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Zusammenfassung
Teilchenbeschleuniger sind wichtige Werkzeuge in der Hochenergiephysik, um die fundamentale Struktur
von Materie zu untersuchen. In Ringbeschleunigern ist die Kollisionsenergie proportional zum ablenkenden
magnetischen Feld und dem Radius des Rings. Als Folge verwenden Ringbeschleuniger wie der Large Hadron
Collider am CERN traditionellerweise Magnete aus Niedrigtemperatur-Supraleitern, die starke Magnetfelder
erzeugen, um die Ausmaße der Teilchenstrahlen auf akzeptable Dimensionen zu beschränken. Diese Klasse
von Supraleitern weist ein praktisches Limit für die erreichbaren Magnetfelder innerhalb der Magnetöffnung
von ungefähr 8T für eine Nb− Ti Legierung und 16T für eine Nb3Sn Verbindung. Um diese Limitierungen
in Beschleunigermagneten zu überwinden, müssen Hochtemperatur-Supraleiter (HTS) verwendet werden,
insbesondere „rare-earth barium copper oxide“ (ReBCO) Bänder.

Im Vergleich zu ihrem niedrigtemperatur-supraleitenden Gegenstück verhalten sich Beschleunigermagnete
auf Basis von ReBCO Bändern unterschiedlich im Bezug auf die magnetische Feldqualität sowie die Absiche-
rung gegen Quenches. Die Bänder sind äquivalent zu breiten und anisotropischen Mono-Filamenten, was zu
Abschirmströmen führt, welche die Feldqualität insbesondere bei niedrigen Strömen negativ beeinflussen.
Gleichzeitig ist das Auftreten von Quenches weniger wahrscheinlich aufgrund der größeren thermischen Sta-
bilität der Bänder, die Detektion derselben und die anschließende Absicherung gegen deren Folgen gestaltet
sich jedoch als schwieriger. Zudem wird das dynamische Verhalten von Beschleunigermagneten auch vom
umliegenden elektrischen Schaltkreis beeinflusst, weswegen dieser berücksichtigt werden muss. Dies führt
zu multiphysikalischen Multiskalen- und Multiratenproblemen. Numerische Methoden spielen eine zentrale
Rolle, um die Herausforderungen im Bezug auf magnetische Feldqualität und Absicherung gegen Quenches
zu überwinden.

In dieser Arbeit wird die magnetothermische Dynamik von hochtemperatur-supraleitenden Magneten mit-
tels eines Wirbelstromproblems im Zeitbereich modelliert. Eine gemischte Feldformulierung wird entwickelt,
um dem nichtlinearen spezifischen Widerstand der supraleitenden Materialien gerecht zu werden. Die For-
mulierung wird um Distributionsfunktionen erweitert, um externe Quellspannungen und/oder Quellströme
ans Feldproblem zu koppeln. Weitere Vereinfachungen werden für den Fall von Bändern mit großen Aspekt-
verhältnissen und multi-filamenten Leitern diskutiert. Weiterhin wird eine Kopplung von Feldproblem und
Schaltkreis als optimierte Schwarz-Transmissionsbedingung hergeleitet, sodass die Formulierung zur Lösung
solcher gekoppelten Probleme mittels Methoden der Co-Simulation eingesetzt werden kann. Die Implemen-
tierung der Formulierung in der Finite-Elemente-Methode wird mittels analytischer und Referenzlösungen
aus der Literatur verifiziert und mittels Messungen des auf HTS basierenden Dipolmagnet Feather-M2 vali-
diert.

Als Fallstudie wird die Formulierung auf „proof-of-concept“ ReBCO Abschirmungen für passive Feldfehler-
reduzierung in Beschleunigermagneten angewandt. Das vorgeschlagene Design heißt HALO („harmonics-
absorbing layered object“), da es aus geschichteten Bändern besteht, welche voll skalier- und erweiterbar
sind. Die Abschirmungen werden so positioniert, dass ihre persistente Magnetisierung das Magnetfeld im
Inneren der Magnetöffnung formt und dabei ungewünschte Feldfehler ausgleicht. Experimentelle Messun-
gen bei 77K in flüssigem Stickstoff zeigen eine signifikante Reduktion des Feldfehlers, bis zu einem Faktor
von vier. Außerdem verdeutlicht numerische Extrapolation für beschleunigerähnliche Bedingungen, dass ein
sorgfältiges Design der supraleitenden Abschirmungen die typischen Anforderungen an die Feldqualität in
Beschleunigermagneten erfüllt.
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Abstract
Particle colliders for high-energy physics are important tools for investigating the fundamental structure of
matter. In circular accelerators, the collision energy of particles is proportional to the bending magnetic field
and the radius of the machine. As a consequence, circular accelerators such as the Large Hadron Collider at
CERN have traditionally relied on high-field magnets made of low-temperature superconductors, confining
the particle beams within a complex of acceptable dimensions. This class of superconductors shows a practi-
cal limit in the achievable magnetic field in the magnet aperture of about 8T for a Nb− Ti alloy, and 16T for
a Nb3Sn compound. Overcoming these limits requires the use of high-temperature superconductors (HTS) in
acceleratormagnets, in particular rare-earth barium copper oxide (ReBCO) tapes.

With respect to the low-temperature counterpart, accelerator magnets based on ReBCO tapes are known to
behave differently in terms of magnetic field quality and protection from quench events. The tapes are
equivalent to wide and anisotropic mono-filaments, resulting in screening currents detrimentally affect-
ing the magnetic field quality, in particular at low currents. At the same time, quenches are less likely
to occur due to the enhanced thermal stability of the tapes, but are more difficult to detect and mitigate.
Moreover, the dynamic behavior of accelerator magnets is also affected by the surrounding circuitry which
must be taken into account, leading to multiphysics, multirate and multiscale problems. Numerical meth-
ods play a crucial role for overcoming the challenges related to magnetic field quality and quench protec-
tion.

In this work, the magnetothermal dynamics in high-temperature superconducting magnets is modeled by
means of an eddy-current problem in the time domain. A mixed field formulation is developed to cope
with the nonlinear resistivity law of superconducting materials. The formulation is complemented with dis-
tribution functions for the coupling of external voltage and/or current source quantities. Further simplifi-
cations are discussed in case of tapes with high aspect ratio, and multifilamentary conductors. Moreover,
a field-circuit coupling interface is derived as an optimized Schwarz transmission condition, such that the
formulation can be used in field-circuit coupled problems by means of co-simulation methods. The imple-
mentation of the formulation in the finite element method is verified against analytical and reference solu-
tions available in literature, and validated against measurements on the HTS-based dipole magnet Feather-
M2.

As a case-study, the formulation is applied to proof-of-concept ReBCO screens for the passive field-error can-
cellation in accelerator magnets. The proposed design is called HALO (harmonics-absorbing layered object)
as it is made of stacks of tapes arranged in layers which are fully scalable and expandable. The screens are po-
sitioned such that their persistent magnetization shapes the magnetic field in the magnet aperture, canceling
the undesired field imperfections. Experimental measurements at 77K in liquid nitrogen show a significant
reduction of the field error, up to a factor of four. Moreover, numerical extrapolation for accelerator-like con-
ditions shows that a careful design of the superconducting screens allows matching the typical field quality
requirements for accelerator magnets.
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1 Introduction

Particle colliders for high-energy physics are powerful tools for investigating the fundamental structure as well
as the governing forces of matter. In circular accelerators, beams of charged particles traveling in opposite
directions are accelerated by means of alternating electric fields generated within radio-frequency cavities.
Lorentz forces act on the particles such that the beams are kept on a circular trajectory. Dipole and quadrupole
magnets located all around the ring provide the steering force and the focusing effect, keeping the particles on
the intended trajectory and preventing the beams from diverging. Once the particles reach the desired energy,
they are made to collide at designated interaction points, where collisions are transformed into showers of
particles which are subsequently studied in particle detectors. The energy of particlesWp and the consequent
collision energy scales directly with the radius of the accelerator ring rr and the bending dipole magnetic field
B, that is,Wp ∝ rrB. Although a higher energy can be reached by increasing the radius of particle colliders,
this may lead to unpractical dimensions. Therefore, it is necessary to use magnetic fields as high as possible,
for which superconductivity is needed [1].

To date, the European Organization for Nuclear Research (CERN) operates near Geneva, Switzerland, the
largest and most powerful circular accelerator in the world, the Large Hadron Collider (LHC) [3] which is
shown in Figure 1.1. The LHC is located in a complex of tunnels about 100m underground, featuring a ring
of 27 km which is composed of eight arcs linked by straight sections, and organized in octants. Four interac-
tion points host the main detectors ALICE [4], ATLAS [5], CMS [6] and LHCb [7], optimized for tracking the
particle showers from collisions. The LHC consists of over 1500 main dipole and quadrupole superconducting
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(a) LHC schematic representation. (b) LHC tunnel.

Figure 1.1. The Large Hadron Collider. (a) Schematic representation highlighting the octants and the interaction
points. (b) Photograph taken in the tunnel of the LHC. Figures taken from [2], © CERN.
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(a) Cross section of the magnet. (b) Cut-away demonstration model.

Figure 1.2. LHCmain bending dipole magnet. (a) Cross section of the magnet, highlighting the main components.
(b) Photograph of a cut-away demonstration model. Figures taken from [2], © CERN.

magnets, operated at the cryogenic temperature of 1.9K. Liquid helium in superfluid state [8] is used as a
coolant, since it is a very effective thermal stabilizer. Thanks to the lack of electrical resistance, superconduct-
ing coils can withstand high densities of current, making it possible to implement compact designs reaching
much higher magnetic fields than the typical 1.5T in traditional iron-cored, copper-coil magnets. The 15-m-
long dipole magnets used for bending the particle beams produce a nominal magnetic field of 8.33T when op-
erated at a current corresponding to the intended maximum collision energy of 14TeV. Figure 1.2 shows the
cross section of an LHCmain bending dipole magnet and the surrounding structure with the principal compo-
nents. The twin-aperture design comprises two ultra-high vacuum beam pipes and dipole coils embedded in
the same iron yoke, mechanical structure, and cryostat. Within each LHC octant, the magnets are electrically
connected in series, composing a circuit which spans over 7 km length within 3.5 km of tunnel and includes
for example power converters and energy-extraction resistors, warm and cold busbars, current leads, bypass
diodes, and diagnostic systems. The total energy stored in a superconducting circuit is equal to the sum of
energies stored in the magnetic field of each magnet, and can exceed 1GJ. If released in an uncontrolled way,
this stored energy can lead to irreversible damage. Therefore, dedicated circuit and magnet protection sys-
tems must be put in place. The analysis of circuits containing superconducting magnets and their protection
systems is crucial to ensure smooth operations in particle accelerators.

The energy of particles Wp is of paramount importance because it determines which particles are created
during collisions, and may be consequently discovered. The successor of the LHC, named the Future Circular
Collider (FCC) [9] is already under study, a 80 km long accelerator using 16T dipole magnets, aiming in the
next decades at proton-proton collision energies of 100TeV.

