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f Collège de France, 11 place M. Berthelot, 75005 Paris, France

Abstract

Observables related to the real part of the gravitational eikonal, such
as the deflection angle and time delay, have been found so far to have a
smooth post-Minkowskian (PM) expansion whose validity extends from the
non-relativistic to the most extreme ultra-relativistic (UR) regime, which
smoothly connects with massless particle collisions. To describe gravitational
radiation, the eikonal phase has to be promoted to a unitary operator for
which we motivate a proposal and start discussing properties in the soft-
radiation limit. A convergent PM expansion is found to only hold below an
UR bound (discussed in the GR literature in the seventies) above which a dif-
ferent expansion is instead needed implying, in general, some non-analyticity
in Newton’s constant. In this extreme UR regime soft radiative observables
receive contributions only from gravitons and are therefore universal. This
generalises the pattern discussed in [1] beyond the elastic case.

http://arxiv.org/abs/2204.02378v1
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1 Introduction

In the last few years, scattering amplitude techniques have been successfully used
to compute classical observables in gravity theories for gravitational scattering and
radiation within a post-Minkowskian (PM) expansion corresponding to the usual
loop expansion of quantum field theory. At 1PM and 2PM the results have been
known for some time [2, 3, 4, 5, 6] and can also be derived using the probe limit [7].

Three years ago, the complete conservative part of the deflection angle, for
the scattering of two scalar particles with mass m1 and m2, was computed in a
spectacular calculation at 3PM order [8, 9, 10]. The result presented the puzzle that
the deflection angle was divergent at high energy in contrast with the corresponding
finite result found earlier for the high-energy scattering of massless particles [11].

The puzzle was eventually solved by performing a complete calculation in N = 8
massive supergravity [1], where the various contributions were computed in the full
soft integration region rather than being restricted to the potential region [12]. It
turned out that, from the soft region, one gets extra 3PM contributions to the de-
flection angle physically corresponding to radiation-reaction effects. These precisely
cancel the high-energy divergence coming from the potential region. As a result one
gets a deflection angle that is not only convergent but also universal at high energy.
The universality follows from the intuitive fact that, at high energy, the dominant
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contribution comes from the massless particle with highest spin, which in theories
of gravity is always the graviton.

Immediately after, this result was extended to Einstein’s gravity by two inde-
pendent methods. The first one, by Damour [13], was based on the computation
of the O(G2) loss of “angular momentum”.1 When inserted in a linear response
formula [17], written in terms of the radiated angular momentum and the 1PM de-
flection angle, it produced the 3PM radiation-reaction part of the scattering angle.
The same result was obtained by us [18] by computing instead the infrared-divergent
part of the two-loop, three-particle cut, which is entirely given by the leading soft
limit of the five-point amplitude, and by then using analyticity and crossing sym-
metry to extract the two-loop radiation-reaction contribution to the real part of the
eikonal and thus to the deflection angle. This result is by now confirmed by extract-
ing the classical deflection angle from explicit two-loop calculations [19, 20, 21, 22].

The next challenge, still within the elastic case, is to go to 4PM where there
exist already impressive partial results. The conservative dynamics was computed
in Ref. [23, 24] and then the addition of the tail effects [25, 26] eliminated the
infrared divergence occurring in the deflection angle. The results are, however, still
incomplete [27, 28] because the effect of radiation has not yet been taken completely
into account.

In this paper and a companion one [29] we study classical observables connected
to the emission of radiation from the scattering of two scalar particles at arbitrary
relative velocity. This problem was addressed in the seventies in pioneering papers
by D’Eath [30] and by Kovacs and Thorne [31, 32]. The results in [31, 32], recently
reproduced in [33, 34], pointed towards a new ultra-relativistic regime where the
more traditional approximations break down.

In this first paper we look at the simplest situation, namely the limit in which
the radiated graviton’s frequency is small.2 In particular, we will study the high-
energy behaviour of various radiative quantities and we will show that they also
exhibit, in a very non-trivial way, a universal behaviour at high energy.

In the study of the elastic scattering an important quantity is the eikonal (i.e.
semiclassical) approximation to the scattering amplitude, which is obtained after a
resummation of an infinite number of Feynman (ladder) diagrams. In particular we
stress that, while the momentum q exchanged in each rung of the ladder diagram
is a small quantity of O(~), after the resummation the exchanged momentum Q is
a large classical quantity. The ratio between the two gives the average number of
gravitons exchanged that becomes very large in the classical limit (~ → 0). From

1The definition of the angular momentum flux at null infinity is well known to suffer from a
supertranslation ambiguity (see e.g. [14]). Even its order in G can vary, as recently discussed in
[15]. Damour’s definition can be recovered by choosing a suitable iǫ prescription [16]. The results
described in this paper are insensitive to this ambiguity.

2Since frequency is a dimensionful quantity, this limit has to be defined in terms of a dimen-
sionless small parameter and of an expansion in it: the relevant quantity is ωb

v
, with b the impact

parameter of the collision and v the relative velocity of the two incoming particles.
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the eikonal phase one can then extract classical elastic observables such as the
deflection angle and the Shapiro time delay.

When radiation is introduced, the eikonal becomes an operator as discussed in
Refs. [11, 35, 36] in the massless case, and more generally in Ref. [37]. In our case
of soft radiation the eikonal becomes a product of two terms: one is an operator
containing the oscillators describing the graviton degrees of freedom and the other
is the c-number eikonal describing instead the elastic degrees of freedom. This is
the eikonal operator that we will use for computing classical observables such as the
waveforms and the zero-frequency limit (ZFL) of the energy emission spectrum.

Since the coefficients of the harmonic oscillators of the graviton that appear in
the eikonal operator depend on the momenta of the massive particles and therefore
also on the momentum exchanged in the elastic process, an important point to
clarify is what to do with it when we go to impact parameter space. The strategy
that we follow is to first interpret the exchanged momentum as the quantity Qµ,
discussed above, and then, when we go to impact parameter space, to treat it as a
derivative −i~ ∂

∂bµ
acting only on elastic part of the eikonal. This essentially amounts

to the substitution:

Qµ → 2p sin
Θs

2
b̂µ , (1.1)

where Θs is the classical deflection angle, b̂ is the unit vector in the direction of the
impact parameter and p is the absolute value of the momentum in the centre-of-
mass frame of the elastic process. But, since the deflection angle Θs depends on
Newton’s constant G, we arrive at an eikonal operator that depends in a complicated
way on G, and this feature manifests itself very clearly when we compute classical
observables such as the waveform for each polarization.

In the usual PM approximation one assumes that Θs is a small quantity with
respect to any other kinematic variable and then one Taylor expands the results for
Θs ≪ 1. This in practice means that, in the eikonal operator, we always neglect
terms that contain Qµ in Eq. (1.1). The problem however is that, when we perform
this approximation on the waveforms and keep Θs fixed while sending the masses
of the scalar particles to zero (or equivalently while taking the high energy limit
σ = − p1p2

m1m2
→ ∞), we obtain waveforms that diverge when the graviton is emitted

along the directions of the two energetic particles.
It turns out that, when we enter the region specified by

max

{
m1

m2

σΘ2
s,
m2

m1

σΘ2
s

}
& 1 (1.2)

the usual PM expansion breaks down because we cannot neglect Qµ any more in
the eikonal operator and in this way we get well-defined waveforms everywhere.

Unlike the two-loop elastic eikonal, which acquires an imaginary part from the
contribution of the three-particle cut making it non-unitary, our eikonal operator
is explicitly unitary. The reason is that its c-number part involves only the real
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part of the elastic eikonal, while the contribution of inelastic cuts comes from the
normal-reordering of a unitary operator part.

At this point we can again compute the imaginary part of the two-loop eikonal
finding agreement with the results of Ref. [18] provided that we are below the
bound in Eq. (1.2). However, if we take the high energy limit on this result we
get a logarithmically divergent, non-universal behaviour involving the masses of
the scalar particles. In order to restore universality we have to proceed as we
have discussed above in the case of the waveforms, i.e. we can no longer regard
Qµ as small compared to the masses. In this way we get a finite and universal
behaviour for the contribution of the three-particle cut or equivalently of the ZFL
of the radiated-energy spectrum. Our results are confirmed by the fact that we get
the same high-energy limit for GR and massive N = 8 supergravity, at the price
that the final result, written in terms of the deflection angle, has a non-polynomial
dependence on G. In particular, for the ZFL of the radiated energy, we get the
same result as in Ref. [38], obtained within a classical GR approach and in Ref.[36]
from a scattering amplitude perspective.

The framework we propose here relies on dressing the elastic amplitude with an
operator where soft emissions exponentiate according to Weinberg’s soft theorem
[39, 40, 41, 42, 43, 44]. A caveat is thus in order: due to the non-linear nature of
gravitational interactions there are effects, such as non-linear memory [45, 46], that
are not captured in our approach. We leave the explicit analysis of this point from
an amplitude perspective to future investigations, while remarking that instead such
difficulties are absent for linear theories.

