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Crystalline Beams *

Jie Wei
Brookhaven National Laboratory, Upton, New York 11973
Xiao-Ping Li
BIOSYM Technologies Inc., 9685 Scranton Rd., San Diego, CA 92121
Andrew M. Sessler
Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720

Abstract

The low energy states of a beam of charged particles subject to circumfer-
entially varying guiding and focusing forces are studied by first deriving
a Hamiltonian in the rest frame of the circulating reference particle and
then using the molecular dynamics method. In an alternating gradient
structure, operating below the transition energy, (but not in a constant
gradient ring), the lowest state is ordered. The nature of the ground
state depends upon the beam density and the ring parameters. At very
low temperature the crystal remains intact for a long time, but as tem-
perature increases it rapidly gains energy from the lattice. In order for
the crystalline beam to last a meaningful length of time, the storage ring
should be designed such that the lattice periodicity of the machine is at
least twice as high as the betatron frequencies.

1. INTRODUCTION

The ground states of crystalline beams were first studied, in seminal work,[1] — [3]
by Schiffer and his colleagues. Their work assumed a storage ring model in which
charged particles are subject to time-independent[4] — [11] harmonic forces in both
transverse directions. Subsequently, many authors studied crystallization in a time-
dependent focusing potential which replicated some of the features of alternating
gradient (AG) focusing, and with time-dependent shear which replicated some of
the features of the alternate bending and straight sections of a storage ring.[12] —
[15] Nevertheless, questions remain for many years about whether or not an ordered
state can be created in a real storage ring. Furthermore, with laser cooling very low
(longitudinal) temperatures of stored beams have recently been achieved.[16] — [17]
Thus it became prudent to develop the tools which will allow one to make calculations
that incorporate the characteristics of actual storage rings.

"Work performed under the auspice of the U.S. Department of Energy, supported by NSF Grant
DMR-91-15342, and by the DOE. Office of Energy Research, Office of High Energy and Nuclear
Physics, under Contract No. DE-AC03-76SF00098.



Recently, we have developed such a formalism and employ it to study the nature
of the ordered state in actual storage rings.[18] We find that in operation below the
transition energy. ¥ < 7:, alternating gradient (AG) rings, as contrasted with constant
gradient rings, can have a crystalline lowest energy-or ground state. This state will
change periodically in time, “breathing” as the particles go around the storage ring,
and is subject to periodic bending, straight sections, focusing lenses, and defocusing
lenses. Under some conditions the changes are dramatic, the crystal periodically
changing its shape and orientation, but the crystal remains for a very long time in
the ground state: i.e., by this process very little heat is put into the crystal (possibly
zero at zero temperature). In order to achieve the ordered state the beam must be
very cold. We give results, in typical machine parameters, for just how cold (expressed
in terms of energy spread and emittance) must be the beam. We show that there
exists a temperature above which the crystal rapidly melts.

This paper summarizes the results of our recent studies on crystalline beams.[18] —
[22] In order to employ molecular dynamics (MD) method, commonly used in con-
densed matter physics for quantitative studies, we first derive in Section 2 the equa-
tions of motion for the particles in the rotating rest frame of the reference particle.
We include in the formalism that the particles are confined by the external guiding
and focusing magnetic fields, and that they are confined in a conducting vacuum
pipe while interacting with each other via the Coulomb force. In Section 3, we de-
rive the conditions for crystallization in a circular storage ring. After describing the
MD method and models for the calculation in Section 4, we present in Section 5
the numerical results on the crystalline-beam ground-state structure, and discuss in
Sections 6 and 7 the mechanism for heat transfer, melting and break-up. Finally, the
conclusions and a discussion are given in section 8.