1.1 Superconductivity for Magnets

This section introduces basic concepts of superconductivity which are relevant for applications; for an in-depth
discussion see for example [10]. The phenomenon of superconductivity was firstly observed in 1911 [11]
as the complete vanishing of the electrical resistance in certain materials, occurring below a certain critical
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temperature Tc. Superconducting materials are classified into the type-I and type-II superconductors, de-
pending on their behavior with respect to an externally applied magnetic field. Type-I superconductors are
typically chemical elements such as mercury, lead, and aluminum, and while entering the superconducting
state, they generate electric currents which expel the magnetic field. This phenomenon is known as the
Meissner-Ochsenfeld effect [12], and it can occur only for magnetic fields below a critical field Bc, above
which the superconductivity is lost.

Type-II superconductors include alloys and compounds such as niobium titanium (Nb-Ti), niobium tin (Nb3Sn)
and rare-earth barium copper oxides (ReBCO). These materials feature both a first critical field Bc1, and an
upper critical field Bc2. As Bc2 is typically orders of magnitude higher than Bc1, type-II superconductors are
suitable for practical applications. Below Bc1, the behavior of type-I and type-II superconductors is identical.
Once Bc1 is exceeded, the magnetic field penetrates in the material through Abrikosov vortices [13], each
carrying a flux quantum which is surrounded by screening currents. The result is a mixed state where the
normal conducting center of the vortices is surrounded by material in superconducting state. Depending on
the material and its micro-structure, some or all of the vortices are located on micro-structural defects in
the material, resulting in a behavior known as flux pinning [1]. When a current is applied to the material,
and a magnetic field transverse to the direction of the current is present, then the vortices are exposed to
Lorentz forces. However, it is energetically favorable for the vortices located on micro-structural defects to
remain there, and the equivalent force holding the vortices in place (either directly for vortices located on
pinning sites or indirectly through mutual repulsion for unpinned vortices) is known as the pinning force. If
the Lorentz force exceeds the pinning force, the vortices start to move and dissipate energy, and the property
of zero resistance is lost. The critical current density Jc is the current density at which the pinning force
and Lorentz force are equal in magnitude and opposite in direction. A superconducting material may con-
veniently be described with the parameters Tc, Bc2, and Jc. These three parameters span a critical surface
f(Tc, Bc2, Jc) = 0 which defines limits for temperature, magnetic field and current density below which a
material is in the superconducting state. The critical surfaces of the Nb-Ti, Nb3Sn and ReBCO materials are
shown in Figure 1.3a and 1.3b [14]. In addition, other parameters influence these three parameters as well,
for example magnetic field orientation, strain and radiation load.

Type-II superconductors are traditionally subclassified into low-temperature superconductors (LTS) and high-
temperature superconductors (HTS), depending whether Tc exceeds the boiling temperature of liquid nitro-
gen at 77K. The difference between the operational temperature of superconductors and Tc determines a
enthalpy margin which is beneficial against thermal perturbations. The most commonly used ’workhorse’
is the type-II superconductor Nb-Ti. This material is ductile and can be manufactured in multifilamentary
twisted wires, referred at as strands in the following, of length up to several kilometers. In the LHC, the
main bending dipole magnets are wound using a fully-transposed cable, known as Rutherford cable, which is
composed of Nb-Ti strands. The critical surface of Nb-Ti limits the magnetic field for practical applications to
about 9T [1]. Therefore, to exceed this field in the next generation accelerators the use of Nb3Sn is foreseen.
However, this material is brittle, complicating the manufacturing of superconducting coils. The filaments
of Nb and Sn are initially separated in the coil, forming the compound only after several days of reaction at
relatively high temperatures, up to over 900K, in a technological process called wind-and-react, see for exam-
ple [15]. After the heat treatment, the coil is usually impregnated using an epoxy resin to protect the brittle
superconductor. In the context of FCC, the main bending dipole magnets are expected to be constructed with
Nb3Sn, with an intended magnetic field up to 16T [9].
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Figure 1.3. Comparison of the critical surfaces of Nb-Ti and Nb3Sn, and ReBCO materials.

1.2 High-Temperature Superconductors

To date, a possibility for exceeding the magnetic field limits posed by Nb3Sn is given by high-temperature
superconducting (HTS) materials. As an example, YBCO compounds which were discovered in 1986 have an
estimated upper critical field of 140T [16] and a critical temperature of 93K (See Figure 1.3). Consequently,
HTS materials can potentially be used in superconducting magnets for boosting magnetic fields beyond 20
T [17], and with enthalpy margins one order of magnitude above traditional LTSmaterials. As a consequence,
and in view of possible future accelerator projects including FCC, the use of high-temperature superconduc-
tors in accelerator-type dipole magnets is under exploration; see [18] for an overview. A significant milestone
was recently achieved within the EuCARD-2 [19] and ARIES [20] projects, which led to the construction of
the HTS accelerator dipole insert-magnet Feather-M2.1-2 [21, 22]. This demonstrator magnet is designed to
operate inside the aperture of the Nb3Sn FRESCA2 dipole magnet [23, 24], producing a peak field of 5T at
a nominal current of 10 kA, in a background field of 13T.

At present, two main HTS conductors are available and sufficiently mature for applications in demonstration
magnets [18]. The first is based on the Bi-2212 compound which belongs to the family of bismuth strontium
calcium copper oxides (BSCCO) [25, 26], and it is manufactured in the shape of a strand. The second
belongs to the family of rare-earth barium copper oxides (ReBCO) [27], where the rare earth element Re
can be yttrium, gadolinium, and others. ReBCO conductors are available in form of thin film deposited on a
carrier inside a tape. In comparison with Bi-2212, ReBCO tapes do not require any heat treatment, are more
resistant to mechanical stress, and typically allow for higher engineering critical current density, that is, the
equivalent critical current density in the overall cross section of the conductor [28]. At the same time, the
cost of raw materials for ReBCO is not the principal factor in determining the cost of conductor, leaving room
for potential cost reductions thanks to mass production. Also, ReBCO conductors are generally considered
for power applications, and are more commonly used.

ReBCO conductors are made of a multilayered composite structure, as shown in Figure 1.4. The substrate,
made of either stainless steel or Hastelloy (e.g. C-276), contributes towards mechanical robustness and pro-
vides the surface for the growth of thin films. A series of thin buffer layers of up to 1µm are applied to the
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Copper: 20-40 μm

Hastelloy (or steel): 30-100 μm

Silver: 1-2 μm

Buffer layers: ~ 1 μm

ReBCO: 1-3 μm

Figure 1.4. Material structure of a ReBCO tape, picture taken from [32].

surface, allowing the deposition of the ReBCO layer which is also in the order of 1µm. A few µm thick layer
of silver prevents chemical reactions between the ReBCO layer and the copper stabilizer coating the tape.
As a result, the superconducting material is just a small fraction of the tape volume. The ReBCO behavior
in magnetic fields is strongly anisotropic, differently from the LTS counterpart. The anisotropy is due to the
crystalline structure of the superconducting layer whose crystallographic planes all have the same orienta-
tion. By applying a magnetic field perpendicular to these planes, the screening currents circulate within
each plane but not between the planes, resulting in relatively weak flux line pinning. However, if magnetic
fields are applied tangentially to the superconducting layer, they can penetrate between the crystallographic
planes without destroying the superconducting state [29]. Consequently, superconducting tapes are highly
influenced by perpendicular magnetic fields, but nearly unaffected by magnetic fields applied parallel to their
wide surface. The anisotropy becomes more pronounced in high magnetic fields, at which the difference in
critical current density between the parallel and perpendicular directions can be more than a factor of five,
see for example [30, 31].

1.3 Quench

In superconducting devices, thermal perturbations can cause the temperature in the superconductor to locally
exceed the current-sharing temperature Tcs ≤ Tc, at which the superconductor can no longer carry the full
current. The current in excess flows in the copper stabilizer, resulting in an effective low-resistance zone. If
the heating due to Joule dissipation exceeds the thermal contribution from cooling, it leads to growth and
propagation of the normal conducting zone, and eventually to a thermal runaway known as quench which
can have potentially irreversible consequences for the superconductor. This can be prevented by detecting the
thermal run-away on time, switching off the power converter, and dissipating the stored magnetic energy in
themagnet in a controlledway, either internally or externally to themagnet.

In superconducting magnets, the quench detection may be achieved by means of several methods including
secondary coils [33], acoustic detectors [34, 35], pick-up antennas [36], optic fibers [37, 38], supercon-
ducting quench detectors [39–41], and stray capacitance measurements [42]. Another method consists in
measuring the voltage over the conductor [43] and compensating for inductive effects during dynamic phases.
The presence of a voltage drop indicates an increase in temperature and a growing normal zone in the con-
ductor. To date, voltage measurement is the most widespread detection method (see for example [44, 45]),
because of its simplicity and robustness. Once the quench is detected, a protection strategy is triggered. For
small cables and coils, switching off the power supply might be sufficient. However, for high energy-density
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applications such as accelerator magnets, active protection strategies are necessarily put in place. A signifi-
cant fraction of the coil may be heated up to normal state by means of quench heaters [46], thus spreading
out the stored magnetic energy over a large volume. Another relatively new approach is based on the Cou-
pling Loss Induced Quench (CLIQ) system [47], which heats up the superconductor by means of Joule losses
produced by inter-filament coupling currents. Other concepts recently proposed include distributed energy
extraction units (E3presso) [48], inductively coupled energy dissipaters [49], quench absorption coils [50],
and CLIQ coupled to secondary coils [51]. A slightly different approach consists in using no-insulation (NI)
coils [52, 53], such that in case of a quench the current redistributes between all the turns in the coil, bypass-
ing the normal conducting zone. The main advantages consist in limiting the peak temperature and ensuring
a homogeneous energy dissipation, at the price of inducing both large eddy currents increasing the ramp-up
time, and possibly unbalanced Lorentz forces in the coil [54]. If several magnets are connected in series, it is
crucial to separate the quenching magnet from the rest of the circuit and the energy stored therein. For the
LHC, bypass elements such as diodes and resistors are put in place for each magnet composing the circuit,
and a dump resistor can be connected in series with the magnet array for extracting the energy stored in the
magnets.

Because of the high critical temperature, ReBCO coated conductors can easily be operated with significant
enthalpy margin. At the same time, the heat capacity increases rapidly with temperature under cryogenic
conditions, therefore the minimum quench energy can be up to three orders of magnitude higher than for
LTS conductors. On the one hand, magnets constructed with ReBCO are expected to be very stable with
respect to a thermal runaway. On the other hand, the energy required to propagate a possible normal zone
is higher, leading to a propagation velocity which is about two orders of magnitude lower compared to LTS
conductors [55, 56]. With respect to LTS materials, the voltage signal associated to the normal zone takes
more time to reach prescribed thresholds for protection, providing a relatively late warning. The detection of
and protection against a thermal runaway in HTS materials is an open challenge that is currently receiving
significant attention, see for example [57] and the references therein.

1.4 Persistent Magnetization

Accelerator magnets must generate high-quality magnetic fields in their magnet aperture, because field im-
perfections can lead to particle-beam instabilities [58]. The field imperfections are typically limited to a few
units of the main magnetic field within the area of 2/3 of the magnet aperture radius [3, 59], where a unit
corresponds to 0.01% of the total magnetic field magnitude. The magnetic field quality is determined by
magnet design criteria such as mechanical tolerances, and affected by material properties such as satura-
tion and hysteresis of the iron yoke. High field quality is ensured by a precise control of the position and
direction of the current inside the cable composing the coil of the magnet. As a consequence, tight construc-
tion tolerances and mechanical pre-stress are applied for suppressing the geometric field error. The magnet
operational conditions also play a crucial role. Transient effects in the time domain such as mechanical de-
formation due to Lorentz forces, and magnetization due to eddy currents and screening currents in normal
conducting and superconducting materials add a contribution on the magnetic field quality which is typically
undesired.