The paper is organised as follows. Section 2 is divided in three subsections. In
the first one we recall the elastic eikonal exponentiation stressing the difference be-
tween the small momentum q exchanged in a single loop order and the macroscopic
momentum Q exchanged after the resummation. In the second subsection we intro-
duce the eikonal operator by dressing the elastic one with an operator suggested by
the Bloch-Nordsieck/Weinberg method. In the third subsection we use the eikonal
operator to compute the two waveforms in the soft limit and make contact with the
linear memory effect. In Section 3 we connect, using the eikonal operator, the in-
frared divergences of the background hard process, which are encoded in Im 2δ, the
number of emitted quanta and the ZFL of the spectrum of emitted energy. Section
4 is then devoted to the detailed analysis of the behaviour of explicit expressions
for such quantities below and above the bound (1.2), and to highlighting how uni-
versality is restored at high energy. We conclude with a section of summary and
outlook. The paper also contains two appendices. In the first one we collect various
kinematic relations that we use in the paper and in the second we discuss the ZFL
of the spectrum of emitted momentum.
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2 The Eikonal Operator in the ZFL

2.1 The elastic eikonal exponentiation

There is by now a well tested strategy that can be used to derive the eikonal phase
from 2 → 2 quantum scattering amplitudes. Here we consider the case where the
incoming and outgoing states are distinct scalars of mass m1 and m2 either in GR
or in N = 8 supergravity. The leading eikonal δ0 is obtained from the tree-level in
the limit where the momentum exchange q is small (see App. A for our conventions
on the kinematics). In particular one can focus on the non-analytic terms in q2 as
q2 → 0, which are the only source of long-range effects in impact-parameter space:

A0(σ, q
2) = ~

8πG

q2

[
4m2

1m
2
2

(
σ2 − ζ

D − 2

)]
+ . . . ,

2δ0(σ, b) = Ã0(σ, b) =

∫
dD−2q

(2π~)D−2

A0(σ, q
2)

4m1m2

√
σ2 − 1

ei
bq
~ ,

(2.1)

where σ is given in terms of the incoming momenta σ = − p1p2
m1m2

and ζ = 1 (ζ = 0)
for GR (N = 8 supergravity). While the process in (2.1) involves the exchange of
a single quantum, after the eikonal resummation the leading contribution to the
S-matrix is captured by the phase e2iδ0 , which effectively resums infinitely many
exchanges. In the 1PM approximation, we thus have

2δ0(σ, b) =
2Gm1m2

(
σ2 − ζ

D−2

)
Γ
(
D−4
2

)

~
√
σ2 − 1(πb2)

D−4
2

. (2.2)

The quantities p and
√
s are the spatial momentum and the total initial energy in

the centre-of-mass frame

p =
m1m2√

s

√
σ2 − 1 , s = m2

1 + 2m1m2σ +m2
2 , σ =

1√
1− v2

, (2.3)

with v the velocity of either body as seen in the rest frame of the other one. Via
the exponentiation, the classical scattering process emerges from the exchange of
a large number of soft particles as can be seen by writing the resummed leading
elastic S-matrix element and going back to momentum space

S(M)(σ,Q) ≃
∫
dD−2b e−i

bQ
~ e2iδ0(σ,b). (2.4)

The Fourier transform above is dominated by the saddle-point approximation:3

Qµ
s ≃ ~

∂(2δ0)

∂bµ
, Ns ≃

|Qs|
|q| ≃

4Gm1m2

(
σ2 − ζ

D−2

)
Γ
(
D−2
2

)

~
√
σ2 − 1π

D−4
2 bD−4

, (2.5)

3Strictly speaking, the saddle-point condition determines b in terms of Q, and we invert this
relation to work at fixed impact parameter.
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where Qs represents the ~-independent momentum exchanged by virtue of the clas-
sical deflection. The estimate Ns for the number of soft particles exchanged during
the scattering is obtained by taking the total momentum transferred |Qs| and di-
viding it by the typical momentum of each soft particle, q ≃ ~/b (as follows from
from (2.1)). Already by using the leading eikonal it is clear that Ns is large and
becomes infinite in the strict classical limit. The classical deflection angle Θs is
derived from the momentum |Qs| and at 1PM order we have

pΘs ≃ |Qs| ≃
4Gm1m2

(
σ2 − ζ

D−2

)
Γ
(
D−2
2

)
√
σ2 − 1 π

D−4
2 bD−3

. (2.6)

It is straightforward to formally generalise this discussion beyond the case of the
1PM elastic eikonal. One just needs to start from the long-range elastic S-matrix

S(σ, b) = 1 + iÃ(s, b) = (1 + 2i∆(s, b)) e2iδ(s,b) , (2.7)

and rewrite it in momentum space

S(M)(σ,Q) =

∫
dD−2b e−i

bQ
~ (1 + 2i∆(σ, b)) e2iδ(σ,b) . (2.8)

Again the classical deflection angle Θs is derived from the momentum |Qs| by a
saddle point now related to δ instead of δ0

Qµ
s = ~

∂ Re 2δ

∂bµ
, sin

Θs

2
=

|Qs|
2p

. (2.9)

In the following, for simplicity, we omit the label s in Qs, since we always focus on
the classical saddle point.

2.2 Bloch-Nordsieck dressing

We would now like to include soft radiation, i.e. the emission of real particles with
very low energies, in the above picture. In the soft limit this can be done in a
very efficient way by following the method of Bloch-Nordsieck [39, 40] and the
closely related approach by Weinberg [47, 41] (see also very similar discussions
in the context of dressed states [42, 43, 44]). The emission of these soft quanta
exponentiates in momentum space, as we now recall focusing for the time being on
graviton emissions. We will also include massless scalars and vectors that show up
in N = 8 supergravity amplitudes at the end of this section. The S-matrix element
for the emission of N soft gravitons factorises as the matrix element S(M) for the
background elastic process defined in (2.8) and N universal factors fj(k) expressed
in terms of the polarisation j of the graviton and its momentum k, [39, 40, 47, 41]

S
(M)
s.r.,N =

N∏

r=1

fjr(kr)S
(M)(σ,Q) , fj(k) = ε∗µνj (k)Fµν(k) , F µν(k) =

∑

n

κ pµnp
ν
n

pn · k
,

(2.10)
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where κ =
√
8πG and n runs over all external states of the elastic “hard” process.4

Of course an analogous formula holds for soft absorptions, with fj(k) replaced by
−f ∗

j (k). We keep graviton momenta always future-directed, while the background
momenta are always regarded as outgoing (so that incoming ones are represented
by past-directed vectors). For the sake of simplicity, we write explicitly only the
dependence on the graviton momentum, leaving implicit the dependence on the pn
which, as we will see later, will play a crucial role in our analysis.

A key step is then to introduce creation/annihilation operators for the gravitons
and the other soft particles that can be produced and absorbed in the scatter-
ing process. We work with the following conventions: the canonical commutation
relations are

[ai (k), a
†
j(k

′)] = δ(~k,~k ′)δij , δ(~k,~k′) = 2~ω(2π)D−1δD−1(~k − ~k′) , (2.11)

and we define ∫

~k

≡
∫

ω<ω∗

dD−1~k

2ω(2π)D−1
, ω ≡ |~k| , (2.12)

where we regard ω as a frequency and ~k as a wave-vector. Following Weinberg [41],
we have also introduced a frequency scale ω∗ below which the approximation (2.10)
is valid.5 We can then write the S-matrix for the emissions (2.10) as the matrix
element (2.8) for the elastic process dressed by an exponential factor depending on
the oscillators mentioned above:

e2iδ̂s.r. = exp

(
1

~

∫

~k

∑

j

[
fj (k) a

†
j(k)− f ∗

j (k) aj(k)
])

(2.13)

in terms of which:

S(M)
s.r. = e2iδ̂s.r.

S(M)(σ,Q)

〈0|e2iδ̂s.r.|0〉
, (2.14)

where the subscript s.r. stands for soft radiation and indicates that we are restrict-
ing ourselves to ω < ω∗ gravitons. The denominator appearing in (2.14) amounts
to having taken out, momentarily, virtual graviton corrections up to the scale ω∗,
their effect being automatically reintroduced through the normal ordering of the
operator in front. After so doing, the matrix elements (2.10) are simply recovered
using the commutation relations (2.11) in

S
(M)
s.r.,N = 〈0|aj1(k1) · · ·ajN (kN)S(M)

s.r. |0〉 , (2.15)

4As emphasized by Weinberg (see e.g. [48]), this formula only applies to the case in which the
“bare” amplitude S(M) is connected, hence in our case to the iT part of S = 1+ iT . This caveat
is not important for the present discussion, but assuming (2.10) to extend to the disconnected
part of the S-matrix (with some appropriate iǫ regularization of the denominators) is crucial to
the calculation of the angular momentum loss given in [16].

5Unlike in [41], we do not need an infrared frequency cutoff since we use dimensional regular-
ization.
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where the state without any graviton, |0〉, is annihilated by all aj . Similarly, the

quantities 〈0|S(M)
s.r. a

†
j1
· · · a†jN |0〉 reproduce the matrix elements for soft absorptions,

with the appropriate signs.
To leading order in the soft expansion, it is possible to work with (2.14) by using

the momenta of energetic external particles in the elastic process as given and this
is the viewpoint taken in [47, 41] and more recently in [49, 50, 51, 52, 53]. Here
we would like to include the dynamical information about the scattering process,
specifying that in our case it is due to the gravitational interaction itself. This is
more easily done by going back to impact parameter space as the eikonal takes the
compact expression (2.7) for the elastic process.

We first consider the Fourier transform to b-space of the two factors in (2.14)
separately. By construction the second factor, which describes the elastic process,
gives the eikonal (2.7). However, thanks to the division by 〈0|e2iδ̂s.r.|0〉 in (2.14),
one needs only the real part of δ, as the divergent imaginary part is automatically
encoded in the new operator part,6 as we shall see in Section 3. The first factor
in (2.14) is instead regular as Q → 0, so we can write it as a differential operator
acting on a delta-function δD−2(b) trading each Q with a derivative

Qµ → −i~ ∂

∂bµ
(2.16)

in the Fourier transform. Of course the product of these two factors in (2.14)
becomes a convolution in b space. However, since one factor is just a delta function,
the integral of the convolution can be performed straightforwardly, and one obtains

Ss.r.(σ, b; a, a
†) = exp

(
1

~

∫

~k

∑

j

[
fj(k)a

†
j(k)− f ∗

j (k)aj(k)
])

[1 + 2i∆(σ, b)] eiRe 2δ(σ,b) ,

(2.17)

where the external momenta pn in the first line contain derivatives acting on the
b-dependent functions in the second line. In the ZFL we can use the 4-point kine-
matics and identify the momentum transferred in Eqs. (A.1) and (A.2) with a
derivative acting on the elastic eikonal as in (2.16). Since the soft operator be-
comes proportional to Q we see explicitly how the disconnected term of the elastic
scattering amplitude drops out.

Let us make two general comments before using (2.17) in some concrete calcula-
tions. First, the classical S-matrix obtained by neglecting the quantum remainder
∆ is explicitly unitary since only the real part of the elastic δ enters in this equation
and the inelastic prefactor is the exponential of an anti-Hermitian operator.7

6Even after having taken out soft real and virtual radiation, the true S-matrix connects the
two particle initial state to other inelastic channels (e.g. via emission of gravitons with ω > ω∗).
As a consequence, some finite imaginary part will be left over in δ.

7Actually, the situation is not so simple. Although each individual graviton carries a negligible
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Second, when focusing on the classical part, the derivatives hidden in the exter-
nal momenta pn due to (2.16) can be always taken to act on the eikonal phase: for
any smooth function ϕ(Q) =

∑
n cn(Q

2)n, performing the replacement (2.16),

ϕ(Q) eiRe 2δ →
∑

n

cn(−i~∂b)2neiRe 2δ =
∑

n

cn

[
~
∂ Re 2δ

∂b

]2n
eiRe 2δ +O(~)

= ϕ

(
~
∂ Re 2δ

∂b

)
eiRe 2δ +O(~) ,

(2.18)

i.e.