2. EQUATIONS OF MOTION IN ROTATING
BEAM FRAME

In order to adopt the molecular dynamics methods we must be in the frame of refer-
ence of the particles, i.e., a rotating frame (z,y,z,t) of a reference particle in which
the orientation of the axes is rotating so that the axes are constantly aligned to the
radial (z), vertical (y), and tangential (z) direction of motion. This is, of course, an
accelerating frame of reference. We can derive the equations in the laboratory frame
and then transform to the moving frame, but it is most convenient to derive the equa-
tions directly in the beam frame, employing the formalism of general relativity.[23]
One may think of the result of this process as finding the relativistic generalization
of centrifugal and Coriolis forces. In the frame of the reference particle, the parti-
cle motion is non-relativistic. The MD method can thus be directly adopted. The
rather lengthy derivation was given in a Laboratory Report[18] and summarized in
a Conference Proceeding Publication:[19] here we only summarize the procedure and
present the results.

First, we express the equations of motion of a charged particle in a general tensor
formalism applicable to any arbitrary coordinate system. The Lorentz force experi-
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enced by the particle is constructed as a product of the electromagnetic (EM) field
tensor and the four-velocity. Starting from the laboratory frame, the EM field tensor
is written by means of the components of the electric and magnetic fields. Then, ten-
sor algebra is used to transform this field tensor into the rest frame of the reference
particle. With a similar transformation, the metric tensor of the beam rest frame can
be obtained. The equations of motion can thus be constructed in the rest frame, from
which both centrifugal and Coriolis forces can easily be identified. Finally, these equa-
tions are scaled in terms of dimensionless quantities for the convenience of computer
simulation and analysis.

It is convenient to scale dimensions in terms of £, with € = rop?/3?+2, where ry is
the classical particle radius (Z%e?/moc?), Ze is the electric charge, the velocity of a
reference particle is Jc, its energy is ymoc?, and it moves on an orbit with bending
radius p in magnetic field By. We measure time in units of p/B~c and energy in units
of 32y2Z%?/¢. In a bending region, wi'h magnetic field By, we have derived the
equations of motion

. . oV,
(T T ALY
oz
oVe
=-— 1
5 (1)
aV,

dz
Here, the dots denote differentiations with respect to the time ¢ measured in the above
units, the Coulomb potential is

1
Vo(r,y,2) = |
clz,y ) ;\/(Ij_x)2+(yj—y)2+(zj—2)2

and the summation, j, is over all the other particles. The Hamiltonian that corre-
sponds to Eq. 2 is

1 1
H(z, Peyy, P2, Poit) = 5 (P2 4+ P} + P) = yaP. + 52"+ Ve(z,y2). (3)

In a straight section, where there is no bending of particles, there often are focusing
magnets. If focusing is supplied by a quadrupole of field gradient B, so that B, = By
and By = Bz, and the focusing strength is characterized by n = —B,p/ By, the
equations of motion are
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The corresponding Hamiltonian is

H(z,P,,y,P,.z, P.;t) = % (Pj + Py2 + Pf) + g(—x2 + y2) + Vel(z,y.z). (D)
As the particle goes around the storage ring, the appropriate equations of motion
must be employed. The change from those corresponding to a curved section to those
corresponding to a straight section incorporates, in a quantitatively correct manner,
the effect of shear (given by the term vz P, in the Hamiltonian Eq. 3). Similarly, the
effect of alternate gradient is incorporated, quantitatively correctly, by changing the
field gradient n (positive for vertical focusing, negative for vertical defocusing, and
zero for an open straight section). In the reduced units, the revolution period of the
reference particle in the storage ring is 2 R/p, where 27 R is the circumference of the
storage ring.

3. CONDITIONS FOR CRYSTALLIZATION

Consider a cyclotron magnet, i.e., a magnet that gives constant bending and constant
focusing. The Hamiltonian in this case is

H(z, Py, P,,z, P,;t) = % (Pf + Py2 + Pf)—'y:er—i-% [(1 —n)z? + nyz} +Velz,y, 2).

