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Abstract

We compute non-perturbatively the renormalization constant of the flavour-singlet local vector current ZV in lattice QCD with 3
massless flavours. Gluons are discretized by the Wilson plaquette action while quarks by the O(a)-improved Wilson–Dirac operator.
The constant ZV is fixed by comparing the expectation values (1-point functions) of the conserved and local vector currents at finite
temperature in the presence of shifted boundary conditions and at non-zero imaginary chemical potential. Monte Carlo simulations
with a moderate computational cost allow us to obtain ZV with an accuracy of about 8‰ for values of the inverse bare coupling
constant β = 6/g2

0 in the range 5.3 ≤ β ≤ 11.5.

1. Introduction

Lattice Quantum Chromodynamics (QCD) allows us to com-
pute non-perturbatively physically relevant matrix elements of
composite operators from first principles. If not related to a con-
served lattice symmetry, composite fields need to be renormal-
ized non-perturbatively before taking the continuum limit of lat-
tice results. The Schrödinger Functional [1], the RI-MOM [2],
and the Wilson flow [3] schemes and their variants have been
proposed in the past to accomplish that task.

Computing renormalization constants can be a numerically
demanding problem since one often has to measure correla-
tion functions of two or more operators at a physical distance.
The calculation becomes even more challenging when there are
contributions from disconnected Wick contractions of fermion
propagators: in fact, in these cases, the signal decreases with the
distance between the fields while the statistical fluctuations stay
constant. This is the main reason for which there is a paucity
of results in the literature on the renormalization constants of
flavour-singlet operators.

Recently a non-perturbative renormalization framework has
been proposed based on considering the field theory at finite
temperature in the presence of non-trivial boundary conditions
in the compact direction [4, 5, 6]. In this scheme the renormal-
ization constants of what becomes a conserved charge1 in the
continuum limit can be computed by considering 1-point func-
tions in the presence of non-trivial boundary conditions allowed
by the residual lattice symmetry associated to that charge, a fact
that reduces very significantly the numerical effort to attain a
given accuracy on the renormalization constants. For flavour-
singlet operators this is even more so because the 1-point func-
tions do not suffer from the degradation of the signal to noise
ratio with the distance of the inserted fields.

1Extensions to other operators deserve dedicated investigations which go
beyond the scope of this letter.

The use of thermal QCD in the presence of shifted bound-
ary conditions [7, 8, 4] solved the problem of renormalizing
non-perturbatively the energy-momentum tensor in the SU(3)
Yang-Mills theory by leading to a determination of its renor-
malization constants with a sub-percent precision [5]. Our long-
term goal is to generalize these findings to QCD. In this case
the renormalization of the energy-momentum tensor is compli-
cated by the mixing between two operators, the gluonic and
the fermion components, a problem which can be solved by
introducing a twist phase for fermions at the boundaries (or
equivalently an imaginary chemical potential) in addition to the
shift [6].

Before addressing our main task, maybe the simplest applica-
tion to explore the effectiveness of using an imaginary chemical
potential for renormalizing composite operators is the computa-
tion of the renormalization constant of the flavour-singlet local
vector current. This problem on the one hand is simpler be-
cause the operator is multiplicatively renormalizable and it can
be matched to the corresponding non-local conserved current,
but on the other hand the difficulty of computing the discon-
nected Wick contractions remains intact. Some results have
been obtained with staggered fermions [9] and with Wilson
fermions for one lattice ensemble [10] using the approach pro-
posed in [2].

The aim of this letter is to compute non-perturbatively the
renormalization constant of the flavour-singlet local vector cur-
rent ZV (g2

0) in lattice QCD with 3 massless flavours in a wide
range of values of the gauge coupling. Apart for its intrinsic
theoretical interest, this allows us to test several main ingredi-
ents of the renormalization strategy based on shifted and twisted
boundary conditions for fermions [6]. It must be said that the
non-perturbative renormalization of local vector currents on the
lattice has been a topic of interest for quite some time [11, 12]
until recent investigations [13, 14, 15]. Indeed, the vector cur-
rents are crucial operators in many open physics problems, e.g.
the calculation of the Hadronic Vacuum Polarization contribu-
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tion to the anomalous magnetic moment of the muon [16].
This letter is organized as follows. In Section 2 we intro-

duce the renormalization scheme we are interested in, the no-
tation, and the definition of the renormalization constant of the
flavour-singlet local vector current. In Section 3 we present the
results of our numerical study, and in particular our best param-
eterization for ZV (g2

0). Finally, in the last Section, we conclude
the paper with our view on possible future applications of this
renormalization scheme. In a couple of appendices we collect
the details of the lattice action that we have used in the Monte
Carlo simulations, and the 1-loop perturbative results that we
have derived in order to improve the definition of ZV (g2

0) and
consequently our numerical results.