Qµ → ~
∂ Re 2δ

∂bµ
= b̂µ 2p sin

Θs

2
, (2.19)

where b̂µ = bµ/|b|. Indeed, ~∂b Re2δ ∼ O(~0), while if we were act on Re 2δ more
than once with ~∂b, we would only produce terms of higher order in ~.

Then we effectively should use the following momenta in (2.17) for the external
hard particles

pµ1 = −m1u
µ
1 + b̂µ p sin

Θs

2
, pµ2 = −m2u

µ
2 − b̂µ p sin

Θs

2
, (2.20)

pµ4 = m1u
µ
1 + b̂µ p sin

Θs

2
, pµ3 = m2u

µ
2 − b̂µ p sin

Θs

2
,

which are simply the initial and the final momenta in the classical elastic scattering.
In a PM expansion it seems that one can discard the terms involving sin Θs

2
since

Θs is proportional to G, see (2.2). This is equivalent to expanding for small Q the
first line of (2.17) as done in [18], see the step between (2.9) and (2.11) of that
reference. However this expansion is not justified in all kinematic regimes, as we
will see below in the discussion of the waveforms in the ZFL.

In the following, we will apply the eikonal operator to discuss the contribution of
low-energy gravitons to several observables, including the waveforms, memory, and
the particle-energy emission spectrum. The general strategy, given any quantum
observable O, is to take its expectation value according to

〈O〉 = 〈0|S†
s.r.O Ss.r.|0〉 . (2.21)

Physically, this means to evaluate the mean value of O in the final state of the
scattering event, obtained by applying Ss.r. to the state with no gravitons. It can
also be instructive to inspect more closely the dependence of this classical value on
the number of exchanged gravitons (or other massless particles), and for this reason
it is useful to insert a complete set of Fock states, so that

〈O〉 =
∞∑

N=0

〈O〉N , (2.22)

amount of energy O(~
b
), the total amount of radiated energy is a classical quantity to be compared

with the other classical energies in the problem. We will discuss elsewhere how explicit energy
conservation can be added while pushing unitarity violations to higher orders in the PM expansion.
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with

〈O〉N =
1

N !

∑

j1,...,jN

∫

~k1

· · ·
∫

~kN

〈0|S†
s.r.Oa†j1 · · ·a

†
jN
|0〉〈0|aj1 · · ·ajNSs.r.|0〉 . (2.23)

We conclude this section by describing how the soft eikonal operator is modified
to include the presence of other massless fields (scalars and vectors), which will be
useful to discuss the case of N = 8 supergravity where the massive particles are
described by KK modes. As mentioned in the introduction, this is a nice toy model
which has the same features of GR but provides simpler results. The S-matrix
elements for soft emissions factorize in a way analogous to (2.10), with soft factors
that instead of fj(k) are given by

fvec
j (k) =

∑

n

ηnen
ε∗µ,j(k)p

µ
n

pn · k
, f sc

j (k) =
∑

n

gn
pn · k

(2.24)

for vectors and scalars respectively; here ηn takes the value +1 for outgoing and
−1 for incoming states while en and gn denote suitable couplings. These new soft
particles are easily accommodated in the eikonal operator: it is sufficient to include
in the first line of (2.17) the relevant operators ad for the dilaton (with coupling
gn = −κm2

n/
√
D − 2) and avi,j for two vectors (en =

√
2 κmi) and asi for two

scalars (gn = κm2
i ). Such vectors and scalars arise in the KK-compactification and

couple to particles of mass8 mi (i = 1, 2). Thus the N = 8 eikonal operator takes
the same form as in the GR case

SN=8
s.r. (σ, b; a, a†) = e2iδ̂

N=8
s.r. [1 + 2i∆N=8(σ, b)] e

2iRe δN=8(σ,b) , (2.25)

where

2iδ̂N=8
s.r. =

1

~

∫

~k

∑

j

[
(fja

†
j − f ∗

j aj) + (f da†d − f d∗ad)+

+ (f vj a
†
v,j − f v∗j av,j) + (f sj a

†
s,j − f s∗j as,j)

]
, (2.26)

where, as before, j labels the various physical polarisations, ηn takes the value +1
for n = 3, 4 and −1 for n = 1, 2, and the massive particles are pairwise identical
(m3 = m2, m4 = m1) and so they couple to the same soft KK modes (as3 = as2 ,
as4 = as1, etc.); finally we refer to [55] for the first 3PM order of the elastic data
∆N=8 and δN=8.

8A general way to introduce masses in the N = 8 context is discussed in [54]; here we work in
the particular case discussed in [12] and further focus on the case sinφ = 1 in their notation, see
also [18].
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2.3 Soft waveforms and memory

As a first application of the above tools, let us discuss how one obtains the leading-
order as ω → 0 of the asymptotic waveforms. The classical field is obtained by
inserting in the expectation value (2.21) the free gravitational field

Hµν(x) =

∫

~k

∑

j

[
εj,µν(k)aj(k) e

ikx + ε∗j,µν(k)a
†
j(k) e

−ikx
]
, 〈Hµν(x)〉 = hµν(x) .

(2.27)
This yields,

hµν(x) =

∫

~k

∑

j

〈0|S†
s.r.

[
εj,µν(k)aj(k) e

ikx + ε∗j,µν(k)a
†
j(k) e

−ikx
]
Ss.r.|0〉 . (2.28)

The oscillators inserted in the expectation value act in a straightforward way on
the first line of the S-matrix in (2.17), so that the operator part of the S-matrix
cancels:

hµν(x) =

∫

~k

e−2iRe δ
[
fµν(k) e

ikx + f ∗
µν(k) e

−ikx] e2iRe δ . (2.29)

In this equation,

fµν(k) = Πµν
ρσ(k̂)F

ρσ(k) , F µν(k) =
∑

n

κ pµnp
ν
n

pn · k
, (2.30)

and Πµν is the usual transverse-traceless projector over physical degrees of freedom.
Letting derivatives with respect to b act as in (2.19), we can simply write

hµν(x) =

∫

~k

[
fµν(k) e

ikx + f ∗
µν(k) e

−ikx] , (2.31)

keeping in mind that now the external momenta should be treated as in (2.20).
Now we consider the asymptotic limit for the gravitational field, where xµ =

(x0, ~x) = (u + r, rx̂) and the detector’s distance is taken to infinity, r → ∞, for
fixed retarded time u and angles x̂. In this limit, a standard stationary-phase
argument (see e.g. [56, 57, 58]) yields

hµν(u+ r, rx̂) ∼ 1

2(2iπr)
D−2
2

∫ ∞

0

dω

2π
ω

D−4
2 fµν(ω, ωx̂) e

−iωu + c.c. , (2.32)

where c.c. stands for the complex conjugate of the term explicitly written. Note that
in this step the angular integral over the momenta k̂ localizes along the observation
direction x̂. Focusing on the four-dimensional case and recalling fµν(k) = −f ∗

µν(−k)
leads to

hµν ∼
1

4πr

∫ +∞

−∞

dω

2iπ
fµν(ω, ωx̂) e

−iωu . (2.33)
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where the two terms in Eq. (2.31) recombined to reconstruct a single integral over
positive and negative frequencies [59]. Adjusting the overall normalization by com-
paring

gµν = ηµν + 2Wµν = ηµν + 2κhµν , (2.34)

we also define
Wµν = κ hµν . (2.35)

Performing the Fourier transform in (2.33) requires in principle to specify how the
1/ω singularity at ω = 0 is circumvented [49, 50, 51, 53, 16]. However, as stressed
in [56, 60], the key point is that the behaviour of the waveform at large |u| is
completely determined by this pole at ω = 0, and possible ambiguities are in fact
u-independent. Considering the invariant combination

∆Wµν(x̂) = Wµν(u > 0, x̂)−Wµν(u < 0, x̂) , (2.36)

we thus obtain

∆Wµν(x̂) =
2G

r
Πµν
ρσ(x̂)

∑

n

ηn p
ρ
np

σ
n

En − ~kn · x̂
, (2.37)

where pn = ηn(En, ~kn). In this way, we reproduce the well-known memory effect
[61] i.e. the leading result of [49, 50, 51, 53] or the term indicated as Aµν in [53]. We
refer to Ref. [16] for further discussion of the evaluation of the waveform in u-space,
in particular with the Feynman −i0 prescription. Moreover, let us recall that our
approach does not capture non-linear memory effects [45, 46, 13].

For the remainder of this section, let us refrain from performing this Fourier
transform and remain in ω-space, defining

WLS
µν =

κ

4πr
Fµν (2.38)

with F µν as in (2.30), up to the identification k̂ = x̂. Let us also specialize our
expressions using the following kinematics

p1 =

(
−E1, b̂ p sin

Θs

2
,−p cos Θs

2

)
, p2 =

(
−E2,−b̂ p sin

Θs

2
,+p cos

Θs

2

)
,

p4 =

(
+E1, b̂ p sin

Θs

2
,+p cos

Θs

2

)
, p3 =

(
+E2,−b̂ p sin

Θs

2
,−p cos Θs

2

)
,

(2.39)

which follows from (2.20), and consider the projection on the two polarizations
described in Appendix A (see Eqs. (A.6), (A.8))

WLS
× =

κ

4πr
ǫµφǫ

ν
θ Fµν , WLS

+ =
κ

4πr

1

2

(
ǫµθ ǫ

ν
θ − ǫµφǫ

ν
φ

)
Fµν . (2.40)
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We obtain for the leading soft term of the × polarization

WLS
× (k) =

2G

r

p

ω

(
− sin φ sin

Θs

2

)
× (2.41)

[
cos θ cos φ sin Θs

2
+ sin θ cos Θs

2
E1

p
+ sin Θs

2
sin θ cosφ− cos Θs

2
cos θ

+
cos θ cosφ sin Θs

2
+ sin θ cos Θs

2
E2

p
− (sin Θs

2
sin θ cosφ− cos Θs

2
cos θ)

− cos θ cosφ sin Θs

2
− sin θ cos Θs

2
E1

p
− sin Θs

2
sin θ cosφ− cos Θs

2
cos θ

− cos θ cosφ sin Θs

2
− sin θ cos Θs

2
E2

p
+ sin Θs

2
sin θ cosφ+ cos Θs

2
cos θ

]
,

where we recall that Θs stands for its classical expression in terms of b and we
aligned b̂ along the x-axis. Similarly for the other polarisation we have

WLS
+ =

G

r

p

ω

[(
sin Θs

2
cosφ cos θ + sin θ cos Θs

2

)2 − sin2 φ sin2 Θs

2
E1

p
+ sin Θs

2
sin θ cos φ− cos Θs

2
cos θ

+

(
sin Θs

2
cosφ cos θ + sin θ cos Θs

2

)2 − sin2 φ sin2 Θs

2
E2

p
− sin Θs

2
sin θ cosφ+ cos Θs

2
cos θ

+

(
sin Θs

2
cosφ cos θ − sin θ cos Θs

2

)2 − sin2 φ sin2 Θs

2

−E1

p
+ sin Θs

2
sin θ cosφ+ cos Θs

2
cos θ

+

(
− sin Θs

2
cosφ cos θ + sin θ cos Θs

2

)2 − sin2 φ sin2 Θs

2

−E2

p
− sin Θs

2
sin θ cosφ− cos Θs

2
cos θ

]
.

