure orbit corrections in the Breit Hamiltonian [22], which were first derived for para-
positronium [37, 38], are found to amount to:

∆ΓNNLO
Breit (11S0 → γγ) = CNNLO

Breit

(
α

π

)2
Γ(0)(11S0 → γγ), with CNNLO

Breit = 2π2 ln(1/α) = 97.1217, (26)

for the n = 1 (valid also for n = 2) para-ditauonium case.

2. Real NLO and (partial) NNLO corrections

The higher-order real corrections to para-ditauonium decays include, first, the splitting of one of the decay photons
into any kinematically allowed fermion-antifermion pair (dielectron, dimuon, and light diquarks). The corresponding
diagrams are shown in the left and center panels of Fig. 5. Beyond this, the rightmost panel of Fig. 5 shows the NNLO
double photon splitting into four fermions.

FIG. 5: Left and center: Diagrams for Dalitz decays of para-ditauonium (NLO real corrections to the diphoton n1S0 width). Right:
“Double Dalitz” (4-fermions) NNLO real correction of the para-ditauonium decay.

The Dalitz γ f f decay width can be calculated at the lowest order as

ΓNLO
Dalitz(n1S0 → γ f f ) = Nc, f Q2

f
2α6mτ

9πn3

3 ln

mτ

m f
+

√
m2
τ

m2
f

− 1

 −
4 − m2

f

m2
τ


√

1 −
m2

f

m2
τ

 . (27)

Such a perturbative formula applies well for the f = e, µ leptons, for which we find

ΓNLO
Dalitz(n1S0 → γe+e−) = 22.5414

2α6mτ

9πn3 = CNLO
Dalitz(e+e−)

(
α

π

)
· Γ(0)(n1S0 → γγ), with CNLO

Dalitz(e+e−) = 10.0184, (28)

ΓNLO
Dalitz(n1S0 → γµ+µ−) = 6.55457

2α6mτ

9πn3 = CNLO
Dalitz(µ+µ−)

(
α

π

)
· Γ(0)(n1S0 → γγ), with CNLO

Dalitz(µ+µ−) = 2.9131. (29)

For the quarks, we need in addition to sum over the three quark flavour charges as follows,

ΓNLO
Dalitz(n1S0 → γqq) =

2α6mτ

9πn3 Nc

∑
q

Q2
q

3 ln

mτ

mq
+

√
m2
τ

m2
q
− 1

 −
4 − m2

q

m2
τ


√

1 −
m2

q

m2
τ


≈

2α6mτ

9πn3

9π
2

∆α(3)
had(m2

T
)

α
−

3
2

Rhad(m2
τ)

 = 11.6
2α6mτ

9πn3

= CNLO
Dalitz(qq)

(
α

π

)
· Γ(0)(n1S0 → γγ) with CNLO

Dalitz(qq) = 5.16. (30)

In the equation above, we have replaced the purely perturbative expression with quark masses of the first line with
the second-line expression that employs the hadronic quantities ∆α(3)

had(m2
T

) and Rhad(m2
τ) listed in Table I, where the

hadronic running of the QED coupling, ∆α(3)
had(m2

T
), can be obtained from the experimental Rhad(s) ratio via dispersion

relations.
Finally, we compute the NNLO double-real correction given by the “double Dalitz” diagram shown in Fig. 5 (right).

The partial widths can be cast into the following generic form:

ΓNNLO
2Dalitz(n1S0 → f f f ′ f

′
) = CNNLO

2Dalitz( f f f ′ f
′
)
(
α

π

)2
Γ(0)(n1S0 → γγ) , (31)
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with the values of CNNLO
2Dalitz( f f f ′ f

′
) calculated numerically with the phase space integrator of HELAC-Onia [39, 40], and

amounting to

CNNLO
2Dalitz(e+e−e+e−) = 23.40, CNNLO

2Dalitz(e+e−µ+µ−)=13.87, CNNLO
2Dalitz(e+e−qq)=12.07,

CNNLO
2Dalitz(µ+µ−µ+µ−) = 1.66, CNNLO

2Dalitz(µ+µ−qq)=2.74, CNNLO
2Dalitz(qqq′q′)=0.83. (32)

In the above equation, the notation “qqq′q′” indicates the sum of all four quark final states, including both same flavour
and different flavour channels. It is interesting to notice that in the asymptotic heavy-mτ limit, the coefficients for the
same-flavour 4-lepton final states approach the results of the expression

