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We use redshift-space galaxy clustering data from the BOSS survey to constrain local primordial

non-Gaussianity (LPNG). This is of particular importance due to the consistency relations, which

imply that a detection of LPNG would rule out all single-field inflationary models. Our constraints

are based on the consistently analyzed redshift-space galaxy power spectra and bispectra, extracted

from the public BOSS data with optimal window-free estimators. We use a complete perturbation

theory model including all one-loop power spectrum corrections generated by LPNG. Our constraint

on the amplitude of the local non-Gaussian shape is f local
NL = −33±28 at 68% CL, yielding no evidence

for primordial non-Gaussianity. The addition of the bispectrum tightens the f local
NL constraints from

BOSS by 20%, and allows breaking of degeneracies with non-Gaussian galaxy bias. These results

set the stage for the analysis of future surveys, whose larger volumes will yield significantly tighter

constraints on LPNG.

1. INTRODUCTION

Inflation provides a mechanism to seed density fluctuations that we observe in the late Universe. The physics

responsible for it, which may have operated at energies as high as 1016 GeV, has left observable imprints in these

density fluctuations. The observations of cosmic microwave background (CMB) anisotropies and the distribution of

galaxies in the large-scale structure (LSS) present particularly appealing ways to probe the inflationary epoch, and

thus the physics of this high-energy regime.

There is a special class of inflationary models, in which inflation is driven by a medium whose quantum fluctuations

are the only source of the observable overdensities. Assuming the attractor solution and the Bunch-Davies vacuum,

these single-field (or single-clock) models generically predict purely adiabatic fluctuations with vanishing physical

coupling of long-wavelength and short-wavelength modes. This result is formalized in the well-known consistency

relations [1, 2]. Given the bispectrum Bφ(k1, k2, k3) of the primordial Bardeen potential φ, they have the following

form

Bφ(k1, k2, k3)
∣∣∣
k3�k1,k2

= −5

3
Pφ(k3)

[
3 + k1

∂

∂k1

]
Pφ(k1) . (1)

This limit, when one of the wavenumbers is much smaller than the other two, is called the squeezed limit. Eq. (1)

implies that in single-field models the only effect of the long-wavelength modes of φ on the short-scale modes is a simple

rescaling of coordinates, which is locally unobservable. Therefore, any detection of local primordial non-Gaussianity

(LPNG), i.e. a detection of a non-vanishing amplitude in the squeezed limit of the initial bispectrum due to physical

interactions of long and short modes, would rule out single-field inflation [2].

Whilst the simplicity of single-field inflation is very appealing (and so far supported by observations), having more

than one relevant fluctuating degree of freedom besides the inflaton is easy to achieve. Some well-known examples are

the curvaton scenario [3–5] and modulated reheating [6]. In contrast to single-field inflation, these multi-field models

can produce large and observable LPNG.
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This important distinction between the two classes of inflationary models makes the amplitude of the initial bis-

pectrum containing LPNG, called f local
NL , the key observable that we can use to make quantitative, model-independent

statements about the primordial Universe. It is defined in the following way

Bφ(k1, k2, k3) = 6f local
NL ∆4

φ

Slocal(k1, k2, k3)

k2
1k

2
2k

2
3

, (2)

where ∆2
φ is the amplitude of the primordial power spectrum k3Pφ(k) = ∆2

φ(k/k∗)
ns−1 and ns is the spectral index.1

The local template is given by

Slocal(k1, k2, k3) =
1

3

k2
1

k2k3
+ 2 perms. . (3)

This template is such that the squeezed limit bispectrum generated by the LPNG takes the following form

Bφ(k1, k2, k3)
∣∣∣
k3�k1,k2

= 4f local
NL Pφ(k1)Pφ(k3) , (4)

which is very different from the single-field result given by Eq. (1). Generic values of f local
NL in multifield models are

of order one or higher (for some counterexamples, see [8, 9]), making f local
NL ≈ 1 an interesting and well-motivated

observational target.

Significant efforts are aimed at measuring f local
NL , with the tightest current constraints coming from CMB observa-

tions. In particular, the Planck 2018 data yields f local
NL = −0.9 ± 5.1 [10]. Measurements from galaxy clustering are

currently somewhat weaker, but are expected to improve significantly with upcoming galaxy surveys. These surveys

will eventually reach the target of f local
NL ≈ 1 (see for example [11–13]). Almost all LSS analyses done so far use

the fact that LPNG produces the so-called scale-dependent galaxy bias [14, 15], and therefore can be constrained

by observations of galaxy power spectra on large scales [16–20]. Whilst measuring the galaxy power spectrum and

looking for scale-dependent bias has the advantage of being relatively straightforward, this may not be an optimal

way to constrain LPNG from LSS data. Indeed, as many Fisher forecasts and full likelihood analyses indicate, the

dominant source of information on f local
NL for the shot-noise limited samples is the galaxy bispectrum [11, 12, 21–24].

Developing consistent and robust pipelines to harvest this information is one of the major milestones on the way

towards achieving the tightest possible bounds on LPNG.

Performing an optimal search for LPNG in the observed galaxy bispectrum is not a trivial task for a number of

reasons. One of the main difficulties is the survey geometry, which mixes the Fourier modes on large scales. In order to

circumvent this problem, in this paper we use recently developed optimal window-free power spectrum and bispectrum

estimators [25, 26]. In principle, such an approach guarantees that the results are unbiased, close-to-optimal and that

all effects related to the window function are consistently taken into account. This is particularly important for

constraints on f local
NL , since most of the signal comes from the largest scales in the survey, either through the scale-

dependent bias or through the squeezed triangles. An alternative is to model the effects of window convolution when

calculating the observed bispectrum. Doing this exactly is very challenging numerically, and novel methods to tackle

this problem were developed only very recently [27]. On the other hand, if the effects of the window function are

modelled using approximate treatments available in the literature [e.g., 28, 29], this can lead to biases at low k, leading

to such bins needing to be dropped from the analysis. This approach was used recently in [30] to measure LPNG, and

it remains unclear to what extent the results are impacted by the approximate treatment of the window function.

Another non-trivial task is the modeling of the galaxy bispectrum signal. This includes all aspects of the nonlinear

evolution such as the backreaction of short-scale physics on large-scale modes, the nonlinear evolution of the BAO

signature (IR resummation), as well as a robust control over projection and binning effects. Many years of intense

1 Planck 2018 [7] gives precise measurements for both of these quantities: ∆2
φ ≈ 1.5 × 10−8 and ns ≈ 0.96, for the pivot scale k∗ = 0.05

Mpc−1.
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theoretical efforts [31–47] have recently made the incorporation of these effects possible, so that the bispectrum data

can be routinely used in cosmological parameter analyses [48].

In this work, we present a search of LPNG using galaxy power spectrum and bispectrum from the publicly available

BOSS data [49]. This is a natural continuation of our previous analysis of PNG in single-field inflation [50], based on

the same tree-level bispectrum model and the data cuts that were extensively tested in [47]. Importantly, the galaxy

bispectrum treatment presented in [47] is fully systematic, i.e. there is a way to control the precision of various effects

so it can be applied to future high-precision galaxy survey data.