(2.42)

The results (2.41) and (2.42) have a complicated dependence on Newton’s con-
stant through Θs and so on Newton’s constant G. The usual way of performing
the PM expansion on the waveforms is to assume that Θs is small with respect to
any other kinematic ratio and then Taylor expand the results for Θs ≪ 1. At the
leading PM order we have

WLS
× (k) ≃ −2G

r

pΘs

ω
sinφ sin θ

[
1

E1

p
− cos θ

+
1

E2

p
+ cos θ

]
, (2.43)

WLS
+ (k) ≃ 2G

r

Θs

ω
cosφ sin θ

{
− p

2
sin2 θ (2.44)

×
[

1

(E1

p
− cos θ)2

− 1

(E2

p
+ cos θ)2

]
+

cos θ
√
s

(E1

p
− cos θ)(E2

p
+ cos θ)

}
,

which agree with Ref. [13] and Eq. (4.5) of [18]. Of course the full leading PM
waveforms [32, 33, 34, 62] reduce to the above result in the ZFL.

Notice however that (2.43), (2.44) diverge when Θs is small but fixed, we send
mi to zero (or equivalently we take σ → ∞) and we also take the θ → 0 limit. For
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WLS
× this is already visible at the leading O(Θs) term: in the limit Ei/p → 1, the

denominators vanish quadratically as θ → 0 or θ → π while the prefactor vanishes
just linearly. However, when θ ≃ Θs ≪ 1 the corrections to the expressions in the
denominators in (2.43) become important and in particular they compete with the
term Ei/p− 1 when

max

{
m1

m2

σΘ2
s,
m2

m1

σΘ2
s

}
& 1 , i.e. max

{
Gs

m2b
,
Gs

m1b

}
& 1 , (2.45)

where, in the latter formulation, we have rewritten Θs in terms of b. When entering
the kinematic region defined above, the usual PM expansion which yields (2.43)
and (2.44) breaks down. In this region one needs to follow the approach discussed
from (2.16) in order to treat properly the collinear radiation and, as we will see, this
will be important also for the energy spectrum. This phenomenon was discussed
long ago from the GR perspective, see9 [32] and [7] which refer to [30].

In the massless limit we have Ei/p→ 1, p→ √
s/2 and the waveforms simplify

to

WLS
× (k) = −2G

r

√
s

ω
sinφ sin

Θs

2

∑

α=±1

[
α cos θ cosφ sin Θs

2
+ sin θ cos Θs

2

1− (sin Θs

2
sin θ cosφ− α cos Θs

2
cos θ)2

]

(2.46)
and

WLS
+ (k) = −2G

r

√
s

ω

∑

α=±1

[
α sin2 φ sin2 Θs

2

1− (sin Θs

2
sin θ cosφ− α cos Θs

2
cos θ)2

]
. (2.47)

As mentioned above, the dominant PM contributions to the ZFL come from the
polarisation WLS

× and is of order Θs, while W
LS
+ is of order Θ3

s.
We conclude this section by mentioning that an entirely analogous discussion

holds for the corresponding waveforms associated to massless vector and scalar
radiation, which are relevant in particular for the N = 8 setup. As an example
let us briefly focus on the case of the dilaton emission. From (2.24) with gn =
−κm2

n/
√
D − 2 we have the following soft waveform

WLS
dil (k) = − 2G√

D − 2 r

1

ω

∑

α=±1

[
αm2

1

E1 + αp sin Θs

2
sin θ cos φ− p cos Θs

2
cos θ

+
αm2

2

E2 − αp sin Θs

2
sin θ cos φ+ p cos Θs

2
cos θ

]
.

(2.48)

9While we here refer to the deflection angle Θs in the centre-of-mass frame, the one quoted in
the abstract of [32] should be the angle Θ′

s in frame where the heavier particle (say 1) is initially
at rest. They are related by tanΘ′

s
= m1 sinΘs/(E2 +E1 cosΘs), so that for very large velocities

σ ≫ 1 one gets tanΘ′

s ≃
√
2m1/(m2σ) sinΘs/(1 + cosΘs). To first order in the PM expansion

we thus have Θ′

s
≃
√
m1/(2m2σ)Θs and so (2.45) reads σΘ′

s
& 1.
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At leading PM order below the threshold (2.45), there is agreement with the ZFL
of the results in [55]

WLS
dil (k) =

2G√
D − 2 r

pΘs

ω
sin θ cosφ

[
m2

1

(E1 − p cos θ)2
− m2

2

(E2 + p cos θ)2

]
. (2.49)

As for the graviton case, also (2.49) has an anomalous behaviour when σ → ∞ and
sin θ ∼

√
2/σ, i.e. the square parenthesis scales as ±2νσ (where ν = m1m2/(m1 +

m2)
2) and so it becomes large. This means that the dilaton yields non trivial con-

tributions for large velocities but below the threshold (2.45). However, above that
bound, the approximations yielding (2.49) break down and one has to use (2.48),
which vanishes in the extreme UR regime. So, as expected, the dilaton decouples
at very high energies.

3 Infrared Divergences and Soft Spectra

Using the eikonal operator we can show explicitly that the amplitude, and thus
the transition probability, for the purely elastic 2 → 2 process is exponentially
suppressed, in fact infinitely so in D = 4. As we shall review below, this infrared
divergence is intimately connected to the fact that an infinite number of field quanta
is emitted via classical radiation. Moreover, it is also directly related to a (finite)
observable quantity: the zero-frequency limit of the spectrum of emitted energy.

3.1 Infrared divergences in Im 2δ(σ, b)

Let us take the final state Ss.r.|0〉 and project it on the graviton vacuum |0〉.
Then one needs to normal order the inelastic exponential through the usual Baker–
Campbell–Hausdorff formula

eva
†−v∗a = eva

†

e−v
∗ae−

1
2
|v|2[a,a†] , (3.1)

so the amplitude for the elastic process is given by

〈0|Ss.r.|0〉 = exp

[
− 1

2~

∫

~k

F ∗
µν(k)Π

µν,ρσFρσ(k)

]
eiRe 2δ(σ,b) , (3.2)

where Πµν,ρσ is the usual transverse-traceless projector and we focused on the classi-
cal contribution (ignoring ∆). The transversality condition kµFµν = 0, which holds
for gravity by momentum conservation, grants

F ∗
µν(k)Π

µν,ρσ(k)Fρσ(k) = F ∗
µν(k)P

µν,ρσFρσ(k) , (3.3)

where

P µν,ρσ =
1

2

(
ηµρηνσ + ηµσηνρ − 2

D − 2
ηµνηρσ

)
. (3.4)

15



The first exponential in (3.2) is a damping factor that can be interpreted as an
imaginary contribution to the classical eikonal: in this way we have

〈0|Ss.r.|0〉 = e2iδ(σ,b) , (3.5)

where 2δ = Re 2δ + i Im 2δ and

Im 2δ(σ, b) =
1

2~

∫

~k

F ∗
µν(k)P

µν,ρσFρσ(k) . (3.6)

This is the analogue, in b-space, of the damping due to summing the contributions
of virtual gravitons to the elastic amplitude [41] (we recall that the dependence
on the impact parameter b is implicit through the identification (2.16)). Following
these steps, one can also rewrite the eikonal operator directly as

Ss.r.(σ, b; a, a
†) = exp

(
1

~

∫

~k

∑

j

fja
†
i

)
exp

(
−1

~

∫

~k

∑

j

f ∗
j aj

)
e2iδ(σ,b) . (3.7)

For later convenience, before evaluating it explicitly, let us write the integral in
(3.6) introducing the integration over the frequency with an upper cutoff ω∗ and
over the angles, using kµ = ω(1, x̂) and F µν(k) = ω−1F µν(1, x̂),

Im 2δ(σ, b) =
1

2~

∫ ω∗

0

dω

ω5−D

∮
F ∗
µν(1, x̂)P

µν,ρσFρσ(1, x̂)
dΩ(x̂)

2(2π)D−1
, (3.8)

so that

Im 2δ(σ, b) =
1

2~

ωD−4
∗

D − 4

∮
F ∗
µν(1, x̂)P

µν,ρσFρσ(1, x̂)
dΩ(x̂)

2(2π)D−1
(3.9)

and, to leading order in ǫ = (4−D)/2,

Im 2δ(σ, b) = −ω
−2ǫ
∗
4~ǫ

∮
F ∗
µν(1, x̂)P

µν,ρσFρσ(1, x̂)
dΩ(x̂)

2(2π)3
. (3.10)

3.2 Infrared divergences in the number of emitted quanta

The eikonal operator (2.17) is manifestly unitary (once we neglect the quantum
remainder ∆). As such, it better yield 1 when we insert O = 1 in Eq. (2.21).
Indeed, we can apply Eq. (2.23) with O = 1 to compute the probability PN for the
emission of N gravitons:

PN = 〈1〉N , 〈1〉 =
∞∑

N=0

PN = 1 . (3.11)

We thus need to evaluate

PN =
1

N !

