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The eigenmodes of a superconducting, two-dimensional hyperbolically shaped cavity have been measured
for frequencies below 20 GHz. These data of high accuracy, along with data from our previous measurement
of a quarter stadium billiard [Graf et al., Phys. Rev. Lett. 64, 1296 (1992)], are used as a test of three models
(Brody, Berry and Robnik, Lenz and Haake) of distributions of eigenmodes. It becomes clear that data span-
ning universal and nonuniversal regimes and analyses extending at least up to two-level measures are essential

to draw firm conclusions about the model descriptions.

PACS number(s): 05.45.+b

In recent years, signatures of quantum chaos have been
the subject of intense research by several groups [1-13]. It is
widely recognized that chaotic behavior of a system reveals
itself in the distribution of its eigenmodes. For pure systems,
in-general, the description of regular and chaotic behavior is
given as Poissonian and Gaussian ensembles, respectively,
though non-Poissonian type regular systems also occur [14].
The situation is much less clear for mixed systems, i.e., sys-
tems which are neither purely regular nor completely cha-
otic; here a question of principal interest is their degree of
chaoticity.

For mixed systems the following descriptions for the
nearest-neighbor spacing distributions (NND’s) are available
in the literature. Brody et al. [15] provided an empirical for-
mula

P(s)=cs%exp(—c,s@tV), 1)

where s is the normalized spacing, ¢, and ¢, are normaliza-
tion constants, and w is the so called Brody parameter. No
clear-cut physical meaning can be attributed to w. The Berry-
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Robnik distribution [16] results from the assumption that the
system is a composite of two distinct, noninteracting phase
spaces. It is given by

P(s)=(1—q)%' 7" V*{erfc(3mgqs) +[2q(1 - q)
+%7rq3s]e(l/4)17q282}’ (2)

where g represents the chaotic fraction of the total phase
space. Finally, Lenz and Haake [17] consider the Hamil-
tonian of the system as made up of a regular and a chaotic
component which renders the entire phase space chaotic to
some extent. Their distribution can be written in terms of the
modified Bessel function /y(x) and the Tricomi function
U(a,c,x) as

2 _ 2.2
P(s)zsu()\)\) pxp( u:)):g s )
xj:e—(fhzgx)lo(sg';()‘))dg, 3)
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where u(N\)=V7U(—10,A?), and the parameter \ is a
measure for the relative influence of the chaotic contribution
to the system.

Thus each distribution is characterized by a single mixing
parameter: w for Brody, g for Berry-Robnik, and A for Lenz-
Haake. We renormalize the Lenz-Haake parameter by
A=\/\*+1. When the parameters w, g, A are zero, one
has pure Poissonian distributions whereas for parameters of
unit magnitude Wigner distributions are obtained.

It is of considerable interest to verify if one is able to
distinguish among these distributions and to examine the
sensitivities of different statistical measures. To this end, we
exploit the precision of high resolution measurements attain-
able in superconducting microwave resonators. We should
stress that in this work simultaneous experimental analyses
of mixed and nearly pure systems are carried out. Presently,
however, only the Berry-Robnik distribution is amenable to
calculations of second order measures [18] such as the num-
ber variance =2 and the Dyson-Mehta statistics A3, while
the other two distributions are limited to NND [P(s)] for-
mulas.

Previously, we reported the measurements on a two-
dimensional quarter of a stadium shaped superconducting rf
cavity [19], a mixed system, with a Q value corresponding to
a frequency resolution of Af/f~ 1075—1077, installed in
the cryostat of the Superconducting Darmstadt Linear Elec-
tron Accelerator (S-DALINAC) [20] operating at a tempera-
ture of 2 K. In the meantime the results of these measure-
ments have been the subject of several studies [14,21],
including a very extensive semiclassical analysis confirming
that the spectrum of the quarter stadium is influenced by the
existence of a nonisolated periodic orbit, the ““bouncing ball”
orbit. It is therefore used as a test model for the present
analysis within the above mentioned simple models. Since
then, we measured for comparison the eigenmodes of an al-
most purely chaotic system, a hyperbola billiard, under the
same experimental conditions. The geometries of both bil-
liards are sketched in Fig. 1. The hyperbola billiard has a
straight edge along the x axis and is of length 1350 mm. The
width y of the cavity is shaped as y=x for x<186 mm and
y=1(34596/x) mm for 186<x=<1321 mm and capped with
a quarter circle of 23 mm radius. This geometry assures that
only isolated periodic orbits exist in the x-y plane. The third
dimension (cavity height) is 7 mm to render the cavity a
two-dimensional resonator for frequencies below 20 GHz