The remainder of this paper is structured as follows. In Section 2 we present key theoretical ingredients needed to

extract LPNG from the galaxy clustering data. They include the complete calculation of the one-loop galaxy power

spectrum in the presence of LPNG. Section 3 describes the data and analysis details. We validate our pipeline on

the mock galaxy clustering data in Section 4, and then apply it to the BOSS data in Section 5. We present limits on

non-Gaussian bias parameters from the BOSS data in Sec. 6. Section 7 draws conclusions. Additional details of the

theory model are given in the Appendix A.

2. STRUCTURE FORMATION IN THE PRESENCE OF LPNG

In this section we present our theoretical model, which includes all necessary terms generated by LPNG. We work

in the framework of the effective field theory of large scale structure (hereafter EFT of LSS), as described in [51–56]

and references therein. Since the perturbative model for structure formation has been discussed in detail in the works

cited above, we will provide only a brief overview in what follows, focusing on the ingredients that will be necessary

to carry out the calculation of the one-loop LPNG contributions. For dark matter and biased tracers in real space,

these contributions have already been studied in the literature, [23, 57–59]. Here, we extend these results to the case

of galaxies in redshift-space needed for comparison to observations.

To simplify the text and formulas, we omit the superscript “local” in our notation of the fNL parameter in this

section. We stress, however, that all results obtained here, strictly speaking, apply only to the case of LPNG. The

analogous theory model for non-local primordial non-Gaussianity is presented in Ref. [50].

2.1. Gaussian part

For Gaussian initial conditions, the statistical properties of the first-order density field, δ(1), are completely deter-

mined by its power spectrum P11:

〈δ(1)(k)δ(1)(k′)〉 = (2π)3δ
(3)
D (k′ + k)P11(k) , (5)

where we have suppressed the explicit time dependence for brevity. In this work, we restrict our analysis of the galaxy

power spectrum to one-loop order in the EFT of LSS, where the usual Gaussian part reads

PGauss = Ptree + P1−loop + Pctr + Pstoch , (6)

where Ptree is the linear term, P1−loop is the one-loop correction (with Gaussian initial conditions), Pctr is the higher

derivative term (counterterm), and Pstoch is the term that captures galaxy stochasticity.

We now present our model for the galaxy bias, referring the interested reader to [42] for an extensive review. For

the statistics considered herein, it is sufficient to consider the galaxy density field at cubic order. We use the following

set of bias operators

δ(r)
g = b1δ +

b2
2
δ2 + bG2G2 +

b3
6
δ3 + bδG2δG2 + bG3G3 + bΓ3

Γ3 +R2
∗∂

2δ . (7)
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The Galileon operator G2 is defined as (∂i∂jΦg)
2− (∂2Φg)

2, where Φg is the gravitational potential. The Γ3 operator

instead is defined as G2[Φg] − G2[Φv], where Φv is the velocity potential. The cubic operators δ3, δG2, G3 do not

contribute to the one-loop power spectrum after renormalization.

The redshift-space mapping for fixed line of sight ẑ at order (δ(1))3 is given by

δ(s)
g = δ(r)

g − ∂z
(
uz(1 + δ(r)

g )
)

+
1

2
∂2
z

(
u2
z(1 + δ(r)

g )
)
− 1

6
∂3
z

(
u3
z

)
, (8)

(from expanding the usual real-space to redshift-space relation), where uz ≡ ẑ · v/H, v is the peculiar velocity field

and H is the conformal Hubble parameter. These can be written in terms of the Fourier-space kernels

Z1(k) = b1 + fµ2 , (9)

Z2(k1,k2) =
b2
2

+ bG2

(
(k1 · k2)2

k2
1k

2
2

− 1

)
+ b1F2(k1,k2) + fµ2G2(k1,k2) +

fµk12

2

(
µ1

k1
(b1 + fµ2

2) +
µ2

k2
(b1 + fµ2

1)

)
,

and Z3, whose expression can be found in Section 2 of [60], where f is the logarithmic growth rate and µ = k̂ · ẑ. In

this notation, the deterministic part of the redshift-space galaxy density field can be written as

δg(k) = Z1(k)δ(1)(k) +

∫
p12=k

Z2(p1,p2)δ(1)(p1)δ(1)(p2) +

∫
p123=k

Z3(p1,p2,p3)δ(1)(p1)δ(1)(p2)δ(1)(p3) , (10)

where we have introduced the following notation
∫
p1...n=k

≡
∫
d3p1

(2π)3 · · ·
d3pn
(2π)3 (2π)3δD(k − p1...n) and p1...n ≡ p1 +

· · ·+ pn. We also supplement these kernels with the appropriate redshift-space counterterms that are omitted in (8)

for clarity; these are discussed in Ref. [47].

2.2. LPNG-related non-linearity

LPNG affects the statistics of the galaxy overdensity in two ways. First, we have a non-zero bispectrum for the linear

matter overdensity δ(1). This generates a connected bispectrum contribution B111,

〈δ(1)(k1)δ(1)(k2)δ(1)(k3)〉 ≡ (2π)3δ
(3)
D (k123)B111(k1, k2, k3) = (2π)3δ

(3)
D (k123)

3∏
a=1

M(ka)Bφ(k1, k2, k3) , (11)

where we have introduced the transfer functions

δ(1)(k) =M(k)φ(k) ⇒ M(k) =

√
P11(k)

Pφ(k)
. (12)

The initial bispectrum (11) also generates an additional loop correction to the matter power spectrum dubbed P12.

We will discuss this term shortly.

Second, LPNG modulates the correlation between the long and short modes, which ultimately alters the probability

of galaxy formation (inducing scale-dependent bias [14, 15]). In order to reproduce this effect in the perturbative

galaxy bias expansion, one needs to include new operators with the appropriate bias coefficients analogous to the

Gaussian case (7). At linear order in fNL∆φ and cubic order in δ(1) these operators are given by

δLPNG
g (x) = bφfNLφ(q) + bφδfNLφ(q)δ(x) + bφδ2fNLφ(q)δ2(x) + bφG2fNLφ(q)G2(x) . (13)

Note that this expansion is valid only for LPNG. For non-local primordial non-Gaussianity the squeezed bispectrum

is typically proportional to derivatives of φ, and hence φ in the above expansion must be replaced by appropriate

higher derivative operators like ∂2φ [61]. These operators appear to be higher order and hence their effect can be

neglected at the one-loop order in the EFT of LSS [50].