(6)
If the gradient of the magnet is such that n lies between zero and one, then the magnet.
in combination with the centrifugal force, gives focusing in both the vertical and
horizontal planes. Just the kind of storage rings, one would think, for the formation
of a crystal and, yet, that is not true at all. The Hamiltonian in Eq. 6 is bounded from
below only if 0 < n < 1 —~+? (a proof is given in the Appendix). Since v > 1, we see
that this condition can never be satisfied and, as a result, crystalline beams can never
exist in this case. In fact, the centrifugal force becomes defocusing when the particles
are crystallized. Therefore, a weak-focusing machine consisting of a cyclotron magnet
can not be used for crystallization.

On the other hand, an AG-focusing machine, in contrast to a weak-focusing ma-
chine, can be used for beam crystallization under appropriate conditions. Consider an
AG machine of constant bending. The Hamiltonian is the same as in Eq. 6 but with
n time-dependent. Assuming there is horizontal and vertical focusing, i.e. v, > U
and v, > 0, where v, and v, are the horizontal and vertical tunes, it is easy to see
that the Hamiltonian, in smooth approximation, is bounded from below if and onl
if ¥ < v; and, therefore, crystalline beams exist only if the ring is operated below th
transition energy (a proof is given in the Appendix).

4. MOLECULAR DYNAMICS

In general, when Coulomb interactions and AG focusing are present it is impossil.«
to solve the equations analytically; we obtain numerical solutions using moleculi.:
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dynamics. This method allows us to determine the lowest energy state in realistic
storage rings (i.e., the actual ring lattice can be inserted in the computation) and,
also, allows us to study behavior as the crystal temperature is increased from absolute
zero. We can determine the temperature at which such a crystal melts; i.e., loses its
long-range order as the particles go into a state in which they pass each other (as in
a usual storage ring).

In the MD calculations we choose time and space steps, the number of particles in
a MD super-cell, and the length of super-cells, so that the results are independent of
these choices. Initially the positions and momenta of the particles are randomly cho-
sen. In finding the ground state we “cool” once per lattice period by simply imposing
a condition of periodicity (by averaging initial and final coordinates and momenta)
while correcting P, according to the amount of slippage in z for each particle and
for many periods (typically 1000) and then turning the cooling off and observing no
change (in one case for up to 10° lattice periods). The results are independent of
initial conditions. We have checked that “cooling” which better replicates the actual
experiments leads to the same state (but takes very long when the density is high).

Since Coulomb interaction is long ranged, an Ewald-type summation has to be per-
formed to calculate the energy and the forces.[24] —[25] To simulate a real accelerator,
we consider a bunch of charged particles confined in a perfectly conducting, infinitely
long pipe. The periodic boundary condition is used only in the z direction, where the
super-cell of length L (in unit of £) repeats itself to infinity. The energy due to two
particles at x; and x;, after all the image charges and equivalents in other super-cells
are included, is

/°° cosh(2z;k/L)Jo(2pik/L) —
L

(i, X;) = exp(2k) — 1

dk + L[log(n’b/L) +C] (7)

where z;; =z — z;, pi; = |(zi — 2;)*+(y: — yj)2]1/2, ri; = (2% + p?j)1/2, b is the radius
of the pipe, and C is the Euler constant.- The condition p;; << b is used and z; is
understood to be between —L/2 and L/2 (if z; falls outside this range, an integer
times of L is added to it to bring it to the correct range). The equations of motion
is integrated by the 4th order Runge-Kutta method. The integration in Eq. 7 is
usually performed by a 15th order Gauss-Laguerre method, except for particles of
small distance p;;/L < 1 where polynomial approximations{26] can be used with
sufficient accuracy to reduce the computation time.