CNNLO
2Dalitz(`+ `−`+ `−) =

4
9

ln2
(

mτ

m`

)
− ln

(
mτ

m`

)
+ 2 + O

(
m`

mτ

)
, (33)

with the double logarithm term matching that given in Refs. [32, 37, 38] for positronium and dimuonium. Similarly,
the asymptotic formulas read,

CNNLO
2Dalitz(qqqq) =

∑
q=u,d,s

Q4
q

[
4
9

N2
c ln2

(
mτ

mq

)
− N2

c ln
(

mτ

mq

)
+ 2

(
1.0762(N2

c − Nc) + Nc

)
+ O

(
mq

mτ

)]
, (34)

for the same-flavour 4-quark final states, and,

CNNLO
2Dalitz( f f f ′ f

′
) = Q2

f Q2
f ′Nc, f Nc, f ′

[
4
9

ln
(

mτ

m f

)
ln

(
mτ

m f ′

)
+ 3

(
ln

(
mτ

m f

)
+ ln

(
mτ

m f ′

))
− 28.5 + O

(
m f

mτ
,

m f ′

mτ

)]
, (35)

for the generic different-flavour double-Dalitz case.

3. Combined higher-order corrections

The total annihilation decay width of para-ditauonium (we focus just on the n = 1 state hereafter) can be written in
a compact form, by combining all previous results, as follows

Γtot(11S0) =

(
1 + PNLO

1S,tot

(
α

π

)
+ PNNLO?

1S,tot

(
α

π

)2
)
Γ(0)(11S0). (36)

The LO total annihilation decay width of para-ditauonium has a single one-channel contribution, i.e.,

Γ(0)(11S0) = Γ(0)(11S0 → γγ), (37)

which is given by Eq. (11). The PNLO
1S,tot parameter accounts for the numerical NLO coefficients derived in Eqs. (17),

(18), (25), (28), (29), and (30), i.e.,

PNLO
1S,tot = CNLO

virt.exch + CNLO,1S
Coul +

∑
f

CNLO
Dalitz( f f ) = −2.533 + 5.805 + 10.018 + 2.913 + 5.16 = 21.36 , (38)

where one can see that the largest higher-order contribution is from the γe+e− Dalitz decay, which accounts for about
half of all NLO corrections. PNNLO?

1S,tot is a numerical coefficient accounting for the partial virtual and real NNLO
corrections given, respectively, by Eqs. (26), (31) and (32),

PNNLO?

1S,tot = CNNLO
Breit +

∑
f , f ′

CNNLO
2 Dalitz( f f f ′ f

′
) = 97.12 + 54.57 = 151.69 . (39)

The corresponding values of all individual coefficients are listed in Table II.

TABLE II: Coefficients for the sum of all NLO and partial NNLO corrections of each partial para-ditauonium decay channel,
CNLO,NNLO

part , and final PNLO
1S,tot and PNNLO?

1S,tot correction terms as defined in Eqs. (38) and (39) for its total annihilation decay width.

CNLO
part : γγ γe+e− γµ+µ− γqq PNLO

1S,tot CNNLO
part : γγ 2e+e− e+e−µ+µ− e+e−qq 2µ+µ− µ+µ−qq qqq′q′ PNNLO?

1S,tot

3.2725 10.018 2.913 5.16 21.36 97.12 23.40 13.87 12.07 1.66 2.74 0.83 151.69
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To visualize the relative size of the real and virtual higher-order corrections, Table III displays the partial annihilation
decay widths of para-ditauonium grouped by LO, NLO, and NNLO contributions, where

ΓNLO
γγ = Γ(0)

γγ + ∆ΓNLO
virt.exch + ∆ΓNLO

Coul , and ΓNNLO
γγ = ΓNLO

γγ + ∆ΓNNLO
Breit , (40)

and where ΓNLO
Dalitz and ΓNNLO

2Dalitz sum up, respectively, all individual Dalitz and double-Dalitz decays. From these results,
a few quantitative facts can be highlighted: (i) altogether, the higher-order corrections augment the total 11S0 anni-
hilation decay width by +5.0%, (ii) the virtual NLO + NNLO corrections increase the dominant diphoton decay by
+0.8%, and (iii) the single- and double-Dalitz decays occur with a combined B = 3.25% rate (over the total width
including single-τ weak decays, given by Eq. (41) below). Although the impact of the higher-order effects computed
here may seem relatively small, the presence of final states with charged particles can facilitate the first experimental
detection of para-ditauonium as discussed in Refs. [13, 14].