Magnetic field quality is one of the concerns to be addressed for accelerator magnets based on ReBCO coils
because the phenomenon of screening currents is of major relevance in HTS tapes. The magnetic behavior
of the tapes is equivalent to wide and anisotropic mono-filaments, resulting in large screening currents. The
related magnetization adds an undesired contribution which perturbs the magnetic field quality [60–66]
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and vanishes with a time constant longer than the duty-cycle of the magnet. The field quality degradation
is particularly severe at low currents, because screening currents are only limited by the superconducting
current density, which is the highest when the applied magnetic field is low. For LTS stranded conductors,
small filament sizes are adopted to reduce the field error due to the persistent magnetization from screening
currents. For HTS tapes, a similar attempt was done by separating the HTSmono-filament into multifilaments
by means of laser cutting, in a process called tape striation [67]. Unfortunately, the process does not allow
for transposition of the obtained filaments, and the critical current density may be significantly degraded
especially if small and localized defects are present before the cutting, as current redistribution is prevented.
Another possibility is given by the tape-field alignment concept [68]. Within superconducting magnets, tapes
can be aligned with the magnetic field lines, reducing the effective area of the mono-filament. Although this
significantly suppresses the magnetization currents, the distribution of the transport current within the tapes
cannot be enforced, posing a limit in the achievable field quality. Therefore, in addition to quench protection
in ReBCO-based coils, the field quality is another significant challenge.

1.5 Simulations of Transient Effects in HTS Magnets

Numerical methods play a key role in the development of HTS-based applications, in particular they are crucial
for analyzing the complex magnetothermal dynamics occurring within HTS high-field magnets. Numerical
models, also referred to as digital twins, provide useful input during the design process of new magnets.
Moreover, these models are valuable during magnet operations as they allow for analyzing the magnet per-
formance, performing troubleshooting in case of faults, understanding and interpreting measurement data,
and building new knowledge. The modeling of HTS magnets requires a suitable field formulation capturing
the main physical phenomena related to persistent magnetization and quench dynamics, such that insights
can be obtained on magnetic field quality and thermal stability. At the same time, the field formulation shall
be implemented using a method suitable for domains of complex geometries, with the possibility of refining
the accuracy of solution over specific sub-sets of the computational domain, for example the superconducting
coil or the iron yoke.

Superconducting accelerator magnets are operated in connection to surrounding circuitry, and possibly to
protection systems. Each domain represents several coupled physical phenomena which are characterized
by a highly nonlinear behavior, with a wide range of time constants occurring at geometric scales spanning
several orders of magnitude. Therefore, the simulation of transient effects in superconducting accelerator
magnets is a multidomain, multiphysics, multirate, and multiscale problem. Consistent simulations require
to account for the mutual influence between magnets, protection systems and the remainder of the circuit.
As a consequence, care has to be taken as the field formulation shall allow for coupling with the external
circuitry to exchange information.

In this work, the magnetothermal transients occurring in HTS accelerator magnets are formulated as an eddy-
current problem in the time domain. The formulation is implemented in the finite element method, leading to
high-resolutionmodels exchanging information via field-circuit coupling cosimulationmethods.

1.6 Related Work

Eddy-current problems in the time domain for normal conducting materials have been extensively studied
with the use of both monolithic and mixed field formulations, see for example [69–71]. In particular, field
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problems involving eddy currents in thin metallic structures have been discussed in [72–75]. After HTS ma-
terials were discovered, field formulations for eddy-current problems were progressively extended to this new
class of materials. A magnetic-flux conforming formulation based on the magnetic vector potential was ini-
tially proposed in [76] and lately in [77, 78]. At the same time, magnetic-field conforming formulations [79–
83] became increasingly popular. In particular, formulations based on the magnetic field strength vector are
at the time of writing widely used, see for example [79, 84–86], and [87] for an overview. More recently,
formulations based on the coupling of magnetic-flux and magnetic-field conforming vector fields have been
developed, see [88] for an overview. Mixed-field formulations have been successfully implemented to sim-
ulate superconducting machines [89–91], superconducting tapes and cables [92–94], and superconducting
and ferromagnetic materials [95]. Eddy-current problems in HTS materials have been treated also by means
of volume integral formulations, leading to distributed models [96–98], as well as lumped models imple-
mented as equivalent electrical networks [14, 99]. An exhaustive overview covering the numerical methods
for the calculation of dynamic losses in HTS materials is given in [100].

Cosimulation methods can be applied to consistently couple various types of subsystems, such as circuits
with controllers [101], as well as different physical models of the same device via mesh-mesh coupling [102].
Among other methods [103, 104], the waveform relaxation algorithm [105] has been used and studied for the
cosimulation of field-circuit coupled systems [106, 107]. The convergence of the algorithm can be improved
by means of optimized Schwarz methods [108, 109] which have been successfully applied to systems arising
from both electric networks [110, 111] and field-circuit coupled systems [112, 113]. In the context of this
work, the waveform relaxation method has been applied to the field-circuit coupled simulation of the LTS
circuits of the LHC [114], High-Luminosity LHC upgrade [115–117], and FCC [118, 119] using the STEAM
- Simulation of transient effects in accelerator magnets framework [120].

The mitigation of magnetic field errors is of central importance. Initial work in this direction led to magnetic
cloaks for sensors [121, 122]. Subsequently, active shim coils were introduced for applications such as mag-
netic resonance imaging [123] and nuclear magnetic resonance [124]. Superconducting magnetic shields
have been proposed for the septum magnets within the FCC project [125, 126]. The concept of selective
shielding has been recently applied for field homogenization in solenoids [127]. More closely, screening-
current shim coils were recently introduced as a conceptual solution for improving the field quality in accel-
erator magnets [14, 128].

1.7 Research Goals

This work deals with both the development of a numerical formulation for the simulation of HTS magnets
in the time domain, and the development of a novel technology for improving the magnetic field quality in
accelerator magnets. The goals of the thesis are:

1. to develop a magnetothermal field formulation for the simulation of HTS magnets in the time domain,
and implement it in the finite element method;

2. to provide a field-circuit coupling interface which can be used in field-circuit cooperative simulations
for analyzing the behavior in the time domain of circuits of HTS magnets;

3. to verify the implementation of the field formulation by means of numerical and analytical solutions,
and validate it by comparison with measurements;

4. to provide the proof of concept of a technology based on HTS screens for the cancellation of static and
dynamic field errors in accelerator magnets.
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Chapter 1 
Introduction

Chapter 3
Space and Time Discretization

Chapter 4
Numerical Verification

Chapter 5
Validation: Feather-M2.1-2 Magnet

Chapter 6
Case Study: HALO

Conclusions and Outlook

Chapter 2
Field Formulation

Figure 1.5. Flowchart showing the structure of the thesis.

1.8 Outline

The structure of this work is outlined here, and summarized in the flowchart shown in Figure 1.5. Chapter 2
introduces the theoretical fundamentals and the systems of equations used for describing the physical phe-
nomena analyzed in the thesis. Electromagnetic fields are introduced with respect to Maxwell’s equations
and their different approximations. Next, stranded and solid conductor models are discussed, as they allow
for coupling lumped quantities from circuit models whose theory is briefly recalled. Afterwards, the simula-
tion of magnetothermal transients in superconducting accelerator magnets is formalized as an eddy-current
problem in the time domain. A coupled field formulation and the related domain decomposition strategy is
introduced to cope with the nonlinear electric behavior of superconducting materials, and the equations are
given. Finally, the formulation is optimized for the cases of thin conducting domains such as HTS tapes, and
multifilamentary stranded domains.

Chapter 3 starts by recalling the classic numerical methods that are used for simulating systems of par-
tial differential equations arising from the coupled field formulation. First, the space discretization is dis-
cussed in terms of the Ritz-Galerkin finite element method. Second, classic time-integration theory and
algorithms are recalled, and the waveform relaxation method is discussed with respect to field-circuit cou-
pled problems. Afterwards, the weak and discrete formulation for the coupled field formulation is detailed
for the 3D and 2D case, and the implications for thin conducting domains are discussed. As a key ingredi-
ent for the cosimulation, the field-circuit coupling interface is derived for the case of solid conductor mod-
els.

In Chapter 4, the implementation of the coupled field formulation in the finite element method is verified for
models containing conducting domains represented as both bulks and thin shells. The verification is done
for both reference solutions obtained with monolithic formulations, and available analytical solutions from
literature. The test cases are designed such that they allow for analyzing the most relevant features of the
formulation, whereas the geometric complexity is kept as low as possible. The field-circuit coupling interface
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is tested against monolithic simulations for the field-circuit coupled magnetothermal simulation of a quench
occurring in an HTS solenoid protected by quench heater strips.

In Chapter 5, the coupled field formulation is validated against field quality measurements in the HTS dipole
insert magnet Feather-M2.1-2. The related numerical model is discussed, highlighting the key assumptions
and simplifications. Simulations focus on the overall field quality in the magnet, and on the contribution
from screening currents occurring in the HTS tapes composing the coil. The numerical results are compared
with available magnetic measurements.

Chapter 6 presents a proof of concept of HTS screens based on superconducting tapes for the passive cancella-
tion of the magnetic field error in accelerator magnets. This application is called HALO (harmonics-absorbing
layered-object), and it is made of stacks of tapes aligned with the main field component, such that only the
field imperfections are canceled out. Simulations are compared with experimental data, and then used to
extrapolate the behavior of the screen for typical magnetic fields and operational temperatures of accelerator
magnets. Results are discussed, and conclusions and recommendations for the design of future HTS screens
are given. The thesis ends with a summary and outlook in Chapter 7.

The core of this work is constituted by the coupled field formulation and its application to systems containing
HTS materials, in particular to the design and development of the HALO device. The contents of this work,
including numerical models and source code, are available online [129].
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2 Field Modeling

The physical phenomena occurring in superconducting materials that are relevant for this work are described
by means of space- and time-dependent partial differential equations. This chapter presents the systems of
equations which are used later on for the modeling of systems containing superconducting materials. The
chapter starts from the general description of magnetic fields and heat propagation by means of Maxwell’s
equations and the heat balance equation, as both phenomena are relevant for modeling the magnetothermal
dynamics in superconducting accelerator magnets. Then, the classical types of approximations in electromag-
netism are presented. Subsequently, the most relevant field formulations are discussed under magnetoqua-
sistatic assumptions, namely the ~H − ϕ, ~T − ψ and ~A− φ formulations. For each formulation, distribution
functions are introduced for both stranded and solid conductor models which are of relevance for modeling
cables based on low- and high-temperature superconductors. Moreover, distribution functions allow for cou-
pling with lumped quantities belonging to external circuits. For this reason, the basic concepts of circuit simu-
lation are detailed with respect to the method of modified nodal analysis.

