
Future Generation Computer Systems 133 (2022) 23–38

a

b

t
f
r
i
l
p
t
a
p
b
A
e
b

M

c
d

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

DIRAC Site Director: Improving Pilot-Job provisioning on grid
resources
Alexandre F. Boyer a,b,∗, Christophe Haen a, Federico Stagni a, David R.C. Hill b
European Organization for Nuclear Research, Meyrin, Switzerland
Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Mines Saint-Etienne, LIMOS, 63000 Clermont-Ferrand, France

a r t i c l e i n f o

Article history:
Received 15 April 2021
Received in revised form 25 January 2022
Accepted 1 March 2022
Available online 10 March 2022

Keywords:
Grid Computing
Pilot-Job
DIRAC
Site Director
LHCb

a b s t r a c t

To study the constituents of matter, CERN mainly relies on the Worldwide LHC Computing Grid
(WLCG), which processes petabytes of data coming from the Large Hadron Collider (LHC). LHC
experiments have adopted the Pilot-Job paradigm, and deliver tools to supply grid resources with
Pilot-Jobs, to efficiently leverage the computing power offered by WLCG. This sole approach will
be insufficient and will need to be complemented to meet future computing needs – of the High-
Luminosity LHC – and the rise of data generated over time: national science programs are consolidating
computing resources and encourage using cloud and High-Performance Computing systems. Yet, even
though they have started to integrate their workflows on such infrastructures, LHC experiments still
largely depend on WLCG resources. This paper lays out an approach to increase the throughput of the
jobs, on grid resources, by improving the performance of the Pilot-Job provisioning tools through a case
study: the LHCb-specific solution, known as ‘‘DIRAC Site Director’’. We propose: (i) a complete analysis
of the capabilities and limitations of the DIRAC Site Director; (ii) several methods to speed up its
execution, including parallel processing as well as bulk operations; (iii) a comprehensive analysis of a
group of Site Directors in the LHCb production environment during 12 months. With our approach, we
recorded an increase of 40.86% of the number of jobs processed simultaneously per second, enabling
the simultaneous management of 80,300 LHCb jobs, while only 57,000 of them could be managed
before our improvements.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The Standard Model of particle physics – a theory describing
he fundamental particles and their interactions – has success-
ully explained various phenomena and experimental results, but
emains incomplete and leaves many questions open [1]. To val-
date and develop the Standard Model of particle physics, CERN
everages a chain of particles accelerators that speed up a beam of
articles before ending in the Large Hadron Collider (LHC). Inside
he Large Hadron Collider (LHC), two particle beams, traveling
t close to the speed of light in opposite directions, collide and
rovide data about constituents of matter, which are captured
y four detectors corresponding to distinct experiments: ALICE,
TLAS, CMS and LHCb. Experiments capture millions of events
very second that have to be filtered, processed and stored. To
etter understand the impact of detector effects and experimental

∗ Corresponding author at: European Organization for Nuclear Research,
eyrin, Switzerland.

E-mail addresses: alexandre.franck.boyer@cern.ch (A.F. Boyer),
hristophe.haen@cern.ch (C. Haen), federico.stagni@cern.ch (F. Stagni),
avid.hill@uca.fr (D.R.C. Hill).
ttps://doi.org/10.1016/j.future.2022.03.002
167-739X/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
conditions, experiments also model events occurring in the de-
tectors by running tens of thousands of Monte-Carlo simulation
applications in parallel: they both reproduce the generation of
events and the configuration of the detectors [2].

CERN does not have the financial resources to process on-
site the totality of the events – simulated and real – and cur-
rently relies on the Worldwide LHC Computing Grid (WLCG) [3]
to deliver nearly real-time data to physicists. This infrastruc-
ture involves 170 computing centers spread within 42 countries,
1 million of computing cores and 1 exabyte of storage. More
than 50 Petabytes of data are distributed and analyzed every
year. To safely execute this workload on thousands of shared
and distributed heterogeneous computing nodes, the four main
LHC experiments implemented the Pilot-Job paradigm [4], which
overcomes many intrinsic problems of the initial push model but
still depends on it.

CERN has used the computing resources of WLCG to pro-
cess a continuously increasing volume of data coming from the
LHC experiments as a result of their constant improvements.
WLCG only is no longer sufficient and needs additional support.
Therefore, the WLCG communities have found ways to exploit
non-reserved CPUs, often on non-formally pledged resources [5].
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.future.2022.03.002
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2022.03.002&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:alexandre.franck.boyer@cern.ch
mailto:christophe.haen@cern.ch
mailto:federico.stagni@cern.ch
mailto:david.hill@uca.fr
https://doi.org/10.1016/j.future.2022.03.002
http://creativecommons.org/licenses/by/4.0/


A.F. Boyer, C. Haen, F. Stagni et al. Future Generation Computer Systems 133 (2022) 23–38

P
s
i
t
S
W
m
B
E
T
a
d
i

s
o

Acronyms

ALICE A Large Ion Collider Experiment
AliEN ALICE Environment
ARC Advanced Resource Connector
ATLAS A Toroidal LHC ApparatuS
BDII Berkeley Database Information Index
CE Computing Element
CERN European Organization for Nuclear Re-

search
CMS Compact Muon Solenoid
CREAM Computing Resource Execution And

Management
CTA Cherenkov Telescope Array
DIRAC Distributed Infrastructure with Remote

Agent Control
DMS Data Management System
EGI European Grid Infrastructure
GIL Global Python Interpreter
HPC High-Performance Computing
LHC Large Hadron Collider
LHCb Large Hadron Collider beauty
LRMS Local Resource Management System
LSF Load Sharing Facility
PanDA Production ANd Distributed Analysis

system
SLURM Simple Linux Utility for Resource Man-

agement
VO Virtual Organization
WLCG Worldwide LHC Computing Grid
WMS Workload Management System
WN Worker Node

On the one hand, developers have made significant efforts to
integrate non-grid and opportunistic resources such as cloud
systems [6], supercomputers [7] and volunteering computing [8].
They have developed novel Pilot-Job and workload provisioning
mechanisms to benefit from, and exploit, these new types of
resources such as the Vac model [9] to spontaneously produce
Pilot-Jobs instead of pushing each of them on a Site. On the
other hand, there has been less focus on Pilot-Job provisioning
tools dealing with shared and distributed heterogeneous clusters,
such as grid resources and the push model. Yet, many Virtual
Organizations (VOs) such as LHCb still mainly depend on such
resources.

In this study, we want to explore whether improving the
ilot-Job provisioning mechanism bound to the push model could
peed up the Pilot-Job submission frequency and, thus, could
ncrease the throughput of the jobs on grid resources. We propose
o test this hypothesis by analyzing and improving the ‘‘DIRAC
ite Director’’ - the Pilot-Job provisioning utility used by LHCb on
LCG - and assessing the impact of the changes on WLCG over 12
onths. DIRAC has been adopted by various experiments such as
elle II [10] and CTA [11], in different environments such as the
uropean Grid Infrastructure (EGI) [12] and France Grilles [13].
hus, if successful, the results of our study could be directly
pplied into these contexts, and could deliver insights to any VO
ealing with a grid architecture through the Pilot-Job paradigm
n a broader sense.

After the presentation of the fundamental concepts involved,
uch as the push model, the Pilot-Job paradigm, we describe some

f the Pilot-Job provisioning tools in Section 2, as well as the

24
DIRAC Site Director and its current limitations in Section 3. Then,
in Section 4, we describe the solution proposed to increase the
Pilot-Jobs submission rate and the throughput of the jobs. Results
are finally assessed in Section 5 and discussed in Section 6.

2. Pilots provisioning on grid resources

2.1. Pilot-Job paradigm: the answer to the Push Model inefficiency

Despite their diversity, middleware programs interacting with
many shared and distributed heterogeneous resources deal with
similar physical architectures and a prevalent abstract model
known as the push model. It implies transfers at many levels
to dispatch the jobs: (i) from a Workload Management System
(WMS) to different Computing Elements (CEs)(Fig. 1 Step 1); (ii)
from a CE to a Local Resource Management System (LRMS) within
Sites geographically distributed (Fig. 1 Step 2); (iii) from a LRMS
to an available Worker Node (WN). In this architecture, Sites are
composed of single or multiple CEs, and WNs are mostly grouped
and bound to LRMS queues homogeneously. A CE provides a uni-
form service to submit jobs to a LRMS. ARC [14], CREAM [15] and
HTCondor [16] are a popular choice of CEs among Sites. LRMSs,
such as SLURM [17] and LSF[18], store jobs in the LRMS queues,
and finally spread the workload among the WNs – able to execute
the jobs – once they are available. LRMSs generally allocate access
to resources to users for a certain duration depending on various
parameters: estimated duration of the job, number of running
and waiting jobs. In the same way, jobs are spending a varying
duration in the LRMS queues depending on their priority, the
number of running and waiting jobs and the quality of service
policies of the Sites. Jobs going through the whole model often
encounter issues due to the number of transfers to perform and
the volatile nature of the resources. This model proved to be
inefficient and error-prone according to Stagni et al. [19].

The Pilot-Job paradigm has been devised and implemented
mostly to support computations across multiple distributed ma-
chines, aggregated into high-performance clusters, computing
grid or virtualized in cloud infrastructures. It has been quickly
adopted in the Grid Computing context as an answer to the
inefficiencies of the push model. The paper, given by Casajus
and his colleagues of the LHCbDIRAC team [20], defines Pilot-
Job objects, also known as pilots, as ‘‘nothing more than empty
resource reservation containers that are sent to the available
computing resources with the final aim of executing the most
appropriate pending payload in the central WMS queue’’ (see
Pilot in Fig. 2). Pilots can perform basic sanity checks of the
running environment (Fig. 2 Step 3) before any binding with a
given payload (Fig. 2 Step 4) to effectively run jobs on well-
behaved and well-adapted resources (Fig. 2 Step 5). They create
an overlay network that masks the central WMS components
from the heterogeneity of the underlying resources.

DIRAC proposes its implementation of the Pilot-Job paradigm
where pilots, considered as simple jobs, can run on WNs. A pilot
performs a DIRAC installation and checks properties of the work
environment such as CPU, memory and available disk space. Then,
it gets the most suitable jobs from the central DIRAC WMS server.
It retrieves and checks the availability of the input data and
software, executes the payload, reports the success or the failure
of the execution, and uploads output data if required.

2.2. Pilot-Job provisioning tools

Pilot provisioning tools aim at automating the submission of
Pilot-Jobs to the resources, ensuring high-availability and maxi-
mizing the throughput of the jobs (see PilotManager in Fig. 2). A
lot of WMSs integrate such tools to supply WNs with pilots. As



A.F. Boyer, C. Haen, F. Stagni et al. Future Generation Computer Systems 133 (2022) 23–38
Fig. 1. Interactions between a Workload Management System (WMS) and a grid Site to execute a workload via the push model.
Fig. 2. Interactions between a Workload Management System (WMS) and a grid
Site to execute a workload via the push model applying the Pilot-Job paradigm.