TABLE III: Numerical values of the partial para-ditauonium decay widths grouped by individual LO, NLO, and NNLO contribu-
tions to its total width. The last column gives the total NNLO para-ditauonium annihilation width.

T state Γ
(0)
γγ ΓNLO

γγ ΓNLO
Dalitz ΓNNLO

γγ ΓNNLO
2Dalitz ΓNNLO

γγ+Dalitz+2Dalitz

11S0 0.018384 eV 0.018524 eV 0.000772 eV 0.018533 eV 5.42 · 10−6 eV 0.01931 eV

Table IV summarizes all the properties of the 11S0 state including all individual partial widths, up to the highest
NLO + NNLO? accuracy computed here, and associated BX = ΓX/Γtot branching fractions. The total ditauonium
width is determined by adding all individual partial widths plus the effective width due to the weak tau decay, i.e.,

Γtot = ΓNNLO
γγ + ΓNLO

Dalitz + ΓNNLO
2Dalitz + Γ(2)τ→X , (41)

TABLE IV: Main properties (mass mX , JPC quantum numbers, total width Γtot, lifetime, as well as partial decay widths ΓX and
associated BX branching fractions) of the lowest-energy para-ditauonium bound state computed in this work.

T state mX (MeV) JPC Γtot (eV) Lifetime (fs) Decay mode ΓX (eV) BX

11S0 3553.696 ± 0.240 0−+ 0.02384 27.60 γγ 0.018533 77.72%

γe+e− 4.28 · 10−4 1.79%

γµ+µ− 1.24 · 10−4 0.52%

γqq 2.20 · 10−4 0.92%

e+e−e+e− 2.32 · 10−6 0.0094%

e+e−µ+µ− 1.38 · 10−6 0.0058%

e+e−qq 1.20 · 10−6 0.0050%

µ+µ−µ+µ− 1.65 · 10−7 0.00069%

µ+µ−qq 2.72 · 10−7 0.0011%

qqq′q′ 8.23 · 10−8 0.00035%

(2)τ→ X 0.004535 19.02%

The last significant figures of all values listed in Table IV have been rounded off to approximately match the asso-
ciated theoretical accuracy of each width. Theoretical uncertainties due to missing higher-order corrections are very
small for the total width and main diphoton decay channel, as they have been computed here including up to the most
important NNLO corrections. The uncertainty is therefore at the NNLO level, (α/π)2 ≈ 10−4 accounting for O(10)
coefficient prefactors (this is a realistic order-of-magnitude estimate, although partial cancellations between the com-
plete set of NNLO virtual and real corrections, which have not been fully computed here, are not excluded). For the
Dalitz γ f f para-ditauonium decays, since they are LO for this mode, their relative uncertainty is O(α/π) ≈ 10−2. The
propagated parametric uncertainty due to the tau mass precision is around 7 · 10−5 for all quantities, which linearly
depend on mτ through the LO widths. The uncertainty of the tau decay width due to the tau lifetime, Eq. (10), is
around 2 · 10−3, which propagates into 4 · 10−4 relative uncertainty of the para-ditauonium total width. As one can
see, theoretical uncertainties (intrinsic and parametric) are very small and very likely well beyond the reach of any
potential experimental precision.
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C. Ortho-ditauonium decays

1. Real and virtual NLO and (partial) NNLO corrections

Figure 6 shows the most important virtual and real higher-order QED corrections to the LO ortho-ditauonium
decay width, Γ(13S1). They include virtual photon exchanges (two top left panels), vacuum polarization loops of the
annihilating virtual photon (top third panel), and modifications of order O(α/π) of the ditauonium wavefunction at the
origin (top right panel) affecting the difermion partial width, Γ(13S1)→ f f . The bottom panels of the figure show real
radiative corrections (left and center) of the difermion decays, and the 3-photon decay channel (right).

FIG. 6: Higher-order corrections to ortho-ditauonium 13S1 decays. The five leftmost diagrams show NLO virtual (top) and real
(bottom) bremsstrahlung corrections to the 13S1 difermion decays. Top right: Wavefunction at the origin corrections to the 13S1

difermion decays. Bottom right: 3-photon decay.

Let us deal first with the NLO virtual corrections to the 13S1 wavefunction at the origin (Fig. 6, top right), which can
be calculated through fermion loop insertions in the Coulomb’s photon propagator, as done for the para-ditauonium
case in Eq. (18),

∆ΓNLO
Coul (1

3S1 → f f ) =
∆|ϕ1S(0)|2

|ϕ1S(0)|2
Γ(0)(13S1 → f f ) = CNLO,1S

Coul

(
α

π

)
Γ(0)(13S1 → f f ). (42)

Here, the CNLO,1S
Coul = 5.805 coefficient has the same numerical value as computed before, Eq. (25).