Details of the measurements and identification of eigen-
modes are to be found in Ref. [19]. The system resolution
was more than adequate to locate the 1051 eigenmodes of
the hyperbola billiard and ensured that there were no missing
modes. Clearly, this became possible only due to the avail-
ability of superconducting cavities. Since the spectrum of the
stadium contains 1060 modes, both statistical samples are of
the same size.

Unlike in Ref. [19] where we treated the bouncing ball
orbits and chaotic orbits as separate entities, here we con-
sider the system as a whole. In the following, we discuss the
results of the measurements in the framework of the models
mentioned above. The first step in the analyses is a fit of the
NND for the two billiards. As shown in the upper part of Fig.
1, for the three distributions the parameters w, g, A=1.0,
i.e., they are consistent with a purely chaotic system for the
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FIG. 1. Nearest-neighbor spacing distributions. The histograms
correspond to the measured data for the hyperbola (upper part) and
the stadium billiard (lower part). The full, dashed, and dotted lines
show the best fit of the Brody, Berry-Robnik, and Lenz-Haake dis-
tributions, respectively, with the mixing parameters given in the
figures. The billiards are sketched to illustrate their geometry. Note
that the histogram for the stadium billiard is not the same as in the
upper part of Fig. 4 of Ref. [19] because here contributions from the
bouncing ball orbits are still included.

hyperbola billiard. In the case of the stadium billiard, how-
ever, the fits yield very different parameter values, as indi-
cated in the lower part of Fig. 1, viz., =0.63%0.05,
g=0.87%+0.03, and A=0.57%0.05 for the Brody, Berry-
Robnik, and Lenz-Haake distributions, respectively. The
Berry-Robnik fit needs a rather large chaotic component (g
=(.87), whereas the Lenz-Haake parameter implies that the
chaotic and regular components are of amplitudes A=0.57
and v1—\%=0.82, respectively. This feature can, perhaps,
be intuitively understood if a small admixture of a chaotic
component influences a coherent superposition of regular
and chaotic components much more strongly than in the case
of incoherent superposition. All three distributions describe
the experimental data equally well (as seen from the x* val-
ues), therefore no distinction between the three models is
possible from the NND.

Further analyses are required to verify which, if any, of
the three models are correct descriptions of the systems un-
der study. Unfortunately, at least at this time, only the Berry-
Robnik model can be tested for two-level measures, such as
spectral rigidity A;(L) and number variance S2(L) statis-
tics. Figure 2 shows the experimental Aj statistics for the
hyperbola and stadium billiards plotted against L/L ., ,
where L,,,, is the saturation length [22] for easy comparison.
For our cases the saturation lengths are L,,,,=6 and 15 for
the hyperbola and stadium billiards, respectively. In case of a
mixed system, the A statistics follows the GOE prediction
for small L values. It then steadily deviates from GOE satu-
ration Ay’ op for L>L,,,, and reaches a higher saturation
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FIG. 2. The A; statistics as a function of L/L,,,, . The upper
part shows the data of the hyperbola billiard. The fit of the Berry-
Robnik model (full line) describes the data well, the dashed line
gives the saturated GOE part contained in the fit. For demonstration
of the sensitivity, the limits of the mixing parameter g extracted
from the NND (see Fig. 1) are given by the shaded area. The lower
part illustrates the situation for the stadium billiard. Note that the
experimental A; values have been derived according to Eq. (3.30)
of Ref. [6].