2. Thermal Lattice QCD and renormalization

Lattice QCD at finite temperature is usually studied with the
purpose of computing thermodynamical quantities like, for in-
stance, the pressure, the entropy density, the energy density as
well as screening masses, transport coefficients or other physi-
cally interesting observables. In this letter, instead, we consider
thermal QCD for defining and computing the renormalization
constant of the flavour-singlet local vector current on the lattice.
Being conserved in the continuum, its renormalization constant
depends on the specific definitions of the operator and of the
action on the lattice while, up to discretization effects, is inde-
pendent on the particular renormalization condition adopted.

We focus on lattice QCD with 3 flavours of O(a)-improved
clover massless quarks [17], and we consider the Wilson pla-
quette action for the gauge sector. We refer readers to Ap-
pendix A for the conventions adopted, for a detailed defini-
tion of the action, and for the tuning of the improvement coef-
ficient of the Dirac operator and of the quark mass to its crit-
ical value. The theory is formulated in a moving reference
frame [7, 8, 4], which corresponds to impose on the fields peri-
odic boundary conditions in the compact direction up to a spa-
tial shift ξ. Hence, the gauge field Uµ and the quark and the
anti-quark triplets ψ and ψ satisfy the following boundary con-
ditions

Uµ(x′0, x) = Uµ(x0, x′) ,

ψ(x′0, x) = −eiθ0 ψ(x0, x′) , ψ(x′0, x) = −e−iθ0 ψ(x0, x′) ,
(1)

respectively, where x′0 = x0 + L0, x′ = x − L0ξ and L0 is the
lattice size in the temporal direction. In the spatial directions
all fields are periodic. In Eq. (1) we have considered for the
fermion fields also a non trivial twist phase θ0 in addition to
the usual antiperiodicity [6]. It can be shown that, by a change
of variables, the twist phase can be rewritten as an imaginary
chemical potential [18], in the presence of which it is known
that there is an effective 2π/3 periodicity of the free energy due
to the interplay of θ0 with the ZZ3 centre symmetry of the SU(3)
pure gauge sector [19].

The vector subgroup of the chiral symmetry of QCD is not
broken by the Wilson discretization of fermions, and therefore it
holds also at finite lattice spacing with degenerate quarks. As a

consequence, there is a conserved flavour-singlet vector current
which is defined as

Vc
µ(x) =

1
2

[
ψ(x + aµ̂)U†µ(x)(γµ + 1)ψ(x)

+ ψ(x)Uµ(x)(γµ − 1)ψ(x + aµ̂)
]
,

(2)

where γµ are the Dirac matrices and µ̂ indicates the unit vector
oriented along the direction µ. The current Vc

µ has a unit renor-
malization constant, and it approaches the continuum one in the
limit of vanishing lattice spacing a → 0. However, other dis-
cretizations of the flavour-singlet vector current on the lattice
can also be studied like, for instance, the one that more closely
resembles the continuum definition

V l
µ(x) = ψ(x)γµψ(x) . (3)

Although the use of V l
µ requires the computation of its renor-

malization constant ZV (g2
0), it has the appealing numerical fea-

ture of involving fields on a single lattice point which often im-
plies smaller statistical fluctuations of correlators and smaller
lattice artifacts. Moreover, having two definitions of the cur-
rent turns out to be useful in many cases, e.g. for constraining
the extrapolation of lattice results with different discretization
effects to the same continuum limit [20].