Turilli et al. underline [4], the Pilot-Job paradigm appeared as a
real solution for solving the inefficient push model. We have seen
an immediate development not grounded on any analytical un-
derstanding of underpinning abstractions, architectural patterns
or computational paradigms, which led to a variety of Pilot-Job
implementations and thus of Pilot-Job provisioning tools.

Condor [21], originally designed to allow users to execute
tasks on a resource pool, was one of the first software to imple-
ment the Pilot-Job paradigm, under the name of Glideins [22], to
employ the grid resources via resource placeholders. It has been
quickly complemented by GlideinWMS [23] to automate and
optimize the provisioning of the Glideins. In the meantime, WMSs
such as DIRAC [20], PanDA [24], AliEN [25], and Coaster [26] have
been developed and provide similar pilot deployment features
despite slight variations.

Most of the Pilot-Job provisioning mechanisms aim at max-
imizing the throughput and minimizing the number of wasted
25
resources by keeping a fixed number of pilots in the Grid pool and
continuously instantiating them while there are jobs to process.
The tools usually generate pilots that take the form of scripts,
sent to WNs via the grid architecture and the push model. They
also monitor pilots to identify failures and adjust the number of
pilots to meet the demanding pressure. The characteristics and
the priorities of the jobs are matched with the attributes of the
resources to achieve the best binding. Rubio-Montero et al. [27]
and Turilli et al. [4] emphasize the commonalities but also the
differences between several WMSs in further details.

The emergence of clouds and other opportunistic resources
has encouraged the development of new deployment methods.
We can mention the Vac model [9], designed to leverage the
advantages of clouds, or the efforts made in the Next Gener-
ation Executors to exploit High-Performance Computing (HPC)
resources from an edge node and orchestrated by PanDA [28].
These approaches do not suffer from the push model of the grid to
submit pilots as they do not depend on it, but grid resources can-
not benefit from these developments. As a workaround, Bagnasco
et al. that propose AliEN in the context of the ALICE experi-
ment [29], give another means of provisioning grid resources [25].
The authors installed Computing Agents on several Sites that
generate and submit pilots to the inner CEs without passing
through the WMS.

To the best of our knowledge, Boyer et al. have been the
only researchers to study the limitations of the Pilot-Jobs pro-
visioning tools to face up the growing amount of data coming
to WLCG [30]. They proposed a first analysis of the DIRAC Site
Director, a few approaches to improve its performances, as well as
preliminary results. Through the following sections, we will pro-
vide an extended analysis of the DIRAC Site Director limitations,
novel approaches to speed up the execution of the Pilot-Jobs
delivery, and comprehensive analysis of a group of Site Directors
within the LHCb production environment during 12 months.

3. Analysis of the DIRAC Site Director

3.1. Presentation of DIRAC

DIRAC [31,32] is the solution adopted by the LHCb collabora-

tion to interact with the large number of distributed computing



A.F. Boyer, C. Haen, F. Stagni et al. Future Generation Computer Systems 133 (2022) 23–38

r
n
r
I
t
S
i
p
D
o
m
E

3

m
–
a

s
p

S
T
f
o
p
g
t
t
c

3

t
c
m
p
i
i
p

a
d
h
a
t
g
a
L
a
o
j

f
t
i

esources offered by WLCG. Initially developed at CERN for the
eeds of the LHCb experiment, this middleware benefits from a
ich experience of exploiting complex computing infrastructures.
t combines a WMS to handle and orchestrate jobs among dis-
ributed and heterogeneous resources, and a Data Management
ystem (DMS), which includes automated data replication with
ntegrity checking, needed to deal with large volumes. DIRAC
ioneered the Pilot-Job paradigm within the LHC context [20].
evelopers have built it as a general-purpose framework and
ffered it to various user communities that would also need to
anage such amount of resources like Belle II [10], CTA [11], the
uropean Grid Infrastructure (EGI)[12], and others.

.2. Overview of the Site Director

The Site Director is a DIRAC agent performing Pilot-Job sub-
ission with the so-called push model to install pilots – mostly
on grid resources. It works in cycles, executing the same logic
t each iteration. An iteration consists in:

• Getting information about LRMS queues and the WNs bound
to them from the Configuration service first (Fig. 3 Step 1):
OS installed, architecture of the WNs, maximum number of
waiting pilots allowed in the queues, maximum number of
pilots allowed in the Site. The Configuration service fetches
information from the Berkeley Database Information Index
(BDII), a service composed of multiple agents installed on
the Sites, collecting data at the WN, Site, and Grid level
according to Osman et al. [33]. The Configuration service
also provides the Site Director with details about the CEs to
connect to them: name, credentials if required.

• Querying the Matcher service, for each valid LRMS queue.
Given a LRMS queue configuration – namely details about
the architecture of the WNs and the OS installed on them
– the Matcher service delivers a list of nj jobs that could be
executed on the underlying WNs (Fig. 3 Step 2).

• According to the number of jobs that match the config-
uration nj and the slots available in the LRMS queue S,
generating a certain number of pilots np as scripts to run
on the WNs: np = min(nj, S) (Fig. 3 Step 3). S the number
of slots available is determined by the limits set by the
Site administrators minus the number of pilots submitted
in previous iterations that are still waiting or running. Pilots
previously submitted are registered in the PilotsDB database.

• Pushing these scripts through the multiple components of
the grid to reach the WNs. A Site Director only submits the
necessary number of pilots, according to the jobs waiting
in the queues, to avoid congesting the Sites with empty
pilots. To submit the scripts to a CE, the Site Director calls
a DIRAC communication interface providing the necessary
tool to interact with it (see Fig. 3 Step 4).

• Registering the pilots submitted in the PilotsDB database on
which next iterations will draw upon (Fig. 3 Step 5).

• Monitoring pilots to spot failures and provision resources
accordingly. The Site Director calls the DIRAC communica-
tion interfaces to get the status of the pilots (Fig. 3 Step
6).

• Reporting the status to the PilotsDB database and the Ac-
counting service (Fig. 3 Step 7). The Accounting service col-
lects and stores data about DIRAC activities that can then be
used to build reports.

It is worth noting that a Site Director is highly and dynamically
configurable. Administrators can set up multiple instances that
can run in parallel and manage specific Sites, CEs, and types
of resources to share the workload. Additionally, they can tune
parameters to modify the functioning of a Site Director: execute
 1

26
Fig. 3. An iteration of a Site Director: steps to manage Pilot-Jobs on grid
computing resources.

the monitoring process every nupdate cycle, wait nfail cycles before
ubmitting in a LRMS queue that failed, get the outputs of the
ilots, etc.
By default, in LHCbDIRAC - the DIRAC instance of LHCb -,

ite Directors are configured to monitor pilots every 10 cycles.
hey also wait 10 cycles before submitting in a LRMS queue that
ailed, and do not fetch the outputs of the pilots. Additionally,
ne cannot control the submission operations, despite the many
arameters a Site Director contains. Indeed, a Site Director stops
enerating and submitting pilots for 10 cycles in the LRMS queues
hat have no more slots available. Lastly, LHCbDIRAC administra-
ors have configured the minimum duration of the Site Director
ycles to 120 s.

.3. Limitations due to the grid architecture

We carried out an analysis in DIRAC for the LHCb experiment
o emphasize the different limitations inherent to the grid ar-
hitecture that could cause latencies and prevent to submit as
any pilots as needed to run jobs. Since we cannot profile the
roduction environment, we draw on the DIRAC command-line
nterface, the web application, as well as the log files to get insight
nto the Site Directors. Raw data and results from the analysis are
ublicly available [34].
The Accounting service of the web application provides the

verage number of jobs processed by pilot per day and per CE
uring a month (Fig. 4). In the context of LHCb, most of the pilot
andles a single job, despite pilots have been designed to fetch
nd run multiple jobs. Indeed, getting an accurate value of the
ime left allocated to a pilot is a complex operation due to the
rid heterogeneity. Site managers work with various LRMS types
nd versions and adjust specific features differently. Therefore,
HCbDIRAC administrators prefer to limit the number of jobs that
pilot can process, to avoid aborting the jobs that would run out
f time. Thus, a Site Director generally submit a pilot per waiting
ob.

The web application also presents the time that pilots take
rom their submission to their installation on a WN. According
o the records of 3000 pilots installed on 33 Sites, this duration
s not immediate, and generally vary from 165 s (1-quantile) to

719 s (3-quantile) (Fig. 5). Indeed, many VOs are competing for



A.F. Boyer, C. Haen, F. Stagni et al. Future Generation Computer Systems 133 (2022) 23–38

p
p
m
q
(

Fig. 4. Average number of jobs processed per pilot during a month, classified
by the CE that was used to submit them.

Fig. 5. Duration, in seconds, from the pilot generation to the pilot installation on
a WN at the left; Duration, in seconds, from the job arrival to the job matching
at the right.

limited computing resources on different Sites. LRMS of the Sites
may put the pilots on hold when they arrive, while other VOs are
using WNs. Fig. 5 also contains the time that 3000 jobs take from
their arrival in DIRAC to their installation on a WN via a pilot.
The median duration to effectively bind a waiting job to a pilot
is about 92 s, while the median duration to send and execute a
pilot on a WN is 309 s. The medians demonstrate that jobs are
rarely processed by pilots that were generated for this purpose,
outlining the importance of always having waiting pilots in the
LRMS queues.

The web application contains a configuration page with the
arameters of LRMS queues. LRMS queues limit the number of
ilots, running and waiting, by means of two parameters: (i)
ax pilots the maximum number of pilots coming from a given
ueue, and bound to a VO, an LRMS can handle simultaneously;
ii) max waiting pilots the maximum number of pilots, bound to
a VO, that a LRMS can hold in a given queue simultaneously.
The number of waiting jobs in LHCbDIRAC is often significantly
superior to the max pilots values of the LRMS queues.

Issues bound to the infrastructure remain unsolvable, as mod-
ifying the architecture in place is not a possible option. There-
fore, Site Directors cannot submit as many pilots as necessary to
quickly process the jobs, nor reach and maintain max pilots in the
LRMS queues. Thus, we should focus on continuously submitting
pilots to maintain max waiting pilots in the LRMS queues.

3.4. Limitations due to the Site Director itself

Through this part, we analyze whether the Site Director limit
the production of Pilot-Jobs by itself and the reasons of such
limitations if they exist.

The DIRAC command-line interface allows us to get a summary
of the status of the pilots, classified by CE, at a certain moment.
27
Fig. 6. Status of the pilots supervised by three specific LRMS queues for 12 h.