In contrast to Eq. (7), here we have made the argument of all relevant fields explicit. More precisely, the Bardeen

potential appearing on the right-hand side is evaluated at the Lagrangian position q corresponding to the Eulerian
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position x [23, 58, 59]. In order to evaluate all fields at the Eulerian coordinates we need to Taylor expand the

primordial gravitational potential. If we want to keep all terms up to cubic order we can write

φ(q) = φ(x−ψ(q)) = φ
(
x−ψ(x−ψ(x))

)
. (14)

Expanding perturbatively in the displacement field ψ we get

φ(q) = φ− ψi∂iφ+ ψk(∂kψ
i)∂iφ+

1

2
ψiψj∂i∂jφ , (15)

where the fields on the right-hand side are all evaluated at the Eulerian position x, and we emphasize that the

displacement ψ contains both the linear and the second-order contribution. We keep terms up to cubic order in the

expansion (15) since they are needed for the consistent calculation of the one-loop power spectrum. Before we move

on, let us comment on the omission of higher derivative terms of the form ∂2
qφ(q) in (13). These corrections can be

straightforwardly included, see e.g. [58], but for realistic values of fNL they are always suppressed compared to the

two-loop Gaussian contributions that we neglect here. Therefore, we neglect the higher derivative LPNG terms in

what follows.

Let us now shift our attention to redshift-space. In this case LPNG generates additional counterterms in δg involving

the matter velocity field v. However, as we have just discussed, these terms can be neglected in our analysis because

they have the same order of magnitude as the higher derivative LPNG operators. Hence, it is enough to use (8) to

map the rest-frame galaxy overdensity in presence of LPNG to redshift-space.

All in all, the Taylor expansion of δNL though δ(1) in the presence of LPNG will take a form identical to Eq. (10),

but with the new kernels Ztot
n = Zn + ZNG

n (n = 1, 2, 3), where ZNG
n are the additional PNG kernel contributions.

The linear kernel is given by

ZNG
1 (k) = bφfNL , (16)

with the second kernel taking the form

ZNG
2 (p1,p2) = bφfNL

p1 · p2

2p1p2

(
p2

p1

1

M(p2)
+
p1

p2

1

M(p1)

)
+ bφfNL

fµk

2

(
µ1

p1

1

M(p2)
+
µ2

p2

1

M(p1)

)
+ bφδfNL

1

2

(
1

M(p1)
+

1

M(p2)

)
,

(17)

where we have introduced

µi = ẑ · p̂i , µij = ẑ · (pi + pj)/|pi + pj | . (18)

For the cubic fields we find

ZNG
3 (p1,p2,p3) = bφfNL

(
− 1

14
G2(p1,p2)

(p1 + p2) · p3

|p1 + p2|2
1

M(p3)
+ 2 perms.

)
+ bφfNL

(
1

6

p1 · p2

p2
1p

2
2

p2 · p3

M(p3)
+ 5 perms.

)
+ bφfNL

(
1

6

p1 · p3

p2
1p

2
2

p2 · p3

M(p3)
+ 2 perms.

)
+ bφfNL fµp123

(
1

3
G2(p1,p2)

µ12

|p1 + p2|
1

M(p3)
+ 2 perms.

)
+ bφfNL (fµp123)2

(
1

6

µ1µ2

p1p2

1

M(p3)
+ 2 perms.

)
.

(19)

Note that bφδ2 and bφG2 do not appear in ZNG
3 : the reason for this is that they are removed after renormalization of b1

and bφ. Moreover, the contributions from bφδ where either φ or δ are expanded at second order in perturbations are

also absorbed by renormalization of these two parameters, was first proved in Ref. [23] in the context of the real space

perturbation theory. Finally, let us note that compared to the analysis of [30], we include the cubic non-Gaussian

kernel in the model, which is needed to calculate corrections to the one-loop galaxy power spectrum induced by LPNG.
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2.3. Stochasticity

So far we have focused on the deterministic part of the galaxy overdensity. PNG leads to additional contributions

to the stochastic part of δg as we discuss below.

Refs. [42, 47, 52] contain a detailed description of stochastic terms in the case of Gaussian initial conditions. As

far as the tree-level bispectrum and one-loop power spectrum in the presence of LPNG are concerned, the the full

stochastic contribution is given by [47, 51]

δstoch.
g (k) = ε+

d2

2
b1[δε]k − f [∂z(εuz)]k + fNL

bεφ
2

[εφ]k + a0R
2
∗k

2ε+ a2kz ẑ
i(εi + kiε) + a4k

2
z ẑiẑjε

ij , (20)

where ε, εi, εij are the stochastic density, velocity and tidal fields. The final three terms in (20) are higher derivative

stochastic contributions that are important only for the Gaussian part. The only new LPNG contribution here is εφ,

where we emphasize again that φ is evaluated at the Lagrangian position q.

2.4. Summary of the power spectrum and bispectrum models

Once the new kernels in the presence of LPNG are obtained, it is straightforward to compute the one-loop power

spectrum and the tree-level bispectrum. Modulo the counterterms, the deterministic part is given by

P tot
1-loop = 2

∫
p

[Ztot
2 (p,k− p)]2P11(p)P11(|k− p|) + 6Ztot

1 (k)P11(k)

∫
p

Ztot
3 (k,−p,p)P11(p)

+ 2Ztot
1 (k)

∫
p

Ztot
2 (p,k− p)B111(k, p, |k− p|) ,

Btot
tree = Ztot

1 (k1)Ztot
1 (k2)Ztot

1 (k3)B111(k1, k2, k3) + 2Ztot
2 (k1,k2)Ztot

1 (k1)Ztot
2 (k2)P11(k1)P11(k2) + perms. .

(21)

It is instructive to simplify this expression and break it down into separate pieces. In this section we give explicit

expressions for different terms in Eq. (21). We focus on contributions that are linear in f local
NL ∆φ. The contributions

O((f local
NL ∆φ)2) can be straightforwardly computed, but turn out to be irrelevant for our analysis (as shown in Section

2.5) except for the linear f2
NL scale-dependent bias term. We briefly discuss other O((f local

NL ∆φ)2) corrections in

Appendix A.

1. Power spectrum

The power spectrum has three kinds of additional contributions proportional to fNL. At tree level we have

PLPNG
tree-level = P fNL

11 + P
f2
NL

11 , (22)

while at one-loop order the total contribution linear in f local
NL is given by

PLPNG
1-loop = P fNL

22 + P fNL

13 + P12 . (23)

The first contributions are the scale-dependent bias

P fNL

11 (k, µ) = 2(b1 + fµ2)bφfNL
P11(k)

M(k)
, P

f2
NL

11 (k, µ) = b2φf
2
NL

P11(k)

M2(k)
. (24)

Defining P1φ(k) ≡ P11(k)/M(k), the P fNL

22 contribution can be written as

P fNL

22 (k) = 4fNL

∫
p

Z̃NG
2 (p,k− p)Z2(p,k− p)P11(p)P1φ(|k− p|) , (25)
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where we have introduced the new kernel

Z̃NG
2 (p1,p2) = bφ

p1 · p2

p2
1

+ bφ fµk
µ1

p1
+ bφδ , (26)

which is just a simplified version of ZNG
2 . The use of P1φ and Z̃NG

2 is particularly convenient for the FFTLog evaluation

of P fNL

22 , which we perform in this work following the approach of [62]. P fNL

13 is given by the sum of three contributions:

P fNL

13 = P fNL

13
(1) + P fNL

13
(2) + P fNL

13
(3) . (27)

The first is simply

P fNL

13
(1) =

bφfNL

M(k)

∫
p

6Z3(k,p,−p)P11(p) , (28)

with the second being

P fNL

13
(2) = −Z1(k)bφfNLk

2(1 + f2µ2)σ2
vP1φ(k) , (29)

where σ2
v ≡

∫∞
0

dq P11(q)/6π2. This comes from the terms ψiψj∂i∂jφ/2 in (15) and ∂2
z (u2

zφ)/2 in the redshift-space

mapping of bφfNLφ, i.e. the third and fifth terms in (19). The contribution P fNL

13
(2) exactly cancels with the IR limit

of the P fNL

22 integral just like the IR limits of the P13 and P22 contributions in the Gaussian case. Finally, there is a

term of the form

P fNL

13
(3) = Z1(k)P11(k)

∫
p

6Z̃NG
3 (k,p,−p)P11(p) , (30)

where

Z̃NG
3 (p1,p2,p3) = bφfNL

(
− 1

14
G2(p1, p2)

(p1 + p2) · p3

|p1 + p2|2
1

M(p3)
+ 2 perms.

)
+ bφfNL

(
1

6

p1 · p2

p2
1p

2
2

p2 · p3

M(p3)
+ 5 perms.

)
+ bφfNL fµp123

(
1

3
G2(p1,p2)

µ12

|p1 + p2|
1

M(p3)
+ 2 perms.

)
.

(31)

Notice that the only permutations surviving are those for which the transfer function remains inside the loop integral,

i.e. it is P1φ that is integrated in P fNL

13
(3). The last term P12 is given by

P12(k) = 12fNLZ1(k)∆φ T (k)

∫
p

[
S(k, p, |k− p|)Z2(p,k− p)

]
T (p)T (|k− p|) , (32)

where we have defined T (k) ≡ ∆φM(k)/k2.

Finally, we note that the contribution from the stochastic term εφ to the one-loop power spectrum is degenerate

with the stochastic shot noise contributions we have in the zero-fNL case. For this reason we do not include it in the

model.

The Gaussian and non-Gaussian one-loop corrections to the galaxy power spectrum monopole are shown in the left

and right panels of Fig. 1, respectively, for fNL = 100. We show all separate shapes without multiplying them by the

nuisance parameters to clearly illustrate the size of these terms regardless of particular galaxy samples. The terms

labeled “no biases” correspond to pure matter contributions (i.e. they have b1 = 1 and all other biases set to zero,

which corresponds a contribution from pure matter). We see that some of the LPNG loops are actually as large as

the matter loops for k . 0.1 hMpc−1. Thus, these terms must be included for consistency.

2. Bispectrum

Working at tree level in perturbations and at the linear order in fNL∆φ, the PNG contributions to the redshift-space

bispectrum are

BNG
tree-level = fNLB

fNL

211 +B
(s)
111 . (33)
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FIG. 1. Left panel – “Gaussian” one-loop contributions to the power spectrum monopole at z = 0.61 compared with linear

theory. We take b1 = 1, and the different curves have the corresponding bias parameters set to unity. Right panel – PNG

contributions to the power spectrum monopole at z = 0.61 compared with linear theory. We take fNL = 100 and b1 = 1. The

grey curve shows the scale-dependent bias contribution for bφ = 1. The remaining curves show the different contributions (P12

and P fNL
22 + P fNL

13 ) to PNG
1-loop for unit values of the corresponding bias parameters.

BfNL

211 arises from scale-dependent bias and is given by

BfNL

211 (k1,k2,k3) = Z1(k1)Z1(k2)bδφ

[
P11(k1)P1φ(k2) + P11(k2)P1φ(k1)

]
+ Z1(k1)Z1(k2)bφ

k1 · k2

k1k2

(
k2

k1

1

M(k2)
+
k1

k2

1

M(k1)

)
P11(k1)P11(k2)

+ Z1(k1)Z1(k2)bφ fµ12k12

(
µ1

k1

1

M(k2)
+
µ2

k2

1

M(k1)

)
P11(k1)P11(k2)

+ 2bφZ2(k1,k2)
[
Z1(k1)P11(k1)P1φ(k2) + Z1(k2)P11(k2)P1φ(k1)

]
+ 2 permutations .

(34)

B
(s)
111 is the standard tree-level redshift-space PNG contribution,

B
(s)
111(k1,k2,k3) =

3∏
a=1

Z1(ka)M(ka)Bφ(k1, k2, k3) = Z1(k1)Z1(k2)Z1(k3) fNL∆φ 6 S(k1, k2, k3) T (k1)T (k1)T (k1) .

(35)

So far we have discussed the deterministic contributions. In contrast to the power spectrum case, there is an additional

stochastic contribution that is not degenerate with the ones present also in the zero-fNL case. This contribution comes

from (20), and takes the form

BfNL

stoch = fNLbφM−1(k1)Z1(k1)P11(k1)Pε(k2) + fNLbεφM−1(k1)Z1(k1)P11(k1)Pε(k2) + 5 perms. , (36)

where Pε(k) is the power spectrum of ε. At leading order it is proportional to the constant shot noise value n̄−1. As

we will argue shortly, these terms turn out to be irrelevant for our analysis.

Before closing this section, we also note that we have implemented IR resummation for all the LPNG terms entering

the power spectra and bispectra models, following the formalism of time-sliced perturbation theory [38, 44, 63, 64].

After implementing both IR resummation and the Alcock-Pazcynski projection effects [65] in our models for the

tree-level bispectrum and the one-loop power spectra, we numerically compute the Legendre multipoles of the power

spectrum and the bispectrum monopole, allowing for robust comparison to data.
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2.5. Behavior in a scaling universe

Let us estimate the relative importance of the different fNL contributions. This can be done using the scaling universe

approach [58, 66]. It is based on the fact that the linear power spectrum in our Universe can be well approximated by

a power law: P11 ∝ (k/kNL)nk−3
NL with n ≈ −1.5 for quasi-linear wavenumbers k ' 0.1hMpc−1. We also introduced

the nonlinear scale kNL = 0.5 hMpc−1 at z = 0.5.

We choose to focus on this particular range for the following reason. Given that the leading LPNG contribution is

a linear scale-dependent bias enhanced on large scales, and the LPNG loop corrections dominate the usual Gaussian

loops at low-k, large scales should be crucial for our analysis. The relative contributions of these terms diminish

compared to the Gaussian loops at small scales, but the errorbars also get smaller. This suggests that the relative

importance of the LPNG corrections should be maximal at some intermediate wavenumber scale, which we choose we

to be kref = 0.1 hMpc−1, roughly in the center of the wavenumber range that we use in the data analysis. In what

follows, all estimates will be presented for k = kref .