Using the change of variables that we mentioned above to
trade off the twist phase at the boundary of the compact direc-
tion for an imaginary chemical potential in the bulk, in [6] we
show that the expectation value of the temporal component of
the conserved current is related to the derivative with respect to
θ0 of the free-energy density f (L0, ξ, θ0) of a system at temper-

ature T = γ/L0 with γ = 1/
√

1 + ξ2

〈Vc
0〉 = −iL0

∂

∂θ0
f (L0, ξ, θ0) . (4)

There is no dependence on the position of the current thanks to
the translational invariance of the theory. For Eq. (4) not to be
trivial, i.e. for having a non vanishing expectation value of the
temporal component of the current, the twist phase θ0 has to be
different from zero. This is the reason for considering a non
null twist phase in Eq. (1).

Since the lattice action is O(a)-improved, discretization ef-
fects in the free-energy start at O(a2). Eq. (4) then implies that
the expectation value of the conserved current on the l.h.s. is
O(a)-improved. This is consistent with the Symanzik effective
field theory analysis. Indeed in the chiral limit and when in-
serted in correlators at a physical distance from other fields,
either the conserved or the local vector currents in Eqs. (2) and
(3) can be improved by adding a single dimension-4 operator
related to the tensor current [21]. The resulting O(a)-improved
operators read

V̂c,l
µ (x) = Vc,l

µ (x) −
a
4

cc,l
V (∂ν + ∂∗ν)

(
ψ(x) [γµ, γν]ψ(x)

)
, (5)

where ∂ν and ∂∗ν are the forward and the backward lattice
derivatives. The numerical coefficients cc,l

V need to be properly
tuned in order to accomplish the non-perturbative improvement.
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However, since we are interested in their 1-point functions only,
the contribution coming from the improvement terms vanish
due to the translation invariance, and the expectation values of
both the local (once properly renormalized) and the conserved
vector currents are O(a)-improved as they stand.

The above analysis suggests to define the renormalization
constant of the flavour-singlet local vector current as

ZV (g2
0) = lim

a/L0→0

〈Vc
0〉

〈V l
0〉
, (6)

where the limit is taken at fixed spacing a (i.e. fixed bare cou-
pling g2

0) and the expectation values are computed in the ther-
modynamic limit. Since the vector current does not need renor-
malization in the continuum, the ratio on the r.h.s. in Eq. (6)
depends on the twist phase θ0 and on the shift ξ only because of
discretization effects, a dependence which goes away when the
a/L0 → 0 limit is taken. The residual (small) O(a2) discretiza-
tion effects are part of the definition of the renormalization con-
stant, and we omit to indicate them explicitly throughout the
letter. As usual, they will be removed when taking the contin-
uum limit of correlators with the renormalized flavour-singlet
local vector current inserted.

We indicate the ratio 〈Vc
0〉/〈V

l
0〉 at fixed a/L0 by ZV (g2

0, a/L0).
Its value at tree-level in perturbation theory, Z(0)

V (a/L0), is
shown in Figure 1 as a function of θ0, for several values of a/L0
and for the two shifts (0, 0, 0) (top panel) and (1, 0, 0) (bottom
panel). When a/L0 becomes smaller and smaller, Z(0)

V (a/L0) ap-
proaches the asymptotic value of 1 quadratically in a/L0. Dis-
cretization effects turn out to be one order of magnitude smaller
for the shift (1, 0, 0) with respect to the case of periodic bound-
ary conditions, a fact which is confirmed also at the next or-
der in the perturbative expansion. This is the reason why we
have selected the shift ξ = (1, 0, 0) for carrying out the non-
perturbative calculation. A similar reduction of lattice artifacts
for ξ = (1, 0, 0) was observed in the computation of the entropy
density in the SU(3) Yang-Mills theory [22, 23] and of the QCD
mesonic screening masses [24]. The dependence of discretiza-
tion effects on θ0, instead, is very mild and we have chosen to
perform the numerical simulations at θ0 = π/6: this is the mid-
dle of the range of non trivial values since the partition function
is even in θ0.

Before carrying out the non-perturbative computation, we
have computed 〈Vc

0〉/〈V
l
0〉 in lattice perturbation theory up to

O(g2
0) in the thermodynamic limit. This serves to confirm our

choices for the values of the shift and of the twist phase, and it
allows us to introduce a perturbatively improved definition of
the renormalization constant which reads

ZV (g2
0, a/L0) =

〈Vc
0〉

〈V l
0〉

+ 1 + c1g2
0

− Z(0)
V

(
a
L0

) (
1 +

8
3

Z(1)
V

(
a
L0

)
g2

0

)
.