5. GROUND-STATE STRUCTURES

When the condition for crystallization (v < ;) is satisfied, crystalline beams ot
various densities can be formed. Let us now, for pedagogical purposes, separate the
effect of “shear” from that of time-dependent focusing. We shall study, as we did i
our earlier work,[18] —[20] an AG ring with a constant bending field. For a given rinu
the nature of the ground state (which term is used to describe the periodic lowe
energy state) depends upon the density of particles. When the density is low 1«
ground state is a one-dimensional (1-D) chain. If the density is larger then the grou: -
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state is a 2-D state that lies in the plane of weaker focusing, which is determined by
whether v2 — 4% is greater, or smaller, than 2. Notice that the focusing in a crystal
is not determined simply by v, and v,, but by the factors (v — )12 and v,

The (line) density at which a 1-D structure changes into a 2-D structure can be
determined analytically. It is given by
1/3

s (3)

where A, is the nearest neighbor distance in z (given trivially in terms of the number
of particles stored, the circumference of the storage ring, and 7). Notice that, in
practice, one can change the focusing of a storage ring (“changing the operating
point”) and also change the storage energy. Thus the focusing can be readily changed
and the effect of such change easily studied.

In an AG ring the 2-D crystal structure, as contrasted with the 1-D structure,
will “breath” as the particles go about the storage ring. Despite this motion little
energy is pumped into the crystal; it remains in its ground state for a very long time.
Such behavior is not unexpected, for as particles go around AG storage rings the
amplitude of their oscillation changes (3-function variation), and particles of different
energy move closer or further apart (n-function variation), yet particles can be stored
forever.[20] — [22]

We find, numerically, that when the line density is higher than that appropriate
to a 2-D crystal, the particles arrange themselves into 3-D crystals; becoming helices
and then helices within helices. An example is shown in Fig. 1. These structures
are similar to, but differ in detail, from that given in Ref. 1. It is seen that the ratio
between the average horizontal and vertical particle spacing is about [v/(vZ — A H))/3,
When the horizontal and the vertical focusing strengths are about the same, v2 —~* x
vZ, the interparticle spacing in these structures is approximately the same, and given
(roughly) by the interparticle spacing when transition is made from a 1-D crystal to
a 2-D crystal; i.e., can be characterized by &, v7, 1/3, and v. Thus the crystal forms
cylindrical shells within cylindrical shells, upon which the particles are deployed in
such a way that the interparticle spacing is about the same. This behavior is very
similar to that which occurs in ordinary crystals. It appears to be the case that a
crystal forms no matter how high is the particle line density. Thus one obtains that
the maximum spatial density, Az, for a crystal of high line density in the laboratory

frame is
Yy JVE = 7*
283 '
Having determined that ground states can be formed in a storage ring with AG
(time-dependent) focusing, we studied the effect of shear upon the ground state:
i.e., the effect of time varying bending. We took an AG lattice of the FODO-type
which has the similar transverse tunes as the previous constant-bending case. but
with the bending concentrated into a small region (25%) of the lattice period. Fig. 2
shows a crystal formed in such a machine. The typical particle trajectories within
one machine period are shown in Fig. 3. It can be seen that the crystal “takes
up the difference” between constant angular velocity and constant linear velocity

A7 > 0.62 [min(v?, 02 — )]

(9)

ATVI.CI.:L' ~
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Figure 1: A single-shell structure with particle positions projected (a) into the z — y
plane and (b) into the ¢ — = plane, where o is the polar angle. The machine consists
of 10 FODO (focusing, open or drift, defocusing, open or drift) cells with constant
bending with v; =2.7 and v, =2.3, and the particle energy is y=1.4. The number of
particles (V) per MD super-cell is 40 and the MD super-cell length (L) is 10£. The
particles move periodically in time. with the solid lines showing their trajectories and
the circles indicating their positions at the start and end of each lattice period.



20 T

10 | ® soumo o

y (§)
m\
ReaX {
|9
3
Le
&,
ﬁff
$
Lo
s

o
o °Q§°9’
-10 + = m; :u:-‘:amﬂ. "‘".oa .
-20 1 1
-20 -10 0 10
x (§)

20

Figure 2: A multi-shell structure with particle positions projected into the z —y plane.
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Figure 3: The effect of shear. In this study N =40, L =40¢. Motion occurs both 1n
the r direction (breathing) and in the z direction (shear) for a particle (with largest
horizontal displacement and no vertical displacement) through a lattice cell. Lattice
components are displayed on the figure, B is a bending section, F is a focusing section.
D is a defocusing section. The machine parameters are the same as that used in Fig. .

with v = 1.4, v, = 2.8 and v, = 2.1.



by adjusting the spacing between particles; i.e., by converting potential energy into
kinetic energy.