Assuming that there is a single non-linear scale in the problem, the estimates for the total dimensionless galaxy

power spectrum ∆2(k) ≡ k3P (k) for purely Gaussian initial conditions give

∆2(k) =

(
k

kNL

)1.5

︸ ︷︷ ︸
Ptree

+

(
k

kNL

)3

︸ ︷︷ ︸
P1-loop

+

(
k

kNL

)3.5

︸ ︷︷ ︸
ctr

+

(
k

kNL

)3

︸ ︷︷ ︸
stoch

.
(37)

Recalling that the Bardeen potential has a nearly scale-invariant spectrum, we get the following expressions for the

LPNG terms:

∆2
NG(k) = fNL∆φ

(
k

kNL

)0.75

︸ ︷︷ ︸
P

NG, fNL
tree-level

+ (fNL∆φ)2︸ ︷︷ ︸
P

NG, f2
NL

tree-level

+ fNL∆φ

(
k

kNL

)2.25

︸ ︷︷ ︸
PNG

1-loop

.
(38)

Evaluating these corrections at the reference scale kref = 0.1 hMpc−1, we get

∆2
Ptree

' 0.089 ,

∆2

P
NG, fNL
tree-level

' 1.1 · 10−2 × fNL

300
,

∆2
P1-loop

= ∆2
Pstoch

' 8 · 10−3 ,

∆2

P
NG, f2

NL
tree-level

' 1.3 · 10−3 × fNL

300
,

∆2
Pctr
' 3.6 · 10−3 ,

∆2
PNG

1-loop
' 9.6 · 10−4 × fNL

300
.

(39)

As expected, we see that the scale-dependent bias contribution PLPNG
tree-level always dominates over PLPNG

1-loop , and it is the

main source of constraining power in the power spectrum data. For fNL . 300 typical for our analyses we also see

that the one-loop PNG contributions are a small fraction of the “Gaussian” P1-loop.

The leading correction to the above result is given by the Gaussian two-loop contribution, which can be estimates

as

∆2
2−loop =

(
kref

kNL

)4.5

' 7.2 · 10−4 . (40)

This can be contrasted with the terms that we have dropped. Higher derivative fNL contributions stemming down

from terms like ∂2φ would be suppressed compared to other 1-loop LPNG terms that we retain in the theory model,

∆2
〈∂2φδ〉 = fNL∆φ

(
kref

kNL

)2.75

' 4.3 · 10−4 ×
(
fNL

300

)
. (41)

This justifies our choice of dropping these terms in Section 2.2.

We can make a similar argument for the loop terms O(f2
NL), which are also suppressed,

∆2
〈φδ2〉 = (fNL∆φ)2

(
kref

kNL

)1.5

' 1.1 · 10−4 ×
(
fNL

300

)2

. (42)
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All in all, our scaling universe estimates confirm that the one-loop LPNG corrections can be important in the data

analysis [23]. In addition, we also need to retain the leading f2
NL tree-level power spectrum contribution.

For the squeezed-limit tree-level bispectrum, where the shape of LPNG plays the most important role, it is straight-

forward to see that BfNL

211 and B111 scale in the same way. Their relative importance with respect to the “Gaussian”

B
(s)
211 is the same as that of the scale-dependent bias piece versus P11 in the power spectrum. The contribution from

BfNL

stoch is suppressed in the squeezed limit, and thus we do not include it in the analysis.

2.6. LPNG bias parameters

In the context of the EFT of LSS, bφ and bφδ (as well as usual bias parameters like b1, b2, etc.) should be treated as

free nuisance parameters and marginalized over in data analysis. However, there are certain phenomenological models

of dark matter halo formation, which predict bφ and bφδ parameters as a function of the linear bias b1. These are

known as “universality relations” [42]. For the relevant LPNG bias coefficients they predict

bφ = 2δc(b1 − 1) , bφδ = bφ − (b1 − 1) + δc

[
b2 −

8

21
(b1 − 1)

]
, (43)

where δc = 1.686. A typical approach then is to assume that the same relationship holds true even for galaxies. The

universality relation is routinely used in most of fNL constraints from galaxy surveys. However, the relationships (43)

fail for galaxies [67] from realistic hydrodynamical simulations. The most accurate analysis to date gives the following

fits based on the state-of-the art galaxy formation simulations [24, 68]:

bφ = 2δc(b1 − 0.55) , bδφ = 3.85− 9.49b1 + 3.44b21 . (44)

We adopt relationship (44) in our baseline analysis. As a cross check, we also repeat our analysis for the vanilla

universality relations (43). In Section 6 we go beyond any assumptions on the LPNG parameters and fit bδφf
local
NL and

bφf
local
NL directly from the data for the first time.

3. DATA AND ANALYSIS DETAILS

Our analysis is based on the twelfth data release (DR12) [49] of the Baryon Oscillation Spectroscopic Survey (BOSS).

The galaxy clustering data covers two redshift bins with effective centers z = 0.38, 0.61, for the Northern and Southern

galactic caps, resulting in four independent slices. The BOSS DR12 release contains a total of ∼ 1.2×106 galaxies in a

total volume of 6 (h−1Gpc)3. From each data chunk, we extract the redshift-space power spectrum multipole moments

P` (` = 0, 2, 4), the real space power spectrum proxy Q0 [69], the redshift-space bispectrum monopoles for triangle

configurations within the range of ki ∈ [0.01, 0.08)hMpc−1 (a total of 62 bispectrum data points per data chunk), and

the BAO parameters α‖, α⊥ measured from the post-reconstructed power spectrum data using the method of [70].

Both power spectra and bispectra are measured using window-free estimators [25, 26], thus we do not need to include

the survey window function in our theoretical model.

We use the data cuts2 kmax = 0.25 hMpc−1, kmin = 0.01 hMpc−1 for P` and kmin = 0.25 hMpc−1, kmax =

0.27 hMpc−1 for Q0, so that the two statistics are largely independent. We use lower kmax for Q0 because the two-

loop corrections can be non-negligible compared to the PNG contributions for kmax > 0.3 hMpc−1. Note that our

choice kmin = 0.01 hMpc−1 for both the power spectra and bispectra is conservative. We remove the first bin in order

2 Note that we use kmax for P` that is slightly larger than that adopted in Ref. [71]. This is because the particular choice of the data

cut in that paper kmax = 0.2 hMpc−1 was based on detecting biases in the cosmological parameter posteriors. However, in contrast

to [71], here we fix all cosmological parameters, in which case the fit to f local
NL is unbiased up to somewhat larger kmax. We stress that

this choice is not essential for the purposes of our work, as the f local
NL constraints are dominated by the linear LPNG bias and hence are

saturated at large scales.
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f local
NL

P
Nseries mocks

FIG. 2. Marginalized constraint on f local
NL from the mean

of 84 Nseries simulations, with a total volume approxi-

mately 40× larger than that of BOSS. Note that we do

not rescale the covariance to the BOSS volume, but use

that appropriate for the entire Nseries volume, allowing

a robust probe of theoretical systematics. Here, we find

f local
NL = −4.9 ± 5.0 at 68% CL.