value. In the Berry-Robnik description of mixed systems, we
have A3(L)=A4;3 p((1—q)L)+A; gor(gL) where g is the
mixing parameter. For the hyperbola billiard, A; follows the
trend for a GOE system, though a small (=3%) regular
component is visible and a mixing parameter of ¢=0.971 has
been determined from the linear increase in A; in the range
2<L/L,,,,<5. The resulting A; then describes the experi-
mental data rather well, as can be seen in Fig. 2. The satu-
ration value for the GOE part turns out to be
36oe=0.198, significantly smaller than the theoretical
prediction [22] of A3%;or=0.344 for the hyperbola billiard.
The shaded area represents the spread in A3z due to the g
parameter fit of the NND. The upper limit of g=1 coincides
with A3’Go . The analysis for the stadium billiard was per-
formed exactly as in the case of the hyperbola, yielding a
mixing parameter of ¢=0.851 in agreement with the value
deduced from the NND. It is noteworthy that the A statistics
enables us to determine the mixing parameter much more
accurately than it is possible by the NND. Again, the experi-
mental data are well reproduced, but only if an unreasonably
small value of A3’ =0.148 is used, compared to the pre-
dicted value of 0.437. On the other hand, our previous analy-
sis, subtracting out the bouncing ball contribution, showed
that the remainder is a pure GOE, saturating at ~0.33.
Clearly there is a contradiction here. This is not too surpris-
ing since the semiclassical analysis of the stadium billiard
[19] shows that the regular contribution to the level statistics
(mainly resulting from the existence of the bouncing ball

FIG. 3. The 37 statistics as a function of L/L,,,. The linear
increase for L/L,,,,>2 is the sensitive signature of the small regu-
lar part (3%) in case of the hyperbola billiard. For the stadium
billiard large oscillations appear as a signature for nonuniversal
behavior in the region L/L,,,,>2.

orbit) does not show a pure Poissonian behavior (see Fig. 7
of Ref. [14]), a property not incorporated in the simple
model of Berry and Robnik.

We tested the data against another two-level measure,
viz., the number variance 3%(L). The experimental results
are plotted in Fig. 3. The regular component in the hyperbola
billiard is much more apparent in this plot since 3% shows a
linear rise above the GOE saturation for L/L,,,=2. The
sensitivity of this measure to small admixtures (=~3%) is
quite impressive. For the stadium billiard, 3.? shows a strong
oscillatory pattern for L/L,,,,=2. This has appeared in nu-
merical studies [23] but here we have observed it experimen-
tally. It is a clear indication that the data comprise both uni-
versal and nonuniversal regimes. Thus they cannot be
described by a simple superposition of Poissonian and
Gaussian components as in the case of A;. In passing we
note that, to our knowledge, there are at present no theoreti-
cal prescriptions to evaluate the higher order moments for
mixed systems. But it is unlikely that three- and four-point
measures [6] like skewness y;(L) and excess y,(L) provide
extra sensitivity to the level statistics of the mixed system.
The GOE and Poisson estimates for these measures differ
significantly from each other only for L=~1. For both large
and small L, the two-level distributions give nearly equal
values for (L) and y,(L). For the present mixed system,
significant deviations from both GOE and Poisson predic-
tions occur at L/L,,,,=2, for which y;,y,~0 for both
cases.

From the present investigation of hyperbola and stadium
billiards, which constitute an almost pure and a strongly
mixed system, respectively, the following conclusions may
be drawn: Nearest-neighbor spacing distributions are not ad-
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equate measures in order to verify a model. We conclude this
from the fact that three models differing in the details of
mixing reproduce the experimental data equally well. Only
two-level measures, viz., A3 and 3.2 statistics, reveal the de-
ficiency of a model. Though the A; statistics is capable of
revealing small admixtures, it fails to identify the character
of the mixing. It became possible to examine these details as
the present experimental data sets extend over the universal
and nonuniversal regimes of the system dynamics. As a re-
sult we remark that it is highly desirable to parametrize the
two-level measures for models describing mixed systems

such as the model by Lenz and Haake and later ones [12]
based on random matrices.