There are keys for every active CE, and each of them contains a
list of status associated with the number of pilots currently in
this state. By repeating the process every 5 min, we get plots
describing the activities of the pilots associated with a specific
CE or LRMS queue through time (Fig. 6). Plots only describe the
activities of the pilots at a certain point in time, but we consider
this sufficient to get a grasp of the limitations of the Site Director.
In the same way, pilots can pass from Waiting to Running in less
than 5 min, meaning some of them can only appear as Running
on the plots, but this should not significantly impact the plots.

We notice that max waiting pilots is reached but rarely main-
tained in most cases. The Site Director bound to LRMS3 queue1
did not submit any pilot for 2 h, whereas no pilot was queued,
and running pilots were decreasing through time. We can observe
similar behavior in LRMS2 queue1 and LRMS1 queue1 even if the
latter one is less noticeable. The web application can provide
information about errors that could have occurred during the
submission process, but nothing was reported for the studied
queues during this period. Thus, the limitation must come from
the execution of the Site Director.

In the LHCb context, each Site Director is bound to specific
Sites and to a specific CE type to minimize the number of LRMS
queues to manage per Site Director. Its execution is recorded in
a distinct log file where we can extract additional information.
Each file consists of a suite of logs relative to the execution of



A.F. Boyer, C. Haen, F. Stagni et al. Future Generation Computer Systems 133 (2022) 23–38

h
(
5
n
t
t
i
i

c d
Fig. 7. Duration of the cycles and activities of three Site Directors (120 s
minimum.

multiple cycles. Each log contains a date as well as a message
that can constitute a landmark to extract information of interest.
Information about the configuration such as the Sites, the types of
CEs supervised, the number of jobs, and waiting pilots at a specific
moment always appear first. Content about the submission and
the monitoring activities can show up afterward. To study the
logs, we developed an analysis tool that draws on repeated and
common messages and their dates across the files. Its purpose is
to extract useful data from a given log file and summarize them
into different graphs such as Fig. 7.

Fig. 7 describes the execution’s length of some Site Directors
andling different CE types. The Site Director managing ARC CEs
0) can spend around 6000 s to make a cycle while it can take
00 s in (1) and (2). This difference can vary according to the
umber of pilots managed by the Site Directors, the type of
he supervised resources, their location, and their capabilities. In
his example, (1) manages slightly more pilots than (0), which
ndicates a potential issue in ARC resources that we are going to
nvestigate in Section 4.2.

On all the plots, one cycle out of ten exceed the minimum
ycle duration set to 120 s, despite they deal with distinct types
28
of CEs. These specific cycles execute the submission of the pilots
followed by the monitoring step, which is time-consuming, while
other cycles perform short operations. The monitoring task is
the longest operation according to Fig. 7, and would probably
explain some of the Site Director limitation seen in Fig. 6. Indeed,
while monitoring the pilots, the Site Director cannot generate and
submit new pilots to fill in the LRMS queues.

One could think about isolating the monitoring part of the Site
Directors into a specific agent. On the one hand, this would pre-
vent the stops occurring in the execution of the Site Director and
would ease the Pilot-Job submission. On the other hand, it would
only shift the monitoring issues elsewhere and would continue
affecting the Site Directors. In the same way, administrators could
instantiate new Site Directors to split resources across them. Hav-
ing one Site Director per CE would likely provide better results,
but would partially help since it would make the maintenance
part difficult. Indeed, in the context of LHCb, we have hundreds
of CEs, administrators would not be able to manage so many Site
Directors.

By mapping the log messages with their location within the
source code, we noticed that the communication between the
DIRAC server and the CEs represent the longest operations. There-
fore, optimizing communication methods could probably de-
crease the submission and monitoring duration, prevent stops
in the submission of the pilots and thus, could help to maintain
max waiting pilots in the queues. We are going to study several
approaches in Sections 4.1 and 4.2.

Better sharing the workloads between cycles could also ease
the submission of pilots on a more frequent basis. In (0), the
submission of pilots is more frequent for a limited time, and
we observe that the submission duration decreases when shared
between cycles. This only occurs when max waiting pilots is
maintained for more than 10 cycles in some queues. We define
and discuss a robust solution in Section 4.3.

The combination of both Figs. 6 and 7 suggests that the sub-
mission of pilots on a more frequent basis would help to maintain
max waiting pilots on the short term on the one hand. On the
other hand, it would likely increase the number of running pilots
and thus the monitoring period that would finally stop the sub-
mission of new pilots for a while and would decrease the number
of pilots available again. The main idea would be to improve
the monitoring process in order to decrease its duration and
submit more frequently and, consequently, reach and maintain
max waiting pilots finding a balance between the number of pilots
to submit and the monitoring time.

4. Performance improvements of the DIRAC Site Director

4.1. Parallel communication with the Computing Elements

DIRAC provides communication interfaces to communicate
with different CEs. Such interfaces take the form of plugins wrap-
ping the necessary tools to connect to a specific type of CE. They
allow DIRAC services, and especially Site Directors, to interact
with the underlying LRMS queues and pilots. These communica-
tion interfaces include methods to submit pilots to a given CE,
kill pilots, get their outputs and/or their statuses. Operations rely
on communication with remote resources and require several
seconds or even minutes to get responses.

A Site Director sequentially communicates with the CEs, via
the communication interfaces, to submit pilots and monitor them.
Moreover, the Site Director can administer tens of CEs contain-
ing hundreds of pilots, that would involve a large number of
requests to remote resources. To minimize duration first, one
should privilege parallel treatments and bulk operations.

Submitting pilots involves communication with the PilotsDB
atabase containing the pilot identifiers and their statuses. A Site



A.F. Boyer, C. Haen, F. Stagni et al. Future Generation Computer Systems 133 (2022) 23–38

s

D
L
m
f
L

p
c
t
t
f
a
t

m
t
n
s
D
P
p
o
f
b
I
t
m
t
a

l
t
b
t
s
w

Fig. 8. Schema of a sequential execution of the monitoring task at the top;
chema of a multi-threads execution of the monitoring task at the bottom.

irector reads the database before generating pilots for a given
RMS queue, and updates the pilot database after finishing a sub-
ission in this LRMS queue. Because submissions are dependent

rom each other, we cannot simply process submission in each
RMS queue in parallel, and thus, we focus on monitoring.
Monitoring pilots from different CEs simultaneously would

robably decrease the waiting time to get remote data. As various
ommunication interfaces exist to interact with the different
ypes of CEs and that new types often appear, we have decided
o tackle the issue at the Site Director level to preserve inter-
aces and avoid maintaining too many pieces of code. Classical
pproaches to make an application parallel include processes and
hreads.

Multiple processes would allow the Site Director to manage
ultiple CEs in parallel. However, they would mainly depend on

he number of available CPUs on the DIRAC server and would
ot decrease the waiting time between requests. Multiple threads
hould, in theory, take advantage of multiple CPUs. However, as
IRAC has been written in Python, it has to deal with the Global
ython Interpreter (GIL) [35]. The GIL enables concurrency by
reventing multiple threads from executing Python bytecodes at
nce, which does not benefit CPU-bound operations. In [36], we
ind further details about the GIL bottleneck concerning CPU-
ound threads. Nevertheless, the interpreter releases the lock on
/O operations such as reading and writing in a file or connections
o external resources, which is adapted to our needs. Indeed, the
onitoring task would imply IO-bound threads. Connections to

he CEs would create an opportunity to switch between threads
nd would minimize the waiting time in the program execution.
Fig. 8 presents a Site Director requesting the status of the pi-

ots from three different CEs, first sequentially, then using multi-
hreads. Each communication interface performs little CPU tasks
efore and after the connection, while the central part represents
he waiting time due to the connection. We expect threads to
witch during I/O operations to avoid the program to stop, which
ould result in better execution time.
29
4.2. Optimizations in the communication interfaces

Even though getting pilot status in each CE simultaneously
would ease the monitoring of the pilots and, thus, allow the
submission of a larger number of them, it remains incomplete.
Indeed, CEs may interact with hundreds or even thousands of
pilots, and some of the communication interfaces could be better
optimized. Some of them do not exploit all the features of the
underlying CEs. We have been focused on ARC, CREAM and HT-
Condor resources that LHCbDIRAC mainly leverages to deal with
inner LRMSs.

In Section 3.4, we noticed an issue in the Site Directors dealing
with ARC resources. Some of them were taking up to 6000 s to
monitor a small number of pilots. The communication interface of
the latter does not involve bulk methods and creates one request
per pilot, which can result in a long execution time. Yet, the ARC
documentation mentions the presence of such methods grouped
into a module named JobSupervisor [37], able to gather pilot
identifiers and perform a single connection to cancel and clean
them, renew their credentials, get their status and their outputs.
While its integration within the interface would remove the
overhead generated by the sum of several single requests, a too
large number of pilots supervised would also generate timeouts.
Thus, we split the pilots into mid-size chunks as input of the
JobSupervisor to efficiently use it.

Additionally, we have worked on the CREAM communication
interface and especially the proxy renewal frequency. Indeed, a
pilot requires a proxy to interact with DIRAC, mainly to fetch a
job to run. A proxy has a limited lifetime and can expire while
the pilot waits for available resources in a LRMS queue, which
can lead to its abortion. To address this issue, before getting the
status of a pilot, most of the communication interfaces perform
a check of the proxy lifetime left and renew it if necessary. The
communication interface attached to CREAM does not perform
this checking and renews the proxies of chunks of pilots in multi-
ple requests every cycle involving the monitoring, which remains
unnecessary. Renewing them every n cycles, n being larger than
m the number of cycles to wait before invoking the monitoring
would reduce the amount of time spent to monitor the pilots on
this kind of CEs occasionally. We set m to 600 by default, and we
assume it would be always sufficient.

Finally, we have focused on the way DIRAC gets pilot outputs
from HTCondor CEs. HTCondor CEs require an output location
prior to the pilot execution, contrary to CREAM and ARC CEs.
The communication interface has to define this location before
the submission of a job. Moreover, HTCondor provides outputs
asynchronously, which prevents the communication interface to
control the number of outputs arriving at the defined location. To
avoid getting too many files in the same directory, and because
DIRAC may interact with multiple HTCondor CEs sharing the
same job identifiers, DIRAC developers decided to fully randomize
the output location at every submission but did not store these
locations. Therefore, the communication interface has to perform
a find command to get pilot outputs on the server, which can
be cumbersome. To address this issue, we have decided to build
the output location based on deterministic attributes that we can
retrieve from the pilot identifier: the CE name, the HTCondor job
identifier, and a unique pilot stamp. A deterministic path would
ease the research of specific outputs and would be faster than a
find call in most of the cases.