The simulation of magnetothermal transients in superconducting accelerator magnets is formalized as an
eddy-current problem in the time domain. Superconducting materials are firstly introduced with regards to
their nonlinear electric behavior. Then, they are added to the general field problem by means of a coupled
~A− ~H field formulation based on a domain decomposition strategy separating the superconducting source
regions from the remaining regions. The set of equations representing the magnetothermal problem is given,
and the interface conditions are discussed. This chapter closes by showing a further simplification of the
coupled field formulation for thin conducting domains representing HTS tapes, andmultifilamentary stranded
domains representing BSCCO, Nb-Ti, and Nb3Sn strands.

2.1 Maxwell’s Equations

Electric and magnetic (EM) fields are described by Maxwell’s equations [130, 131]. For a volume V ⊂ R3

bounded by ∂V and facet S ⊂ R2 bounded by ∂S, themacroscopic description of EMfields reads∫
∂S

~E · d ~L = −
∫
S

∂t ~B · d ~S, (2.1a)

∫
∂S

~H · d ~L =

∫
S

(
∂t ~D + ~J

)
· d ~S, (2.1b)

∫
∂V

~D · d ~S =

∫
V

ρv dV, (2.1c)
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∫
∂V

~B · d ~S = 0, (2.1d)

where the electric field strength ~E, the magnetic flux density ~B, the magnetic field strength ~H, the electric
flux density ~D and the electric current density ~J are vector fields R3 × R → R3, and the electric charge
density ρv is a scalar field R3 × R → R. The field quantities depend on space ~r ∈ R3 and time t ∈ R. The
four relations in (2.1) correspond to Faraday’s law, Ampère-Maxwell law, and Gauss’s laws for electric and
magnetic fields.

The differential formulation of Maxwell’s equations is derived from (2.1) by applying Stokes’ and Gauss’s the-
orems, deriving a set of partial differential equations (e.g. [132]) which provide a mathematically equivalent
representation, reading

∇× ~E = −∂t ~B, (2.2a)

∇× ~H = ∂t ~D + ~J, (2.2b)

∇ · ~D = ρv, (2.2c)

∇ · ~B = 0. (2.2d)

The set of equations in (2.2) is typically extended by the current continuity equation which relates the space
variation of the electric current density and the time variation of the electric charge density. The current
continuity equation is derived by taking the divergence of (2.2b), inserting (2.2c) and noting that the left
hand side is identically zero, obtaining

∇ · ~J + ∂tρv = 0. (2.3)

2.2 Constitutive Laws

Constitutive laws define the electromagnetic properties for materials, and are appended to Maxwell’s equa-
tions by introducing relations for the field quantities described by (2.2). In the general case, materials
can be both field-dependent and anisotropic, resulting in nonlinear and tensor-valued material functions
R3 × R → R3×3. In this work, constitutive laws are considered as possibly nonlinear and field-dependent
scalar functions R3 × R → R. The dependency of materials from field quantities is explicitly mentioned,
whereas for simplicity of notation the dependencies (~r, t) from time and space in field and material quanti-
ties are omitted. The constitutive laws [131, 133] read

~D = ε0 ~E + ~P , (2.4a)
~B = µ0 ~H + µ0 ~M, (2.4b)
~J = σ ~E + σ ~Es. (2.4c)

Here, the constants ε0 and µ0 are the electric permittivity and the magnetic permeability of vacuum, σ is
the electrical conductivity [133], ~P is the electric polarization field, ~M is the magnetic polarization field or
magnetization, and ~Es is a source electric field independent of the rest of the fields. The electric and magnetic
polarization fields are generated by electric charges bound in the material. These charges produce dielectric
and magnetic dipoles on a molecular level, and can be represented by the polarization and magnetization
current densities ~Jp and ~Jm as

~Jp = ∂t ~P , ~Jm = ∇× ~M, (2.5)
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with ~Jp contributing to the displacement current density ∂t ~D in (2.1b) as

∂t ~D = ε0∂t ~E + ~Jp. (2.6)

The total current density ~Jtot combines the contributions from bound and free charges. With the previous
definitions, ~Jtot reads

~Jtot = ε0∂t ~E + ~Jp + ~Jm + ~J, ~J = ~Jc + ~Jv + ~Js, (2.7)

where ~Jc = σ ~E is the conductive current density driven by the electric field strength, ~Jv = ρv~v is the con-
vective current density determined by the motion of free charges at velocity ~v, and ~Js is the source current
density acting as an external source, independent of the rest of the fields. The source term ~Js can be im-
posed either directly as a current density, or indirectly as ~Js = σ ~Es, thus by means of a source electric field
strength. In this work, the convective contribution ~Jv is disregarded, and no magnetization current density
~Jm is considered, unless explicitly stated.

The simplest case is given by linear constitutive laws with constant σ and

~P = ε0χd ~E, ~M = χm ~H, (2.8)

where χd and χm are the dielectric and magnetic susceptibilities. The susceptibilities lead to the definition
of the relative permittivity εr = 1 + χd and relative permeability µr = 1 + χm, with the conditions µr < 1,
µr > 1 and µr � 1 referring to diamagnetic, paramagnetic and ferromagnetic materials. The material
properties (2.4) can be rewritten in a more compact way by

~D = ε ~E, ~B = µ ~H, ~Jc = σ ~E, (2.9)

with their inverse relations reading [131, 133]

~H = ν ~B, ~E = ρ ~Jc, (2.10)

where ε = ε0εr is the electric permittivity, µ = µ0µr is the magnetic permeability, ν is the magnetic reluctivity,
and ρ the electric resistivity.

2.3 Electromagnetic Energy Balance

The energy balance relation for EM fields [131] is derived from the set of Maxwell’s equations (2.2). The
relation in (2.2b) is multiplied by ~E and then subtracted from the relation in (2.2a) multiplied by ~H, read-
ing

~H · ∇ × ~E − ~E · ∇ × ~H = − ~H · ∂t ~B − ~E · ∂t ~D − ~E · ~J. (2.11)

The obtained equation is integrated over a volume V ⊂ R3 bounded by ∂V . Then Gauss’s theorem is applied,
and the power balance is obtained as∫

V

~E · ∂t ~D dV +

∫
V

~H · ∂t ~B dV +

∫
V

~E · ~J dV +

∫
∂V

( ~E × ~H) · d ~S = 0. (2.12)
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The first and the second volume integrals determine the rate of change of the energy associated to the electric
and magnetic fields in the volume V. Therefore, the two contributions are associated to the electric and
magnetic losses. The third volume integral can be decomposed into two terms by replacing ~E with the
relation in (2.4c), obtaining∫

V

~E · ~J dV =

∫
V

ρ ~J · ~J dV −
∫
V

~Es · ~J dV . (2.13)

The first contribution represents a dissipation term associated to Joule losses, and the second contribution is
the power supplied by means of an external source. The surface integral in (2.12) represents the energy flow
through the boundary ∂V oriented by the normal unit vector ~n. The energy flows according to the direction
provided by the Poynting vector ~S defined as [131]

~S = ~E × ~H. (2.14)

With the previous definitions, the energy density function w is given for linear and isotropic materials
as

w =
1

2
(ε| ~E|2 + µ| ~H|2), (2.15)

with |·| being the Euclidean norm in space. For nonlinear and anisotropic materials, the electric and magnetic
energy densities are given by

we =

∫ ~D

0

~E( ~D) · d ~D, wm =

∫ ~B

0

~H( ~B) · d ~B, (2.16)

and depend on the characteristic of the material properties.

2.4 Boundary and Initial Conditions

Maxwell’s equations in (2.2) are valid for EM fields existing in the whole domain R3 and for all time R > 0.
However, for the analysis of practical applications, simulations are typically solved for a truncated domain
Ω ⊂ R3, and for a time interval t ∈ I = [t0, tend), together with appropriate boundary conditions (BCs) and
initial conditions (ICs).

The domain Ω bounded by Γ = ∂Ω is assumed to be composed of three types of sub-domains or regions, the
conducting domain Ωc where the source electric field ~Es is imposed, the source domain Ωs where the source
current density ~Js is imposed and the remainder Ω0 which is source-free. The regions Ωc and Ωs are disjoint,
that is, Ωc ∩ Ωs = ∅. The partition of Ω is shown in Figure 2.1a. The conductivity σ and the resistivity
ρ are positive-valued functions in Ωc, and zero elsewhere. Consequently, ~Js is divergence-free in Ωs. The
magnetic permeability µ (permittivity ν) and the electric permittivity ε are positive-valued functions in the
entire domain Ω.

The truncation of space and time determines the need for BCs on the exterior boundary Γ = ∂Ω, and for
ICs for t = t0. A unique solution for Maxwell’s equations exists if the tangential component of either ~H
or ~E is imposed on Γ [131]. In this way, the Poynting vector in (2.14) is uniquely determined, providing
the energy exchange through Γ between Ω and the rest of the universe which is discarded by the space
truncation. Although advanced BCs can be set, such as with geometry transformations representing the
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Ωc

Ωs

Ω

Ω0

(a) Partition of the domain Ω.

Γneu 0̵

Γdir 0̵

(b) Partition of the boundary Γ.

Figure 2.1. Sketch of the domain Ω and boundary Γ partition.

infinite domain [134, 135], two principal conditions are considered in this work for the boundary Γ. The
first consists in homogeneous electric boundary conditions [131] which assume perfect electric conductivity as
σ → ∞ on Γebc, and the second consists in homogeneous magnetic boundary conditions [131] which consider
perfect magnetic permeability as µ → ∞ on Γmbc. The boundary Γ is decomposed as Γ = Γebc ∪ Γmbc, with
Γebc ∩Γmbc = ∅, and equipped with the outward normal vector ~n, such that the BCs are defined for all t ∈ I
as {

~E × ~n = 0 on Γebc,
~H × ~n = 0 on Γmbc.

(2.17)

The condition for Γebc is also known as perfect electric conductor (PEC)which prevents any normal component
of the magnetic flux. The condition for Γmbc is also known as perfect magnetic conductor (PMC) which
prevents any normal component of the electric current density.

Alternatively, homogeneous Dirichlet and Neumann conditions can be defined for a given vector field ~ζ :
Ω × I → R3 (scalar field ϕ : Ω × I → R), on the boundaries Γdir-0 and Γneu-0, with Γ = Γdir-0 ∪ Γneu-0 and
Γdir-0 ∩ Γneu-0 = ∅ as shown in Figure 2.1b. The boundary conditions for ~ζ read{

~ζ × ~n = 0 on Γdir-0,

(∇× ~ζ)× ~n = 0 on Γneu-0,
(2.18)

whereas the boundary conditions for ϕ are given by{
ϕ = 0 on Γdir-0,

(∇ϕ) · ~n = 0 on Γneu-0.
(2.19)

However, in the field of electrical engineering the terminology of electric and magnetic boundary conditions
is typically preferred, as it can be immediately related to the physical behavior of the fields. The relation
between the two terminologies is clarified later when necessary.

In addition to the spatial BCs, a consistent field distribution needs to be prescribed for the starting point t0.
ICs must comply with the imposed BCs, they are chosen for consistency as a solution of (2.2). In particular,
homogeneous ICs prescribe the trivial null solution in Ω at t = t0.