We address next the ortho-ditauonium radiative corrections. The two γ-emission diagrams in Fig. 6 (bottom left
and center) produce divergent infrared double logarithms that need to be canceled out against similar terms produced
by the virtual correction diagrams shown in the three first top panels of the figure. The real and virtual radiative
corrections can be calculated with the standard techniques by defining x f ′ = m2

f ′/m
2
τ, and ignoring power corrections

of the form O(αx f ), as follows:

∆ΓNLO
rad. (13S1 → f f (γ)) =

−13
4

+
1
3

∑
f ′

Q2
f ′Nc, f ′

(2 + x f ′
)
<

√1 − x f ′ ln

 √
1 − x f ′ + 1√
1 − x f ′ − 1

 − (
10
3

+ 2x f ′

)


×

(
α

π

)
Γ(0)(13S1 → f f )

=

{
−

13
4

+
1
3

∑
`=e,µ,τ

[
(2 + x`)<

(√
1 − x` ln

( √
1 − x` + 1
√

1 − x` − 1

))
−

(
10
3

+ 2x`

)]
+2π

∆α(3)
had(m2

T
)

α

}
×

(
α

π

)
Γ(0)(13S1 → f f ) = CNLO

rad.

(
α

π

)
Γ(0)(13S1 → f f ), with CNLO

rad. = 15.860. (43)

The first terms of this equation account for inclusive photon exchanges/emissions and leptonic vacuum polarization
loops (the < symbol indicates the real part of the expression in parenthesis), whereas the last term of the inner sum
stands for the hadronic vacuum polarization contributions of the virtual photon at the ditauonium mass (i.e., for the
N f = 3 hadronic loop contributions of the third top diagram of Fig. 6) quantified by the ∆α(3)

had(m2
T

) = 0.0077 term
(Table I).

Equation (43) determines the NLO contribution to the ortho-ditauonium width from photon emissions and ex-
changes inclusively. Here, next, we evaluate the size of the contributions from 13S1 decays with photons explicitly
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tagged or measured in the final state, shown in the bottom (left and center) diagrams of Fig. 6, where a photon energy
cutoff needs to be introduced to avoid infrared divergences. We restrict ourselves to the case of the dilepton decays4

with one final-state photon, 13S1 → `+ `−γ. Collinear divergences can be regularised by keeping the outgoing lepton
masses nonzero, while a threshold on the photon energy in the ditauonium rest frame is required to remove soft diver-
gences, which we take as Eγ > Ethr

γ ≈ O(m`). By introducing two variables, x` = m2
`/m

2
τ and ε = Ethr

γ /mτ, the partial
width then reads,

Γ(0)(13S1 → `+ `−γ) =

[
11
4
−
π2

3
+ (2 − 4 ln 2) ln ε + (3/2 + 2 ln ε) ln x` − 3 ln 2 + O(ε, x`)

](
α

π

)
Γ(0)(13S1 → `+ `−), (44)

with the collinear ln x` and soft ln ε logarithms appearing, and where we have ignored power corrections of order
O(ε, x`). We have also computed the full expression with the ε and x` dependencies, which is a bit lengthy and we
refrain ourselves from writing it here. The numerical values for ε = m`/mτ are

Γ(0)(13S1 → `+ `−γ) = CNLO
`+ `−γ

(
α

π

)
Γ(0)(13S1 → `+ `−), with CNLO

`+ `−γ =

 245.13 for ` = e,

23.76 for ` = µ.
(45)

To estimate the size of the purely virtual NLO corrections of ortho-ditauonium, we can combine Eqs. (43) and (45)
and determine the NLO partial width for 13S1 → `+ `− without real photon emission (with an energy above m`), as
follows,

ΓNLO(13S1 → `+ `−) =
[
Γ(0)(13S1 → `+ `−) + ∆ΓNLO

rad. (13S1 → `+ `−(γ)) + ∆ΓNLO
Coul (1

3S1 → `+ `−) − Γ(0)(13S1 → `+ `−γ)
]

=

[
1 +

(
α

π

)
CNLO

virt.exch,`

]
Γ(0)(13S1 → `+ `−), with CNLO

virt.exch,` =

 −223.47 for ` = e,

−2.092 for ` = µ.
(46)

The leading NNLO virtual contribution from the wavefunction correction from the Breit Hamiltonian [22] is

∆ΓNNLO
Breit (n3S1 → f f ) = CNNLO

Breit

(
α

π

)2
Γ(0)(n3S1 → f f ), with CNNLO

Breit = −
π2

3
ln (1/α) = −16.187. (47)

This (small) NNLO virtual correction is negative and will slightly decrease the partial Γ f f (γ) decay widths although,
as we see next, there are extra real NLO + NNLO contributions (3-photons and 4-fermions final states) that contribute
positively to the total ortho-ditauonium decay rate.