4.3. Pilot-Job submission pace

A Site Director regulates the number of pilots to submit in a
given LRMS queue according to: (i) the number of running and
waiting pilots, related to this queue, at a given time (pilots); (ii)



A.F. Boyer, C. Haen, F. Stagni et al. Future Generation Computer Systems 133 (2022) 23–38

m

t
d
i

i
t
r
l
p
o
d
d
o
o
u
t
o
a
p
w

Fig. 9. Schema of the duration of the cycles when the number of slots available
is computed every ten cycles at the top; schema of the duration of the cycles
when the number of slots available is computed every cycle at the bottom.

the limit values it can support, namely max pilots and
ax waiting pilots. Thus, we have:

pilots to submit = min((max pilots − pilots),
(max waiting pilots − waiting pilots))

(1)

The Site Director computes this number before each submis-
sion in a given queue to fill in every slot. To avoid having too
many submissions of pilots that could slow down the monitoring
process afterward, DIRAC developers chose to stop computing
the number of slots available in a given LRMS queue for 10
cycles once slots have been filled. Thus, a Site Director waits
for 10 cycles, a minimum of 1200 s, before submitting to the
given LRMS. There are two main problems in this approach:
(i) there is no mechanism to balance the submissions of pilots
between different cycles and they often occur before the mon-
itoring operation, which creates an overused cycle; (ii) LRMS
queues can quickly install pilots on WNs and could get new ones
in less than 1200 s. These problems probably explain the lack
of submitted pilots sometimes, previously seen in Section 3.4.
Therefore, we have introduced a new configuration option that
intends to tune the number of cycles to wait before computing
the number of slots available in LRMS queues. This would allow
us to split the submission operation between the different cycles
and, combined with the monitoring optimizations, would better
meet the demanding pressure. Fig. 9 emphasizes the benefits of
such an approach.

5. Performance assessment of the DIRAC Site Director

5.1. Assessment of the individual changes

We measured the changes that we described in Section 4.2 to
assess their distinct contribution. From a DIRAC client, we wrote
programs involving multi-threads and communication interface
developments to get the pilot statuses.

First, we study the benefit of multi-threads integrated within
the Site Directors. A program computes the monitoring process,
 r

30
Fig. 10. Mean duration, in seconds, that a Site Director spends to monitor tens of
pilots managed by a range of CEs: from 1 to 5; along with error bars representing
the standard deviation.

Fig. 11. Mean duration, in seconds, that a Site Director spends to monitor pilots
in different Sites, managed by different CEs; along with error bars representing
the standard deviation.

both in parallel and sequentially. It supervises different types of
CEs, handling a diverse number of pilots. Fig. 10 summarizes 10
program executions in a plot, both sequentially and in parallel.
The more CEs the program monitors, the larger the gap between
both methods from what we can observe. However, the duration
does not increase linearly.

Fig. 11 provides an average of the 10 program runs and details
about each CE involved. The length of the sequential execution,
totalseq, corresponds to the sum of every CEn, defined as the
time spent by a CE to get the pilot statuses. On the other hand,
the parallel version duration, totalpar , is close to CE1, which is
he longest one. The standard deviation remains low and results
emonstrate the efficiency of the threads and confirm this choice
n this context.

We also measured changes brought to the communication
nterfaces. We evaluated the JobSupervisor integration into
he ARC interface. First, the evaluation program performs single
equests as it was originally the case, and then bulk requests,
everaging the JobSupervisor, to get the pilot statuses. The
rogram execution was launched three times to get an average
f the results as well as a standard deviation. Three CEs from
istinct Sites, each of them handling 47 pilots, were available
uring the experiment. The results appear in Fig. 12. We can
bserve a significant improvement in these CEs. Indeed, in all
f these cases, it takes less than a second to monitor the pilots
sing the JobSupervisor while it can reach 17 s for the same
reatment employing a request per pilot. The higher the number
f pilots, the larger the gap between the processes. By computing
linear regression on a CE, we can obtain a theoretic time to
rocess 500 pilots. For instance, based on the available data, CE1
ould spend 82 s to monitor such a number of pilots using a

equest per pilot while a bulk operation would take 3.7 s.



A.F. Boyer, C. Haen, F. Stagni et al. Future Generation Computer Systems 133 (2022) 23–38
Fig. 12. Mean duration, in seconds, of the single and bulk requests in ARC
resources along with error bars representing the standard deviation.

Fig. 13. Mean duration, in seconds, of the proxy renewal in CREAM resources
along with error bars representing the standard deviation.

Changes related to CREAM depend on the number of pilots and
the time spent to renew a proxy. However, Fig. 13 estimates the
time that a Site Director would spend to renew the proxies of
a certain number of pilots through CREAM resources, and offers
a brief idea of the time that could be saved in some cycles. The
program renews the proxies of 1 to 10 pilots on two CEs from
different Sites five times. The duration scale between the CEs is
varying because of their location and their capabilities. We could
set up better and more accurate means to renew the proxies of
the pilots, but the support of CREAM has ended and resources
of this kind should progressively disappear. Furthermore, they
would not be so worthwhile in terms of running time.

Getting the benefits that the deterministic path setup to re-
trieve HTCondor pilot outputs could bring is a complex operation
that would be meaningless. Indeed, the performance of the find
command depends on too many factors such as the disk utiliza-
tion and the server capabilities, which can vary a lot through time.
Moreover, administrators disabled the parameter to get the pilot
outputs in production. Similarly, evaluating the gain of the option
to finetune the submission pace individually would depend on
too many external factors such as the underlying occupancy of
the LRMS queues.

The next subsections of our work assessment aim at providing
insights: (i) about the evolution of the throughput of the jobs
and the pilot submission frequency over time; (ii) about the
involvement of the changes. Such points are necessary to answer
our initial research question: Does the improvement of the Pilot-
Job provisioning tool speed up the Pilot-Job submission frequency
31
Table 1
Site Directors from the LHCbDIRAC production environment removed from the
study.
Site Dir. Reason

SD2 Added during Phase3
SD5 Changes of CEs (ARC to HTCondor) since Phase3
SD8 Changes of CEs (CREAM to HTCondor) since Phase2
SD9 Changes of CEs (CREAM to HTCondor) since Phase2
SD11 Removed during Phase3
SD13 Removed during Phase2
SD15 Changes of CEs (CREAM to ARC) since Phase2
SD16 Removed during Phase3
SD18 Removed during Phase2
SD23 Changes of CEs (CREAM to HTCondor) since Phase2
SD25 Manage SSH CEs
SD26 Manage SSH CEs
SD27 Manage SSH CEs
SD28 Manage SSH CEs
SD29 Manage SSH CEs
SD30 Added and removed during Phase2
SD31 Added during Phase3

and, by extension, the throughput of the jobs on grid resources?
This will be plainly answered and discussed in the next Section 6,
after the presentation of our results.

5.2. Evaluation of the LHCbDIRAC production environment: experi-
mental conditions

We analyzed the Site Directors of the LHCbDIRAC production
environment for 12 months to assess the contributions men-
tioned in this paper in a real use case. Raw data, results and
figures are publicly available [34]. We introduced three different
phases:

• Phase1: does not include any of the change (from week 1 to
week 17).

• Phase2: include changes related to the monitoring task seen
in Sections 4.1 and 4.2 (from week 18 to week 41).

• Phase3: include changes related to the submission pace
control seen in Section 4.3 (from week 42 to week 56).

Getting the overall benefit of the changes is a complex oper-
ation. Indeed, Site administrators can add, replace, remove com-
puting resources, LRMS queues and CEs over time. They can also
modify the scheduling policies; grant a varying number of slots to
VOs. Besides, DIRAC administrators can tweak parameters related
to the Site Directors such as the Sites and CEs they manage.

Over the analysis period, Sites, as well as all the Site Directors,
were modified. We removed data related to the Site Directors
instantiated, largely modified, or deleted during the three phases,
as it would skew the study (Table 1). This mainly concerns Site
Directors managing deprecated CREAM CEs. We also removed Site
Directors managing pilots via SSH, as we did not observe such a
use case through this paper, and they deal with a minor part of
computing resources.

Thus, the study includes 13 out of 31 Site Directors managing
pilots within a total of 65 out of 77 Sites: five of them manage
ARC CEs, five others interact with HTCondor CEs, and the last ones
supervise CREAM CEs. We configured the pilot submission pace
according to the type of CEs that Site Directors deal with: ARC
Site Directors submit every cycle while CREAM and HTCondor Site
Directors submit every 5–6 cycles. Selected Site Directors were
present during the three phases and received small adjustments
over time such as LRMS queues added or removed. Table 2 clas-
sifies the number of LRMS queues managed by the Site Directors
and the changes that occurred during the different phases.



A.F. Boyer, C. Haen, F. Stagni et al. Future Generation Computer Systems 133 (2022) 23–38

s
r
s
o

l
a
m
(
(
i
t
s
(
5
t

s
p
p
s

a
6
a

Table 2
Selected Site Directors from the LHCbDIRAC production environment and their evolution over the
different phases.
Site Directors Phase1 Phase2 Phase3

Added queues Removed queues Added queues Removed queues

SD1 17 6 0 0 0
SD3 5 9 0 8 0
SD4 2 1 0 0 1
SD6 3 0 0 0 0
SD7 2 1 1 0 0
SD10 1 0 0 0 0
SD12 9 0 0 0 0
SD17 29 4 0 0 0
SD14 2 0 0 0 0
SD19 4 0 0 0 0
SD20 5 0 0 0 0
SD21 4 0 0 0 0
SD22 8 10 0 3 1
a
p
T
t
r
i
w
p
a
e

t
d
s
4
p

L
a
a
t
D
i
C
p
+

o

Fig. 14. CPU seconds processed per second by LHCb jobs on selected Sites over
12 months, averaged per week.

5.3. Evaluation of the LHCbDIRAC production environment: evolu-
tion of the throughput of the jobs and the Pilot-Job submission
frequency

First, we assessed the number of CPU seconds processed per
econd (Fig. 14). The metric corresponds to the number of jobs
unning simultaneously within the Sites observed. It also repre-
ents the number of CPUs that the LHCb VO can exploit in parallel
n grid resources to process the workload.
In Fig. 14, we averaged values per week. Dashed and dotted

ines designate the limits between the phases. We also grouped
nd averaged the values by phase. LHCbDIRAC processed 40.86%
ore CPU seconds per second in Phase3 (80306) than in Phase1

57010). The largest increase occurs between Phase2 and Phase3
21.64%) but the gap between Phase1 and Phase2 remains mean-
ngful (15.81%). Yet, we cannot notice a clear distinction between
he different phases. While the standard deviation is relatively
mall in Phase1 (5917) and Phase3 (3675), it is larger in Phase2
9121). Values from Phase2 almost linearly increase from about
5,000 CPU seconds/second in the first weeks to about 70,000 in
he last ones.