15



2.5 Interface Conditions

Interface conditions describe the behavior of EM fields at the interface of different materials, where a sharp
transition in the material laws can occur [131, 133]. The interface Γ1,2 is placed between two domains Ω1

and Ω2 with different material properties, and the normal unit vector ~n is conventionally oriented according
to the outer direction of the first region. It is also convenient to split field quantities into their tangential and
normal components at the interface (subscripts t and n). Interface conditions prescribe for the tangential
component of the electric and magnetic fields ~Et and ~Ht that

( ~E1 − ~E2)× ~n = 0, ( ~H1 − ~H2)× ~n = ~K on Γ1,2, (2.20)

and for the normal component of the electric flux, magnetic flux and electric current density fields ~Dn, ~Bn,
and ~Jn that

( ~D1 − ~D2) · ~n = ρs, ( ~B1 − ~B2) · ~n = 0, ( ~J1 − ~J2) · ~n = ∇ · ~K on Γ1,2, (2.21)

where ~K is a surface current density and ρs a surface charge density, both located at Γ1,2. The first relation
in (2.20) corresponds to Faraday’s law (2.2a) and prescribes the continuity of the tangential electric field.
The second relation in (2.20) corresponds to Ampère-Maxwell’s law (2.2b) and allows for a jump in the
tangential component of the magnetic field equal to ~K. The first relation in (2.21) enforces Gauss’s law (2.2c)
and allows for a jump in the normal component of the electric flux density equal to ρs. The second relation
in (2.21) enforces Gauss’s law (2.2d) by prescribing the continuity of the normal magnetic flux density.
The third relation in (2.21) enforces the current continuity (2.3) by imposing the continuity of the normal
component of the electric current density. If no surface current and no surface charge is present, then the
normal component of the electric and magnetic fields ~Dn and ~Hn is also continuous. If the interface Γ1,2 is
moved to the boundary Γ of the domain, the following set of electric and magnetic boundary conditions can
be defined

~E × ~n = 0, ~B · ~n = 0, on Γebc, (2.22)
~H × ~n = 0, ~J · ~n = 0, ~D · ~n = 0, on Γmbc. (2.23)

2.6 Thermodynamics

In general, EM fields cause electric, magnetic, and Joule losses, resulting in the generation of heat. The heat
diffusion describes how the energy is stored within a domain and transported through its boundaries, affect-
ing the temperature T : Ω × I → R of the domain [136, 137]. Heat transfer is always oriented according to
the gradient of the temperature field, moving from higher to lower temperature regions. The mathematical
description of heat diffusion and, therefore, the temperature evolution in time is provided by the heat balance
equation

ρmCp∂tT −∇ · (κ∇T ) = P, (2.24)

where ρm stands for the mass density, Cp is the heat capacity, κ is the thermal conductivity and the term
P : Ω × I → R represents the impressed heat source due to dissipation phenomena in the domain. In
particular, Joule losses are obtained as

PJ = (ρ ~J) · ~J. (2.25)
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The temperature can be fixed to Tdir on the boundary Γ. Such constraint corresponds to a nonhomogeneous
Dirichlet boundary condition for T , given by

T = Tdir on Γ. (2.26)

Otherwise, adiabatic BCs can be imposed on Γ, such that no heat transfer occurs through the boundary. This
constraint corresponds to a homogeneous Neumann boundary condition for T , given by

κ∇T · ~n = 0 on Γ. (2.27)

Heat diffusion is of great importance for superconducting accelerator magnets. The heat capacity and the
thermal conductivity of superconducting coils are both nonlinear and temperature-dependent. Moreover,
the Joule losses PJ in the coils are influenced by the resistivity of superconducting and normal conducting
materials which are again temperature-dependent. Also, the heat diffusion establishes the initiation and
evolution of quench phenomena, the peak temperature, and the quench propagation velocity. In particular,
the peak temperature is crucial as it determines the possible detrimental consequences for the magnet and,
at the same time, the effectiveness of quench mitigation technologies.

2.7 Quasistatic and Static Fields

Maxwell’s equations (2.2) provide a consistent description for three physical phenomena: electric, magnetic
and Ohmic losses. However, for many practical applications parts of these effects are negligible with respect to
the others, and can be discarded [138]. Therefore, it is possible to replace the full wave behavior described by
Maxwell’s equations with approximated behaviors still providing sufficient accuracy for the description of EM
fields. In practice, a field propagates almost instantaneously for geometries much smaller than the EM wave-
length, therefore propagation of waves and radiation effects can be neglected and a quasi-stationary assump-
tion becomes appropriate. Moreover, in the limit-case where the change in time of fields is negligible, a further
stationary assumption can be applied. The most relevant approximations, together with appropriate material
laws and boundary and initial conditions, are given by (e.g. [139]):

(a) Static, where the time derivative of the electric and magnetic flux densities are disregarded, that is,
∂t ~D = 0 and ∂t ~B = 0. In this case, the electric and magnetic fields are decoupled, and can be studied
separately. At the same time, the source current density ~Js and the electric charge distribution ρv are
assumed to be known. This leads to three distinct approximations, one for each loss contribution in
Maxwell’s equations.

(a1) The current flow (CF) case describes only Ohmic effects, solving for{
∇× ~E = 0,

∇ · ~J = 0,
(2.28)

(a2) The electrostatic (ES) case describes only electric or capacitive effects, solving for{
∇× ~E = 0,

∇ · ~D = ρv,
(2.29)
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(a3) The magnetostatic (MS) case describes only magnetic effects, solving for{
∇× ~H = ~J,

∇ · ~B = 0,
(2.30)

(b) Electroquasistatic (EQS), where the inductive effects and the related magnetic losses are neglected by
discarding the time derivative of the magnetic flux density in Faraday’s law (2.2a), as ∂t ~B = 0. The
governing equations read{

∇× ~E = 0,

∇ · (∂t ~D + ~J ) = 0,
(2.31)

(c) Magnetoquasistatic (MQS), where the capacitive effects and the related electric losses are neglected by
dropping the time derivative of the electric flux density as ∂t ~D = 0. The governing equations read{

∇× ~E = −∂t ~B,
∇× ~H = ~J,

(2.32)

(d) Darwin (DW) [140, 141], a less common approach which combines the EQS and MQS approximations
for describing the electric, magnetic and ohmic loss effects, neglecting only the wave propagation. This
is obtained by discarding the solenoidal component of the displacement current density (2.6) which is
decomposed via the Helmholtz theorem [133].

(e) Full Maxwell (FM), where Maxwell’s equations are considered without simplifications. Assuming that
the initial conditions satisfy the divergence relations in (2.2c) and (2.2d), only Faraday’s and Ampère-
Maxwell’s laws need to be considered [131]. Once the constitutive laws (2.9) are incorporated, the
~E − ~H formulation [131] is obtained as{

∇× ~E = −∂t ~B,
∇× ~H = ∂t ~D + ~J,

(2.33)

where the BCs are set directly for ~E and ~H on Γebc and Γmbc as detailed in (2.17).

The choice of the approximation depends on the given field problem and on its properties, such as the spatial
dimension of the domain under study, the material properties, and the wavelength [142–144]. This work
focuses on applications related to superconducting accelerator magnets. For such devices, wave propagation
effects and capacitive effects are negligible. At the same time, inductive currents and Ohmic losses are of
paramount importance, therefore they cannot be ignored. For this reason, the MQS assumption is adopted
in the rest of this work.

2.8 Magnetoquasistatic Formulations

The MQS approximation (2.32) is applied to the set of Maxwell’s equations which are then combined into
a formulation. Potential fields are typically introduced [70, 71, 145, 146] for simplifying the mathematical
treatment of Maxwell’s equations. In this way, the solution of field problems is reduced to solving different
classes of partial differential equations together with prescribed boundary conditions.
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Several potential formulations are possible, each with advantages and drawbacks [70]. If a reduced magnetic
scalar potential ϕ is used in the nonconducting region Ωs∪Ω0, the ~H − ϕ formulation is obtained. Otherwise,
two vector potentials can be used, either a electric vector potential ~T defined in the conducting region Ωc, or
a magnetic vector potential ~A defined in everywhere in Ω. Moreover, the potentials ~T and ~A can be coupled
with scalar potentials defined everywhere in Ω. The cases detailed in the remaining of the section consider
that ~T is coupled with the reduced magnetic scalar potential ψ, and ~A is coupled with the electric scalar
potential φ.

2.8.1 ~H − ϕ formulation

The first approach is the ~H − ϕ formulation [147–149]. The magnetic field ~H : Ω × I → R3 and a reduced
magnetic scalar potential ϕ : Ωs ∪ Ω0 × I → R are defined such that

∇× ~Hs = ~Js, in Ωs,

∇× ~H = ~J, in Ωc,
~H = ~Hs −∇ϕ, in Ωs ∪ Ω0,

(2.34)

where the field ~Hs : Ω × I → R3 is an auxiliary source magnetic field strength related to the source current
density ~Js which is divergence-free in the source domain Ωs, and ϕ is introduced by space-integration of
Ampère’s law (2.2b) in the region Ωs∪Ω0. The choice of potentials immediately satisfies Ampère’s law (2.2b)
everywhere and Gauss’s law (2.2d) in Ωc, whereas Faraday’s law (2.2a) and Gauss’s law (2.2d) have to be
explicitly prescribed in Ωc and Ωs ∪ Ω0, respectively. By combining Maxwell’s equations for MQS and the
material relations, the formulation reads{

∇× ρ∇× ~H + ∂tµ ~H = ∇× ~Es, in Ωc,

∇ · µ∇ϕ = ∇ · µ ~Hs, in Ωs ∪ Ω0.
(2.35)

Since the magnetic scalar potential ϕ is defined only outside the conducting region Ωc, interface conditions
are required on Γc = ∂Ωc, reading

( ~H +∇ϕ)× ~n = 0, for ~Ht, (2.36)

(∇× ~H) · ~n = 0, for ~Jn, (2.37)

(µc( ~H + ~Hs)− µ( ~Hs −∇ϕ)) · ~n = 0, for ~Bn, (2.38)

with µc being the magnetic permeability in Ωc.

The PEC boundary conditions lead to Neumann boundary conditions for the fields ~H andϕ, given as{
(ρ∇× ~H − ~Es)× ~n = 0,

(µ∇ϕ) · ~n = 0,
on Γebc. (2.39)

The PMC boundary conditions lead to Dirichlet boundary conditions for the fields ~H andϕ, given as{
~H × ~n = 0,

∇ϕ× ~n = 0, ⇒ ϕ = ϕ0,
on Γmbc. (2.40)
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2.8.2 ~T − ψ formulation

The second approach is the ~T − ψ formulation [147–149], also often referred to as the ~T -Ω formulation. A
current density vector potential ~T : Ωc × I → R3 and a scalar magnetic potential ψ : Ω × I → R are defined
such that

∇× ~Hs = ~Js, in Ωs,

∇× ~T = ~J, in Ωc,
~H = ~T + ~Hs −∇ψ, in Ωc,
~H = ~Hs −∇ψ, in Ωs ∪ Ω0,

(2.41)

where ~T is related to the current density ~J which is divergence-free in the conducting domain Ωc, and ψ is
introduced by space-integration of Ampère’s law (2.2b) in the region Ω. The choice of potentials immediately
satisfies Ampère’s law (2.2b) everywhere, whereas Faraday’s law (2.2a) and Gauss’s law (2.2d) have to be
explicitly prescribed in Ωc and Ω. By combining Maxwell’s equations for MQS and the material relations, the
formulation reads

∇× ρ∇× ~T + ∂tµ~T − ∂tµ∇ψ = −∂tµ ~Hs +∇× ~Es, in Ωc,

∇ · (µ~T − µ∇ψ) = −∇ · µ ~Hs, in Ωc,

∇ · µ∇ψ = ∇ · µ ~Hs, in Ωs ∪ Ω0.