Figure 6 (bottom right) shows the 3-photon decay channel of ortho-ditauonium, which is suppressed by an extra α
factor compared to the diphoton para-ditauonium decay given by Eq. (11). At its lowest order, this partial decay width
is

Γ(0)(n3S1 → γγγ) =
2(π2 − 9)α6mτ

9π n3 = C3γ

(
α

π

)
Γ(0)(n3S1), with C3γ =

4(π2 − 9)
3 · 4.2

= 0.2761. (48)

The (infrared-finite) NLO virtual contribution of this channel can be calculated by the standard perturbative techniques,
and amounts to

∆ΓNLO
virt.exch(n3S1 → γγγ) = −13.44

(
α

π

)
Γ(0)(n3S1 → γγγ)

= CNLO
virt.exch,3γ

(
α

π

)2
Γ(0)(n3S1), with CNLO

virt.exch,3γ = −13.44 ·C3γ = −3.71. (49)

The NLO correction from the wavefunction at the origin for the 3-γ decay is

∆ΓNLO
Coul (n

3S1 → γγγ) = CNLO,nS
Coul

(
α

π

)
Γ(0)(n3S1 → γγγ)

= CNLO,nS
Coul,3γ

(
α

π

)2
Γ(0)(n3S1) , with CNLO,nS

Coul,3γ = CNLO,nS
Coul ·C3γ = 1.6026 for n = 1. (50)

4 Photon emission in ortho-ditauonium diquark decays are not considered here given that, first, they are suppressed by the square of the smaller
charges of the quarks compared to the leptons, and are further complicated by the hadronization of the quarks that prevent a perturbative
calculation of a hadronic final state including a potential quark-emitted photon.
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One can see that the net effect of the NLO corrections to the 3-photon decay, combining Eqs. (49) and (50), leads to a
small decrease (by about −1.8%) of this rate.

Finally, the ortho-ditauonium can also have 4-fermion decay channels contributing at real NNLO accuracy to the
total width (Fig. 7). The partial widths can be again cast into the following generic form

ΓNNLO
4 f (n3S1 → f f f ′ f

′
) = CNNLO

4 f ( f f f ′ f
′
)
(
α

π

)2
Γ(0)(n3S1) , (51)

with the numerical values of the CNNLO
4 f ( f f f ′ f

′
) coefficients, derived with the help of HELAC-Onia [39, 40], given by

CNNLO
4 f (e+e−e+e−) = 40.0, CNNLO

4 f (e+e−µ+µ−)=30.3, CNNLO
4 f (e+e−qq)=13.3,

CNNLO
4 f (µ+µ−µ+µ−) = 0.886, CNNLO

4 f (µ+µ−qq)=0.530, CNNLO
4 f (qqq′q′)=0.070. (52)

FIG. 7: Representative Feynman diagrams of (real NNLO) ortho-ditauonium decays into four fermions.

2. Rare weak decays

Of the two spin states of ditauonium, only5 the ortho state can decay weakly into a pair of neutrinos. The two
amplitudes that contribute to the decay T1 → ν`ν`, are W exchange in the t channel and Z annihilation in the s-
channel (Fig. 8). The Z diagram is a tiny correction to the virtual photon annihilation (Fig. 1, right), and there is a
destructive interference between the W and Z exchange amplitudes. The corresponding partial widths were found
negligible for positronium and dimuonium —for positronium they are O(10−18) and O(10−21) for decays into like- and
unlike-flavour between the e+e− and neutrinos respectively [27]—, but they are comparatively enhanced by powers of
the tau to electron (or muon) masses for ditauonium, and it is worth to estimate their importance here.

FIG. 8: LO diagrams of ortho-ditauonium decays into neutrinos.