∑

j1,...,jN

∫

~k1

· · ·
∫

~kN

〈0|S†
s.r.a

†
j1
· · · a†jN |0〉〈0|aj1 · · · ajNSs.r.|0〉 . (3.12)
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Each aj(k) (resp. a
†
j(k)) oscillator pulls down a factor fj (resp. f

∗
j ) so that

PN =
1

N !
〈0|S†

s.r.|0〉
[
1

~

∫

~k

F ∗
µν(k)P

µν,ρσFρσ(k)

]N
〈0|Ss.r.|0〉 . (3.13)

Recognizing the same integral as the one appearing in (3.6), up to a crucial factor
of 2, and using the fact that 〈0|Ss.r.|0〉 = ei2δ as in (3.5), we thus have

PN =
1

N !
[2 Im2δ]N e−2 Im 2δ . (3.14)

In this way we obtain that the probability for the emission of N gravitons follows
a Poisson distribution with 2 Im 2δ(σ, b) the average number of emitted gravitons

∞∑

N=0

NPN = 2 Im2δ . (3.15)

Again let us note that 2 Im2δ is divergent both as D → 4 and as ~ → 0.
Alternatively, one can directly insert in (2.21) the operator

N =

∫

~k

∑

j

a†j(k)aj(k) , N = 〈N〉 , (3.16)

which counts the number of emitted gravitons. Consistently with (3.15), in this
way one finds

N =
1

~

∫

~k

F ∗
µν(k)P

µν,ρσFρσ(k) = 2 Im2δ . (3.17)

Of course, a similar discussion applies for the number of emitted quanta in
supergravity. There, one simply obtains a product of Poisson distributions each
associated with a species of emitted particle. Similarly, one can consider insertion
of number operators vectors and scalars as well. In each case, such expectation
values coincide with twice (4.6) and (4.7).

3.3 Zero-frequency limit (ZFL) of dErad

dω

We now move on to the insertion of the energy-momentum operator

P α =

∫

~k

∑

j

~kα a†j(k)aj(k) , Pα
rad = 〈P α〉 (3.18)

as in Eq. (2.21), which leads to

Pα
rad =

∫

~k

kαFµν(k)P
µν,ρσFρσ(k) , (3.19)
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thanks to (3.3). Focusing on D = 4 from now on for this quantity, and making the
dependence on the upper cutoff ω∗ explicit, we thus consider

Pα
rad(ω∗) =

∫

~k

θ(ω∗ − k0) kαFµν(k)P
µν,ρσFρσ(k) (3.20)

and study the soft emission spectrum i.e. the derivative

dPα
rad(ω∗)

dω∗
=

∫

~k

δ(ω∗ − k0) kαFµν(k)P
µν,ρσFρσ(k) (3.21)

as ω∗ → 0. For later convenience we also rewrite (3.21) introducing explicitly the
integration over the frequency and the angles, using kµ = ω(1, x̂) and F µν(k) =
ω−1F µν(1, x̂),

dPα
rad(ω∗)

dω∗
=

∮
(1, x̂)αFµν(1, x̂)P

µν,ρσFρσ(1, x̂)
dΩ(x̂)

2(2π)3
. (3.22)

Note that under a Lorentz transformation pµ → p′µ = (Λ−1)µνp
ν ,

dP α
rad(ω∗)

dω∗
→
∫

~k

δ(ω∗ − (Λk)0) kαFµν(k)P
µν,ρσFρσ(k)

=

∮
Λα0 + ΛαI x̂

I

Λ0
0 + Λ0

J x̂
J
Fµν(1, x̂)P

µν,ρσFρσ(1, x̂)
dΩ(x̂)

2(2π)3
.

(3.23)

Therefore, while
dP0

rad

dω∗
= dErad

dω∗
is Lorentz invariant, the spatial components

dPI
rad

dω∗

have more complicated transformation laws.
We thus focus on the ZFL of the energy emission spectrum dErad

dω∗
, i.e. the α = 0

component of (3.22), which reads

dErad(ω∗)

dω∗
=

∮
Fµν(1, x̂)P

µν,ρσFρσ(1, x̂)
dΩ(x̂)

2(2π)3
, (3.24)

while deferring to Appendix B an analysis of the spatial components. Comparing
(3.24) with (3.10), we immediately see that they are identical up to the prefactor
−4~ǫ, so that

lim
ω→0

dErad

dω
= lim

ǫ→0
[−4~ǫ Im 2δ(σ, b)] . (3.25)

This highlights a general mechanism: the infrared divergences of the elastic am-
plitude determine the ZFL of the energy emission spectrum via massless quanta
[41, 18]. Eq. (3.25) generalizes trivially to an arbitrary background process α → β
and captures the exact dependence on the associated kinematics, regardless whether
the involved particles carry spin. Similar links hold between the energy spectra for
massless vector and scalar emissions and (4.6), (4.7), and between the total emission
spectrum in N = 8 and (4.8).
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4 ZFL (and Im 2δ) at Arbitrary Velocities

In this section we provide explicit expressions for Im 2δ and dErad

dω
, specialize them

to the case of gravitational 2 → 2 scattering and analyse their properties as the
relative velocity of the colliding objects varies. As we already discussed for the
memory waveform, we will observe a non-trivial transition between the standard
PM regime where Q≪ m1, m2 and the region characterized by the bound (2.45).

The integrals entering (3.6) can be evaluated to leading order in ǫ = (4−D)/2
using the basic identity (see [41] and Appendix B of [63])

∫
d4−2ǫk

(2π)4
2πδ(k2)θ(k0)θ(ω∗ − k0)

(pnk)(pmk)
= −ω

−2ǫ
∗

8π2ǫ

Fnm
mnmm

, (4.1)

where

Fnm =
ηnηm arccosh σnm√

σ2
nm − 1

, σnm = −ηnηm
pn · pm
mnmm

. (4.2)

Note that, despite the presence of a cutoff, the left-hand side of (4.1) is Lorentz-
invariant to leading order in ǫ, and indeed the 1/ǫ pole on the right-hand side is
ω∗-independent (see also the discussion around (3.23)). Then, to leading order in
the limit ǫ→ 0, Eq. (3.6) together with (3.25) gives:

lim
ω→0

dEgr

dω
=

2G

π

∑

n,m

mnmm

(
σ2
nm − 1

2

)
Fnm . (4.3)

Let us emphasize that in this expression the dependence on the kinematics of elastic
process is exact. Like the soft theorem, this formula is insensitive to the specific
details of the hard particles and should also hold if they carry spin. Moreover, as
expected, Im 2δ > 0 for ǫ < 0, which grants the convergence of the integral, so that
e− Im 2δ is indeed an exponential suppression: this factor tends to zero as D → 4
and as ~ → 0, indicating that |0〉 and Ss.r.|0〉 have zero overlap in these limits.
Correspondingly, via (3.25), the ZFL of dE/dω is also positive.

The right-hand side of Eq. (4.3) generalizes straightforwardly to generic back-
ground processes α → β involving an arbitrary number of (massive and massless)
states. Again via (3.25), it is related to the quantity to be exponentiated in momen-
tum space in order to resum all infrared divergences in the exclusive amplitude Aαβ

due to soft virtual gravitons [41, 63]: Aαβ = eWαβA0
αβ, where A0

αβ is infrared-finite
and

Wαβ =
κ2ω−2ǫ

∗
(4π)2~ǫ

∑

n,m

mnmm

(
σ2
nm − 1

2

)
ηnηm arccosh σnm − iπηnm√

σ2
nm − 1

(4.4)

with ηnm = δηn,ηm − δnm. In particular,

Im 2δ = −ReW (4.5)
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for the 2 → 2 process which is the object of our main interest here.
The discussion presented so far can be straightforwardly generalised to N = 8

supergravity starting from the soft eikonal operator (2.26). The technical steps are
identical to the GR case, except that one needs to add all contributions to Im 2δ
that arise by reordering the ladder operators associated to the various massless
particles in the theory, which include vectors and scalars. Thus, in analogy with
(4.3), we find:

lim
ω→0

dEvec

dω
=

1

4π2

∑

n,m

enem(−σnm)Fnm , (4.6)

lim
ω→0

dEsc

dω
=

1

4π2

∑

n,m

gngm
mnmm

Fnm . (4.7)

After summing up the all such terms related to the various physical modes we obtain
a remarkably simple result:

lim
ω→0

dEN=8

dω
=

2G

π

∑

n,m

mnmm(σ
′
nm)

2Fnm , (4.8)

where σ′
nm = σnm − 1 if n and m have momenta compactified along the same KK

direction (so that mn = mm) and σ
′
nm = σnm otherwise. Again, the right-hand side

of (4.8) is related to the exponentiation of infrared divergences due to soft graviton,
dilatons and massless KK modes,

WN=8
αβ =

κ2ω−2ǫ
∗

(4π)2~ǫ

∑

n,m

mnmm(σ
′
nm)

2 ηnηm arccosh σnm − iπηnm√
σ2
nm − 1

(4.9)

by the same link as in the case of graviton emissions (4.5).
Let us now study more in detail the spectrum for the 2 → 2 process in General

Relativity. Starting from the general expression (4.3) for Im 2δ, it is sufficient to
use σnn = 1 and Fnn = 1, while for n 6= m we have σnm = σmn and

σ12 = σ34 = σ , σ13 = σ24 = σQ , σ14 = 1 +
Q2

2m2
1

, σ23 = 1 +
Q2

2m2
2

, (4.10)

where we introduced the shorthand notation

σQ = σ − Q2

2m1m2

= −u−m2
1 −m2

2

2m1m2

. (4.11)
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Then, Eq. (4.3) becomes

lim
ω→0

dEgr

dω
=

4G

π

[
2m1m2

(
σ2 − 1

2

) arccosh σ√
σ2 − 1

− 2m1m2

(
σ2
Q − 1

2

) arccosh σQ√
σ2
Q − 1

+
m2

1

2
−m2

1

((
1 + Q2

2m2
1

)2
− 1

2

)arccosh
(
1 + Q2

2m2
1

)

√(
1 + Q2

2m2
1

)2
− 1

(4.12)

+
m2

2

2
−m2

2

((
1 +

Q2

2m2
2

)2

− 1
2

)arccosh
(
1 + Q2

2m2
2

)

√(
1 + Q2

2m2
2

)2
− 1

]
,

where, as discussed, the transferred momentum Q should be interpreted by us-
ing (2.19). As already emphasized, while in the following we will focus on certain
interesting kinematic limits, the dependence of this formula on the dynamics of the
background elastic process, and in particular on Q/mi, is exact.

The standard PM regime considered in [13, 18] requires that

Q2 ∼ (pΘs)
2 ≪ 2m2

i . (4.13)

In this regime, one can extract the leading (3PM) contribution by Taylor-expanding
the first line of (4.12) in Q2, while the remaining two lines only give subleading
contributions,

lim
ω→0

dEgr

dω
≃ 2G

π
Q2

[
8− 5σ2

3(σ2 − 1)
+

(2σ2 − 3)σ arccosh σ

(σ2 − 1)3/2

]
. (4.14)

Note that, in the UR regime, this gives:

lim
ω→0

dEgr

dω
≃ 4G

π
Q2

(
log

s

m1m2
− 5

6

)
. (4.15)

When rewritten in terms of Im 2δ(σ, b), the result (4.14) agrees with Eq. (5.14) of [18]
once we use Q ≃ pΘs and the leading result (2.6) for Θs. Moreover, to the leading
3PM order, Eq. (4.14) has been explicitly shown to hold also if the colliding objects
carry spin, for generic spin alignments [64]. Via unitarity, analyticity and crossing
symmetry, the 3PM divergent part of Im 2δ immediately provides the radiation-
reaction corrections to the 3PM deflection [18, 55].