A more extreme case s supplied by the Heidelberg TSR lattice,[27] which has a
periodicity of 2 and rather sharp bends in each of the corners. We have taken the case
where the number of particles per super-cell, V=20, and where the super-cell length,
L =100¢, and find a 2-D crystalline state (zig-zag) which has the symmetry of the
lattice and numerically appears to be stable. The state makes one rotation per lattice
period around its longitudinal axis, having a horizontal orientatiop in the middle of
the straight sections with particle separation of 2.5¢, and a vertical orientation in the
middle of the bending region with particle separation 8.7¢! The rotation is produced
by the shear motion when the particle crosses the bending magnetic field and is shown
in Fig. 4. The direction of the rotation is determined by the orientation of the bending
magnetic field.

6. CORRELATION FUNCTIONS AND
BREAK-UP TEMPERATURE

Having studied the crystalline-beam ground state, we investigated behavior at non-
zero temperatures.[20] — [22] For this time-dependent Hamiltonian system, we define
the temperature in terms of the deviation of P,, P, and P, from their ground-state
values,

L=(AFR)), T,=((AP)%, and T, = ((AP.)%), (10)

squared and averaged both over different particles and over a time period (typically 20
lattice periods) that is long compared with the focusing period but short compared
with the total time of observation. The temperature can readily be expressed in
terms of the usual accelerator parameters of un-normalized emittances, ¢, and e,.
and relative momentum spread, Ap/p, by

Ap S O L
(Aex,Aey,7) - (;ﬁxTz,;ﬂyTy,;y\/E). (11

The systems we study are all one-dimensional in the sense that in the two directions
perpendicular to the beam, the systems are always finite. Two qualitatively different
states exist in these systems, one ‘s a low temperature “condensed state” (crystalline
beam), in which there is limited shearing motion in the z direction, but no passing
of particles, and the other is a high temperature “running state” in which particle«
shear, in an un-limited manner, relative to each other. The temperature T, at which
the transition occurs is called the break-up temperature.

The distinction between the running and the condensed states can be found in the
ordering in azimuthal direction. which 1s characterized by the two-body correlation,
function Gy(z)

1
) =(57m X 5(3—|31—3;!”;( (i
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where ( )|, denotes the average over time after thermal equilibrium is reached. Asthe
temperature increases. the beam transforms from the condensed, ordered state in =
into the running state. Similarly, the ordering in transverse direction can be described
by the time-averaged density distribution functions. For a 3-D structure, computer
results indicate that as the temperature increases, the beam becomes disordered first
transversely in ¢ and p, and then longitudinally in z (as shown later in Fig. 8).

The break-up temperature depends upon both the machine parameters and the

beam density. The dash line in Fig. 5a indicates the break-up temperature for a
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Figure 5: Break-up temperatures in the (a) azimuthal and (b) transverse direction as
functions of the inverse of the beam density. The machine parameters are the same as
that in Fig. 1. The result has been verified by comparing cases with different L and
N (N =10, 20, 50, 100, and 200) while keeping the line density A7! = N/L constant
(A, =2).

constant-bending AG machine obtained by perturbing the particles from their crys-
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talline ground-state position in the azimuthal direction z only. The approximate
relation

T, ~06 A (13)

implies that the break-up in azimuthal direction occurs when the average kinetic en-
ergy is comparable to the potential energy difference needed for part of the particles
to traverse a significant fraction of the distance A,. When T, is lower than this tem-
perature, particles vibrate azimuthally around their ground-state positions. Almost
no thermal energy is transferred into the y direction, and very little is transferred into
the z direction (due to z-z coupling). When T, is above this temperature, thermal
energy in z is rapidly transferred into transverse directions, and the crystal melts at
the same time.