For ortho-ditauonium, the neutrino-pair decay widths read

Γ(0)(n3S1 → ντν̄τ) =
α5mτ

6n3

m4
τ

[
m2

W

(
m2

W + m2
τ

) (
1 − 4s2

w

)
−

(
2m2

W + m2
τ

) (
m2

Z − 4m2
τ

)
c2

w

]2

8s4
wc4

wm4
W

(
m2

W + m2
τ

)2 (
m2

Z − 4m2
τ

)2

= 2.147 · 10−6 · Γ(0)(n3S1 → e+e−),

Γ(0)(n3S1 → νeν̄e, νµν̄µ) =
α5mτ

6n3

m4
τ

(
1 − 4s2

w

)2

8s4
wc4

w

(
m2

Z − 4m2
τ

)2 = 7.015 · 10−9 · Γ(0)(n3S1 → e+e−),

5 This holds assuming that neutrinos are massless, and without emission of photons in the potential para-ditauonium decay process.
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where mW,Z are the W and Z boson masses, and sw and cw are the sine and cosine of the Weinberg angle. Both channels
turn out to be also very rare for ditauonium due to the strong suppression driven by the m4

τ/m
4
W,Z factor.

3. Combined higher-order corrections

The total annihilation decay width for n = 1 ortho-ditauonium can be now obtained from all previous results and
written in the compact form

Γtot(13S1) =

(
1 + ONLO

1S,tot

(
α

π

)
+ ONNLO?

1S,tot

(
α

π

)2
)
Γ(0)(13S1), (53)

where Γ(0)(13S1) is given in Eq. (15). The coefficient ONLO
1S,tot sums up all numerical NLO coefficients derived in

Eqs. (42), (43), and (48), namely

ONLO
1S,tot = CNLO,1S

Coul + CNLO
rad. + C3γ = 5.805 + 15.860 + 0.276 = 21.94 , (54)

whereas ONNLO?

1S,tot sums up the partial NNLO corrections given by Eqs. (47), (49), (50), (51), and (52), as follows

ONNLO?

1S,tot = CNNLO
Breit + CNLO

virt.exch,3γ + CNLO,1S
Coul,3γ +

∑
f , f ′

CNNLO
4 f ( f f f ′ f

′
) = −16.19 − 3.71 + 1.60 + 85.1 = 66.8 . (55)

The corresponding values of all individual coefficients are listed in Table V. Compared to the para-ditauonium case,
one can see that the size of the NLO corrections are numerically very similar —the (α/π) prefactor coefficients are
PNLO

1S,tot = 21.36 from Eq. (38) vs. ONLO
1S,tot = 21.94 from Eq. (54), respectively—, whereas the (small) NNLO corrections

are larger for the para- than for the ortho-state as one can see comparing Eqs. (39) and (55). This implies that the total
NLO + NNLO? corrections increase by almost the same amount, about 5.0%, the LO annihilation rates of both states.

TABLE V: Coefficients for the sum of all NLO and NNLO corrections of each partial ortho-ditauonium decay channel, CNLO,NNLO
part ,

and final ONLO
1S,tot and ONNLO?

1S,tot correction terms as defined in Eqs. (54) and (55) for its total annihilation decay width. The numerical
values for the exclusive e+e−γ and µ+µ−γ modes are given for different threshold photon energies, Ethr

γ > me,µ respectively (see text
for details).

CNLO
part : e+e− µ+µ− qq(γ) γγγ e+e−γ µ+µ−γ ONLO

1S,tot

−53.21 −0.498 11.348 0.276 58.364 5.657 21.94

CNNLO
part : e+e− µ+µ− qq γγγ 4 f ONNLO?

1S,tot

−3.854 −3.854 −8.479 −2.107 85.1 66.8

TABLE VI: Numerical values of the partial ortho-ditauonium decay widths (in eV) grouped by individual LO, NLO, and NNLO
contributions to its total width. The last column gives the total NNLO? ortho-ditauonium annihilation width. For the `+ `−(γ) partial
widths, dielectron and dimuon channels are added up.

T state Γ
(0)
`+ `−

Γ
(0)
qq ΓNLO

`+ `−(γ) ΓNLO
qq(γ) Γ

(0)
3γ ΓNNLO

`+ `−(γ) ΓNNLO
qq(γ) ΓNLO

3γ ΓNNLO
4 f ΓNNLO

f f (γ)+3γ+4 f

11S0 0.01226 0.0135 0.0129 0.0142 1.65 · 10−5 0.0129 0.0142 1.62 · 10−5 1.18 · 10−5 0.02706

Table VI displays the partial annihilation decay widths of ortho-ditauonium grouped at LO, NLO, and NNLO
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accuracies to visualize the relative size of the real and virtual higher-order corrections, where we define