Moreover, we studied the evolution of the number of pilots
ubmitted – by the selected Site Directors – per hour, averaged
er week. Fig. 15 illustrates the number of successfully submitted
ilots per hour along with the pilots that Site Directors failed to
ubmit.
Dashed and dotted lines delimit the phases. We grouped and

veraged the values by phase. Site Directors intended to submit
0.23% more pilots per hour in Phase3 than in Phase1, with
n increase of 33.10% between Phase2 and Phase3, and 20.38%
32
Fig. 15. Number of pilots submitted per hour, averaged per week.

between Phase1 and Phase2. Nevertheless, the evolution of the
number of successfully submitted pilots per hour is much lower:
values remained constant between Phase1 and Phase2 (+1.29%)
nd rose between Phase2 and Phase3 (16.90%). We can also see
eaks in Phase2 and Phase3 that were not reached in Phase1.
he evolution of failed submission per hour is much more no-
iceable in the figure (+671.41% between Phase1 and Phase3), but
emains highly variable within the phases: the standard deviation
s about 725 in Phase1, 1325 in Phase2 and 2693 in Phase3. As
e can observe, there is no clear association between errors and
hases, and most errors seem concentrated at the end of Phase2
nd the beginning of Phase3. We provide further details about
rrors in Section 5.4.
Additionally, to get a more accurate idea of the involvement of

he changes, we focus on the status of the pilots for small periods
uring the phases. Using the command-line interface, we got the
tatus of every pilot on all the observed Sites between 144 and
32 times per phase. Fig. 16 presents the distribution of waiting
ilots per Site Director over time, classified per phase.
We summed the median value of each Site Director per phase.

RMS queues contain 15% more waiting pilots between Phase1
nd Phase2, and 53% more between Phase2 and Phase3. We can
lso observe less variability in Phase3 than in Phase1, indicating
hat values are relatively stable in general. Most of the ARC Site
irectors in (0) manage many more waiting pilots in Phase3 than
n Phase1 (between +144% to +805%) except SD4 (−76%). HT-
ondor Site Directors in (2) propose similar results: more waiting
ilots in Phase3 than in Phase1 with less variability (between
14.60% and 62.88%). SD22, which has handled a growing number
f queues in Phase2 and Phase3 according to Table 2, monitors



A.F. Boyer, C. Haen, F. Stagni et al. Future Generation Computer Systems 133 (2022) 23–38

g
C

m
(
s

m

a

l
t
a
m
i

5
a

r
a
r

c
c
S
c
P
u
(
P

Fig. 16. Distribution of waiting pilots per phase, classified by Site Director. (0)
athers Site Directors managing ARC CEs; (1) gathers Site Directors dealing with
REAM CEs; (2) gathers Site Directors interacting with HTCondor CEs.

any more scheduled pilots since the beginning of the Phase3
+584% compared to Phase1). At the same time, the number of
cheduled pilots coming from SD20 declined in Phase3. On the
contrary, in (1), CREAM Site Directors interact with a more stable
number of waiting pilots, but we can notice a global decrease in
Phase3 compared to Phase2. Results from SD10 remained low and
almost identical through the different phases. To complete these
data, we also analyzed the distribution of running pilots per Site
Director over time, classified per phase in Fig. 17.

We also summed the median value of each Site Director per
phase. LRMS queues contain 21% more running pilots between
Phase1 and Phase2, and 68% more between Phase2 and Phase3.
In (0), there were many more running pilots in resources man-
aged by SD1, SD3 and SD4 in Phase3 than in Phase1 and Phase2
(between +43% and +172%). Yet we noticed in Fig. 16 that SD4
onitored fewer waiting pilots in Phase3. Similarly, SD7 moni-

tored less running pilots in Phase3 than in Phase1, while it had
more waiting pilots in Phase3. Most of the results in (2) rose
between 4% and 8% between Phase1 and Phase3, which remains
significant according to the large number of pilots these Site
Directors manage. As in Fig. 16, SD22 monitored a larger number
of running pilots in Phase3 than in Phase1: more than 25,000
running pilots at the same time, which represents the highest
number of pilots monitored at the same time by a Site Director.
SD have also less running pilots. To finish, in (1), SD results did
20 10

33
Fig. 17. Distribution of running pilots per phase, classified by Site Director. (0)
gathers Site Directors managing ARC CEs; (1) gathers Site Directors dealing with
CREAM CEs; (2) gathers Site Directors interacting with HTCondor CEs.

not change through time, while results from SD12 grew (+150%)
nd the ones from SD17 went down (−6.53%).
While general results provide meaningful data about the evo-

ution of the LHCbDIRAC production environment through time,
hey do not furnish any information about monitoring duration
nd submission pace. After some details dealing with failed sub-
issions, involvements of the paper contributions are analyzed

n depth in Section 5.5

.4. Evaluation of the LHCbDIRAC production environment: details
bout failed submissions

The changes made could have potentially generated new er-
ors: in this part, we provide additional information about errors
t the Site Director level to strengthen the answer to our initial
esearch question in Section 6.1.

Table 3 provides details about the number of errors that oc-
urred at submission within each Site Director. Errors mainly
oncern 8 out of the 13 Site Directors of the study. We grouped
ite Directors that got a small number of errors in the Others
ategory. Most of the Site Directors encountered more issues in
hase2 than in Phase1, but the number fell in Phase3. Among
s, SD1 got even fewer errors in Phase3 (399) than in Phase1
662). Only three Site Directors got more errors in Phase3 than in
hase2: SD , SD , and SD that interact with a common Grid
19 20 21



A.F. Boyer, C. Haen, F. Stagni et al. Future Generation Computer Systems 133 (2022) 23–38

o
w

5
m

c
s
m
P
t
1
a
s

e
i
t
P
t
s
d
d

Table 3
Number of failed submission per Site Director, classified per phase.

Phase1 Phase2 Phase3

SD1 662.920238 5 535.317857 399.515476
SD3 86.851190 5 528.092857 170.407143
SD4 51.630952 1 861.404762 666.035714
SD17 653.317857 1 581.589286 4 219.523810
SD19 957.285714 2 165.017857 16 975.357143
SD20 871.130952 1 742.678571 5 566.863095
SD21 595.896429 5 972.588095 2 636.358333
SD22 504.809524 1 231.464286 612.035714
Others 217.190476 324.409524 71.126190
Total 4601.033333 25 942.563095 31 317.222619

Fig. 18. Evolution of the number of pilots successfully submitted per hour
(mean), function of the monitoring duration of the Site Directors through the
different phases. Each point represents a Site Director; its shape, a type of CE
managed; and its color, a certain phase. Phases of a same Site Director are
associated via a line.

Site. During Phase2, 65% of the errors were bound to three Site
Directors: SD1, SD3 and SD21; while they were only bound to 10%
f the total number of errors in Phase3. Indeed, in Phase3, SD19
as bound to 54% of the errors.

.5. Evaluation of the LHCbDIRAC production environment: involve-
ent of the contributions

Decreasing the monitoring period is the primary way that we
hoose, in this paper, to go towards an efficient Pilot-Job provi-
ioning on grid resources. We investigated the evolution of the
onitoring through the different phases and especially between
hase1 and Phase2. We extracted the monitoring duration from
he logs of the Site Directors – each log file contains around
50 values – and we computed the mean for each Site Director
nd each phase. We coupled monitoring values with successfully
ubmitted pilots from Fig. 15 and, thus, we obtained Fig. 18.
Monitoring duration dropped down from Phase2 (−49% on av-

rage). Indeed, in Phase2, SD22 spent the longest time monitoring
ts pilots: 245 s on average; while 6 Site Directors spent more
han 850 s monitoring their pilots on average during Phase1. In
hase3, monitoring duration slightly went up (+64% compared
o Phase2 on average, but −22% compared to Phase1): SD22
pent 423 s, on average, which remained the longest monitoring
uration. SD4 was the only Site Director to increase its monitoring
uration through time (from 30 s in Phase1 to 85 s in Phase2 and
34
112 s in Phase3). In Phase3, 7 out of 13 Site Directors spend more
than 120 s, the minimum cycle duration by default, against 12
during Phase1.

Significant results on the monitoring duration do not always
involve an increase in the number of pilots successfully submitted
per hour, according to Fig. 18. Indeed, 7 Site Directors submitted
fewer pilots per hour from Phase2 despite spending less time
on the monitoring operations. It involves 2 of the 3 CREAM Site
Directors, one ARC Site Director and 4 of the 5 HTCondor Site
Directors. Changes have a more significant impact on ARC Site
Directors than on CREAM and HTCondor Site Directors. HTCondor
Site Directors provide diverse results: (i) SD14 submitted almost
the same number of pilots over time; (ii) SD17 submitted more
pilots per hour in Phase2, but the value went down from Phase3;
(iii) SD22 submitted many more pilots in Phase2 and especially
in Phase3; (iv) SD19, SD20 and SD21, that work on the same
Site, submitted fewer pilots over time but handled many errors
according to 3.

Increasing the number of pilots submitted per cycle is the
second way – and inherent to the monitoring duration – that we
choose to go towards an efficient Pilot-Job provisioning on grid
resources. After configuring the pilot submission pace for each
Site Director, we investigated the number of pilots submitted per
cycle per Site Director and per phase (Fig. 19). We extracted the
number of pilots submitted per cycle from the logs, which contain
around 1500 values per log file.

In Phase1, Site Director submitted a median value of 0 pilot per
cycle as submission occurred every 10 cycles, which correspond
to outliers on the plot. ARC Site Directors, after Phase3, submitted
every cycle: they were all able to submit between 10 and 20
pilots per cycle (median value) and outliers were, in general,
smaller than in Phase1. Results from CREAM and HTCondor Site
Directors are less meaningful, which was expected as they have
been configured to submit pilots every 5 or 6 cycles. Only SD10,
SD14 and SD22 submitted pilots more often.

6. Discussions

6.1. Does the improvement of the Pilot-Job provisioning tool speed
up the Pilot-Job submission frequency and, by extension, the through-
put of the jobs on grid resources?

The capacity of LHCb to leverage Grid Site resources consider-
ably rose over a year, and is probably the result of a combination
of numerous factors.

According to Fig. 18, changes applied on the monitoring step
have, overall, considerably decreased the monitoring duration of
the Site Directors, and especially the ones managing ARC CEs and
the ones having a large number of queues. Indeed, contributions
seem to have a greater impact on Site Directors sharing these
characteristics according to Figs. 12 and 10. Effects on the mon-
itoring seem to last: Site Directors managing additional queues
and hundreds or even thousands more pilots have spent less or
almost the same time monitoring the pilots (see SD1, SD3 and
SD22 on Fig. 18). Yet, the changes have had almost no visible
impact on the number of pilots submitted per hour. Indeed,
changes have decreased the duration of the cycles to a value close
to 120 s, the minimum duration of a cycle, but did not change the
submission pace. Thus, changes have only affected Site Directors
that spent a long time monitoring pilots, blocking the submission
process, such as SD1.

