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Abstract

The production rate of B0
s mesons relative to B0 mesons is measured by the LHCb

experiment in pp collisions at a center-of-mass energy
√
s = 13 TeV over the forward

rapidity interval 2 < y < 4.5 as a function of the charged particle multiplicity
measured in the event. Evidence at the 3.4σ level is found for an increase of the
ratio of B0

s to B0 cross-sections with multiplicity at transverse momenta below 6
GeV/c, with no significant multiplicity dependence at higher transverse momentum.
Comparison with data from e+e− collisions implies that the density of the hadronic
medium may affect the production rates of B mesons. This is qualitatively consistent
with the emergence of quark coalescence as an additional hadronization mechanism
in high-multiplicity collisions.
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Measurements of B mesons at colliders offer unique probes of the hadronization process
by which single quarks evolve into color-neutral hadrons. In contrast to light quarks, the
large mass of b quarks suppresses their production via non-perturbative processes. In
addition there is no b content in the valence quark distribution of the incoming beam
particles [1]. Therefore, production of bb̄ pairs at hadron colliders is dominated by hard
parton-parton interactions in the initial stages of the collisions, and is well described by
perturbative QCD calculations [2–4].

The fraction of b quarks that pair with an s quark to form B0
s mesons, fs, and the

fraction that pair with a light d quark to form B0 mesons, fd, are determined through
the hadronization process. One mechanism for hadronization is fragmentation, where
showers of partons produced by outgoing quarks form into hadrons [5, 6]. Measurements
of B hadron production in e+e− collisions at the Υ (5S) [7–9] and Z0 [10–13] resonances
give consistent values for the ratio fs/fd, which is often interpreted as evidence for
the universality of b quark fragmentation assumed by QCD factorization theorems [14].
However, measurements at the Large Hadron Collider (LHC) have shown that the ratio
fs/fd has a dependence on the collision center-of-mass energy and the B meson transverse
momentum pT [15–17]. The fraction of b quarks which hadronize into baryons also
varies with pT [18, 19]. Additionally, recent measurements have shown that charm quark
hadronization differs between e+e− and pp collisions [20]. The reason for these variations
is not immediately clear, and may be explained by hadronization mechanisms other than
fragmentation [21].

An alternative hadronization process, quark coalescence, can occur when a quark
produced in the collision combines with another quark to form a color singlet hadron.
Models incorporating coalescence are successful at reproducing a range of measurements
from fixed-target experiments and colliders [22–26]. Coalescence calculations generally
require multiple quark wavefunctions to overlap in position and velocity, so the fraction of
hadrons produced by this mechanism is expected to increase with the number of quarks
produced in the collision. The effect is expected to be most prominent at relatively
low pT, which is the range where the bulk of the particles created in the collision are
found. Coalescence can also lead to enhanced production of baryons at low pT, and is
especially important in high-energy heavy ion collisions where a large volume of deconfined
quark-gluon plasma (QGP) is formed [27–29].

Recent measurements in pp collisions have shown some behaviors similar to those
associated with the formation of QGP in collisions of heavy nuclei [30–32]. Among
these effects is an enhanced yield of light-quark baryons and mesons with strangeness in
collisions where a relatively large number of charged particles are produced [33], which was
originally proposed as a QGP signature [34]. If hadronization via coalescence emerges as
a mechanism for forming final state B hadrons, then the production rates of B0

s hadrons
could increase relative to the production of B0 hadrons as particle multiplicity increases.

This Letter describes LHCb measurements of the ratio of B0
s to B0 cross sections,

σB0
s
/σB0 , as a function of charged particle multiplicity and pT. Both the B0

s and B0

candidates are reconstructed through their decays to the J/ψπ+π− final state, where
the J/ψ decays into a µ+µ− pair. This decay mode provides similar yields for both
B0

s and B0 mesons. Here multiplicity is represented by the number of charged tracks
reconstructed in a silicon strip detector that surrounds the pp interaction region, the
LHCb VELO detector [35,36]. These measurements use a sample of pp collisions collected
at a center-of-mass energy

√
s = 13 TeV, corresponding to an integrated luminosity of
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5.4 fb−1.
The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity

range 2 < η < 5, described in detail in Refs. [37,38]. Events considered in this analysis
are required to satisfy a series of triggers designed to select the decay J/ψ → µ+µ− and
have one reconstructed pp interaction point (primary vertex). Each muon candidate is
required to penetrate the hadron absorber layers in the LHCb muon system and have
pT > 500 MeV/c. Candidate J/ψ mesons are formed from pairs of oppositely charged muon
candidates that have an invariant mass near the known J/ψ mass and originate from a
vertex that is displaced from the primary vertex. Charged pion candidates are identified
by the response of the LHCb ring-imaging Cherenkov detectors, and are required to have
total momentum p > 3 GeV/c and transverse momentum pT > 750 MeV/c. Candidate
µ+µ−π+π− combinations that form a good quality common vertex are retained, and the
tracks are refit with kinematic constraints that fix the µ+µ− invariant mass to the known
J/ψ mass, and require all four tracks to have the same origin point [39].