Fig. 5b corresponds to the cases when the beam is perturbed from their ground-
state values transversely in either the z or y direction, but not in the z direction. The
dashed lines corresponds to the values when the beam breaks up in the z direction.
The beam break-up occurs when the transverse vibrational displacement is compa-
rable to the ground-state interparticle distance. Since the vibrational frequencies
in transverse directions are mainly determined by the external transverse focusing
(Eq. 15), the break-up temperatures T, are approximately proportional to A%. The
fact that T is lower than T, is partly due to the coupling between the x and z motion.
Note the completely different dependence of T, and the transverse temperatures, T
and T, upon density A7

Consider the constant-bending storage ring example, discussed previously, with
27R =24 m and 3., =~ 10 m. £ is equal to 1.8 um for proton, and is equal to 22 ym
for electron. The condition to form a crystalline beam can be expressed using Eq. 11
as

(0.8 x 1071T,.0.9 x 10717, 1.3 x 10-5/T%) (proton)
Ap Y
A€y, Aey, — | <
P (1.2 x 107°T%. 1.3 x 107°T;, 2.1 x 107°y/T%)  (electron)
(14)
where the break-up temperatures T, T,, and VT; are given by Fig. 5.

7. MECHANISM FOR HEAT TRANSFER

Since a constant gradient storage ring can not have a crystalline beam, the Hamil-
tonian is necessarily time-dependent. and the total energy of the system is not a
constant of the motion. Furthermore, the Hamiltonian, without the smooth approxi-
mation, is not bounded from below at any time and the adiabatic approximation can
not be used. It is precisely the dynamical coupling between the external focusing-
defocusing force and the Coulomb interaction among the particles that gives us the
well-defined periodic structures which we call the “ground state”. However, the time
dependence of the Hamiltonian can cause damage to the crystal, because energy can
be pumped into the system by creating phonons. As a result. a crystalline beam at
non-zero temperatures can not last forever unless energy is pumped out of the system

12



Wk = v2oaz,

where -
0! = 22 1 — cos(knA,)

3 A3 !
n=1 n Az

the crystal momentum k is between -7/A, and +7/A,, and A, is the interparticle
distance. Since the y direction is not coupled with the z and - directions, w, is purely
polarized in the y direction. The z and » directions are coupled with each other, but
at k=0, w =y, (with the plus sign) is purely z polarized, and w; = ¢ (with the
minus sign) is purely z polarized. The phonon modes are singular at £ = 0 due to the
long range Coulomb interaction, but the singularity is very week, only logarithmic
in nature (actually k[log(k)]'/?), and does not cause any qualitative difference in the
properties of the crystalline beams. Typical density of states (DOS) is shown in
Fig. 6a. The highest phonon frequency, w,,, is in Mmany cases (although not always)
the larger of vz and v,. Under certajn conditions, wi(k) can be larger than vz, but
only marginally so.

At higher density, the ground state structure becomes two- or three-dimensional.
and the phonon modes cap no longer be found analytically, but must be calculated

(16)

ously, the weak singularity at & = 0 is stj]] there, and it is still true that the highest
phonon frequency w,, is closely related to the larger of v, and Uy.

Beyond the smooth approximation, time-dependent terms like cos(wit)zr? and
cos(wit)y? appear in the Hamiltonian, where w; is the AG lattice frequency. Since
T and y vibrate with the phonon frequencies wi2,3(k), these time-dependent terms
generate vibrations with frequencies w; + w(k), as shown in Fig. 6b. These frequen-
cies form a band between w; — wWm and w; 4+ w,,, and the band is generally continuous
except at very low density. Typically. a series of continuous bands between JWi — W,
and jw; + w,, will form, where j is an integer, due to the higher component in the
Fourier expansion of focusing—defocusing forces in the AG lattice.