Tweaking the submission pace after decreasing the moni-
toring duration has been substantial. Site Directors submitting
pilots more often, such as the ARC ones, have better shared the
workload between their cycles (Fig. 19). They have filled LRMS
queues with waiting pilots more rapidly, to reach and maintain



A.F. Boyer, C. Haen, F. Stagni et al. Future Generation Computer Systems 133 (2022) 23–38

b

m
h
w

s
b
a
3
a

c
o
a

D
f
S
e
S

w
o
s
i
d

m

a
h

a
(
o
o
C

i
f
g
o
s
c

6

c
a

a
a
t
t
I
t
t

Fig. 19. Evolution of the number of pilot submitted per cycle (median), classified
y Site Directors and phases.

ax waiting pilots as we can observe in Fig. 16. Thus, Grid Sites
ave had more pilots at their disposal for available resources,
hich probably explains the rise of running pilots (Fig. 17).
Some external factors have complemented the results of the

olutions. Many Site Directors have managed a various num-
er of LRMS queues through time according to Table 2. Over-
ll, there was an increase of LRMS queues: 42 added against
removed. Site administrators have also tweaked max pilots

nd max waiting pilots over time according to the log files, but
we did not keep track of the fluctuations. Therefore, we can-
not know with accuracy whether Site Directors have maintained
max waiting pilots in the different LRMS queues. Such varia-
tions have probably significantly modified the monitoring dura-
tion of the Site Directors along with the number of pilots that
they have supervised (see SD3 and SD22 in Figs. 16–18). Our
hanges have helped Site Directors to support a growing number
f LRMS queues that better handle the generation of new pilots
nd maximize the use of new computing resources.
Errors have diluted the effect of the changes. Indeed, some Site

irectors have failed to submit a large number of pilots. Many
ailures have been likely independent from our contributions:
D19, SD20 and SD21 have failed to submit plenty of pilots, but
rrors occurred for a limited period and concerned the same Grid
ite (Table 3). Overall, we noted a larger number of submission
 s

35
failures after the changes. Further investigations in the logs sug-
gest errors within the CEs and queues but remain unclear. These
errors were already existing in Phase1: changes have probably
eased the submission process, even within these queues, which
highlights them.

The role of the following components remains unclear, and
their effects are difficult to measure. First, the number of jobs per
pilot has changed over time (Fig. 4). In general, the more jobs a
pilot handles, the longer it remains on a WN. In practice, it also
depends on the execution duration of the jobs, which leads to
the second point. Jobs and pilots have had a varying execution
duration. A short job triggers: (i) the generation of a pilot that
can take several minutes before running; (ii) the allocation of a
WN for a limited time - a few seconds for instance -; which is not
efficient. In theory, the repetition of a large number of long jobs
would reduce the risk of having unused resources: Site Directors
would have more time to generate pilots and they would be
replaced less often in the WNs. We did not keep track of such
information over time as it would represent a massive amount of
data.

Factors have had a direct impact on the number of pilots
submitted per hour. Yet, some Site Directors – that have been
positively affected by our contribution and not significantly im-
pacted by external factors that we can measure – have not
produced and submitted plenty of pilots: SD4, SD10 and SD12
for instance. Some Site Directors were probably already sub-
mitting max waiting pilots in the LRMS queues, such as SD10,
hich had the same number of scheduled and running pilots
ver time (Figs. 16 and 17) Other Site Directors were likely
upervising a considerable number of running pilots, which mod-
fied max waiting pilots. Indeed, the value of max waiting pilots
epends from max pilots such as:

ax waiting pilots = min(max waiting pilots,
max pilots − running pilots)

(2)

This is probably the case for SD4 and SD12 that have a low
nd steady number of scheduled pilots in Phase3 (Fig. 16) while
aving a large and steady number of running pilots (Fig. 17).
The combination of all these component have likely increased

nd stabilized the number of waiting pilots in the LRMS queues
Fig. 16) and have even allowed LHCb to exploit a larger number
f allocations on Grid Sites (Figs. 17 and 14). Besides, the number
f running pilots approximately corresponds to the number of
PU seconds processed per second over time (Figs. 17 and 14).
This study has mainly focused on grid resources, especially

n the context of the LHCb experiment, but remains appropriate
or any pool of distributed and shared computing resources ag-
regated into high-performance clusters and clouds. VOs relying
n supercomputers providing external connectivity, or cloud re-
ources orchestrated by LRMS, could reuse parts of the presented
ontent.

.2. Future directions and challenges

This section provides further recommendations on topics not
overed by this study, to help VOs depending on the distributed
rchitecture to better exploit shared computing resources.
CEs may have different numbers of pilots to handle, as well

s heterogeneous performances to execute a similar operation,
s we can observe in Figs. 11–13. To better leverage the multi-
hreads integration, DIRAC administrators can bind Site Directors
o multiple CEs, and especially CEs having similar performances.
ndeed, the time spent in each thread should be equally dis-
ributed to avoid having one thread spending more time than all
he other together, which would result in a duration close to the

equential one. One could propose an automated way to balance



A.F. Boyer, C. Haen, F. Stagni et al. Future Generation Computer Systems 133 (2022) 23–38

t
D
t

d
f
t
D
t
t
l
a
a
o
r
i
c
w
n
v
p
t

v
d
t
l
h
t
r
m
t
V
s
a
C
a

r
p
o
T
i
o
i
d

7

t
r
c
c
L
i
g
d
i
g

o
b
r
P
J

w
o
V
D
t

D

c
t

A

a

R

he number of Site Directors and the number of CEs per Site
irector to minimize the duration of the cycles while maximizing
he submission frequency.

Again for DIRAC administrators, in Section 3.3, we have
emonstrated that jobs were rarely processed by pilots generated
or this purpose, which may call into question the need to check
he presence of jobs, before instantiating the pilots. Indeed, a Site
irector only generates a limited number of pilots according to
he jobs available that could run in a given resource, as well as
he number of free slots. When pilots are finally running, this
imited number may not reflect the number of jobs previously
vailable as other pilots from different Site Directors may have
lready processed the jobs. This case happens when the number
f waiting jobs is inferior to the number of free slots in the
esources, which is rarely the case in production but can occur
n specific Sites. Thus, one could imagine a Site Director strategy
onsisting in continuously sending pilots in the queues, which
ould slow down production rates in the case that pilots do
ot fetch any job. The challenge in this approach lies in the
arious scheduling policies of the Sites: while some Sites can
rioritize VOs submitting the most pilots, others can favor pilots
hat effectively run for a long time.

We have explained in Section 3.3 that getting an accurate
alue of the time left allocated to a pilot is a complex operation
ue to the various batch systems composing the grids: different
ypes, versions and configurations. In combination with the time
eft value, pilots need to get the ‘‘power’’ of the CPU, namely
ow efficient is a CPU to run an application of interest. Indeed,
wo different processors will likely not spend the same time
unning the same application. Solutions such as the DIRAC Bench-
ark [38,39] have been developed to provide an estimation of

he CPU power for Monte-Carlo simulations in the LHC context.
alassi et al. have also started to work on a new benchmarking
olution to deal with various computing resources and to provide
ccurate values [40]. Designing efficient ways of getting accurate
PU power and time left values would help better exploiting the
llocations by fetching the most adapted jobs.
Finally, we encourage VOs that would like to conduct similar

esearch with other systems to record and collect data about
ilots, jobs and also about configuration changes in the Sites in
rder to get a clear overview of the impact of the external factors.
he task remains challenging because (i) information from BDII
s not always reliable and (ii) the grid architecture involves many
perations that are hard to follow: there are external and internal
ssues, maintenances, upgrades involving various actors every
ay.

. Conclusion

This work primarily supports research efforts conducted by
he LHC experiments – and especially LHCb –, which mainly
un Monte Carlo simulation workloads to replicate experimental
onditions and performance of the detectors. In the context of the
onstant improvement of the LHC and the arrival of the High-
uminosity LHC, such an approach becomes critical in order to
ncrease the quality of the analysis of the acquired data. More
enerally, this paper should assist any community working with
istributed and shared computing resources – even aggregated
nto High-Performance Computers or clouds – in processing a
rowing amount of data.
Through this paper, we have demonstrated the importance

f continuously improving Pilot-Job provisioning mechanisms to
etter exploit shared and distributed heterogeneous computing
esources. After exposing the advantages and limitations of the
ilot-Job paradigm (Section 2), we explored one of the main Pilot-
ob provisioning tools: the DIRAC Site Director in the context of
36
the LHCb experiment (Section 3). For 12 months, we analyzed
13 Site Directors managing 65 grid sites on WLCG, dealing with
57,000 LHCb jobs simultaneously. By introducing multi-threading
within the Site Directors and including CE-specific performance
improvements, we speeded up the monitoring mechanism: the
duration of the activity dropped down (−22%). Additionally, we
better shared the workloads between the cycles of the Site Di-
rectors to generate a fewer number of pilots more frequently
(Section 4).

We conducted performance studies, repeated multiple times
over one year, to prove the efficiency of every change made [34].
We measured an overall gain of 18.41% of the number of pi-
lots successfully submitted per hour, which represents 728 addi-
tional pilots per hour. We also recorded an increase of 40.86% of
the number of jobs processed simultaneously per second, which
means that WLCG is simultaneously in charge of 80,300 LHCb
jobs (Section 5). Thus, this study enables the generation of more
pilots to meet the increasing demand for computing power. In
this context, computing power is essential to refine the analysis
and increase the statistics and the confidence that we can place
in the discoveries made thanks to the LHC, which will affect our
understanding of the universe.

Future studies should focus on further increasing the Pilot-
Job submission frequency (Section 6). Automatically fine-tuning
the parameters of the Site Directors – the number and the na-
ture of the queues that they supervise – depending on the load
on the Sites would be a solution. A complementary solution
would consists in adapting the submission rate according to the
scheduling policies of the Sites to optimize the priority of the
Pilot-Jobs within the queues. Working on a CPU benchmarking
solution providing accurate CPU ‘‘power’’ estimations for various
processors would constitute another approach to maximize the
use of the allocated resources.

CRediT authorship contribution statement

Alexandre F. Boyer: Conceptualization, Methodology, Soft-
are, Formal analysis, Investigation, Data curation, Writing –
riginal draft. Christophe Haen: Conceptualization, Supervision,
alidation. Federico Stagni: Project administration, Resources.
avid R.C. Hill: Supervision, Writing – review & editing, Valida-
ion.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgment

We would like to thank Vladimir Romanovskiy for his precious
dvice about the Site Director mechanisms.

eferences

[1] CERN, LHC season 2 facts & figures, 2018, URL: https://home.cern/sites/
home.web.cern.ch/files/2018-07/factsandfigures-en_0.pdf, (accessed 29
June 2021).