Simulation is required to model the effects of the detector acceptance and the se-
lection requirements. In the simulation, pp collisions are generated using Pythia [40]
with a specific LHCb configuration [41]. Decays of unstable particles are described by
EvtGen [42]. The interaction of the generated particles with the detector, and its
response, are implemented using the Geant4 toolkit [43] as described in Ref. [44]. The
pT distributions of the simulated B0

s and B0 mesons, the invariant mass distributions of
π+π− pairs from their decays, and simulated event multiplicity distributions are weighted
to match background-subtracted distributions that are extracted from the data using the
sPlot method [45].

The multiplicity metrics used in this analysis are the total number of charged tracks
reconstructed in the VELO detector, NVELO

tracks , and the subset of VELO tracks that point
in the backward direction, away from the LHCb spectrometer, Nback

tracks. The backward
tracks cover a pseudorapidity interval of approximately −3.5 < η < −1.5, providing a
multiplicity estimate that is measured in a different region than the signal. The VELO
detector and its performance are described in detail in Refs. [35, 36]. Figure 1 shows the
distributions of NVELO

tracks and Nback
tracks for both NoBias events and B0 signal events with one

reconstructed primary vertex, which requires at least five reconstructed tracks. NoBias
events are selected based on the LHC beam clock, which indicates that a bunch crossing
has occurred, without any other trigger requirements. The distributions for B0 signal
events are extracted from the data, and background is removed using the sPlot method [45].
The results are quoted in terms of normalized multiplicity, defined as the number of tracks
at the center of a given multiplicity interval divided by the mean number of tracks in
NoBias events, which are 〈NVELO

tracks 〉NoBias = 37.7 and 〈Nback
tracks〉NoBias = 11.1, with negligibly

small uncertainties. For comparison, the mean number of NVELO
tracks and Nback

tracks are 71.1± 0.1
and 17.4 ± 0.3 for B0 signal events, respectively, where the uncertainty is due to the
statistical uncertainty on the track distributions. In some respects, the low- and high-
multiplicity data samples approach the hadronic environments achieved in e+e− collisions
and heavy-ion collisions, respectively.

The sample containing signal events is divided into intervals of multiplicity, and in
each interval a likelihood fit is performed on the J/ψπ+π− invariant mass spectrum to
determine the ratio of B0

s to B0 yields. Examples of the J/ψπ+π− mass distribution in
low- and high-multiplicity intervals are shown in Fig. 2. An increase of the B0

s yield
relative to the B0 yield in the high-multiplicity interval is apparent. The B0

s and B0 peaks
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Figure 1: Distribution of the number of VELO tracks and backward tracks for NoBias events
(red) and B0 signal events (blue), each with only one primary vertex. The vertical scale is
arbitrary.

are each represented in the fit by a sum of two Crystal Ball functions, which have tail
parameters constrained to values determined by simulation. The background contribution
is represented by an exponential function, which is found to provide a good description of
the purely combinatorial J/ψπ±π± mass spectrum with like-sign dipions. All multiplicity
intervals are fit simultaneously, where the signal shapes are constrained to be the same in
each interval, but their normalization and the background parameters are allowed to vary.
The B0

s and B0 line shapes are nearly identical, and variations of the fit functions have a
negligible effect on the extracted ratio of B0

s to B0 yields.
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Figure 2: Measured J/ψπ+π− invariant mass distributions and fit projections in the multiplicity
ranges a) 30 < NVELO

tracks ≤ 40 and b) 100 < NVELO
tracks ≤ 125.
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The ratio of cross-sections σB0
s
/σB0 is found by calculating