(7)

The 1-loop coefficient c1 is [25, 26]

c1 =
1

12π2

[
− 20.617798655(6) + 4.745564682(3) csw

+ 0.543168028(5) c2
sw

]
,

(8)
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Figure 1: The lattice artifacts of the renormalization constant of the flavour-
singlet local vector current at tree-level in perturbation theory as a function of
θ0. Values for various sizes L0/a of the lattice in the temporal direction are
shown: the top panel refers to the case of periodic boundary conditions (no
shift) and the bottom one to shifted boundary conditions with shift ξ = (1, 0, 0).

where the Sheikholeslami-Wohlert term [17] has been also
taken into account and whose coefficient at O(g2

0) in perturba-
tion theory is given by csw = 1 + 0.26590(7) g2

0 [27, 28]. The
numerical values of the coefficients Z(0)

V (a/L0) and Z(1)
V (a/L0)

are reported in Appendix B for several values of a/L0, together
with many details of the perturbative calculation. Before ending
the Section, we remind that the renormalization constant ZV (g2

0)
is known in lattice perturbation theory up to two loops [26]. We
will compare this approximation with our non-perturbative de-
termination in the next section.

3. Non-perturbative numerical computation

Monte Carlo simulations have been carried out at the 7 val-
ues of the inverse squared bare coupling β = 6/g2

0 reported in
Table 1, on lattices with a spatial size of 963 and 4 values of the
extent of the compact direction, L0/a = 4, 6, 8, 10. Details on
the Hybrid Monte Carlo algorithm used to generate the gauge
configurations, and its parameters can be found in Appendix E
of Ref. [24]. The critical value of the hopping parameter has
been determined from Ref. [29] for the two smallest and the
largest values of β while for the other 4 values we have used the
results of Ref. [30, 31], see our Appendix A and appendices A
and B of Ref. [24] for the details. Statistics of 100 trajectories
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β = 6/g2
0 L0/a = 4 L0/a = 6 L0/a = 8 L0/a = 10

5.3000 0.8082(20) 0.761(7) 0.762(5) 0.761(7)

5.6500 0.8389(22) 0.787(6) 0.792(6) 0.784(7)

6.0433 0.8826(21) 0.820(5) 0.820(5) 0.803(7)

6.6096 0.9126(18) 0.842(5) 0.841(6) 0.839(6)

7.6042 0.9459(22) 0.871(5) 0.869(6) 0.871(6)

8.8727 0.9774(17) 0.898(6) 0.884(5) 0.890(6)

11.500 1.0078(18) 0.934(4) 0.917(5) 0.923(6)

Table 1: Values of
(
〈Vc

0〉 + 〈V
c
1〉

)
/
(
〈V l

0〉 + 〈V
l
1〉

)
obtained from Monte Carlo

simulations at θ0 = π/6 and shift ξ = (1, 0, 0) on lattices with size (L0/a)×963.

of length 2 in Molecular Dynamics Unit have been collected
for L0/a = 4 and 6, while for L0/a = 8 and 10 we have gener-
ated 400 and 1000 trajectories respectively. For the expectation
values we are interested in, the autocorrelation times are found
to be always less than 2 trajectories, and they are taken into ac-
count by a proper binning of the data when needed. We have ex-
plicitly checked for finite volume effects by performing several
simulations on lattices with spatial size of 2883. As expected,
no finite volume effects were found within our numerical accu-
racy.

By performing a Lorentz transformation from the moving to
the rest frame [7], we notice that, for the value of the shift that
we have considered, in the continuum it holds that

〈V0〉 = γ (〈V0〉0−〈V1〉0) , 〈V1〉 = γ (〈V1〉0+〈V0〉0) , (9)

where 〈·〉0 stands for the expectation value computed with no
shift (rest frame). Thanks to the previous equations, we re-
place 〈Vc,l

0 〉 with
(
〈Vc,l

0 〉 + 〈V
c,l
1 〉

)
in the definition (7) in order

to reduce the statistical error. Consequently, in Table 1 we re-
port the results obtained from the Monte Carlo simulations for(
〈Vc