300 200 100 0 100 200 300
f local
NL

P

BOSS P + Q0+BAO
BOSS P + Q0+BAO+B0

FIG. 3. Marginalized constraints on local-type primordial non-

Gaussianity from the BOSS power spectrum (blue) and power

spectrum plus bispectrum (red). We find f local
NL = 9+33

−35 and

−33 ± 28 in the two cases respectively at 68% CL, with the bis-

pectrum tightening the constraints by ≈ 20%. These are the main

results of this work.

to limit systematic effects related to stellar contamination and residual radial and atmospheric systematics, as well

as integral constraints.3

The power spectra and bispectra used in this work are extracted using the window-free estimators [25, 26]. The

covariances for our total datavector {P0, P2, P4, Q0, B0, α‖, α⊥} for each data chunk are extracted from a suite of 2048

MultiDark-Patchy mocks [74], using the standard empirical covariance matrix estimator.4

Our full-shape analysis matches the ones of [48, 50, 52, 70]. Unlike these works, we explicitly fix all cosmological

parameters to the Planck 2018 priors [7]. This is done because in this work we are interested only in the constraints

on f local
NL from the BOSS survey. Formally, this corresponds to a combination of the CMB power spectra and BOSS

power+bispectrum data. Thus, in our MCMC analysis we only fit f local
NL with an infinitely large flat prior, plus the

Gaussian EFT nuisance parameters (encompassing biases, stochasticity, and counterterms).

As discussed in Section 2.6, our fiducial analysis fixes the PNG bias coefficients to values predicted by the dark

matter halo relations as functions of the corresponding linear bias b1 for each data chunk. This choice is optional. In

principle, we can fit both bφ and bφδ directly from the data, but the current limits on these parameters are not very

constraining, as shown in Section 6. Therefore, they are fully consistent with the fits from simulations (44), making

it reasonable to fix them for the primary purposes of this paper.

Our analysis is based on the publicly available class-pt code [60]. Since we do not vary cosmology in this study,

we compute the full one-loop power spectrum corrections including the LPNG terms only once, utilizing the Planck

cosmology, and only vary the bias parameters and f local
NL in the likelihood. For the Nseries mocks we recompute the

relevant templates to match the Nseries fiducial cosmology. We plan to implement the full cosmology-dependent

LPNG calculation in a future update of class-pt, using which we will systematically study the sensitivity of the

f local
NL constraints to uncertainties in cosmological parameters. Our Markov Chain Monte Carlo (MCMC) analysis is

3 As shown in Fig. 19 of [72], weight-based approaches to removing large-scale systematics (such as those applied in [73] and herein)

produce comparable results to more sophisticated methods on comparatively large scales. For k . 0.01 hMpc−1, the differences between

different approaches become significant (and the systematics become larger than the statistical errors, if uncorrected), thus these modes

are excised from our analysis.
4 See [75–79] for alternative covariance matrix estimation techniques.
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run with the Montepython code [80] and is based on the previously-used public likelihoods.5

4. VALIDATION ON MOCKS

As a validation test, we apply our pipeline to Nseries mock catalogs. These catalogs were used by the BOSS

collaboration for internal validation tests [49]. The suite consists of 84 semi-independent simulation boxes. The

Nseries mocks are designed to reproduce the clustering signal of the high-z NGC BOSS sample. Each box has a

similar effective volume and mean effective redshift z = 0.56. We fit the mean of 84 Nseries boxes with the covariance

of one box, divided by 84. Effectively, this is equivalent to fitting a dataset which is ≈ 40 times larger than the BOSS

survey. Just like in the actual BOSS data analysis, we fix all the cosmological parameters (to the true values used in

the simulations), and vary only f local
NL and nuisance parameters in the fit.

The Nseries mocks were produced for Gaussian initial conditions, which we can recover with our pipeline. Indeed,

we find f local
NL consistent with zero,

f local
NL = −4.9± 5.0 at 68% CL , (45)

with the 1d marginalized posterior shown in Fig. 2. Note that the mean is expected to differ from zero to be

different from zero by (1− 2) σ due to random fluctuations. This also gives us an estimate of the theory systematic

error, ∆f local
NL |syst . 5, which is less than 0.2σ of the actual BOSS 1d marginalized statistical error (rescaling by the

square-root of the volume ratio) .

We stress that the main goal of our validation test is to estimate the bias due to the theory systematic error. An

alternative approach for validation is to fit the mean of the mocks with the covariance that matches the overall volume

of the BOSS survey. This test, however, does not allow one to assess the theory bias because the posterior distribution

in that case is affected by prior volume effects (arising from the priors necessarily imposed on nuisance parameters),

which can be as large as the actual theory bias. This obscures the estimation of theory bias and can lead to wrong

conclusions on the validity of the fitting pipeline. For example, the prior volume effects exactly cancel the theory

bias on σ8 for BOSS-like mocks [48, 52, 81]. Thus, if one fits the mean of the mocks with the covariance matching

the BOSS survey volume, one can erroneously conclude that the theory model is valid even for kmax = 0.3 hMpc−1,

whereas fitting the same data with the actual covariance of the simulation suggests that the theory systematic bias

on σ8 becomes sizable in the analysis of multipoles P` for kmax > 0.20 hMpc−1.

5. RESULTS FOR BOSS

Here, we present the main results from the combined analysis of four BOSS data chunks. We start with the power

spectra + BAO data alone, i.e. without the bispectrum. In this case we obtain

P`+Q0+BAO: f local
NL = 9+33

−35 , (68% CL) , −57 < f local
NL < 78 , (95% CL) . (46)

The marginalized posterior distribution is shown in Fig. 3. These results are similar, but somewhat stronger than

those obtained previously from BOSS DR9, −45 < f local
NL < 195 (95% CL) [18]. This suggests that the constraints in

the power spectrum are dominated by the linear scale-dependent bias from large scales. Indeed, repeating our analysis

for kmin = 0.05 hMpc−1 we find constraints that are worse by a factor of four,

kmin = 0.05 hMpc−1 : f local
NL = −120+100

−140 , (68% CL) , −353 < f local
NL < 140 , (95% CL) . (47)

5 Available at github.com/oliverphilcox/full shape likelihoods.

https://github.com/oliverphilcox/full_shape_likelihoods
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FIG. 4. Left panel: residual variations of the galaxy power spectrum monopole P0 w.r.t. variations of f local
NL . These variations

have distinctive shape dependence and therefore can be constrained by the data. Right panel: residual variations of the

galaxy bispectrum monopole w.r.t. variations of f local
NL . Black, orange and green dots denote the squeezed (k3 = 0.015 hMpc−1,

k1, k2 > k3), equilateral (k1 = k2 = k3), and flattened (k2 = k3, 2k2 = k1 + 0.015 hMpc−1) triangle configurations, respectively.

These results are consistent with the expectation that LPNG constraints are dominated by the scale-dependent bias,

which is sensitive to the lowest available bin in the survey (see also [23]).