[2] M. Clemencic, G. Corti, S. Easo, C.R. Jones, S. Miglioranzi, M. Pappagallo,
P.R. and, The LHCb simulation application, Gauss: Design, evolution and
experience, J. Phys. Conf. Ser. 331 (3) (2011) 032023, http://dx.doi.org/10.
1088/1742-6596/331/3/032023.

[3] CERN, Worldwide LHC computing grid, 2021, URL: https://wlcg.web.cern.
ch/, (accessed 11 February 2021).

[4] M. Turilli, M. Santcroos, S. Jha, A comprehensive perspective on pilot-job
systems, ACM Comput. Surv. 51 (2) (2018) 43:1–43:32, http://dx.doi.org/
10.1145/3177851.

https://home.cern/sites/home.web.cern.ch/files/2018-07/factsandfigures-en_0.pdf
https://home.cern/sites/home.web.cern.ch/files/2018-07/factsandfigures-en_0.pdf
https://home.cern/sites/home.web.cern.ch/files/2018-07/factsandfigures-en_0.pdf
http://dx.doi.org/10.1088/1742-6596/331/3/032023
http://dx.doi.org/10.1088/1742-6596/331/3/032023
http://dx.doi.org/10.1088/1742-6596/331/3/032023
https://wlcg.web.cern.ch/
https://wlcg.web.cern.ch/
https://wlcg.web.cern.ch/
http://dx.doi.org/10.1145/3177851
http://dx.doi.org/10.1145/3177851
http://dx.doi.org/10.1145/3177851


A.F. Boyer, C. Haen, F. Stagni et al. Future Generation Computer Systems 133 (2022) 23–38
[5] F. Stagni, A. McNab, C. Luzzi, W. Krzemien, D. Consortium, DIRAC universal
pilots, J. Phys. Conf. Ser. 898 (9) (2017) 092024, http://dx.doi.org/10.1088/
1742-6596/898/9/092024.

[6] R. Grzymkowski, T.H. and, Belle II public and private cloud management
in VMDIRAC system, J. Phys. Conf. Ser. 664 (2) (2015) 022021, http:
//dx.doi.org/10.1088/1742-6596/664/2/022021.

[7] F. Stagni, A. Valassi, V. Romanovskiy, Integrating LHCb workflows on
HPC resources: status and strategies, EPJ Web Conf. 245 (2020) 09002,
http://dx.doi.org/10.1051/epjconf/202024509002.

[8] W. Wu, T. Hara, H. Miyake, I. Ueda, W. Kan, P. Urquijo, BelleII@home:
Integrate volunteer computing resources into DIRAC in a secure way, J.
Phys. Conf. Ser. 898 (2017) 102003, http://dx.doi.org/10.1088/1742-6596/
898/10/102003.

[9] A. McNab, F. Stagni, M.U. Garcia, Running jobs in the vacuum, J. Phys. Conf.
Ser. 513 (3) (2014) 032065, http://dx.doi.org/10.1088/1742-6596/513/3/
032065.

[10] H. Miyake, R. Grzymkowski, R. Ludacka, M. Schram, Belle II production
system, J. Phys. Conf. Ser. 664 (2015) 052028, http://dx.doi.org/10.1088/
1742-6596/664/5/052028.

[11] L. Arrabito, C. Barbier, R.G. Diaz, B. Khélifi, N. Komin, G. Lamanna, C.
Lavalley, T.L. Flour, J. Lenain, A. Lorca, M. Renaud, M. Sterzel, T. Szepieniec,
G. Vasileiadis, C. Vuerli, Application of the DIRAC framework to CTA: first
evaluation, J. Phys. Conf. Ser. 396 (3) (2012) 032007, http://dx.doi.org/10.
1088/1742-6596/396/3/032007.

[12] EGI, Workload manager, 2019, URL: https://wiki.egi.eu/wiki/Workload_
Manager, (accessed 11 February 2021).

[13] FranceGrilles, FG-DIRAC, 2021, URL: http://www.france-grilles.fr/
catalogue-de-services/fg-dirac/, (accessed 29 June 2021).

[14] M. Ellert, M. Grønager, A. Konstantinov, B. Kónya, J. Lindemann, I. Livenson,
J.L. Nielsen, M. Niinimäki, O. Smirnova, A. Wäänänen, Advanced resource
connector middleware for lightweight computational grids, Future Gener.
Comput. Syst. 23 (2) (2007) 219–240, http://dx.doi.org/10.1016/j.future.
2006.05.008.

[15] P. Andreetto, S. Bertocco, F. Capannini, M. Cecchi, A. Dorigo, E. Frizziero,
A. Gianelle, F. Giacomini, M. Mezzadri, S. Monforte, et al., Status and
developments of the CREAM computing element service, J. Phys. Conf.
Ser. 331 (6) (2011) 062024, http://dx.doi.org/10.1088/1742-6596/331/6/
062024.

[16] D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice: the
Condor experience, Concurr. Comput.: Pract. Exper. 17 (2–4) (2005) 323–
356, http://dx.doi.org/10.1002/cpe.938, URL: https://onlinelibrary.wiley.
com/doi/abs/10.1002/cpe.938.

[17] A.B. Yoo, M.A. Jette, M. Grondona, SLURM: Simple linux utility for resource
management, in: D. Feitelson, L. Rudolph, U. Schwiegelshohn (Eds.), Job
Scheduling Strategies for Parallel Processing, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2003, pp. 44–60, http://dx.doi.org/10.1007/10968987_3.

[18] IBM Knowledge Center, IBM platform LSF, 2016, URL: https://www.ibm.
com/products/hpc-workload-management, (accessed 11 February 2021).

[19] F. Stagni, A. Tsaregorodtsev, A. McNab, C. Luzzi, Pilots 2.0: DIRAC pilots
for all the skies, J. Phys. Conf. Ser. 664 (6) (2015) 062061, http://dx.doi.
org/10.1088/1742-6596/664/6/062061.

[20] A. Casajus, R. Graciani, S. Paterson, A. Tsaregorodtsev, t.L.D. Team, DIRAC
pilot framework and the DIRAC Workload Management System, J. Phys.
Conf. Ser. 219 (6) (2010) 062049, http://dx.doi.org/10.1088/1742-6596/
219/6/062049.

[21] A. Bricker, M. Litzkow, M. Livny, Condor Technical Summary, Technical Re-
port, University of Wisconsin-Madison Department of Computer Sciences,
1992.

[22] J. Frey, T. Tannenbaum, M. Livny, I. Foster, S. Tuecke, Condor-G: A com-
putation management agent for multi-institutional grids, Cluster Comput.
5 (3) (2002) 237–246, http://dx.doi.org/10.1023/A:1015617019423.

[23] I. Sfiligoi, glideinWMS—a generic pilot-based workload management sys-
tem, J. Phys. Conf. Ser. 119 (6) (2008) 062044, http://dx.doi.org/10.1088/
1742-6596/119/6/062044.

[24] P. Nilsson, The PanDA system in the ATLAS experiment, in: Proceedings of
XII Advanced Computing and Analysis Techniques in Physics Research —
PoS(ACAT08), Vol. 70, SISSA Medialab, 2009, p. 027, http://dx.doi.org/10.
22323/1.070.0027, URL: https://pos.sissa.it/070/027/.

[25] S. Bagnasco, L. Betev, P. Buncic, F. Carminati, F. Furano, A. Grigoras, C. Grig-
oras, P.M. Lorenzo, A.J. Peters, P. Saiz, The ALICE Workload Management
System: Status before the real data taking, J. Phys. Conf. Ser. 219 (6) (2010)
062004, http://dx.doi.org/10.1088/1742-6596/219/6/062004.

[26] M. Hategan, J. Wozniak, K. Maheshwari, Coasters: Uniform resource provi-
sioning and access for clouds and grids, in: 2011 Fourth IEEE International
Conference on Utility and Cloud Computing, 2011, pp. 114–121, http:

//dx.doi.org/10.1109/UCC.2011.25.

37
[27] A.J. Rubio-Montero, E. Huedo, F. Castejón, R. Mayo-García, GWpilot: En-
abling multi-level scheduling in distributed infrastructures with GridWay
and pilot jobs, Future Gener. Comput. Syst. 45 (2015) 25–52, http://dx.doi.
org/10.1016/j.future.2014.10.003.

[28] D. Oleynik, S. Panitkin, M. Turilli, A. Angius, S. Oral, K. De, A. Klimentov, J.C.
Wells, S. Jha, High-throughput computing on high-performance platforms:
A case study, in: 2017 IEEE 13th International Conference on E-Science
(E-Science), 2017, pp. 295–304, http://dx.doi.org/10.1109/eScience.2017.43.

[29] S. Bagnasco, L. Betev, P. Buncic, F. Carminati, C. Cirstoiu, C. Grigoras, A.
Hayrapetyan, A. Harutyunyan, A.J. Peters, P. Saiz, AliEn: ALICE environment
on the GRID, J. Phys. Conf. Ser. 119 (6) (2008) 062012, http://dx.doi.org/
10.1088/1742-6596/119/6/062012.

[30] A.F. Boyer, D.R. Hill, C. Haen, F. Stagni, Pilot-job provisioning through
cream computing elements on the worldwide LHC computing grid, in: 34th
European Simulation and Modelling Conference (ESM), Vol. 34, Eurosis,
Toulouse, France, 2020, pp. 33–38.

[31] A. Tsaregorodtsev, DIRAC distributed computing services, J. Phys. Conf.
Ser. 513 (3) (2014) 032096, http://dx.doi.org/10.1088/1742-6596/513/3/
032096.

[32] DIRACGrid, Source code of the DIRAC project, 2021, URL: https://github.
com/DIRACGrid/DIRAC, (accessed 11 February 2021).

[33] A. Osman, A. Anjum, N. Batool, R. McClatchey, A fault tolerant, dynamic
and low latency BDII architecture for grids, 2012, arXiv:1202.5512 [cs].
URL: http://arxiv.org/abs/1202.5512, arXiv:1202.5512.

[34] A.F. Boyer, DIRAC Site Director: Analysis and Performance Evaluation,
Mendeley Data, V1, 2021, http://dx.doi.org/10.17632/6r388827fz.1.

[35] Python Software Foundation, GlobalInterpreterLock, 2020, URL: https://
wiki.python.org/moin/GlobalInterpreterLock, (accessed 11 February 2021).

[36] B. David, Inside the python GIL, 2009, URL: http://www.dabeaz.com/
python/GIL.pdf, (accessed 11 February 2021).

[37] Nordugrid, ARC job supervisor, 2014, URL: http://www.nordugrid.org/
documents/code/sdk/classArc_1_1JobSupervisor.html, (accessed 11 Febru-
ary 2021).

[38] DiracGrid, Source code of the Dirac Benchmark 12, 2017, URL: https:
//github.com/DIRACGrid/DB12, accessed 5 July 2021.