(2.42)

Since ~T is defined only in the conducting region Ωc, interface conditions are required on Γc = ∂Ωc, read-
ing

~T × ~n = 0, for ~Ht and ~Jn, (2.43)

(µc(~T + ~Hs −∇ψ)− µ( ~Hs −∇ψ)) · ~n = 0, for ~Bn. (2.44)

The PEC boundary conditions lead to Neumann boundary conditions for the fields ~T andψ, given as{
(ρ∇× ~T − ~Es)× ~n = 0,

(µ∇ψ) · ~n = 0,
on Γebc. (2.45)

The PMC boundary conditions lead to Dirichlet boundary conditions for the fields ~T andψ, given as{
~T × ~n = 0,

∇ψ × ~n = 0, ⇒ ψ = ψ0,
on Γmbc. (2.46)

The electric vector potential ~T determines ~J in the conducting region up to a gradient field [131]. There-
fore, an additional gauging condition needs to be imposed on ~T to ensure the uniqueness of the solu-
tion.

The ~T − ψ and ~H − ϕ formulations differ only in the conducting domains, as ~H is decomposed in the former
into a curl-free and a rotational component [133]. In theMQS setting, the formulations approximate themag-
netic field in exactly the same way, thus leading to identical field solutions [148, 150]. However, the ~H − ϕ
formulation is unstable in themagnetostatic limit, and shall be avoided [148].
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2.8.3 ~A− φ formulation

The third approach is the ~A− φ formulation [71, 145, 151]. A magnetic vector potential ~A : Ω × I → R3

and an electric scalar potential φ : Ω × I → R are defined such that{
~B = ∇× ~A,
~E = −∂t ~A−∇φ,

(2.47)

where ~A is related to the magnetic flux ~B which is divergence-free, and φ is introduced by space-integration
of Faraday’s law (2.2a) in the region Ω. Then, Ampère’s law (2.2b) has to be explicitly prescribed. By
combining Maxwell’s equations for MQS and the material relations, and appending the current continuity
equation (2.3), the formulation reads{

∇× µ−1∇× ~A+ σ∂t ~A+ σ∇φ = ~Js,

∇ · (σ∂t ~A+ σ∇φ) = 0,
in Ω, (2.48)

with the potentials defined everywhere inΩ, such that no further interface conditions are required.

The PEC boundary conditions lead to Dirichlet boundary conditions for the fields ~A and φ, given as{
~A× ~n = 0,

∇φ× ~n = 0, ⇒ φ = φ0,
on Γebc. (2.49)

The PMC boundary conditions lead to Neumann boundary conditions for the fields ~A and φ, given as{
(µ−1∇× ~A)× ~n = 0,

(∇φ) · ~n = 0,
on Γmbc. (2.50)

The magnetic vector potential determines the magnetic flux density ~B up to a gradient field [131]. Therefore,
an additional gauging condition needs to be imposed on ~A for ensuring the uniqueness of the solution [145,
152, 153].

2.8.4 ~A? formulation

As the fourth approach, the ~A? formulation is derived from the ~A− φ formulation. By exploiting the gauge
freedom of ~A, a specific magnetic vector potential can be chosen in order to reduce the degrees of freedom of
the field problem [154, 155]. This is achieved by defining ~A? : Ω × I → R3 as

~A? = ~A−
∫ t

t?=t0

∇φdt? . (2.51)

The definition in (2.51) is inserted into (2.47), obtaining{
~B = ∇× ~A?,
~E = −∂t ~A?,

(2.52)
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where the contribution from the scalar electric vector potential is incorportate into ~A and Gauss’s law (2.2d)
is immediately satisfied, however Ampère’s law (2.2b) has to be solved explicitly. By combining Maxwell’s
equations for MQS and the material relations, the formulation reads

∇× µ−1∇× ~A? + σ∂t ~A
? = ~Js in Ω. (2.53)

The boundary conditions for the reduced magnetic vector potential are analogous to the ones for the ~A− φ
formulation, given as{

~A? × ~n = 0 on Γebc,

(µ−1∇× ~A?)× ~n = 0 on Γmbc.
(2.54)

The potential ~A? is uniquely determined in the conducting regions. However, in order to ensure the unique-
ness of the solution, an additional gauging condition needs to be imposed on ~A? in the nonconducting re-
gion [70]. For simplicity of notation, from now on the symbol ~A is overloaded and it is used also for the
reduced magnetic vector potential in the ~A? formulation.

2.9 Field Excitation Sources

The excitation source term ~Js introduced in Section 2.8 is typically provided directly by currents is : I → R or
indirectly by voltages vs : I → R which belong to the external circuit powering the application under study.
These functions are zero dimensional in space and need to be coupled to the three dimensional electric fields
and current densities within the field formulations. The connection between lumped and distributed quanti-
ties is obtained by means of conductor models, whose coupling functions are voltage and current distribution
functions ~χ : Ω → R3, or equivalently winding functions [156]. Conductor models do not intersect each
other, that is, the distribution functions remain orthogonal [156, 157] as

~χk · ~χj = 0 for k 6= j. (2.55)

Regions powered by external voltage and current sources must either connect to the boundary, or form a
closed loopwithin the computational domain, otherwise the continuity of the current density may be violated.
In the first case, the coupling of the external circuit occurs at the boundary, and it is straightforward. In the
second case, the coupling occurs by means of a slit introduced in the loop.

In this work, only stranded and solid conductor models [103] are considered, althoughmore elaboratemodels
are available (e.g. the foil conductor model, see [158]). The distribution functions associated to stranded
and solid conductor models are denoted as ~χstr and ~χsol. For three-dimensional problems, the distribution
functions are assumed to have a three-dimensional support, that is, they are nonzero in the whole conductor
volume, although functions with compact support are also possible [156]. Different methods can be found
in literature on how to construct these distribution functions. One of the most common approaches, also
followed here, consists in solving a Laplace-type problem restricted to eitherΩs for stranded conductors [156,
159–161], or to Ωc for solid conductors [156, 159, 161].
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Figure 2.2. Sketch of cross sections for stranded (left) and solid (right) conductors.

2.9.1 Stranded conductor model

Stranded conductor models are suitable for strands containing thin filaments where the current density is
assumed to be homogeneously distributed (see Figure 2.2a). This assumption neglects the individual filament
insulation and implies that no eddy currents can occur as the filament diameter is below the skin depth [103,
156]. Therefore, stranded conductors ~χstr exist only in the source domainΩs. GivenNs conductors in different
source domains Ωk

s , for k = 1, 2, . . . , Ns, each conductor is associated to a source current iks . The source
domains are disjoint, that is,

Ωs =

Ns⋃
k=1

Ωk
s , Ωk

s ∩ Ωj
s = ∅, for k 6= j. (2.56)

The distribution functions ~χk
str are defined such that

~Js =

Ns∑
k=1

~χk
stri

k
s = χstris, (2.57)

where χstr : Ωs → R3×Ns is a tensor field containing the Ns distribution functions and is : I → RNs is a vector
of functions containing all the current sources.

An important property of distribution functions for stranded conductors is that the surface integral over any
cross sectional plane Sj

str of the k-th stranded conductor is equal to the number of turnsNk
t in the cross section

of the conductor [156], reading∫
Sj
str

~χk
str · d ~S = Nk

t , ∀Sj
str. (2.58)

In addition, a relationwith the voltage drop vks in the k-th source domain can be established as [156]

vks = −
∫
Ωk

s

~χk
str · ~E dΩ, (2.59)

such that the voltage can be calculated from the field solution. At the same time, an implicit relation between
voltages and currents is established such that the field model can be coupled with the equations representing
an external network model of a circuit [159].
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The source current density ~Js can be formulated in terms of the auxiliary source magnetic field ~Hs which was
used in (2.34) and (2.41) for the ~H − ϕ and ~T − ψ formulations. Consequently, the distribution function
~ζkstr : Ω

k
s → R3 is introduced such that

~Hs =

Ns∑
k=1

~ζkstri
k
s = ζstris, (2.60)

where ζstr is a tensor fieldΩs → R3×Ns related toχstr for the k-th source region by

~χk
str = ∇× ~ζkstr. (2.61)

The source voltage vks is calculated for the k-th source domain as [162]

vks = −
∫
Ωk

s

∇× ~ζkstr · ~E dΩ =

∫
Ωk

s

~ζkstr · ∂t ~B dΩ−
∫
Γk
s

(~ζkstr × ~E) · d~Γ, (2.62)

where the relation is derived from (2.59) by first introducing the relation between the two distribution func-
tions (2.61), and then by applying Gauss’s theorem and Faraday’s law (2.2a). The boundary term disappears
in presence of electric boundary conditions applied to Γk

s = ∂Ωk
s .

2.9.2 Solid conductor model

Solid conductor models are useful for bulk, mono-filamentary conductors where the current density distribu-
tion is generally nonhomogeneous (see Figure 2.2b). For this reason, solid conductors are assumed to exist
only in the conducting domain Ωc,χ ⊆ Ωc. In this work, solid conductors are linked to the external source
circuit via electrodes located on the boundary of the computational domain. However, it is possible to use a
compact support for the electrodes, positioning them within the cross section of the conductor, at an arbitrary
intersection along the conductor length [156]. Given Nc conductors in different conducting domains Ωk

c,χ,
for k = 1, 2, . . . , Nc, each conductor is associated to a source voltage vks . The source domains are disjoint,
that is,

Ωc,χ =

Nc⋃
k=1

Ωk
c,χ, Ωk

c,χ ∩ Ωj
c,χ = ∅ for k 6= j. (2.63)

The distribution functions ~χk
sol are defined such that

~Es =

Nc∑
k=1

~χk
solv

k
s = χsolvs, (2.64)

where χsol : Ωc,χ → R3×Nc is a tensor field containing the Nc distribution functions, and vs : I → RNc is
a vector of functions containing all the source voltages. An important property of distribution functions for
solid conductors is that the line integral along any path Lsol between the electrodes of the k-th solid conductor
is equal to the unity, reading∫

Lsol

χk
sol · d ~L = 1, ∀Lsol. (2.65)
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Figure 2.3. Schematic representation of the stranded and solid conductor coupling via distribution functions (a)
~χstr and (b) ~χsol, and their potentials (c) ~ζstr and (d) ζsol.

In addition, a relationwith the current in the k-th source domain can be established [156], as

iks =

∫
Ωk

c,χ

~χk
sol · ~J dΩ, (2.66)

such that the current can be calculated from the field solution. At the same time, an implicit relation between
voltages and currents is established such that the field model can be coupled with the equations of an external
lumped circuit [159].