Still, let us stress that the exact dependence of (4.12) on Q2 can be used to
extract a prediction for the ZFL of the spectrum and, via (3.25), for the IR-divergent
part of Im 2δ also at higher orders in G. In particular, once the nPM deflection
angle is known, Eq. (4.12) provides the IR divergent part of 2δ at (n+2)PM order
(so far explicit results for Θs, including radiation-reaction effects, are available up
to 3PM).
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Notice that (4.14) is determined by the soft theorems and the 1PM deflection
angle, explaining why the probe limit ν = (m1m2)/(m1 + m2)

2 ≪ 1 used in [65]
captures the full result at this order. It is straightforward to use (4.12) and extract
the higher PM corrections to (4.14) and so to the ZFL of the energy spectrum. Of
course starting at 3PM order one finds a non-trivial dependence on ν inherited from
the expression of Θs.

As a check, we compared the small-velocity limit of the first three orders in the
PM expansion of (4.12) with the results obtained in the standard Post-Newtonian
(PN) approach, see for instance the results in Appendix A of [66].10 It is interesting
to notice that the radiation-reaction contribution to the deflection angle [1] yields
terms in the soft spectrum that have odd powers of the velocity in the PN expansion.
The first such contribution to the ZFL of the energy spectrum can be obtained
simply by inserting in (4.14) the 2.5PN term of the deflection angle in GR [13, 18, 55]
and is dEgr

dω
∼ 512G5ν3m6v

25πb4
. At this order one would expect also a contribution from the

cross term of the linear and non-linear memories of the waveforms, however, by using
the result of [46], one can check that such contribution vanishes after integration
over the angles at least at the leading PN order. Thus the result quoted above
should be the full 5PN correction to the leading ZFL of the energy spectrum and
it would be interesting to compare it with the results derived in the PN approach.

In the naive small-Θs expansion, including the leading term in [65], there are
terms that are logarithmically divergent as σ → ∞ with Θs fixed, i.e. when one
enters the kinematic regime defined in (4.16). However, as discussed in the previous
section, the PM approximation can break down even when Θs is small, see (2.45).
This happens when11, for at least one index i,

Q√
2mi

=

√
2 p

mi
sin

Θs

2
∼ G(s−m2

1 −m2
2)

mib
& 1 (4.16)

In this regime, one cannot expand the last two lines in (4.12) for small Θs ∼ G.
The first line in (4.12) can always be expanded to first order in Q2/s (and

exhibits a singular massless limit) while the second and third line depend very non-
trivially on the “scaling variables” ξ1 ≡ Q

m1
, ξ2 ≡ Q

m2
, respectively. Actually, when

seen as analytic functions of z = ξ2, those two lines exhibit a branch point on the
negative real axis at the unphysical point z = −4, corresponding to the t-channel
thresholds t = 4m2

i . This implies that the PM expansion around z = 0 starts to
diverge at ξ2i = 4. This quantifies the qualitative statement made in (4.16).

This complicated ξi-dependence smoothly connects several interesting regimes.
We have already discussed the conventional 3PM regime where (4.14) holds. At
the opposite end let’s consider the extreme ultrarelativistic regime, or equivalently

10Starting from (A6) and (A7) in that reference, it is straightforward to perform the ZFL of the
terms that do not receive contributions from the integrals in (A8) and see that they agree with
the PN expansion of our (4.12). One can perform a more detailed comparison verifying that all
terms agree at the 2PN level considered in [66]. We thank Donato Bini for performing this check.

11Note that this condition requires at least one of the two particles to be relativistic, p ≫ mi.
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the massless limit, where 2p → √
s and m1, m2 ≪ Q =

√
s sin Θs

2
. The mass

singularities neatly cancel and then (4.12) reduces to (see e.g. [52] where the result
is extended to an arbitrary number of external massless legs)

lim
ω→0

dEgr

dω
≃ 4G

π

[
s log

s

s−Q2
+Q2 log

s−Q2

Q2

]

Q=
√
s sin Θs

2

, (4.17)

which also affords a very compact form in terms of the deflection angle

lim
ω→0

dEgr

dω
≃ −4G

π
s

[
cos2

Θs

2
log cos2

Θs

2
+ sin2 Θs

2
log sin2 Θs

2

]
. (4.18)

which agrees with the leading soft limit of Eq. (5.12) of 12 [53]. Let us consider the
small Θs limit of (4.18). At leading order for Θs ≪ 1 we have

lim
ω∗→0

dErad

dω∗
≃ GsΘ2

s

π

[
1 + log

4

Θ2
s

]
, (4.19)

which reproduces the result obtained in [38] within a classical GR approach and
in [36] from a scattering amplitudes perspective.

The latter approach clarifies the origin of the non-analytic behaviour in G
in (4.19) as we summarise below. Most of the radiated energy due to soft modes is
in a region almost collinear to the hard particles as it is clear from (2.46) and (2.47)
since the denominators in those expressions become smaller as θ ≪ 1 or π− θ ≪ 1.
However, when θ . Θs (π − θ . Θs) the waveforms stop growing and there is a
plateau till θ = 0 (θ = π). The key point is that, during the scattering, the direc-
tion of motion of the hard particles changes classically, so the radiation collinear
with the initial states has an angle Θs with the final states and vice versa. This
misalignment regulates the integral over θ in the energy spectrum and this produces
the non-analytic dependence on G in (4.19).

It is then clear that it is essential to keep track of the (elastic) eikonal expo-
nentiation to encode the information about the classical deflection angle, see the
discussion starting from (2.4). Technically, this is done by using the soft eikonal
operator (2.17), where the operator part describing the radiation acts on the full
elastic eikonal, instead of just on the amplitude describing a single graviton exchange
(which is a quantum process). In the standard relativistic PM regime (i.e. away
from the regime (4.16)) the subtlety discussed here is not manifest, since in that
case the would-be collinear blow up in (2.43) and (2.44) is cut-off by Ei/p− 1 > 0.
As a result the θ integral in the spectrum is regulated by σ as it is clear from (4.14).
Eq. (4.12) provides a smooth transition between the two regimes and the log σ en-
hancement in (4.14) becomes logΘ−2

s when entering the extreme ultra-relativistic
region.

12In order to reinstate the Newton constant, that result should be multiplied by 8πG and in
that equation E =

√
s/2 indicates the energy of each incident particle.
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Let us finally consider another corner of our two-parameter space, the one in
which, say, ξ1 = Q

m1
→ 0 and ξ2 = Q

m2
→ ∞. To this end, we can first take m2 to

be small for fixed s, m1, Q, and then take the small-Q limit for fixed s, m1. This
time the singularity for m2 → 0 cancels while a logm1 remains, so that:

lim
ω→0

dEgr

dω
≃ G

3π
Q2

[
1 + 6 log

(
(s−m2

1)
2

m2
1Q

2

)]
. (4.20)

Inside this regime we can also consider the probe limit, where we can regard particle
1 as the primary object and particle 2 as a test mass. This case corresponds to
further taking, in (4.20), s ≃ m2

1 + 2m1p (i.e. p ≃ m2σ) obtaining

lim
ω→0

dEgr

dω
≃ G

3π
Q2

[
1 + 6 log

(
4p2

Q2

)]
, (4.21)

or, recalling Q = 2p sin Θs

2
,

lim
ω→0

dErad

dω
≃ 4Gp2 sin2 Θs

2

[
1− 6 log

(
sin2 Θs

2

)]

3π
, (4.22)

where here Θs is the deflection angle in the probe limit in a Schwarzschild black
hole of mass m1.

Let us now turn to the case of N = 8 supergravity. Specializing (4.8) to the
2 → 2 kinematics as in (4.10), we have

lim
ω→0

dEN=8

dω
=

4G

π

[
2m1m2σ

2 arccosh σ√
σ2 − 1

− 2m1m2σ
2
Q

arccosh σQ√
σ2
Q − 1

(4.23)

− (Q2)2

4m2
1

arccosh
(
1 + Q2

2m2
1

)

√(
1 + Q2

2m2
1

)2
− 1

− (Q2)2

4m2
2

arccosh
(
1 + Q2

2m2
2

)

√(
1 + Q2

2m2
2

)2
− 1

]

Q=2p sin Θs
2

.

The standard relativistic regime, where Q2 ≪ 2m2
i in the equation above, has an

analytic PM expansion whose leading term reproduces the result of [55]

lim
ω→0

dEN=8

dω
≃ 4GQ2

π

[
σ2

σ2 − 1
+

(σ2 − 2)σ arccosh σ

(σ2 − 1)3/2

]
, (4.24)

where the leading deflection angle is given in (2.6) now with ζ = 0. On the contrary,
in the regime (4.16), the small-Θs expansion is non-analytic and interestingly, in
extreme ultrarelativistic kinematics where the masses can be neglected, one obtains
again (4.17). Indeed, the contributions related to the dilaton, and the Kaluza-Klein
scalars and vectors become negligible in this regime, as suggested by the fact that
(4.6), (4.7) scale with lower powers of σnm compared to (4.3), and the graviton
provides the dominant, universal behaviour.
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We refrain here from discussing in detail the soft spectra of N = 8 supergravity.
Suffice it to say that the link (3.25) trivially holds for each “species” of radiated
particle (dilaton, KK modes and gravitons), so that each spectrum is determined
by the corresponding divergent part of Im 2δ discussed in the previous section. In
particular, the ZFL of the full N = 8 energy spectrum, obtained by summing
over all types of emission, is obtained by substituting (4.23) (or more generally
(4.8)) in (3.25). At ultra-high energies, only the contribution due to the emission
of gravitons survives. This is a universal expression for two-derivatives theories in
accordance with the expectation that gravity dominates the high-energy limit not
just for the elastic scattering, as argued in [1], but also in the radiation sector.