[39] P. Charpentier, Benchmarking worker nodes using LHCb productions and
comparing with HEPSpec06, J. Phys. Conf. Ser. 898 (2017) 082011, http:
//dx.doi.org/10.1088/1742-6596/898/8/082011.

[40] A. Valassi, M. Alef, J.-M. Barbet, O. Datskova, R. De Maria, M.
Fontes Medeiros, D. Giordano, C. Grigoras, C. Hollowell, M. Javurkova, V.
Khristenko, D. Lange, M. Michelotto, L. Rinaldi, A. Sciabà, C. Van Der Laan,
Using HEP experiment workflows for the benchmarking and accounting
of WLCG computing resources, EPJ Web Conf. 245 (2020) 07035, http:
//dx.doi.org/10.1051/epjconf/202024507035.

Alexandre Boyer:
Alexandre Boyer is currently a Ph.D. student at the

Clermont Auvergne University, France. As part of his
Ph.D, he contributes to the offline activities of the LHCb
experiment, hosted at CERN, Switzerland. His research
focuses on approaches to efficiently integrate High-
Throughput Computing workflows on heterogeneous –
grid and supercomputer – computing resources. Previ-
ously, he worked at NIST, USA as a Guest Researcher.
He was mainly involved in the design, development
and maintenance of machine learning evaluation in-

frastructures. His research interests lie in the distributed computing area
including cloud, grid and high-performance computing. They imply performance
evaluation, development and data analysis.

Christophe Haen (Ph. D.):
Christophe Haen works at CERN for the LHC Beauty

experiment. After graduating as a computer scientist
from ISIMA (2010), he joined the LHCb Online team
as a Ph.D. student with the Blaise Pascal University
(Clermont Ferrand, France). His work focused on rein-
forcement learning applied to system administration.
Upon completion of his Ph.D. in 2013, Christophe
joined the LHCb Offline team, mainly as the responsible
for the large scale data management and developer of
LHCbDIRAC and DIRAC software. He is also in charge

of the DevOps aspects of the LHCb distributed computing.

http://dx.doi.org/10.1088/1742-6596/898/9/092024
http://dx.doi.org/10.1088/1742-6596/898/9/092024
http://dx.doi.org/10.1088/1742-6596/898/9/092024
http://dx.doi.org/10.1088/1742-6596/664/2/022021
http://dx.doi.org/10.1088/1742-6596/664/2/022021
http://dx.doi.org/10.1088/1742-6596/664/2/022021
http://dx.doi.org/10.1051/epjconf/202024509002
http://dx.doi.org/10.1088/1742-6596/898/10/102003
http://dx.doi.org/10.1088/1742-6596/898/10/102003
http://dx.doi.org/10.1088/1742-6596/898/10/102003
http://dx.doi.org/10.1088/1742-6596/513/3/032065
http://dx.doi.org/10.1088/1742-6596/513/3/032065
http://dx.doi.org/10.1088/1742-6596/513/3/032065
http://dx.doi.org/10.1088/1742-6596/664/5/052028
http://dx.doi.org/10.1088/1742-6596/664/5/052028
http://dx.doi.org/10.1088/1742-6596/664/5/052028
http://dx.doi.org/10.1088/1742-6596/396/3/032007
http://dx.doi.org/10.1088/1742-6596/396/3/032007
http://dx.doi.org/10.1088/1742-6596/396/3/032007
https://wiki.egi.eu/wiki/Workload_Manager
https://wiki.egi.eu/wiki/Workload_Manager
https://wiki.egi.eu/wiki/Workload_Manager
http://www.france-grilles.fr/catalogue-de-services/fg-dirac/
http://www.france-grilles.fr/catalogue-de-services/fg-dirac/
http://www.france-grilles.fr/catalogue-de-services/fg-dirac/
http://dx.doi.org/10.1016/j.future.2006.05.008
http://dx.doi.org/10.1016/j.future.2006.05.008
http://dx.doi.org/10.1016/j.future.2006.05.008
http://dx.doi.org/10.1088/1742-6596/331/6/062024
http://dx.doi.org/10.1088/1742-6596/331/6/062024
http://dx.doi.org/10.1088/1742-6596/331/6/062024
http://dx.doi.org/10.1002/cpe.938
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.938
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.938
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.938
http://dx.doi.org/10.1007/10968987_3
https://www.ibm.com/products/hpc-workload-management
https://www.ibm.com/products/hpc-workload-management
https://www.ibm.com/products/hpc-workload-management
http://dx.doi.org/10.1088/1742-6596/664/6/062061
http://dx.doi.org/10.1088/1742-6596/664/6/062061
http://dx.doi.org/10.1088/1742-6596/664/6/062061
http://dx.doi.org/10.1088/1742-6596/219/6/062049
http://dx.doi.org/10.1088/1742-6596/219/6/062049
http://dx.doi.org/10.1088/1742-6596/219/6/062049
http://refhub.elsevier.com/S0167-739X(22)00077-2/sb21
http://refhub.elsevier.com/S0167-739X(22)00077-2/sb21
http://refhub.elsevier.com/S0167-739X(22)00077-2/sb21
http://refhub.elsevier.com/S0167-739X(22)00077-2/sb21
http://refhub.elsevier.com/S0167-739X(22)00077-2/sb21
http://dx.doi.org/10.1023/A:1015617019423
http://dx.doi.org/10.1088/1742-6596/119/6/062044
http://dx.doi.org/10.1088/1742-6596/119/6/062044
http://dx.doi.org/10.1088/1742-6596/119/6/062044
http://dx.doi.org/10.22323/1.070.0027
http://dx.doi.org/10.22323/1.070.0027
http://dx.doi.org/10.22323/1.070.0027
https://pos.sissa.it/070/027/
http://dx.doi.org/10.1088/1742-6596/219/6/062004
http://dx.doi.org/10.1109/UCC.2011.25
http://dx.doi.org/10.1109/UCC.2011.25
http://dx.doi.org/10.1109/UCC.2011.25
http://dx.doi.org/10.1016/j.future.2014.10.003
http://dx.doi.org/10.1016/j.future.2014.10.003
http://dx.doi.org/10.1016/j.future.2014.10.003
http://dx.doi.org/10.1109/eScience.2017.43
http://dx.doi.org/10.1088/1742-6596/119/6/062012
http://dx.doi.org/10.1088/1742-6596/119/6/062012
http://dx.doi.org/10.1088/1742-6596/119/6/062012
http://refhub.elsevier.com/S0167-739X(22)00077-2/sb30
http://refhub.elsevier.com/S0167-739X(22)00077-2/sb30
http://refhub.elsevier.com/S0167-739X(22)00077-2/sb30
http://refhub.elsevier.com/S0167-739X(22)00077-2/sb30
http://refhub.elsevier.com/S0167-739X(22)00077-2/sb30
http://refhub.elsevier.com/S0167-739X(22)00077-2/sb30
http://refhub.elsevier.com/S0167-739X(22)00077-2/sb30
http://dx.doi.org/10.1088/1742-6596/513/3/032096
http://dx.doi.org/10.1088/1742-6596/513/3/032096
http://dx.doi.org/10.1088/1742-6596/513/3/032096
https://github.com/DIRACGrid/DIRAC
https://github.com/DIRACGrid/DIRAC
https://github.com/DIRACGrid/DIRAC
http://arxiv.org/abs/1202.5512
http://arxiv.org/abs/1202.5512
http://arxiv.org/abs/1202.5512
http://dx.doi.org/10.17632/6r388827fz.1
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
http://www.dabeaz.com/python/GIL.pdf
http://www.dabeaz.com/python/GIL.pdf
http://www.dabeaz.com/python/GIL.pdf
http://www.nordugrid.org/documents/code/sdk/classArc_1_1JobSupervisor.html
http://www.nordugrid.org/documents/code/sdk/classArc_1_1JobSupervisor.html
http://www.nordugrid.org/documents/code/sdk/classArc_1_1JobSupervisor.html
https://github.com/DIRACGrid/DB12
https://github.com/DIRACGrid/DB12
https://github.com/DIRACGrid/DB12
http://dx.doi.org/10.1088/1742-6596/898/8/082011
http://dx.doi.org/10.1088/1742-6596/898/8/082011
http://dx.doi.org/10.1088/1742-6596/898/8/082011
http://dx.doi.org/10.1051/epjconf/202024507035
http://dx.doi.org/10.1051/epjconf/202024507035
http://dx.doi.org/10.1051/epjconf/202024507035


A.F. Boyer, C. Haen, F. Stagni et al. Future Generation Computer Systems 133 (2022) 23–38
Federico Stagni (Ph.D.):
Born in 1980 in Ferrara, Italy, Federico attended the

University of Ferrara, where he graduated cum laude in
2005. In 2009 he completed a Ph.D. in computing at the
same university. In 2009 he started working at CERN,
first as a fellow and then as a CERN staff, covering a few
roles in the computing for the LHCb experiment. Since
2012 he is LHCb and DIRAC developers coordinator.
38
David R.C. HILL (Ph.D.):
Professor David Hill is Deputy Director ISIMA Com-

puter Science & Modeling Institute (French ‘‘Grande
Ecole d’Ingénieur’’). He was Vice President of Blaise
Pascal University (2008–2012) and also past director
of a French Regional Computing Center (CRRI) (2008–
2010). Professor Hill is doing his research at the French
CNRS. With Vincent Breton, he is the scientific head
of AuverGrid the Regional Computing Mesocenter. Pro-
fessor Hill has authored or co-authored more than
250 papers (including more than 60 papers in indexed

referred journals) and he has also published several text books. For his research
interests and teaching see his Web page: www.isima.fr/~hill.

http://www.isima.fr/~hill

	DIRAC Site Director: Improving Pilot-Job provisioning on grid resources
	Introduction
	Pilots provisioning on grid resources
	Pilot-Job paradigm: the answer to the Push Model inefficiency
	Pilot-Job provisioning tools

	Analysis of the DIRAC Site Director
	Presentation of DIRAC
	Overview of the Site Director
	Limitations due to the grid architecture
	Limitations due to the Site Director itself

	Performance improvements of the DIRAC Site Director
	Parallel communication with the Computing Elements
	Optimizations in the communication interfaces
	Pilot-Job submission pace

	Performance assessment of the DIRAC Site Director
	Assessment of the individual changes
	Evaluation of the LHCbDIRAC production environment: experimental conditions
	Evaluation of the LHCbDIRAC production environment: evolution of the throughput of the jobs and the Pilot-Job submission frequency
	Evaluation of the LHCbDIRAC production environment: details about failed submissions
	Evaluation of the LHCbDIRAC production environment: involvement of the contributions

	Discussions
	Does the improvement of the Pilot-Job provisioning tool speed up the Pilot-Job submission frequency and, by extension, the throughput of the jobs on grid resources?
	Future directions and challenges

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References