We thank O. Bohigas, E. Bogomolny, F. Haake, M. Sie-
ber, U. Smilansky, P. Spelluci, F. Steiner, and H.A. Weiden-
muller for very helpful discussions, and the CERN work-
shops for their skillful fabrication of the niobium cavities.
This work has been supported by the Sonderforschungsbere-
ich 185 “Nichtlineare Dynamik” of the Deutsche Fors-
chungsgemeinschaft and in part by the Bundesministerium
fur Forschung und Technologie under Contract No.
06DA6411.

[1] E. J. Heller, Phys. Rev. Lett. 53, 1515 (1984).

[2] E. B. Bogomolny, Physica D 31, 169 (1988).

[3] H.-J. Stockmann and J. Stein, Phys. Rev. Lett. 64, 2215
(1990); J. Stein and H.-J. Stockmann, ibid. 68, 2867 (1992).

[4] A. Shudo and Y. Shimizu, Phys. Rev. A 42, 6264 (1990).

[5] See, e.g., M. Berry, in Chaos and Quantum Physics, edited by
M.-J. Giannoni et al. (Elsevier, Amsterdam, 1991), pp. 253—
303.

[6] O. Bohigas, in Ref. [5], pp. 89-199; O. Bohigas, S. Tomsovic,
and D. Ullmo, Phys. Rep. 223, 45 (1993).

[7] M. Sieber and F. Steiner, Phys. Rev. Lett. 67, 1941 (1991); R.
Aurich, C. Matties, M. Sieber, and F. Steiner, ibid. 68, 1629
(1993).

[8] E.B. Bogomolny, B. Georgeot, M.-J. Giannoni, and C. Schmit,
Phys. Rev. Lett. 69, 1477 (1992).

[9] C. M. Marcus, A. J. Rimberg, R. M. Westervelt, P. F. Hopkins,
and A. C. Gossard, Phys. Rev. Lett. 69, 506 (1992).

[10] J. Bolte, G. Steil, and F. Steiner, Phys. Rev. Lett. 69, 2188
(1992).

[11] S. Sridhar and E. J. Heller, Phys. Rev. A 46, 1728 (1992).

[12] K. A. Muttalib, Y. Chen, M. E. H. Ismail, and V. N. Nicopou-

los, Phys. Rev. Lett. 71, 471 (1993).

[13] C. A. Krulle, T. Doderer, D. Quenter, R. P. Huebener, R. Popel,
and J. Niemeyer (unpublished).

[14] M. Sieber, U. Smilansky, S. C. Creagh, and R. G. Littlejohn, J.
Phys. A 26, 6217 (1993).

[15] T. A. Brody, J. Fllores, J. B. French, P. A. Mello, A. Pandey,
and S. S. M. Wong, Rev. Mod. Phys. 53, 418 (1981).

[16] M. V. Berry and M. Robnik, J. Phys. A 17, 2413 (1984).

[17] G. Lenz and F. Haake, Phys. Rev. Lett. 67, 1 (1991).

[18] F. J. Dyson and M. L. Mehta, J. Math. Phys. 4, 701 (1963).

[19] H.-D. Graf, H. L. Harney, H. Lengeler, C. H. Lewenkopf, C.
Rangacharyulu, A. Richter, P. Schardt, and H. A. Weiden-
miiller, Phys. Rev. Lett. 64, 1296 (1992).

[20] K. Alrutz-Ziemssen, D. Flasche, H.-D. Graf, V. Huck, M. Knir-
sch, W. Lotz, A. Richter, T. Rietdorf, P. Schardt, E. Spamer, A.
Stascheck, W. Voigt, H. Weise, and W. Ziegler, Part. Accel. 29,
53 (1990).

[21] H. Wu, D. W. L. Sprung, D. H. Feng, and M. Vallieres, Phys.
Rev. E 47, 4063 (1993).

[22] M. V. Berry, Proc. R. Soc. London Ser. A 400, 229 (1985).

[23] A. Honig and D. Wintgen, Phys. Rev. A 39, 5642 (1989).