Note that there are important differences between our analysis and that of [18]. That work was based on the

monopole power spectrum moment of the BOSS DR9 CMASS sample and had a lower scale cut. In contrast to

that, we use all three power spectrum multipole moments plus the real space proxy of the complete BOSS DR12

data sample, but impose a conservative scale cut kmin = 0.01 hMpc−1, significantly reducing any systematics caused

by observational effects, such as galactic foregrounds. Nevertheless, the results of the two analyses are pleasingly

consistent.

The addition of the bispectrum monopole shrinks the errorbar on f local
NL by ' 20%,

P`+Q0+BAO+B0: f local
NL = −33± 28 , (68% CL) , −88 < f local

NL < 23 , (95% CL), . (48)

We do not find any evidence for LPNG: the 95% CL limits are consistent with zero. The final posterior distribution

is presented in Fig. 3.

To estimate the dependence of our results on the LPNG priors, we have repeated our analysis assuming the

universality relations (43) instead of the more accurate simulation-calibrated fits (44). We found somewhat weaker

bounds,

Prior (43): f local
NL = −50± 40 , (68% CL) , −130 < f local

NL < 30 (95%CL) . (49)

This weakening of the constraints is expected, since the universality relations underpredict the actual values of bφ by

∼ 30% compared to (44) for b1 ≈ 2. Note that when the universality bias relations (43) are used, the relative impact

of the bispectrum is somewhat stronger: it tightens the constraints by ' 30%. The result without the bispectrum in

this case is f local
NL = 64.7+52

−60.

It is instructive to study where our constraints originate from. To this end we illustrate the effect of the variation

of f local
NL on the galaxy power spectrum and bispectrum monopole, showing the corresponding residuals in Fig. 4. We

focus on the NGC z3 data chunk, and show the residuals w.r.t. the best-fit model with f local
NL = 0. The bispectrum

residuals are shown as a function of the triangle index which is defined by the bin center (k1, k2, k3). The bin centers

here satisfy ki ∈ [0.015, 0.075] hMpc−1, encompassing all wavenumbers with k ∈ (0.01, 0.08) hMpc−1. We additionally

mark the squeezed, equilateral, and flattened triangles with black, orange, and green dots on the x-axis (note that

our notation differs somewhat from [50]). The shaded region corresponds to data errors.
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FIG. 5. 1d and 2d marginalized posteriors for f local
NL and the normalized LPNG bias parameters b

(i)
φ f local

NL , b
(i)
φδf

local
NL , extracted

from the BOSS galaxy power spectra and bispectra data. i = 1, 2, 3, 4 corresponds to the NGCz3, SGCz3, NGCz1, and SGCz1

BOSS data slices, respectively.

Let us first focus on the power spectrum. We observe that the largest deviations take place both on large scales

(due to the linear scale-dependent bias), and on short scales due to the one-loop LPNG corrections. This is another

indication that the one-loop LPNG corrections should be included in data analysis. Of course, their effect is washed

out, to some extent, by marginalization over the standard EFT nuisance parameters, which are important at short

scales. Nevertheless, the LPNG nonlinear corrections must to be included for the sake of consistency, and additionally,

the degeneracies are greatly reduced in practice by the inclusion of higher-order statistics.
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Let us now move on to the bispectrum. We see that the PNG contribution has a very significant configuration-

dependence. The LPNG terms peak at the squeezed triangles. This behavior is very different from the typical effect

of the standard non-linear galaxy bias [50], which illustrates that this particular type of non-Gaussianity does not

strongly suffer from degeneracy with the unknown galaxy formation details.

Let us compare our results with the f local
NL measurements available in the literature. Our limit is a factor of ten worse

than the Planck 2018 constraint, f local
NL = −0.9±5.1 (68% CL) [10]. As we stressed before, our limit is better than the

one obtained from BOSS DR9 [18], which is equivalent to σf local
NL
≈ 60. The main reasons for this improvement are new

data, the complete theory model for the power spectrum, more accurate priors for LPNG bias parameters, and the

large-scale galaxy bispectrum, which is quite sensitive to the scale-dependent bias signal. Note that our measurement

has a precision somewhat worse but comparable with the eBOSS quasars f local
NL = −12± 21 (68% CL) [19, 20] (which

boast a much longer redshift baseline, and thus a substantially lower kmin), and with WMAP, f local
NL = 37 ± 20

(68% CL) [82]. We find comparable results to those from an independent analysis of the BOSS power spectrum and

bispectrum (using a partial one-loop theory model for the latter statistic) [30]: f local
NL = −30 ± 29, though, as noted

above, our analysis differs due to the use of a fully consistent theory model and complete treatment of the survey

window, allowing larger-scale information to be robustly included. Finally, our measurements are somewhat better

than the ones coming from the UV luminosity function f local
NL = 71+426

−237 (95% CL) [83–85], although they include

information from scales with k > 0.3 hMpc−1, which we do not consider in our study.

6. LPNG BIAS PARAMETERS

The galaxy bispectrum allows us to measure f local
NL separately from bφf

local
NL . At the power spectrum level this

is, essentially impossible, because the constraints are dominated by scale-dependent bias controlled by combination

bφf
local
NL [23]. However, the bispectrum allows us to extract f local

NL directly from the B
(s)
111 shape that is generated

by the matter clustering and not the LPNG bias. In this section we present the constraints on bφf
local
NL and f local

NL

independently. Moreover, we also present constraints on the quadratic scale-dependent bias term bφδf
local
NL , which

shows up in the tree-level galaxy bispectrum with LPNG. We found that f local
NL can be quite large in our chains if bφ

and bφδ are not fixed, and therefore we have included the (f local
NL )2 corrections to the tree-level galaxy bispectrum.

For these pieces, we keep the additional bφ2 bias fixed to the prediction of the universality relation, as discussed in

Appendix A.

We fit f local
NL plus parameters bφf

local
NL , bφδf

local
NL for each independent data chunk. Our results are displayed in

Fig. 5 and Table I. We observe that the BOSS data can constrain the LPNG bias parameter only at the level

σbφf local
NL
∼ 3 × 102 and σbφδf local

NL
∼ 3 × 103. We see that most of the posteriors are compatible with zero values of

corresponding parameters within 95% CL. However, the parameters f local
NL , b

(1)
φ f local

NL , b
(3)
φδ f

local
NL , overlap with zero only

within 99% CL of the marginalized posterior. Inspecting the 2d marginalized contours (shown in Fig. 5) suggests that

this is a result of degeneracies between f local
NL and the LPNG bias parameter combinations. Note that the resulting

posteriors are also significantly non-Gaussian, which implies that having non-zero f local
NL at 95% CL does not actually

imply a detection at a significance level equivalent to that of a Gaussian-distributed parameter at 2σ, as evidenced

by the lack of detection of LPNG in the fiducial analysis.