σB0
s

σB0

=
NB0

s

NB0

× BB
0

BB0
s

×
εaccB0

εaccB0
s

×
εtrigB0

εtrigB0
s

×
εPIDB0

εPIDB0
s

×
εrecoB0

εrecoB0
s

, (1)

where NB0
s
/NB0 is the ratio of B0

s to B0 signal yields returned by the fit, BB0/BB0
s

is the

ratio of B0 to B0
s branching fractions to J/ψπ+π− [17,46], and εaccB0 /εaccB0

s
, εtrigB0 /ε

trig
B0

s
, εPIDB0 /εPIDB0

s
,

and εrecoB0 /εrecoB0
s

are ratios of the LHCb acceptance and the trigger, particle identification,

and reconstruction efficiencies for B0 to B0
s mesons, respectively. Due to the similarities

of the B0
s and B0 decays, many systematic uncertainties partially cancel in this ratio

of cross sections. The ratio of the LHCb acceptance for the decays εaccB0 /εaccB0
s

is found,

using simulation, to be consistent with unity, with an uncertainty of ∼ 1% due to
the uncertainty on the weights applied to the simulation in order to match the data.
The ratio of trigger efficiencies εtrigB0 /ε

trig
B0

s
is determined from data to be consistent with

unity, with an uncertainty of ∼ 1%, using techniques described in Ref. [47], where the
uncertainty comes from statistical uncertainties on the data sample. The ratio of particle
identification efficiencies εPIDB0 /εPIDB0

s
is found using calibrated samples of identified muons

and pions obtained from the data, and is consistent with unity with an uncertainty of
∼ 1% due to the finite size of the calibration sample. The only term with a significant
difference from unity is the ratio of reconstruction efficiencies, which is found to be
εrecoB0 /εrecoB0

s
= 0.86± 0.04 for the pT-integrated sample. This is due to the difference in the

dipion mass distributions produced in the B0
s and B0 decays: the B0

s decay is dominated by
contributions from intermediate f0(980) and f0(1500) states [48], which are reconstructed
with higher efficiency than the lower-mass ρ0(770) intermediate state that is significant in
B0 decays [49]. The uncertainty on this correction is due to the statistical uncertainty on
the weights extracted from the data that are applied to the simulation in order to match
the measured B meson pT and dipion mass distributions.

The ratio of cross-sections for the multiplicity-integrated samples is found to be
σB0

s
/σB0 = 0.30± 0.01± 0.03, where the first uncertainty is statistical and the second is

systematic. This measurement agrees with previous LHCb measurements of fs/fd using
different decay channels [17] within 1.5 standard deviations.

The multiplicity dependence of σB0
s
/σB0 is shown in Fig. 3, for two different multiplicity

metrics. The vertical error bars (boxes) represent point-to-point uncorrelated (fully
correlated) uncertainties, while the horizontal error bars represent the bin width. Numerical
values are given in the supplemental material [50]. In the left panel, the ratio shows an
increasing trend with the total VELO multiplicity, where multiplicity is normalized to the
mean value found in NoBias collisions. Also shown are the σB0

s
/σB0 values measured in

e+e− collisions at the Υ (5S) and Z0 resonances [51], which are in good agreement with the
data at low multiplicity. The right panel shows the same ratio versus the normalized Nback

tracks.
No significant dependence is observed on the multiplicity measured in the backward region.
The dependence on total multiplicity, compared to the lack of dependence on multiplicity
measured at backward rapidity, could indicate that the mechanism responsible for the
increase in the σB0

s
/σB0 ratio is related to the local particle density in a similar rapidity

interval as the B mesons themselves.
The multiplicity dependence of σB0

s
/σB0 is shown in three different intervals of B meson

pT in Fig. 4. Numerical values are given in the supplemental material [50]. The lowest pT
interval, 0 < pT < 6 GeV/c, encompasses B mesons with pT approximately equal to or
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less than their mass. In this pT interval, at low multiplicity the σB0
s
/σB0 ratio is consistent

with values measured in e+e− collisions, and increases with multiplicity. The slope of
a line fit to these data differs from zero by 3.4 standard deviations, thereby providing
evidence for an increase of the the σB0

s
/σB0 ratio. The measurements in higher pT intervals,

6 < pT < 12 GeV/c and 12 < pT < 20 GeV/c, display no significant dependence on
multiplicity and are consistent with data from e+e− collisions. This behavior is expected
in a scenario where low-pT b quarks with relatively low velocity recombine with s quarks
produced in high-multiplicity collisions, while the wavefunctions of higher pT b quarks
have less overlap with the low-pT bulk of the quarks produced in the collision. These
high-pT b quarks would thereby dominantly hadronize via fragmentation in vacuum, as in
e+e− collisions, rather than via coalescence.