5 Discussion and Outlook

In this paper we focused on the soft eikonal operator describing the emission of low-
frequency gravitons (or, in general, massless states in N = 8 supergravity) from the
2 → 2 scattering of energetic particles. By combining Weinberg’s exponentiation
in momentum space and the eikonal exponentiation in impact parameter space,
we obtained explicit formulae for the waveforms and the energy spectrum in the
zero frequency limit. The main feature is that these observables are smooth as the
energy of the collision increases and display a qualitative change in their behaviour
when one goes above the threshold (2.45). In general, waveforms and spectra now
depend non-trivially on the two ratios appearing in (2.45) if they are kept fixed as
one takes s → ∞. In the extreme ultrarelativistic regime in which both ratios go
to infinity (e.g. in the massless case), the universality of gravitational scattering [1]
is restored also for radiative observables at least in the ZFL regime: for instance,
the dilaton waveform becomes negligible (see Eq. (2.48), while in the standard
PM region it is non-trivial (2.49)) and the energy flux reproduces the universal
result (4.19). Note that, in the standard PM regime, (4.15) shows that the ZFL
flux divided by the initial energy increases logarithmically as σ becomes larger:
1√
s
dErad

dω∗
∼ G

√
sΘ2

s log σ. Even such a mild increase is inconsistent at high energy

and indeed when the threshold (2.45) is crossed the behaviour of the spectrum
smoothly changes to (4.19): the logarithmic increase with the energy is substituted
by a non-analytic dependence on the scattering angle (and thus on the Newton
constant).

Of course, the immediate next challenge is to extend our approach beyond the
small frequency limit. It is possible to introduce an eikonal operator that ex-
tends (2.14) to generic values of the frequency and assume an exponentiation in
impact parameter space as done for the elastic eikonal. A first proposal in this
direction has been discussed in detail in [37] which focuses on the regime below
the threshold (2.45). In this case the operator part of the eikonal operator is di-
rectly related to the leading PM waveforms [32, 33, 34, 62]. Various checks on
the consistency of this proposal are already discussed in the same reference and it
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is possible [29] to use it as a starting point to discuss the qualitative features of
the energy spectrum (for both dErad/dω∗ and the fully differential dErad/(dω∗ dΩ))
along the lines of what was done in the massless case [38, 35, 36]. The low fre-
quency approximation we considered here certainly breaks down when ωb ≃ 1 and
so one can estimate the contribution of the very soft gravitons to the total energy
radiated simply by assuming that the spectrum is constant up to ω ∼ 1/b. Then
the contribution from soft gravitons is Erad ∼ √

sΘ3
s, which is of the same order

as the full result [67, 68] in the PN region σ ∼ 1. When σ ≫ 1, but still below
the threshold (2.45), Erad scales as Erad ∼ √

sΘ3
s

√
σ [67, 68], while the prediction

from [38, 35, 36] for the massless case (which of course is above the threshold (2.45))
is Erad ∼ √

sΘ2
s logΘ

−2
s . It will be interesting to check whether these two cases

(massive and massless) are smoothly connected by taking the extreme ultrarela-
tivistic limit, as it happens for the ZFL case. The power-like dependence on the
scattering angle is consistent with the pattern seen in this paper, where σ is sub-
stituted by 1/Θ2

s in the extreme ultrarelativistic limit, but the result of [38, 35, 36]
has an extra logarithmic enhancement. This comes entirely from high-frequency
gravitons, which seem to be irrelevant below the bound (2.45). We plan to come
back to this issue in a future work [29].

Another interesting development is to investigate whether the eikonal operator
has the coherent form of (2.14) at all frequencies, or non-linear corrections in the
oscillators (in the exponent) are needed. The analysis of [37, 69] indicates that the
first subleading correction to the waveform can be encoded in an eikonal operator
that has the same functional form as (2.14), at least below the threshold (2.45). It
will be important to clarify whether this is an all order property by studying both
higher orders in the standard PM approach and the extreme ultrarelativistic limit
of the first PM correction.
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A Summary of the kinematics

Following closely Ref. [12], we write the 2 → 2 kinematics in the Breit frame where
the initial states have momenta

pµ1 = −m1u
µ
1 +

qµ

2
, pµ2 = −m2u

µ
2 −

qµ

2
, (A.1)

where the quantities in bold are (D − 2) dimensional. The final states are

pµ4 = m1u
µ
1 +

qµ

2
pµ3 = m2u

µ
2 −

qµ

2
, (A.2)

so the momentum transferred p1 + p4 = q is shared democratically between the in
and out states and is orthogonal to the classical velocities ui. We also introduce

mi =

√
m2
i +

q2

4
, u2i = −1 , y = −(u1u2) =

m1m2σ − q2

4

m1m2

. (A.3)

Aligning the direction of classical motion along the z axis, we can also introduce
rapidity variables according to

uµi = (cosh yi, 0, sinh yi) , qµ = (0,q, 0) , (A.4)

and

cosh y1 =
m1 +m2y√

m2
1 +m2

2 + 2m1m2y
=
m1

m1

m1 +m2σ√
m2

1 +m2
2 + 2m1m2σ

=
E1

m1

,

cosh y2 =
m2 +m1y√

m2
1 +m2

2 + 2m1m2y
=
m2

m2

m2 +m1σ√
m2

1 +m2
2 + 2m1m2σ

=
E2

m2
,

sinh y1 =
m2

√
y2 − 1√

m2
1 +m2

2 + 2m1m2y
=

p

m1
cos

Θs

2
,

sinh y2 = − m1

√
y2 − 1√

m2
1 +m2

2 + 2m1m2y
= − p

m2
cos

Θs

2
,

(A.5)

where the spatial momentum p is given by (2.3) and the second formulation in each
expression is derived by using (A.3).

The direction of the radiation is of course defined by the momentum of the
corresponding emitted soft particle. In D = 4 we take

kµ = (ω,k, kL) = ωnµ , nµ = (1, sin θ cos φ, sin θ sin φ, cos θ) (A.6)

and introduce two orthogonal vectors ǫφk = ǫθk = 0

ǫµφ = (0,− sinφ, cosφ, 0) ǫµθ = (0, cos θ cosφ, cos θ sinφ,− sin θ) . (A.7)

which can be used to define the physical polarisations of the graviton

εµν× =
1

2
(ǫµφǫ

ν
θ − ǫνφǫ

µ
θ ) , εµν+ =

1

2
(ǫµθ ǫ

ν
θ − ǫµφǫ

ν
φ) . (A.8)
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B Spectrum of emitted momentum
dPI

rad

dω

For completeness, let us briefly go back to the spatial components α = I of (3.21),
i.e. the spectrum of emitted spatial momentum. They lead to the following angular
integrals, which by rotational symmetry can be cast in the form

II(pn, pm) =

∮
x̂I

(En − ~kn · x̂)(Em − ~km · x̂)
dΩ(x̂)

4π
= anmk̂

I
n + bnmk̂

I
m , (B.1)

so that

anm =
k̂n · I − cos θnm k̂m · I

sin2 θnm
, bnm = amn , (B.2)

where θnm is the angle between k̂n and k̂m. In terms of the rapidities

En,m = mn,m coshψn,m , |~kn,m| = mn,m sinhψn,m , (B.3)

one finds

k̂n · I =
1

mnmm

[
− ψm
sinhψn sinhψm

− arctanh f + arctanh g

2
√
σ2
nm − 1

cothψn

]
, (B.4)

with

f(ψn, ψm, σnm) =
2eψm(eψnσ2

nm − σnm coshψm − sinhψn)

(1 + e2ψm − 2eψn+ψmσnm)
√
σ2
nm − 1

, (B.5)

g(ψn, ψm, σnm) =
2eψm(σ2

nm − σnme
ψn coshψm + eψn sinhψn)

(eψn + e2ψm+ψn − 2eψmσnm)
√
σ2
nm − 1

. (B.6)

In the collinear limit θnm → π−, this result simplifies to

k̂n · I =
ψn cothψn − ψm cothψm
mnmm sinh(ψn + ψm)

. (B.7)

The ZFL of the spectrum for the emission of spatial momentum is therefore given
by

lim
ω→0

dPI

dω
=
∑

n,m

κ2ηnηm
(2π)2

m2
nm

2
m

(
σ2
nm − 1

2

)
II(pn, pm) , (B.8)

for soft gravitons. Similar expressions can be obtained for vectors and scalar, fol-
lowing the same strategy adopted for Im 2δ and for dErad/dω in the main body of
the paper.
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[26] C. Dlapa, G. Kälin, Z. Liu, and R. A. Porto, “Conservative Dynamics of
Binary Systems at Fourth Post-Minkowskian Order in the Large-eccentricity
Expansion,” arXiv:2112.11296 [hep-th].

[27] D. Bini, T. Damour, and A. Geralico, “Radiative contributions to
gravitational scattering,” Phys. Rev. D 104 (2021) no. 8, 084031,
arXiv:2107.08896 [gr-qc].

[28] A. V. Manohar, A. K. Ridgway, and C.-H. Shen, “Radiated Angular
Momentum and Dissipative Effects in Classical Scattering,”
arXiv:2203.04283 [hep-th].

[29] P. Di Vecchia, C. Heissenberg, R. Russo, and G. Veneziano (in preparation) .

[30] P. D. D’Eath, “High Speed Black Hole Encounters and Gravitational
Radiation,” Phys. Rev. D18 (1978) 990.

[31] S. J. Kovacs and K. S. Thorne, “The Generation of Gravitational Waves. 3.
Derivation of Bremsstrahlung Formulas,” Astrophys. J. 217 (1977) 252–280.

[32] S. J. Kovacs and K. S. Thorne, “The Generation of Gravitational Waves. 4.
Bremsstrahlung,” Astrophys. J. 224 (1978) 62–85.

[33] G. U. Jakobsen, G. Mogull, J. Plefka, and J. Steinhoff, “Classical
Gravitational Bremsstrahlung from a Worldline Quantum Field Theory,”
arXiv:2101.12688 [gr-qc].

[34] S. Mougiakakos, M. M. Riva, and F. Vernizzi, “Gravitational Bremsstrahlung
in the post-Minkowskian effective field theory,”
Phys. Rev. D 104 (2021) no. 2, 024041, arXiv:2102.08339 [gr-qc].

[35] M. Ciafaloni, D. Colferai, F. Coradeschi, and G. Veneziano, “Unified limiting
form of graviton radiation at extreme energies,”
Phys. Rev. D93 (2016) no. 4, 044052, arXiv:1512.00281 [hep-th].

[36] M. Ciafaloni, D. Colferai, and G. Veneziano, “Infrared features of
gravitational scattering and radiation in the eikonal approach,”
Phys. Rev. D99 (2019) no. 6, 066008, arXiv:1812.08137 [hep-th].