0〉 + 〈V
c
1〉

)
/
(
〈V l

0〉 + 〈V
l
1〉
)

directly.
Once inserted in Eq. (7), these results lead to the values of

the perturbatively improved definition of ZV (g2
0, a/L0) shown

in Figure 2 for the 7 values of g2
0 considered. Due to the

O(a)-improvement of the expectation values of the flavour-
singlet vector current, we expect that the leading lattice artifacts
of ZV (g2

0, a/L0) are quadratic with terms of the form (a/L0)2,
a2ΛQCD/L0 and (aΛQCD)2. The last ones are part of the def-
inition of ZV (g2

0) which, as usual, depends on the correlators
used to fix it. Their contribution vanishes proportionally to a2

when renormalized matrix elements are extrapolated to the con-
tinuum limit. The first two terms are, instead, relevant when
taking the limit a/L0 → 0 at fixed lattice spacing. In particular,
there can be linear terms in a/L0 but, due to the multiplica-
tive factor aΛQCD, their relevance decreases with respect to the
quadratic ones as the lattice spacing becomes smaller. Our nu-
merical data for ZV (g2

0, a/L0) show a very weak dependence on
a/L0 and both the linear and the quadratic fits provide practi-
cally equivalent extrapolations in a/L0 within error bars with
χ2/d.o.f. close to 1 or smaller: they are displyed in Figure 2 by
shaded bands. Taking a conservative approach, we consider the

β = 6/g2
0 ZV (g2

0)

5.3000 0.768(7)

5.6500 0.794(7)

6.0433 0.809(7)

6.6096 0.833(7)

7.6042 0.864(7)

8.8727 0.878(7)

11.500 0.918(6)

Table 2: Values of ZV (g2
0) obtained by extrapolating to a/L0 → 0 the perturba-

tively improved definition in Eq. (7) for the data in Table 1.

average of the two extrapolations as our best estimate for ZV (g2
0)

and the largest error bar as an estimate of the uncertainty. Their
values are listed in Table 2. Notice that the difference between
the extrapolated values and those at L0/a = 10 is of the order
of the statistical error, and always smaller than twice it. As ex-
pected from the perturbative results, the feature of having small
corrections because of shifted boundary conditions is confirmed
also non-perturbatively.

0.00 0.01 0.02 0.03 0.04 0.05 0.06
(a/L0)2

0.75

0.80

0.85

0.90

Z
V

β = 5.3000

β = 5.6500

β = 6.0433

β = 6.6096

β = 7.6042

β = 8.8727

β = 11.5000

linear fit quadratic fit best extrapolation

Figure 2: Linear (blue) and quadratic (red) extrapolations to a/L0 → 0 of the
perturbatively improved renormalization constant ZV (g2

0) at the 7 values of the
bare gauge coupling considered in this study. The shaded bands correspond to
one standard deviation confidence limit.

In Figure 3 we plot our final non-perturbative results for
ZV (g2

0) at the 7 values of the bare gauge coupling that we have
considered, and we compare them with the 1-loop and the 2-
loop perturbative expressions [25, 26]: the latter works well up
to g2

0 ' 0.9 or so within an accuracy of about 1%. The contin-
uous red band in the Figure is our best fit of the numerical data
to the function

Zfit
V (g2

0) = 1 + c1g2
0 + c2g4

0 + c3g6
0 , (10)

where we enforce the value of the coefficients c1 and c2 to be
the 1-loop and 2-loop results [25, 26], while the coefficient of
the additional g6

0 term is fitted to describe the mild bending of
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the data at larger values of the gauge coupling. As a result c1 =

−0.1294299254732376 from Eq. (8) by inserting csw = 1, c2 =

−0.04683170849543621 from Ref. [26], and c3 = −0.016(3)
from the fit (χ2/d.o.f.=0.31).

0.0 0.2 0.4 0.6 0.8 1.0 1.2
g2

0

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Z
V

1-loop PT

2-loop PT

2-loop PT + c3 g
6
0

ZV (g2
0)

Figure 3: Comparison between the non-perturbative calculation of ZV (g2
0)

(black symbols) and the 1-loop (orange line) and the 2-loop (green line) per-
turbative results. The red line is a fit of the numerical data where we enforce
the 2-loop result and determine the coefficient of the g6

0 term.