7. CONCLUSIONS

We have presented constraints on local primordial non-Gaussianity from the BOSS full-shape galaxy clustering

data. The two main novelties of our analysis are (a) we use the full one-loop power spectrum model that includes all

necessary non-linear one-loop corrections generated by LPNG, and (b) we include the consistently analyzed galaxy

bispectrum, incorporating a full treatment of all relevant theoretical and observational effects. We have found that



16

Param best-fit mean±σ 95% lower 95% upper

f local
NL −720 −676+150

−250 −1080 −210

b
(1)
φ f local

NL −878 −740+280
−250 −1280 −210

b
(1)
φδ f

local
NL 1900 4300+2700

−2700 −950 9500

b
(2)
φ f local

NL 170 160+390
−360 −600 900

b
(2)
φδ f

local
NL 5400 5400+3200

−3400 −1100 12000

b
(3)
φ f local

NL 180 350+270
−250 −170 860

b
(3)
φδ f

local
NL 4400 5000+2100

−2200 800 9300

b
(4)
φ f local

NL 26 120+420
−390 −700 900

b
(4)
φδ f

local
NL −22 290+2600

−2700 −5000 5700

TABLE I. 1d marginalized limits for f local
NL and the normalized LPNG bias parameters b

(i)
φ f local

NL , b
(i)
φδf

local
NL , extracted from the

BOSS galaxy power spectra and bispectra data. i = 1, 2, 3, 4 corresponds to the NGCz3, SGCz3, NGCz1, and SGCz1 BOSS

data slices, respectively.

the latter improves f local
NL constraints by 20% compared to the power spectrum analysis. Thus, our paper extends and

complements previous works on LPNG from the galaxy clustering data.

There are many ways in which our analysis can be improved. First, the k-range can be expanded, including

additional information from both small and large scales. The maximum wavenumber used in the analysis kmax can

be significantly enhanced by the addition of the redshift-space galaxy two-loop power spectrum, one-loop bispectrum,

as well as the tree-level trispectrum. Partial calculations of these observables already exist in the literature, e.g. [40,

86, 87], and we plan to incorporate them in our future analyses. Going beyond perturbative analysis, additional

constraints on f local
NL can be obtained from the nonlinear regime using consistency relations for LSS [88]. They

guarantee that the local shape of the bispectrum in the squeezed limit is protected by the equivalence principle and

it can be though of as a feature which is very distinct from anything that can be produced by the astrophysical

processes. Such feature can be extracted even when the short modes are in the nonlinear regime, marginalizing over

the standard nonlinear physics using theoretical error [89, 90], similarly to what was done in extracting the BAO

feature from the broadband in [70]. In addition, we plan to increase the k-range also on the lower end, by including

modes with k < 0.01 hMpc−1 that are omitted in the present analysis. This is particularly important in order to

enhance constraints from the scale-dependent bias. A simple Fisher forecast indicates that the errors on f local
NL from

BOSS can improve by a factor of two by including all low-k modes. Whilst straightforward from a theoretical point

of view, this will require a detailed study of large-scale systematics, such as the integral constraint (both global and

radial), foreground stars, atmospheric effects, seeing, and galactic extinction, which can produce large-scale radial

and angular distortions, e.g. [72, 73]. Such work will be of particular importance as the survey volume increases, and

the range of fNL parameters allowed by data tightens. Another important point to keep in mind is that the Gaussian

power spectra and bispectra likelihood, which is used in our analysis, is not valid for the lowest k bins and it can skew

the constraints on f local
NL . For some recent reflections on how to deal with this problem, see [91].

Second, it would be interesting to study the dependence of the result on the priors on EFT nuisance parameters.

Previous works [50, 76] have found that marginalization over Gaussian nuisance parameters leads to a very significant

degradation of parameter errorbars. It is important to understand to what extent this can be avoided with priors

on nuisance parameters extracted from high fidelity simulations. We have also shown that our current constraints

significantly rely on using universality-like relationships for the LPNG bias parameters bφ, bφδ. We will study if using

relationships is accurate enough for simulated data with injected LPNG. A similar analysis was done in Ref. [23] for

the case of real space halo clustering.

Third, one may include redshift-space multipoles of the galaxy bispectrum beyond the monopole moment, which



17

we considered in this work [31]. Fourth, one should perform a systematic sensitivity forecast for future surveys like

DESI [92], Euclid [93], and MegaMapper [94]. In particular, just based on the ratio of BOSS and DESI volumes,

one may expect improvements by a factor of three, i.e. reaching σf local
NL

≈ 10. Some forecasts have already been

performed e.g. [95, 96], but most of them have been based on simplistic assumptions about the theoretical modeling

of the power spectrum and the bispectrum, and it is rare for forecasts to include both the power spectrum and

bispectrum in combination. It will be interesting to see if the inclusion of all necessary non-linear corrections can

impact the conclusions of these works, i.e. to perform a fully consistent forecast similar to [96, 97]. Fifth, another

important ingredient is a systematic study of the properties of galaxy samples that will be targeted by future surveys,

e.g. emission line galaxies admit higher kmax and therefore better LPNG measurements can be obtained from this

sample [98]. Finally, it would be interesting to extend our analysis to the case of projected statistics, which is motivated

by photometric surveys like SPHEREx [11] and the Vera Rubin observatory [99]. This analysis will naturally require

including relativistic and full-sky corrections, which can impact constraints on LPNG [100–103], and exploring to

what extent the analysis based on correlation functions is optimal and how does it compare to recent results obtained

using forward modeling [104].
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Appendix A: Higher order PNG corrections to the galaxy bispectrum

In this section we present, for completeness, the bispectrum corrections at O(f2
NL). To obtain them, we need first

include a new bias operator

δreal space
g ⊃ 1

2
f2

NLbφ2φ2 . (A1)

The full O(f2
NL) kernel is then given by

B
f2
NL

NG = Z1(k1)Z1(k2)Z1(k3)bφ

(
1

Z1(k1)M(k1)
+

1

Z1(k2)M(k2)
+

1

Z1(k3)M(k3)

)
B111(k1, k2, k3)

+

[
b2φ

(
Z1(k1)

M(k2)
+
Z1(k2)

M(k1)

)
(k1 · k2)

k1k2

(
k1

k2M(k1)
+

k2

k1M(k2)

)
+ fb2φµk

(
µ1

k1M(k2)
+

µ2

k2M(k1)

)(
Z1(k1)

M(k2)
+
Z1(k2)

M(k1)

)

+ 2b2φ
Z2(k1,k2)

M(k1)M(k2)
+ bφδbφ

(
Z1(k1)

M(k2)
+
Z1(k2)

M(k1)

)(
1

M(k1)
+

1

M(k2)

)
+ bφ2

Z1(k1)Z1(k2)

2M(k1)M(k2)

]
P11(k1)P11(k2) .

(A2)

6 https://getdist.readthedocs.io/en/latest/

https://getdist.readthedocs.io/en/latest/
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Finally, the universality relations for the quadratic operators dictate

bφ2 = 4δc(b
L
2 δc − 2bL1 ) , bφδ = bφ + (−bL1 + δcb

L
2 ) = bφ − (b1 − 1) + δc

[
b2 −

8

21
(b1 − 1)

]
, (A3)

where bL1 ≡ b1 − 1 and bL2 are Lagrangian bias coefficients.
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