In summary, LHCb measurements in pp collisions at
√
s = 13 TeV show evidence that

the production of B0
s mesons is enhanced relative to B0 mesons in collisions with high

charged-particle multiplicity, indicating that strangeness enhancement is present in B
hadron production. In collisions with relatively low charged-particle multiplicity, and for
B mesons with pT > 6 GeV/c, the rate of B0

s production relative to B0 production is
consistent with what is measured in e+e− collisions. These measurements are qualitatively
consistent with expectations based on the emergence of quark coalescence as an additional
hadronization mechanism, rather than fragmentation alone. These results could indicate
that interactions of the b quarks with the local hadronic environment influence the
hadronization process, thereby breaking factorization of b quark hadronization between
e+e− and hadron collisions.
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Figure 3: Ratio of cross sections σB0
s
/σB0 versus the normalized multiplicity of a) all VELO

tracks, and b) backward VELO tracks. The vertical error bars (boxes) represent point-to-point
uncorrelated (fully correlated) uncertainties. The horizontal bands show the values measured in
e+e− collisions.
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uncertainties. The horizontal bands show the values measured in e+e− collisions.
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Appendix: Supplemental material

The ratio of B0
s to B0 cross-sections σB0

s
/σB0 versus the number of VELO tracks and

number of backward VELO tracks are given in Table 1 and Table 2, respectively, for
the transverse momentum range range 0 < pT < 20 GeV/c. Tables 3, 4, and 5 give
the ratio versus the number of VELO tracks over the transverse momentum ranges
0 < pT < 6 GeV/c, 6 < pT < 12 GeV/c, and 12 < pT < 20 GeV/c, respectively.

Table 1: Ratio of cross-sections σB0
s
/σB0 in the range 0 < pT < 20 GeV/c versus NVELO

tracks .

NVELO
tracks σB0

s
/σB0 Uncorrelated uncertainty Correlated uncertainty

5-20 0.23 0.06 0.02
21-30 0.29 0.05 0.03
31-40 0.24 0.03 0.02
41-50 0.27 0.03 0.02
51-60 0.29 0.03 0.03
61-70 0.29 0.03 0.03
71-80 0.32 0.03 0.03
81-100 0.31 0.03 0.03
101-125 0.33 0.03 0.03
126-150 0.36 0.06 0.03
151-250 0.35 0.10 0.03

Table 2: Ratio of cross-sections σB0
s
/σB0 in the range 0 < pT < 20 GeV/c versus Nback

tracks.

Nback
tracks σB0

s
/σB0 Uncorrelated uncertainty Correlated uncertainty

1-10 0.27 0.02 0.02
11-15 0.29 0.02 0.03
16-20 0.33 0.03 0.03
21-25 0.29 0.03 0.03
26-30 0.29 0.03 0.03
31-40 0.32 0.03 0.03
41-60 0.30 0.04 0.03
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Table 3: Ratio of cross-sections σB0
s
/σB0 in the range 0 < pT < 6 GeV/c versus NVELO

tracks .

NVELO
tracks σB0

s
/σB0 Uncorrelated uncertainty Correlated uncertainty

5-20 0.18 0.06 0.02
21-30 0.27 0.06 0.02
31-40 0.24 0.04 0.02
41-50 0.24 0.04 0.02
51-60 0.31 0.05 0.03
61-70 0.29 0.05 0.03
71-80 0.45 0.09 0.04
81-100 0.35 0.05 0.03
101-125 0.38 0.07 0.03
126-150 0.45 0.15 0.04
151-250 0.47 0.31 0.04

Table 4: Ratio of cross-sections σB0
s
/σB0 in the range 6 < pT < 12 GeV/c versus NVELO

tracks .

NVELO
tracks σB0

s
/σB0 Uncorrelated uncertainty Correlated uncertainty

5-20 0.26 0.11 0.02
21-30 0.28 0.07 0.02
31-40 0.25 0.04 0.02
41-50 0.33 0.05 0.03
51-60 0.27 0.04 0.02
61-70 0.35 0.05 0.03
71-80 0.25 0.03 0.02
81-90 0.28 0.03 0.02

101-125 0.30 0.04 0.03
126-150 0.34 0.07 0.03
151-250 0.20 0.08 0.02

Table 5: Ratio of cross-sections σB0
s
/σB0 in the range 12 < pT < 20 GeV/c versus NVELO

tracks .

NVELO
tracks σB0

s
/σB0 Uncorrelated uncertainty Correlated uncertainty

5-30 0.40 0.23 0.04
31-50 0.20 0.04 0.02
51-70 0.20 0.03 0.02
71-90 0.31 0.06 0.03
91-125 0.27 0.06 0.03
126-250 0.30 0.11 0.03
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