CERN Accelerating science

Article
Report number arXiv:2201.01256
Title Minimizing plasma temperature for antimatter mixing experiments
Author(s)

Hunter, E.D. (Stefan Meyer Inst. Subatomare Phys.) ; Amsler, C. (Stefan Meyer Inst. Subatomare Phys.) ; Breuker, H. (RIKEN (main)) ; Chesnevskaya, S. (Stefan Meyer Inst. Subatomare Phys.) ; Costantini, G. (Brescia U. ; INFN, Pavia) ; Ferragut, R. (INFN, Milan ; Milan U. ; CERN) ; Giammarchi, M. (INFN, Milan ; CERN) ; Gligorova, A. (Stefan Meyer Inst. Subatomare Phys.) ; Gosta, G. (Brescia U. ; INFN, Pavia) ; Higaki, H. (Hiroshima U.) ; Kanai, Y. (Nishina Ctr., RIKEN) ; Killian, C. (Stefan Meyer Inst. Subatomare Phys.) ; Kletzl, V. (Stefan Meyer Inst. Subatomare Phys.) ; Kraxberger, V. (Stefan Meyer Inst. Subatomare Phys.) ; Kuroda, N. (Tokyo U.) ; Lanz, A. (Stefan Meyer Inst. Subatomare Phys.) ; Leali, M. (Brescia U. ; INFN, Pavia) ; Mäckel, V. (Stefan Meyer Inst. Subatomare Phys.) ; Maero, G. (Milan U.) ; Malbrunot, C. (CERN) ; Mascagna, V. (Brescia U. ; INFN, Pavia) ; Matsuda, Y. (Tokyo U.) ; Migliorati, S. (Brescia U. ; INFN, Pavia) ; Murtagh, D.J. (Stefan Meyer Inst. Subatomare Phys.) ; Nagata, Y. (Tokyo U. of Sci.) ; Nanda, A. (Stefan Meyer Inst. Subatomare Phys.) ; Nowak, L. (CERN) ; Pasino, E. (Milan U.) ; Romé, M. (Milan U.) ; Simon, M.C. (Stefan Meyer Inst. Subatomare Phys.) ; Tajima, M. (Nishina Ctr., RIKEN) ; Toso, V. (INFN, Milan ; Milan U. ; CERN) ; Ulmer, S. (RIKEN (main)) ; Uggerhøj, U. (Aarhus U.) ; Venturelli, L. (Brescia U. ; INFN, Pavia) ; Weiser, A. (Stefan Meyer Inst. Subatomare Phys.) ; Widmann, E. (Stefan Meyer Inst. Subatomare Phys.) ; Wolz, T. (CERN) ; Yamazaki, Y. (RIKEN (main)) ; Zmeskal, J. (Stefan Meyer Inst. Subatomare Phys.)

Publication 2022
Imprint 2022-01-04
Number of pages 7
Note Proceedings of the Exotic Atoms (EXA) Conference, Vienna, 2021
In: EPJ Web Conf. 262 (2022) pp.01007
In: 7th International Conference on Exotic Atoms and Related Topics, Online, 13 - 17 Sep 2021, pp.01007
DOI 10.1051/epjconf/202226201007
Subject category physics.plasm-ph ; Other Fields of Physics
Abstract The ASACUSA collaboration produces a beam of antihydrogen atoms by mixing pure positron and antiproton plasmas in a strong magnetic field with a double cusp geometry. The positrons cool via cyclotron radiation inside the cryogenic trap. Low positron temperature is essential for increasing the fraction of antihydrogen atoms which reach the ground state prior to exiting the trap. Many experimental groups observe that such plasmas reach equilibrium at a temperature well above the temperature of the surrounding electrodes. This problem is typically attributed to electronic noise and plasma expansion, which heat the plasma. The present work reports anomalous heating far beyond what can be attributed to those two sources. The heating seems to be a result of the axially open trap geometry, which couples the plasma to the external (300 K) environment via microwave radiation.
Copyright/License preprint: (License: arXiv nonexclusive-distrib 1.0)
CC-BY-4.0



Corresponding record in: Inspire


 Record created 2022-05-04, last modified 2023-02-10


Fulltext:
document - Download fulltextPDF
2201.01256 - Download fulltextPDF