31

http://arxiv.org/abs/2106.08276
http://arxiv.org/abs/2112.10750
http://arxiv.org/abs/2112.11296
http://dx.doi.org/10.1103/PhysRevD.104.084031
http://arxiv.org/abs/2107.08896
http://arxiv.org/abs/2203.04283
http://dx.doi.org/10.1103/PhysRevD.18.990
http://dx.doi.org/10.1086/155576
http://dx.doi.org/10.1086/156350
http://arxiv.org/abs/2101.12688
http://dx.doi.org/10.1103/PhysRevD.104.024041
http://arxiv.org/abs/2102.08339
http://dx.doi.org/10.1103/PhysRevD.93.044052
http://arxiv.org/abs/1512.00281
http://dx.doi.org/10.1103/PhysRevD.99.066008
http://arxiv.org/abs/1812.08137


[37] A. Cristofoli, R. Gonzo, N. Moynihan, D. O’Connell, A. Ross, M. Sergola,
and C. D. White, “The Uncertainty Principle and Classical Amplitudes,”
arXiv:2112.07556 [hep-th].

[38] A. Gruzinov and G. Veneziano, “Gravitational Radiation from Massless
Particle Collisions,” Class. Quant. Grav. 33 (2016) no. 12, 125012,
arXiv:1409.4555 [gr-qc].

[39] F. Bloch and A. Nordsieck, “Note on the Radiation Field of the electron,”
Phys. Rev. 52 (1937) 54–59.

[40] W. E. Thirring and B. Touschek, “A covariant formulation of the
Bloch-Nordsieck method,” Phil. Mag. Ser. 7 42 (1951) 244–249.

[41] S. Weinberg, “Infrared photons and gravitons,”
Phys. Rev. 140 (1965) B516–B524.

[42] M. Mirbabayi and M. Porrati, “Dressed Hard States and Black Hole Soft
Hair,” Phys. Rev. Lett. 117 (2016) no. 21, 211301,
arXiv:1607.03120 [hep-th].

[43] S. Choi and R. Akhoury, “BMS Supertranslation Symmetry Implies
Faddeev-Kulish Amplitudes,” JHEP 02 (2018) 171,
arXiv:1712.04551 [hep-th].

[44] N. Arkani-Hamed, M. Pate, A.-M. Raclariu, and A. Strominger, “Celestial
amplitudes from UV to IR,” JHEP 08 (2021) 062,
arXiv:2012.04208 [hep-th].

[45] D. Christodoulou, “Nonlinear nature of gravitation and gravitational wave
experiments,” Phys. Rev. Lett. 67 (1991) 1486–1489.

[46] A. G. Wiseman and C. M. Will, “Christodoulou’s nonlinear gravitational
wave memory: Evaluation in the quadrupole approximation,”
Phys. Rev. D 44 (1991) no. 10, R2945–R2949.

[47] S. Weinberg, “Photons and Gravitons in S-Matrix Theory: Derivation of
Charge Conservation and Equality of Gravitational and Inertial Mass,”
Phys. Rev. 135 (1964) B1049–B1056.

[48] S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations. Cambridge
University Press, 6, 2005.

[49] A. Laddha and A. Sen, “Observational Signature of the Logarithmic Terms in
the Soft Graviton Theorem,” Phys. Rev. D100 (2019) no. 2, 024009,
arXiv:1806.01872 [hep-th].

32

http://arxiv.org/abs/2112.07556
http://dx.doi.org/10.1088/0264-9381/33/12/125012
http://arxiv.org/abs/1409.4555
http://dx.doi.org/10.1103/PhysRev.52.54
http://dx.doi.org/10.1103/PhysRev.140.B516
http://dx.doi.org/10.1103/PhysRevLett.117.211301
http://arxiv.org/abs/1607.03120
http://dx.doi.org/10.1007/JHEP02(2018)171
http://arxiv.org/abs/1712.04551
http://dx.doi.org/10.1007/JHEP08(2021)062
http://arxiv.org/abs/2012.04208
http://dx.doi.org/10.1103/PhysRevLett.67.1486
http://dx.doi.org/10.1103/PhysRevD.44.R2945
http://dx.doi.org/10.1103/PhysRev.135.B1049
http://dx.doi.org/10.1103/PhysRevD.100.024009
http://arxiv.org/abs/1806.01872


[50] B. Sahoo and A. Sen, “Classical and Quantum Results on Logarithmic Terms
in the Soft Theorem in Four Dimensions,” JHEP 02 (2019) 086,
arXiv:1808.03288 [hep-th].

[51] A. P. Saha, B. Sahoo, and A. Sen, “Proof of the classical soft graviton
theorem in D = 4,” JHEP 06 (2020) 153, arXiv:1912.06413 [hep-th].

[52] A. Addazi, M. Bianchi, and G. Veneziano, “Soft gravitational radiation from
ultra-relativistic collisions at sub- and sub-sub-leading order,”
JHEP 05 (2019) 050, arXiv:1901.10986 [hep-th].

[53] B. Sahoo and A. Sen, “Classical Soft Graviton Theorem Rewritten,”
arXiv:2105.08739 [hep-th].

[54] S. Caron-Huot and Z. Zahraee, “Integrability of Black Hole Orbits in
Maximal Supergravity,” JHEP 07 (2019) 179, arXiv:1810.04694 [hep-th].

[55] P. Di Vecchia, C. Heissenberg, R. Russo, and G. Veneziano, “The eikonal
approach to gravitational scattering and radiation at O(G3),”
JHEP 07 (2021) 169, arXiv:2104.03256 [hep-th].

[56] A. Strominger and A. Zhiboedov, “Gravitational Memory, BMS
Supertranslations and Soft Theorems,” JHEP 01 (2016) 086,
arXiv:1411.5745 [hep-th].

[57] A. Campoleoni, D. Francia, and C. Heissenberg, “Electromagnetic and color
memory in even dimensions,” Phys. Rev. D 100 (2019) no. 8, 085015,
arXiv:1907.05187 [hep-th].

[58] A. Campoleoni, D. Francia, and C. Heissenberg, “On asymptotic symmetries
in higher dimensions for any spin,” JHEP 12 (2020) 129,
arXiv:2011.04420 [hep-th].

[59] A. Cristofoli, R. Gonzo, D. A. Kosower, and D. O’Connell, “Waveforms from
Amplitudes,” arXiv:2107.10193 [hep-th].

[60] A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge
Theory,” arXiv:1703.05448 [hep-th].

[61] Y. B. Zel’dovich and A. G. Polnarev, “Radiation of gravitational waves by a
cluster of superdense stars,” Sov. Astron. 18 (1974) 17.

[62] M. M. Riva and F. Vernizzi, “Radiated momentum in the post-Minkowskian
worldline approach via reverse unitarity,” JHEP 11 (2021) 228,
arXiv:2110.10140 [hep-th].

[63] C. Heissenberg, “Infrared divergences and the eikonal exponentiation,”
Phys. Rev. D 104 (2021) no. 4, 046016, arXiv:2105.04594 [hep-th].

33

http://dx.doi.org/10.1007/JHEP02(2019)086
http://arxiv.org/abs/1808.03288
http://dx.doi.org/10.1007/JHEP06(2020)153
http://arxiv.org/abs/1912.06413
http://dx.doi.org/10.1007/JHEP05(2019)050
http://arxiv.org/abs/1901.10986
http://arxiv.org/abs/2105.08739
http://dx.doi.org/10.1007/JHEP07(2019)179
http://arxiv.org/abs/1810.04694
http://dx.doi.org/10.1007/JHEP07(2021)169
http://arxiv.org/abs/2104.03256
http://dx.doi.org/10.1007/JHEP01(2016)086
http://arxiv.org/abs/1411.5745
http://dx.doi.org/10.1103/PhysRevD.100.085015
http://arxiv.org/abs/1907.05187
http://dx.doi.org/10.1007/JHEP12(2020)129
http://arxiv.org/abs/2011.04420
http://arxiv.org/abs/2107.10193
http://arxiv.org/abs/1703.05448
http://dx.doi.org/10.1007/JHEP11(2021)228
http://arxiv.org/abs/2110.10140
http://dx.doi.org/10.1103/PhysRevD.104.046016
http://arxiv.org/abs/2105.04594


[64] F. Alessio and P. Di Vecchia, “Radiation reaction for spinning black-hole
scattering,” arXiv:2203.13272 [hep-th].

[65] L. Smarr, “Gravitational Radiation from Distant Encounters and from
Headon Collisions of Black Holes: The Zero Frequency Limit,”
Phys. Rev. D 15 (1977) 2069–2077.

[66] D. Bini and A. Geralico, “Frequency domain analysis of the gravitational
wave energy loss in hyperbolic encounters,”
Phys. Rev. D 104 (2021) no. 10, 104019, arXiv:2108.02472 [gr-qc].

[67] E. Herrmann, J. Parra-Martinez, M. S. Ruf, and M. Zeng, “Gravitational
Bremsstrahlung from Reverse Unitarity,” arXiv:2101.07255 [hep-th].

[68] E. Herrmann, J. Parra-Martinez, M. S. Ruf, and M. Zeng, “Radiative
classical gravitational observables at O(G3) from scattering amplitudes,”
JHEP 10 (2021) 148, arXiv:2104.03957 [hep-th].

[69] R. Britto, R. Gonzo, and G. R. Jehu, “Graviton particle statistics and
coherent states from classical scattering amplitudes,”
arXiv:2112.07036 [hep-th].

34

http://arxiv.org/abs/2203.13272
http://dx.doi.org/10.1103/PhysRevD.15.2069
http://dx.doi.org/10.1103/PhysRevD.104.104019
http://arxiv.org/abs/2108.02472
http://arxiv.org/abs/2101.07255
http://dx.doi.org/10.1007/JHEP10(2021)148
http://arxiv.org/abs/2104.03957
http://arxiv.org/abs/2112.07036

	1 Introduction
	2 The Eikonal Operator in the ZFL
	2.1 The elastic eikonal exponentiation
	2.2 Bloch-Nordsieck dressing
	2.3 Soft waveforms and memory

	3 Infrared Divergences and Soft Spectra
	3.1 Infrared divergences in Im2d
	3.2 Infrared divergences in the number of emitted quanta
	3.3 Zero-frequency limit (ZFL) of dE/dw

	4 ZFL (and Im2d) at Arbitrary Velocities
	5 Discussion and Outlook
	A Summary of the kinematics
	B Spectrum of emitted momentum dPI/dw