4. Conclusions and outlook

Thermal QCD in the presence of non-trivial boundary con-
ditions in the compact direction is the basis for a very ef-
fective renormalization strategy for computing renormalization
constants of what become conserved charges in the continuum
limit. They can be computed by considering 1-point functions,
a fact that reduces drastically the numerical effort needed.

Here we have explored in detail this possibility computing
the renormalization constant of the QCD flavour-singlet local
vector current non-perturbatively in the theory with three mass-
less O(a)-improved Wilson quarks. With a moderate compu-
tational cost, we have achieved a final accuracy on ZV (g2

0) of
approximatively 8‰ for values of the inverse bare coupling
constant β = 6/g2

0 in the range 5.3 ≤ β ≤ 11.5. The best param-
eterization of our results is given in Eq. (10). The comparison
with the known 2-loop perturbative formula suggests that our
parameterization works well, within the precision quoted, also
for larger values of β outside the range explored numerically.
For β . 7 or so we observe significant deviations from the
2-loop result. The rather good agreement with the 2-loop for-
mula in the range explored is an indication that either higher
perturbative orders or residual discretization effects in the non-
perturbative determination are quite small. It is interesting to
notice that, although one could consider usual periodic bound-
ary conditions, shifted boundary conditions have turned out to
be a very convenient choice for reducing the magnitude of lat-
tice artifacts.

The results reported in this letter represent the first evaluation
of a renormalization constant of a composite operator in QCD
in this framework. Our findings open the way to a numerically

efficient method for the more challenging problem of comput-
ing the renormalization constants of the energy-momentum ten-
sor. The experience we have accumulated in this work, the data
generated and the parameter tuning can be directly used in that
case.

The generalization to operators which are not discretizations
of conserved charges in the continuum, instead, require dedi-
cated theoretical investigations to avoid unnecessarily compli-
cated perturbative expansions and/or matching conditions.

Acknowledgement

We wish to thank R. Sommer for interesting correspondence
on the subject of this paper. We acknowledge PRACE for
awarding us access to the HPC system MareNostrum4 at the
Barcelona Supercomputing Center (Proposals n. 2018194651
and 2021240051). We also thank CINECA for providing us
with computer-time on Marconi (CINECA-INFN, CINECA-
Bicocca agreements). The R&D has been carried out on the
PC clusters Wilson and Knuth at Milano-Bicocca. We thank all
these institutions for the technical support. Finally we acknowl-
edge partial support by the INFN project “High performance
data network”.

Appendix A. QCD lattice action

The action of the lattice theory is written as

S = S G + S F , (A.1)

where S G and S F are the gluonic and fermionic contributions
respectively. In this study for the gluonic one we consider the
Wilson action

S G =
1
g2

0

∑
x

∑
µ,ν

Re Tr
{
11 − Uµν(x)

}
, (A.2)

where g0 is the bare gauge coupling, Uµν(x) is the plaquette
field defined by

Uµν(x) = Uµ(x)Uν(x + aµ̂)U†µ(x + aν̂)U†ν (x) , (A.3)

and µ̂ indicates the unit vector oriented along the direction µ.
The fermionic part reads

S F = a4
∑

x

ψ(x) (D + M0)ψ(x) , (A.4)

where M0 is the bare quark mass matrix. The O(a)-improved
Wilson-Dirac operator D = Dw + aDsw is the sum of the
massless Wilson-Dirac operator, Dw, and the Sheikholeslami-
Wohlert operator [17], Dsw, defined as

Dw =
1
2

{
γµ(∇∗µ + ∇µ) − a∇∗µ ∇µ

}
,

Dswψ(x) = csw(g0)
1
4
σµνF̂µν(x)ψ(x) ,

(A.5)
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where σµν = i
2 [γµ, γν]. The covariant lattice derivatives ∇∗µ and

∇µ are defined by

a∇µψ(x) = Uµ(x)ψ(x + aµ̂) − ψ(x) ,

a∇∗µ ψ(x) = ψ(x) − U†µ(x − aµ̂)ψ(x − aµ̂) , (A.6)

while the clover discretization of the field strength tensor F̂µν(x)
is given by

F̂µν(x) =
i

8a2

{
Qµν(x) − Qνµ(x)

}
, (A.7)

with

Qµν(x) = Uµ(x)Uν(x + aµ̂)U†µ(x + aν̂)U†ν (x)