between w; —w,, and Wi +wm, and resonance occurs, and the vibrational amplitude of
the particles grows exponentially, and the crystalline beam will be instantly destroye.
Therefore, in order for the crystalline beam to last a meaningful length of time. o
has to be larger than 2w, ie.. the storage ring should be designed such that the
lattice periodicity is at least twice as high as the betatron frequency.
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With the shear lattice example discussed previously in Figs. 2 and 3, the machine
lattice periodicity (10) is much higher than the highest phonon frequency (v, =2.8)
in the system. The transfer of energy into the system can only be realized by multi-
phonon emission. This process is expected to be strongly temperature-dependent. We
have studied the relation between the heating rate and the temperature. Fig. 7 shows
the survival time (time before particles slip past each other, or crystal break-up) of a
crystalline beam without cooling as a function of the initial temperature at which a
MD run starts. The survival time indeed strongly depends on the initial temperature,
and rapidly tends to a large value when the initial temperature is low enough. This
indicates that at low temperature, the rate that energy transfers into the system is
very low, and it is easy to maintain a crystalline beam for a long time. Fig. 8 shows
the heat transfer rate as a function of the temperature. As the temperature increases,
the single-shelled crystalline beam (phase I) appears to first become disordered in the
transverse direction (¢) (phase II). As the temperature increases beyond the break-up
value, T ~ 0.3, the beam then becomes disordered azimuthally (phase III). Fig. 9 a—-d
show the correlation functions G3(z) for a variety of temperatures.

8. CONCLUSIONS AND DISCUSSION

In this report, we have attempted to cover the present state of knowledge concerning
crystalline beams. First reviewing what we have presented we shall, then, discuss
some of the remaining subjects which might be studied theoretically. Of course.
the primary subject must be the experimental realization of a crystalline beam, and
we know that there are at least two groups actively trying to do just that. Their
experimental work requires an ever-better understanding of the sources of heat, and
an ever-more effective cooling methods.

In summary, then, we introduced the Hamiltonian (Section 2) describing the self
interaction of a group of particles, subject also to external forces, in the rotating
beam frame. This frame proved convenient for adopting the methods of molecular
dynamics (Section 4). Prior to using numerical methods we were able to establish
(Section 3) that crystals can only be formed in AG-focusing rings operated below the
transition energy.

We first turned our attention to ground state structures (Section 5) and found
that depending upon machine parameters and particle density, they consisted of 1-D.
2-D, or 3-D structures. These structures are similar to the pioneering work done
in harmonic wells, but they differ in detail. We found that these structures can b«
formed no matter how varied the ring is (high shear and AG focusing) and no matter
how high is the particle density.

We then turned our attention to finite-temperature effects (Section 6), and foun«
that above certain transverse and longitudinal temperatures, called the *break-n:
temperatures”, which are given in terms of the usual accelerator parameters of enerc:
spread and emittance, a crystal melts: i.e., particles slip past each other. Increasi:.
the temperature from zero, we found that one reaches a lower temperature than '
break-up temperature where, suddenly. the crystal is very effective in picking up e
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from the lattice. The mechanism for this (Section 7) is that two phonon excitation
has become possible. The criterion that this not occur, which becomes the second
necessary criterion for the formation of crystals. is that the lattice periodicity must
be at least twice the betatron frequency.

Although a great deal has been done on crystalline beams, there is still a great
deal more to do. Some of the things to be done are relatively straightforward, that is,
they involve the use of techniques that are established, but not yet employed; other
calculations require novel approaches.

As an example of a rather straightforward calculation, we can think of the task of
developing the heating curve for the ASTRID lattice; or checking that the heating
curve goes over, at high temperatures, into the (well-known) multiple scattering the-
ory for particle beams; or developing the heating curve for various values of the ratio
of perpendicular temperature to longitudinal temperature; or studying of the crystals
in the ASTRID lattice with v, and v, both less than two (so as to satisfy the sec-
ond criterion for crystal formation). Here one needs to determine the 1-D, 2-D, 3-D
structures and also determine the heating curve. Also in this category of relatively
straightforward things is a careful study of the order of the transition between 1-D,
2-D, and 3-D shapes.