ΓNLO
`+ `−(γ) =

∑
`=e,µ

[
Γ(0)(13S1 → `+ `−) + ∆ΓNLO

rad. (13S1 → `+ `−(γ)) + ∆ΓNLO
Coul (1

3S1 → `+ `−)
]
,

ΓNNLO
`+ `−(γ) = ΓNLO

`+ `−(γ) +
∑
`=e,µ

∆ΓNNLO
Breit (13S1 → `+ `−),

ΓNLO
qq(γ) =

∑
q=u,d,s

[
Γ(0)(13S1 → qq) + ∆ΓNLO

rad. (13S1 → qq(γ)) + ∆ΓNLO
Coul (1

3S1 → qq)
]
, (56)

ΓNNLO
qq(γ) = ΓNLO

qq(γ) +
∑

q=u,d,s

∆ΓNNLO
Breit (13S1 → qq),

ΓNLO
3γ = Γ(0)(13S1 → γγγ) + ∆ΓNLO

virt.exch(13S1 → γγγ) + ∆ΓNLO
Coul (1

3S1 → γγγ),

ΓNNLO
4 f =

∑
f , f ′

Γ(0)(13S1 → f f f ′ f
′
) .

Table VII lists all the properties of the 13S1 state computed here. The total ortho-ditauonium width listed is deter-
mined by adding all individual partial widths plus the effective width due to the constituent tau weak decays, i.e.,

Γtot = ΓNNLO
`+ `−(γ) + ΓNNLO

qq(γ) + ΓNLO
3γ + ΓNNLO

4 f + Γ(2)τ→X , (57)

Our main findings about ortho-ditauonium decay rates can be summarized as follows: (i) the radiative real and
virtual NLO corrections increase the difermion decays by +5.0%, (ii) the virtual NNLO corrections are tiny and
negative but “compensated” in the total width by positive real NNLO corrections from new 4-fermion channels that
open up at this level of accuracy (with combined branching fractions of B ≈ 0.04%), and (iii) the decays into a pair
of neutrinos have O(10−7–10−9) rates. The ortho-ditauonium branching fractions are thus dominated by decays into
a pair of light diquarks (with or without γ emission), Bqq(γ) = 44.82%, with the actual hadronic final states mostly
consisting of a few charged and neutral pions and/or, to a less extent, kaons. The combined dilepton final states
with or without photon emission, 13S1 → e+e−(γ), µ+µ−(γ), have a branching fraction of B`+ `−(γ) = 2 × 20.37% =

40.74%. The presence in the ortho-ditauonium decays of final states with different charged particles can facilitate the
measurement of this exotic atom, given that the experimental momentum and vertex resolutions are better for them
than for photons [13, 14].

As discussed for the para-ditauonium case, theoretical uncertainties due to missing higher-order corrections for the
total width and main difermion decay channels are very small, since we have computed them including up to the most
important NNLO corrections. The uncertainty is therefore at the NNLO level, α2 ≈ 10−4 (this is a realistic order-
of-magnitude estimate, although partial cancellations between the complete set of NNLO virtual and real corrections,
which have not been fully computed here, are not excluded). For the decay to hadrons, the perturbative uncertainty
is also NNLO (i.e., 10−4), but the uncertainty of ∆α(3)

had(m2
T

) and Rhad(m2
τ) can propagate into a larger/dominant value.

Since we have provided the analytic result, Eq. (14), the numbers can be easily updated whenever the experimental
value of Rhad(m2

τ) is refined. In all numerical evaluations, which linearly depend on mτ via the LO widths, the propa-
gated parametric uncertainty due to the tau mass precision is around 7 · 10−5. The uncertainty in the tau decay width
propagates into a 3 · 10−4 relative uncertainty of the ortho-ditauonium total width. Therefore, theoretical uncertain-
ties (both of intrinsic and parametric nature) are very small, and very likely well beyond the precision of any actual
experimental measurement.

IV. SUMMARY

We have presented the first study of the spectroscopic structure of the purely leptonic system consisting of two
τ leptons, bound by their mutual QED interaction, known as ditauonium. First, the basic zeroth-order expressions
for its energy levels and dominant decay widths have been presented. The ground state (1S) has a binding energy of
−23.655 keV, leading to a ditauonium mass of m

T
= 3553.696 ± 0.240 MeV (where the uncertainty is dominated by

the current tau lepton mass precision). Ditauonium decays dominantly through annihilations into pairs of photons
and of lighter charged fermions for para- (11S0) and ortho- (13S1) states, respectively. Secondly, QED corrections at
NLO and (partially) NNLO accuracy have been calculated for the energy levels and for the rates of all decay modes
kinematically accessible at each level of accuracy. For the ground state, we find that the Lamb shift decreases its
binding energy by about 0.115 keV, whereas the hyperfine splitting separates the para- and ortho-states by O(3 eV).