+ Uν(x)U†µ(x − aµ̂ + aν̂)U†ν (x − aµ̂)Uµ(x − aµ̂)

+ U†µ(x − aµ̂)U†ν (x − aµ̂ − aν̂)Uµ(x − aµ̂ − aν̂)Uν(x − aν̂)

+ U†ν (x − aν̂)Uµ(x − aν̂)Uν(x + aµ̂ − aν̂)U†µ(x) .
(A.8)

The coefficient csw(g0) is tuned in order to remove O(a) lattice
artifacts generated by the action in on-shell correlation func-
tions [29]. The mass matrix has been fixed to M0 = mcr(g0) 11,
where mcr(g0) is the critical mass as determined in Ref. [29, 31].
More details on the tuning of the parameters can be found in
Appendix A and B of Ref. [24].

Appendix B. Perturbative computation

In this Appendix we discuss the computation of 〈V l
µ〉 and

〈Vc
µ〉 at O(g2

0) in lattice perturbation theory. We present here
only the relevant expressions, while for the details of our con-
ventions and notation we refer readers to Ref. [6]: in particular,
the results of the calculation for the conserved flavour-singlet
vector current can be found in Appendix G of that reference.
The computation is carried out in the presence of shifted bound-
ary conditions and of a twist fermion phase for a generic num-
ber of colours, Nc, and of quark flavours, N f . We write the
expectation value of the local current as follows

〈V l
µ〉 = Vl,(0)

µ + g2
0V

l,(1)
µ , (B.1)

where the tree-level value is given by

Vl,(0)
µ = 4iNcN f

aF(5)
µ +

∑
σ F(4)

µσ

(am0 + 4)
. (B.2)

The definitions of the integrals F(5)
µ , F(4)

µν and of similar ones
that appear below can be found at the end of this Appendix. The
O(g2

0) contribution can be written as the sum of three terms,

Vl,(1)
µ = i(N2

c − 1)N f

{
Vl,1

µ +Vl,2
µ +Vl,3

µ

}
, (B.3)

whose expressions are

Vl,1
µ = aB(0)

a2F(5)
µ +

∑
σ aF(4)

µσ

(am0 + 4)
− 2

aF(7)
µ +

∑
σ

F(6)
µσ


 ,

(B.4)

Vl,2
µ = −4

∫
q
ξ

;p
ξ,θ

;k
ξ,θ

δ̄(p − q − k)
DG(q)D2

F(k)DF(p)
× (B.5)

k̄µ

{
m0(p)m0(k)

∑
σ

cσ(r) − a
∑
σ

{
r̄σ

[
m0(k) p̄σ + m0(p)k̄σ

]}
+

∑
σ

{
p̄σk̄σ

[
3 − cσ(r)

]}}
,

Vl,3
µ = −2

∫
q
ξ

;p
ξ,θ

;k
ξ,θ

[
p̄µ

(
cµ(r) − 3

)
+ am0(p)r̄µ

]
DG(q)DF(p)DF(k)

δ̄(p−q−k) , (B.6)

and we have defined r = p + k.
The Sheikholeslami-Wohlert term for the O(a)-improvement

of the action adds two contributions to the O(g2
0) coefficient,

Vl,(1)
µ −→ Vl,(1)

µ + i(N2
c − 1)N f

{
Vl,4

µ +Vl,5
µ

}
, (B.7)

which are given by

Vl,4
µ = acsw

∫
q
ξ

;p
ξ,θ

;k
ξ,θ

δ̄(p − q − k)
DG(q)D2

F(k)DF(p)
× (B.8){

2k̄µ

{
a
∑
σρ

{
q̄σ(k̄σ p̄ρ − p̄σk̄ρ)

(
p̄ρ + k̄ρ

)}
+

∑
σ

{
q̄σ

[
m0(k) p̄σ − m0(p)k̄σ

]∑
ρ,σ

[
cρ(p) + cρ(k)

]}}

+ DF(k)
{

a
(
p̄µ + k̄µ

)∑
σ

q̄σ p̄σ + q̄µ
[
m0(p)

∑
σ,µ

(
cσ(p) + cσ(k)