The source electric field ~Es can be formulated in terms of an auxiliary source scalar potential φs, such that
~Es = −∇φs. Consequently, the distribution function ζksol : Ω

k
c,χ → R is introduced such that

φs =

Nc∑
k=1

ζksolv
k
s = ζsolvs (2.67)

where ζsol is a tensor fieldΩc,χ → RNs related toχsol in the k-th source region by

~χk
sol = −∇ζksol. (2.68)

The source current iks is calculated for the k-th source domain as [161]

iks = −
∫

Ωk
c,χ

∇ζksol · ~J dΩ = −
∫

Γk
c,χ

ζksol
~J · d~Γ, (2.69)

where the relation is derived from (2.66) by introducing the relation (2.68), and then by applying Gauss’
theorem and observing that ~J is divergence-free in the MQS approximation. The resulting boundary term
in (2.69) is applied on Γk

c,χ = ∂Ωk
c,χ.

2.9.3 Circuit coupling

In case of stranded conductors, the voltage drop along the k-th conductor consists of a resistive and an
inductive voltage contribution. The field-circuit coupling equation is derived for the ~H − ϕ, ~T − ψ and ~A

25



formulations, for k = 1, . . . , Ns, as [162, 163]

vks = Rk
stri

k
s +

∫
Ωk

s

~ζkstr · ∂tµ( ~H + ~ζkstri
k
s )dΩ, (2.70a)

vks = Rk
stri

k
s +

∫
Ωk

s

~ζkstr · ∂tµ(~T −∇ψ + ~ζkstri
k
s )dΩ, (2.70b)

vks = Rk
stri

k
s +

∫
Ωk

s

~χk
str · ∂t ~AdΩ . (2.70c)

The stranded conductor resistance Rk
str corresponds to the DC resistance in the stationary case, and it is given

by

Rk
str =

∫
Ωk

s

ρstr~χ
k
str · ~χk

str dΩ, (2.71)

where ρstr is the physical resistivity of the material composing the stranded conductor. From (2.70), stranded
conductormodels are coupled to the external circuit as current-driven voltage sources.

In case of solid conductors, the current through the k-th conductor is obtained from the ~H, ~T − ψ and ~A
formulation, for k = 1, . . . , Nc as [156]

iks =

∫
Ωk

c,χ

~χk
sol · ∇ × ~H dΩ, (2.72a)

iks =

∫
Ωk

c,χ

~χk
sol · ∇ × ~T dΩ, (2.72b)

iks = Gk
solv

k
s −

∫
Ωk

c,χ

σ~χk
sol · ∂t ~AdΩ . (2.72c)

where the conductanceGk
sol corresponds to the DC conductance in the stationary case, and it is given by

Gk
sol =

∫
Ωk

c,χ

σ~χk
sol · ~χ

k
sol dΩ . (2.73)

From (2.72), solid conductor models are coupled to the external circuit as voltage-driven current sources. The
stranded and solid conductor couplings are schematically shown in Figure 2.3, both in terms of distribution
functions ~χ and their potentials.

2.10 Circuit Theory

In traditional circuit theory, electrical circuits are represented by means of oriented graphs. The graphs de-
termine interconnections between the different circuit components representing the devices in the network.
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Figure 2.4. Sketch of the circuit layout for the Kirchhoff’s current and voltage laws.

The electrical behavior of each component is described using lumped element models which provide a math-
ematical relation (algebraic or differential) for the voltages and the currents associated to the branch where
the component is located. Moreover, currents and voltages are not independent, instead they depend on
the topology of the graph describing the circuit, and their relation is formulated by means of Kirchhoff’s
voltage (KVL) and current (KCL) laws. Nowadays, most modern circuit simulations are performed by means
of SPICE-like programs [164] (Simulation Program with Integrated Circuit Emphasis). The description of
voltages and currents in a circuit can be obtained by means of the modified nodal analysis (MNA) [165,
166] which extends the standard nodal analysis approach [165]. Specifically, the method allows including
as degrees of freedom not only the node potentials, but also some of the branch currents. In this way, it
is possible to include a broader range of components, like the ones featuring a current dependency, and to
obtain an easier treatment of voltage sources. The combination of the circuit topology equations provided by
the KVL and KCL, and the typology equations provided by the lumped element models of the components,
leads to a system of equations which can be integrated in time for determining the electrical behavior of the
circuit.

2.10.1 Kirchhoff’s laws

Kirchhoff’s laws are derived assuming time-invariant geometries for the circuits. To obtain KCL, the current
continuity equation is applied to a volume V containing an arbitrary circuit node nk, see Figure 2.4a. By as-
suming static conditions and by applying Gauss’s theorem, the following relation is obtained∫

V
∇ · ~JdV =

∫
∂V

~J · d ~S = 0. (2.74)

If the surface S around the node nk is composed of n conductors each carrying the current ik, then the KCL
is obtained as

n∑
k=1

∫
∂Vk

~J · d ~S =
n∑

k=1

±ik = 0, (2.75)
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where the sign of the currents depends on the orientation of conductors with respect to the surface inte-
grals.

To obtain KVL, Faraday’s law is applied to an arbitrary surface S, see Figure 2.4b. By assuming static condi-
tions and by applying Stokes’ theorem, the following relation is obtained∫

S
∇× ~E · d ~S =

∫
∂S

~E · d ~L = 0. (2.76)

If the edge ∂S is composed of a loop of n circuit branches with voltages vk, k = 1, . . . , n, then KVL is obtained
as

n∑
k=1

∫
∂Sk

~E · d ~L =

n∑
k=1

±vk = 0, (2.77)

where the voltage sign depends on the orientation of conductors with respect to the line integrals. As a
consequence of the irrotationality of ~E, the voltages across the circuit branches can be represented by means
of an electric scalar potential φ. The related node potentials ek represent the value of φ at the circuit node
nk, with k = 1, . . . , Nn, and Nn is the number of nodes in the circuit. The voltage-potential relation is given
for the nodes nk and nk+1 as

vk =

∫
∂Sk

~E · d ~L = −
∫
∂Sk

∇φ · d ~L = φk+1 − φk = ek+1 − ek. (2.78)

2.10.2 Modified nodal analysis

Let bj one of the Nb oriented branches in the circuit. The topology of the circuit is described by the incidence
matrix A? with

A?
k,j =


1 if branch bj leaves node k,
−1 if branch bj enters node k,
0 otherwise.

(2.79)

As A? has linearly dependent rows, regularization is needed. Therefore, an arbitrary ground node n0 is
chosen, and a reference potential φ0 is provided to the circuit. The reduced incidence matrix A is obtained
by eliminating from A? the row j0 associated to the reference potential.

With the previous definition, it is possible to enforce KCL and KVL as

Ai = 0, (2.80)
A>e = v, (2.81)

where i : I → RNb is the vector of all branch currents, e : I → RNn−1 is the vector of node potentials excluding
the ground node, and v : I → RNb is the vector of voltages across all branches. For each circuit branch, the
voltage-current relation is determined by the constitutive equations associated to the lumped elements. In
the simple case of linear elements, the constitutive equations are combined into the conductance, capacitance
and inductance matrices G, C and L, as

iG = GvG, vL = L
d
dt

iL, iC = C
d
dt

vC, (2.82)
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whereas the branches containing source voltages vs and source currents is are given by

vV = vs, iI = is. (2.83)

The currents and voltages related to resistance, inductance, capacitance, and source elements (subscripts C,
G, L, V, I) are related such that

i> = [i>G, i
>
C , i

>
L , i

>
V , i

>
I ],

v> = [v>G, v>C , v>L , v>V , v>I ].
(2.84)

By combining the previous definitions, the MNA formulation reads

ACCA>C
d
dt

e+ AGGA>Ge+ ALiL + AViV + AIis = 0

L
d
dt

iL − A>L e = 0

A>Ve− vs = 0

(2.85)

where A? represents the columns of the incidence matrix associated to branches which contain specific de-
vices, such that A = [AC, AG, AL, AV, AI]. The equation system (2.85) can be solved for the time interval
t ∈ I = (t0, tend] using time stepping schemes based for example on the trapezoidal rule or the backward dif-
ferentiation formula, see Section 3.3 for a general overview. The generalization to elements featuring nonlin-
ear constitutive equations is discussed in [167] and the references therein.

2.11 Field-Circuit Coupled Magnetothermal Problem

A convenient way for visualizing the different field quantities and potentials introduced for Maxwell’s equa-
tions and their magnetoquasistatic approximation, including the constitutive laws, is shown in Figure 2.5,
left. This schematic representation is known as Maxwell’s house [168] or Tonti’s diagram [169]. The po-
tentials for the ~A− φ (or ~A?) formulation and the fields ~E and ~B are located on the primal complex (left
side), and the potentials for the ~T − ψ (or ~H − ϕ) formulation and the fields ~D and ~J are located on the dual
complex (right side) of the diagram.

The representation in Figure 2.5 is completed by the thermal house on the top right, and a circuit model
of arbitrary complexity on the bottom right. The two houses include vertical and planar links. The vertical
links represent differential operators, the planar links are rendered as bold and dashed arrows, represent-
ing time derivatives and constitutive laws. The Maxwell house is extended by the distribution functions
for stranded and solid conductors which allow connecting the external circuit via source voltages and cur-
rents. The electromagnetic coupling links the two houses by means of Joule and magnetic losses, and mag-
netic field-dependency in the heat capacity and heat transfer coefficients. The thermal coupling occurs via
the temperature-dependent electrical conductivity. The circuit is coupled to both the houses via the field-
dependent properties characterizing the lumped parameters. The three problems are tightly coupled, deter-
mining a field-circuit coupled problem which is intrinsically multiphysical. At the same time, the subsystems
included in the problem typically show physical phenomena characterized by time rates which might differ
up to several orders of magnitude. This is a challenge for any time-integration method, as solving the dy-
namics of different subsystems leads to a multirate problem. Moreover, subsystems may have very different
spatial dimensions, and may require different level of spatial resolution in order to capture the most relevant
physical phenomena, leading to a multiscale problem.
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Figure 2.5. Left: Maxwell’s house from [168], extended with the distribution functions. Right: thermal house
and arbitrary electrical circuit. The vertical links represent differential operators, whereas the planar
links are either time derivatives, or constitutive laws. The two houses are linked by the Joule and
magnetic losses, the magnetic field-dependent mass density and heat transmission coefficient, and by
the temperature-dependent conductivity. The houses are linked to the circuit via both distribution
functions, and field-dependencies in the lumped parameters.

2.12 Modeling Of Superconducting Magnets

Superconducting materials such as Nb-Ti, Nb3Sn and ReBCO and exhibit a highly nonlinear electric field
strength-current density relation (e.g. [27]). The majority of models available in literature propose the use
of continuous and smooth power-law relations as | ~E| ∝ | ~J |n, where the index n determines the steepness.
Such relations are phenomenological and include fitting parameters which are commonly quantified bymeans
of measurements.