Also straightforward, would be a study of the theoretical expectations for the old
experiment, from which it all started, on NAP-M.[28] The theory is now in a position
to do this calculation, and it would be most interesting to know if the experimental
observations are in accord with current theory.

Another area that might be studied theoretically is on crystals under the influence of
RF field such as might be convenient for limiting the crystal in azimuth or facilitating
laser cooling.[29]

Careful study needs to be made of the effect of machine errors. A start along this
direction has been made by two different groups, with two different answers, so the
subject is in need of definitive work.

It would be very useful for the experimentalists if the theorist were to calculate the
expected Schottky signals on beam pick-ups. (This is relevant to the NAP-M experi-
ence, but it is more general.) A theory of the expected signals at high temperatures
has been developed by V. Lebedev.[30] (This theory is for lower temperatures than
that of the usual single particle noise theory, but higher temperatures than that as-
sociated with crystal formation.) The evaluation of expected Schottky signals should
go over into Lebedev’s theory as a crystal melts.

There are a number of theoretical topics that are not so straightforward. One
is to develop a theory of the heating curve (at least for the peak value and width
of peak). This would allow one to see the dependence upon lattice, shear and AG
focusing, transverse and longitudinal temperature, etc. A second subject might be to
understand the role of very low phonon k values and, in particular, to understand the
cascade of energy to ever-lower frequencies, as described by R.W. Hasse.[8] A third
subject might be to study crystals of many species.

In sum, then, the subject of crystalline beams has already stimulated much theo-
retical work and much experimental effort. It promises to be even more interestine
in future years.
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APPENDIX

In order to obtain the condition for crystallization, we first eliminate the cross term
in the Hamiltonian Eq. 3 by using a canonical transformation

Fi(z, Pr,y, Py,:, Pz) =(r— 'yDIZ)(Pr + 'yD’PZ) + ypy + 2P, (A-1)

where the function D is determined by eliminating the cross terms in the Hamiltonian
at both the bending (Eq. 3) and the straight sections (Eq. 5), i.e.

1 (bending section)
D"+ K.D = (A-2)
0 (straight section).

Obviously, D thus defined is the horizontal dispersion of the machine normalized by
the bending radius p. With Eq. A-1, the new Hamiltonian becomes
_ oF;, 1
H=H _— = =
T T2
where the Coulomb potential Ve is given by Vi with the variables z. y, and z substi-
tuted by the new variables Z, 7, and =, and

N e QA
(P2 + P2) + ——P2+ Ve, (A-3)

D+ DD" + (D')* (bending section)
F.= (A-4)
DD"” + (D')? (straight section).
The average value of F. can be obtained as
p p L -
)= —— ¢ Fdt = — Ddt = —, A-
(F) QTTR.% ) 27 R Jbend v2 (A=)
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where v, is the transition energy of the machine. Using the generating function F3
(Eq. A-1), the new variables are related to the old ones by the equations

i = r—+vDP,
y =y _ ) (A-6)
: = :+yD'r—+DP, -2v*DD'P,,
and - ~ '
P = If’r+’7D' ;
P, = P, (A-T)
P, = P,

The Hamiltonian (Eq. A-3) can be further simplified by expressing it in terms of the
conventionally defined action-angle variables

_ 1 - 72 F. =9 _

H =VrJr+l/ny+_—'_.)—_Pz + Ve, (A-8)
where J, and J, are the actions, and the transverse tunes v, and v, are positive for
a stable machine lattice.

For a stable crystalline beam, the Coulomb force must on the average provide
focusing in the azimuthal direction,

ks
2

Ve —3%,  for 2 € A, (A-9)
where k, > 0 is the effective Coulomb focusing strength. It can thus be seen from
Egs. A-8 and A-5 that the azimuthal motion will not be bounded if ¥ > ~;. Hence,
the crystalline beam can not form when the beam energy v is above the transition
energy 7. -

On the other hand, for a cyclotron magnet, D = K;', F.=D,and K; =1 —n.
so one obtains the condition for positive definiteness of H (Eq. A-8) that 1 —~% > n,

which can never be satisfied.