)
− a

∑
σ

p̄σ
(
p̄σ + k̄σ

)]}}
,

Vl,5
µ =

a2c2
sw

4

∫
q
ξ

;p
ξ,θ

;k
ξ,θ

δ̄(p − q − k)
DG(q)D2

F(k)DF(p)
× (B.9){

2k̄µ

{
2
∑
σ

q̄2
σ

∑
ρ

p̄ρk̄ρ
(
1 + cρ(q)

)
+ 2

∑
σ

k̄σq̄σ
∑
ρ

q̄ρ p̄ρ
(
2 − cσ(q) +

∑
λ,ρ

cλ(q)
)

−
[∑

σ

p̄σk̄σ − m0(k)m0(p)
][∑

ρ

q̄2
ρ

(
3 +

∑
λ,ρ

cλ(q)
)]}

+ DF(k)
{

p̄µ
∑
σ

[
q̄2
σ

(
1 − 2cµ(q) +

∑
ρ,σ

cρ(q)
)]

− 2q̄µ
∑
σ

[
p̄σq̄σ

(
2 − cµ(q) +

∑
ρ,σ

cρ(q)
)]}}

.

At O(g2
0) the critical mass reads

mc = m(0)
c + m(1)

c g2
0 , (B.10)

where m(0)
c = 0 and

m(1)
c =

(N2
c − 1)
Nc

m(1,Nc)
c , (B.11)
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with [32]

am(1,Nc)
c = −0.16285705871085(1) (B.12)

+ csw 0.04348303388205(10) + c2
sw 0.01809576878142(1) .

The O(g2
0) term in the critical mass generates an extra contribu-

tion to the expectation value of the vector current which reads

Vl,(0)
µ −→ Vl,(0)

µ +
∂Vl,(0)

µ

∂m0

∣∣∣∣
m0=m(0)

c =0
m(1)

c g2
0 , (B.13)

where
∂Vl,(0)

µ

∂m0
= −8iNcN f

aF(7)
µ +

∑
σ F(6)

µσ

(am0 + 4)
. (B.14)

We list here the definitions of the tree-level fermionic integrals
we have introduced above

F(4)
µν =

∫
p
ξ,θ

p̄µcν(p)
DF(p)

, F(5)
µ =

∫
p
ξ,θ

m0(p) p̄µ
DF(p)

, (B.15)

F(6)
µν =

∫
p
ξ,θ

m0(p) p̄µcν(p)

D2
F(p)

, F(7)
µ =

∫
p
ξ,θ

m2
0(p) p̄µ

D2
F(p)

,

(B.16)
together with the bosonic one B(0) =

∫
p
ξ

DG(p)−1.

Based on the above results and those discussed in Ref. [6]
for the conserved vector current, we have computed the pertur-
bative expansion of ZV at O(g2

0) in infinite spatial volume. The
results can be written as

ZV

(
g2

0, a/L0

)
= Z(0)

V (a/L0) × (B.17)(
1 +

N2
c − 1
Nc

Z(1)
V (a/L0) g2

0 + O(g4
0)
)
,

where
Z(1)

V = Z(1,0)
V + Z(1,1)

V csw + Z(1,2)
V c2

sw. (B.18)

In Eqs. (B.17) and (B.18), the coefficients Z(0)
V , Z(1,0)

V , . . . , Z(1,2)
V

depend on the extension of the compact direction L0/a because
of discretization effects. Their numerical values at θ0 = π/6
with shift ξ = (1, 0, 0) are collected in Table B.3 for several
values of L0/a. These are the coefficients to be used in Eq. (7)
to improve the non-perturbative results presented in Section 3.
The values in the Table B.3 suggest also that, at least at this
order in perturbation theory, discretization errors for ZV are tiny
for the larger temporal extensions.

L0

a
Z(0)

V Z(1,0)
V Z(1,1)

V Z(1,2)
V

4 1.112904 -0.071406 0.012116 0.001336

6 1.021530 -0.067500 0.014571 0.001616

8 1.005285 -0.066005 0.015062 0.001689

10 1.001882 -0.065592 0.015097 0.001708

Table B.3: Values of Z(0)
V , . . . , Z(1,2)

V at θ0 = π/6 and ξ = (1, 0, 0) for several
values of L0/a. The numerical values have been rounded at the level of 10−6.

References
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