A detailed study of all partial decay widths of para- and ortho-ditauonium has been carried out. Including all NLO
and the most important NNLO corrections, the annihilation decay widths of 11S0 and 31S1 ditauonium states increase
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TABLE VII: Main properties (mass mX , JPC quantum numbers, total width Γtot, lifetime, as well as partial decay widths ΓX and
associated BX branching fractions) of the lowest-energy ortho-ditauonium bound state computed in this work. The two inclusive
decay modes `+ `−(γ) have been also broken-down into the exclusive modes `+ `− and `+ `−γ (where the latter require threshold
photon energies Ethr

γ > me,µ for the dielectron and dimuon channels, respectively, see text for details).

T state mX (MeV) JPC Γtot (eV) Lifetime (fs) Decay mode ΓX (eV) BX

13S1 3553.696 ± 0.240 1−− 0.03159 20.83 e+e−(γ) 0.006436 20.37%

◦ e+e− 2.95 · 10−3 9.33%

◦ e+e−γ 3.49 · 10−3 11.04%

µ+µ−(γ) 0.006436 20.37%

◦ µ+µ− 6.10 · 10−3 19.30%

◦ µ+µ−γ 3.38 · 10−4 1.07%

qq(γ) 0.01416 44.82%

γγγ 1.62 · 10−5 0.051%

e+e−e+e− 5.55 · 10−6 0.0176%

e+e−µ+µ− 4.21 · 10−6 0.0133%

e+e−qq 1.85 · 10−6 0.0058%

µ+µ−µ+µ− 1.23 · 10−7 O(10−6)

µ+µ−qq 7.36 · 10−8 O(10−6)

qqq′q′ 9.73 · 10−9 O(10−7)

ντν̄τ 1.32 · 10−8 O(10−7)

νeν̄e 4.30 · 10−11 O(10−9)

νµν̄µ 4.30 · 10−11 O(10−9)

(2)τ→ X 0.004535 14.35%

both by +5.0% compared to the LO results. The total decay widths of the para and ortho ground states (adding in
both cases an effective width of Γ(2)τ→X = 0.004535 eV from the weak decay of any of its constituent leptons) amount
to ΓNNLO?

tot = 0.02384 eV and 0.03159 eV, corresponding to lifetimes of τ = 27.60 fs and 20.83 fs, respectively. In
the para-ditauonium case, its leading diphoton decay mode receives +0.8% contributions from virtual NLO + NNLO
corrections, for a total final branching fraction of Bγγ = 77.72%. The real NLO corrections for this decay corre-
spond to “Dalitz” final states, 11S0 → γe+e−, γµ+µ−, γqq with branching ratios of Bγ f f = 1.79%, 0.52%, 0.92%,
respectively, whereas NNLO “double Dalitz” decays have a tiny B f f f ′ f

′ = 0.02% combined rate. The presence
of final states with charged leptons, although at a few percent rate, can facilitate the experimental observation of
para-ditauonium. The calculated ortho-ditauonium branching fractions in dilepton final states with or without photon
emission, 13S1 → e+e−(γ), µ+µ−(γ), are B`+ `−(γ) = 20.37% each, about half the rate expected for similar decays with
light diquarks, Bqq(γ) = 44.82%. The existence of different charged-particle decay modes in the ortho-ditauonium
decays can also facilitate the measurement of this exotic atom by exploiting the better experimental momentum and
secondary vertex resolutions for e±, µ±, π±, and K± compared to photons. Ortho-ditauonium decays into three photons
or four fermions (combined) have tiny branching ratios of B3γ, f f f ′ f

′ ≈ 0.05% each, and decays into neutrinos are at
the O(10−7) level.

Ditauonium is the heaviest and most compact purely leptonic “atomic” system and remains experimentally
unobserved to date. The results presented here are of usefulness to carry out potential experimental measurements of
its production and study its properties at current and future colliders via multiple different final states whose decay
rates have been quantified here for the first time. Concrete feasibility cases, beyond those described in [13], will
be presented in an upcoming work [14]. Ditauonium studies can provide novel tests of bound-state QED that are
sensitive to physics beyond the standard model at higher energies than those of its lighter siblings positronium and
dimuonium.
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