2.12.1 Superconducting materials

A widely common approach in modeling the resistivity ρ of superconducting materials consists in using a
phenomenological percolation-depinning law proposed in [170]. The law gives a lower limit for the current
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Figure 2.6. Sketch of the qualitative electric behavior in superconductors. The critical current density Jc and the
corresponding critical field Ec are highlighted. The parametrization by the power-law index shows
that by increasing the n-value, steeper curves and sharper transitions are obtained.

density, below which the magnetic field is frozen in the superconductor and no flux creep [1, 170] can occur.
However, the current density values and the magnetic fields used in practical applications are typically much
higher than the lower limit considered in the percolation-depinning law. Therefore, a further simplification
into a power law [171] is sufficient, as shown in [172], and is also adopted in this work. The resistivity ρ in
superconductors reads

ρ(| ~J |, ~B, T ) = Ec

Jc( ~B, T )

(
| ~J |

Jc( ~B, T )

)n( ~B,T )−1

=
Ec

Jc( ~B, T )

(
| ~E|
Ec

)1−
1

n( ~B, T )
, (2.86)

where ~J is the current density, Ec is the critical electric field strength, set to 1 × 10−4 Vm−1 [173], and
the material- and field-dependent parameters Jc and n are the critical current density and the power-law
index, respectively. The behavior of Jc can be represented for example by means of fitting functions (see
Appendix A), or lookup tables. Typical values for the n-value are found between 40 and 50 for LTS materi-
als [174], and between 25 and 35 for the HTS counterpart [175]. The qualitative behavior of the power law
is shown in Figure 2.6. In case of n→ 0, the power law approximates the behavior of normal conducting ma-
terials. In case of n→ ∞, the power law can be further approximated by the critical state model [176, 177].
For a comparison of the percolation-depinning law with its power-law and critical-state approximations, see
Appendix B.

Care has to be taken in the use of (2.86), see for example the discussion in [178] regarding continuity
properties of material functions. Both the power law and its derivative vanish at low current density and are
unbounded, that is,

lim
| ~J |→0+

ρ(| ~J |, ~B, T ) = 0, lim
| ~J |→0+

∂

∂| ~J |
ρ(| ~J |, ~B, T ) = 0,

lim
| ~J |→+∞

ρ(| ~J |, ~B, T ) = +∞, lim
| ~J |→+∞

∂

∂| ~J |
ρ(| ~J |, ~B, T ) = +∞.

(2.87a)

(2.87b)

To overcome these issues, a common approach consists in introducing lower and upper saturation thresholds
in (2.86), see for example [78, 88, 179]. In this case, themagnitude for the lower threshold has to be carefully
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chosen as it introduces an artificial resistivity potentially affecting the dynamics of the screening currents in
the superconducting material. Another possibility consists in discarding the power law in favor of functions
fulfilling the necessary continuity properties, for example hyperbolic tangent functions [76, 77]. Recently, a
mathematical model based on empirical measurements was proposed in [180] for improving the power-law
behavior in the overcritical regime, that is, | ~J | ≥ Jc (see Figure 2.6). For the simple case where the field
dependency is discarded, Jc and n are constant, and the constitutive law ~E( ~J) = ρ(| ~J |) ~J can be linearized as
a Taylor series expansion around | ~J0| truncated to the first order, reading

~E( ~J) ≈ ~E( ~J0) +
∂

∂| ~J |
ρ(| ~J0|)(| ~J | − | ~J0|) (2.88)

The parameter | ~J0| should be chosen as | ~J0| � Jc, such that the linearization does not affect that the field
solution in the overcritical regime (see Figure 2.6).

2.12.2 Monolithic formulations

The power-law behavior of superconducting materials poses a challenge to the formulation of the field prob-
lem. At low currents, that is, | ~J | → 0, the resistivity in (2.86) vanishes or, conversely, the conductivity tends
to infinity. In case that normal-conducting and insulating materials are also considered in the field problem,
monolithic formulations show important drawbacks.

One possibility is given by conductivity-based monolithic formulations, such as the (reduced) magnetic vector
potential ~A, the difference in the conductivity of the different domains leads to numerical instabilities once
the field problem is discretized, as it has been observed for example in [76, 95, 181]. Possible solutions
consist in applying iterative schemes for the power-law calculation [78] and fine-tuning of numerical solvers
via damping factors [95]. However, such solutions are sensitive to the model characteristics and in principle
cannot guarantee the convergence of the numerical solution [95]. Another possibility is given by resistivity-
based monolithic formulations, such as the widely-used ~H formulation [79, 84, 86, 87] which is derived from
the ~H − ϕ formulation (see Section 2.8.1). The ~H formulation is derived by solving for the unknown ~H field
everywhere in the computational domain, thus avoiding the scalar field ϕ. To do so, a finite resistivity ρ is
introduced in the nonconducting fraction of the computational domain. The first drawback is the introduction
of unnecessary degrees of freedom in the nonconducting domains, increasing the consequent computational
cost [182]. The second and most relevant drawback is that the choice of the conductivity is usually based on
empirical knowledge achieved through numerical experiments, see for example [182], and it directly affects
the stability and accuracy of the solver. On the one hand, reducing ρ leads to a non-negligible and non-physical
current density in the nonconducting region (e.g. [81]). On the other hand, increasing ρmight lead to issues
in the robustness of the numerical time-stepping scheme [182]. Despite these important shortcomings, the
~H formulation is, at the time of writing, the most widely spread formulation for the simulation of high-
temperature superconductors, most likely due to its simplicity.

2.12.3 Mixed-field formulations

A third possibility is given by the use of mixed field formulations, such that resistivity- and conductivity-
based formulations are combined. In this case, the computational domain is decomposed into sub-domains
or regions, and distinct formulations can be assigned region-wise, according to the electrical behavior of
the regions. As a consequence, several possibilities arise due to the freedom in the domain decomposition
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scheme, and the choice of the unknown field quantity in each region. For computational domains containing
eddy-current regions, the formulations of interest can be subdivided into mixed vector-scalar and mixed
vector-vector field formulations. Examples belonging to the mixed vector-scalar formulations group are the
~H-oriented formulations, such as the ~H − ϕ and the ~T − ψ formulations detailed in Sections 2.8.1 and 2.8.2.
These formulations have been successfully used for simulating bulk superconductors (e.g. [82]) as well as
superconducting cables [182, 183]. However, the main drawback of a vector-scalar approach is the increased
complexity deriving from the introduction of cohomology basis functions representing the net currents in
the source regions, in case of non-trivial topology for the computational domain [95, 182]. A detailed
comparison of the ~H − ϕ and ~T − ψ formulations in eddy-current problems is given in [184]. Concerning
mixed vector-vector formulations, an example is provided by the ~H − ~E formulation used for solving the full
set of Maxwell’s equations [131].

In this work, the coupled ~A− ~H field formulation belonging to the mixed vector-vector class is chosen for
modeling field problems in terms of ~H in the conducting domains containing superconducting materials, and
in terms of ~A in the nonconducting and ferromagnetic materials. While the use of ~H for superconductors is
a common choice [79], the introduction of ~A brings several advantages. In particular, the magnetic vector
potential deals with multiply connected domains without the need of cohomology basis functions, does not
require the introduction of an artificial resistivity in the nonconducting domains, and is more efficient for
modeling ferromagnetic materials with respect to a monolithic ~H formulation [95]. The coupled ~A− ~H for-
mulation has been successfully used in the simulation of rotating electrical machines with superconducting
windings [89], systems containing both superconducting and ferromagnetic materials in [95], and supercon-
ducting magnets in [185, 186].

2.13 Coupled ~A− ~H Field Formulation

The field problem is defined under MQS assumptions by means of a coupled ~A− ~H field formulation. A do-
main decomposition strategy is applied to the computational domain Ω, such that the field problem is solved
for the (reduced) magnetic vector potential ~A in the region ΩA containing only nonconducting and normal
conductingmaterials, and for themagnetic field strength ~H in the conducting regionΩH which includes all the
superconducting materials. In this way, the formulation is resistivity-based in the superconducting domains,
and conductivity-based in non-conducting domains, such that the material properties remain finite. The field
variables are restricted as ~A = ~A|ΩA

and ~H = ~H|ΩH
to avoid ambiguity with the magnetic field strength vector

in ΩA. The domain decomposition strategy and the formulation of the coupled field formulation is detailed
in the following.

2.13.1 Domain decomposition strategy

The domain decomposition is formalized by assuming that domains and boundaries include also their closure
depending on the situation, for the simplicity of notation. The strategy is based on the separation of the con-
ducting domain containing the superconducting materials from the remainder of the computational domain.
The decomposition strategy is applied to the typical structure of an accelerator magnet where superconduct-
ing materials are typically used for the coil. The latter is powered by an external circuit and carries a current
acting as the source for the magnetic field. For the general case, the coil is assumed to be composed of Nr
windings which are electrically independent, that is, independent currents can be prescribed. The remainder
of the domain represents the rest of the magnet containing the iron yoke, the mechanical supports and the
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Figure 2.7. Decomposition of the domain Ω. (a) The regions Ωr
c-sc,H and Ωr

c-nc,H account for superconducting
and normal-conducting materials, whereas the regions Ωc,A and Ω0,A refer to normal conducting and
insulating materials. (b) The boundary Γr

c,H includes the interface Γr
HA and the electrical ports Γr

E
and Γr

J , used for imposing the source voltages vrs and currents irs . The electrical ports are excluded
from the exterior boundary Γdir-0,A.

air regions. The electrical insulation of the coil ensures the electrical separation between the two domains.
As a consequence, the coil and the iron yoke are not in contact.

2.13.1.1 Partition of the domain

The domain Ω ⊂ R3 bounded by Γ = ∂Ω is decomposed into the domain ΩH bounded by ΓH, and the domain
ΩA bounded by ΓA, such that

Ω = ΩH ∪ ΩA, ΩH ∩ ΩA = ΓHA, (2.89)

where ΓHA is the interface between ΩH and ΩA. No source domain Ωs is considered for Ω. The domain
ΩH is conducting, and is further subdivided into Nr independent and non-intersecting domains Ωr

c,H. These
domains represent the windings composing the coil, as

ΩH =

Nr⋃
r=1

Ωr
c,H, Ωr

c,H ∩ Ωj
c,H = ∅ for r 6= j. (2.90)

Moreover, each r-th domain may contain both, superconducting and normal conducting regions, represented
by Ωr

c-sc,H and Ωr
c-nc,H, accounting for the superconducting and normal conducting fraction of the coil. The

domain ΩA may contain both, normal conducting and insulating domains, represented by Ωc,A and Ω0,A,
such that ΩA = Ωc,A ∪ Ω0,A. The domain Ωc,A is assumed to represent only the iron yoke, however the
inclusion of other (normal conducting) structural components is straightforward. The magnetic permeabil-
ity µ determining the magnetic constitutive law is assumed as field-independent in the domains Ωc,H and
Ω0,A, whereas a nonlinear field dependency µ(| ~B|) : Ωc,A → R is assumed for the iron yoke. The domain
decomposition strategy is shown in Figure 2.7a. For the sake of clarity, only the r-th conducting domain is
represented.
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2.13.1.2 Partition of the boundary

Each domainΩr
c,H is orientedwith the outward normal vector ~nr and it is contoured byΓr

c,H such that

Γc,H =

Nr⋃
r=1

Γr
c,H, Γr

c,H ∩ Γj
c,H = ∅ for r 6= j. (2.91)

Each of the boundariesΓr
c,H is further decomposed into three distinct contributions as

Γr
c,H = Γr

HA ∪ Γr
E ∪ Γr

J , (2.92)

where Γr
HA is the boundary at the interface between Ωr

c,H and Ωr
A, and Γr

E and Γr
J are two electrical ports

which are provided to each winding for imposing the field sources in terms of either voltages urs or currents
irs . The cumulative boundaries are defined as

ΓHA =

Nr⋃
r=1

Γr
HA, ΓE =

Nr⋃
r=1

Γr
E, ΓJ =

Nr⋃
r=1

Γr
J . (2.93)

The domainΩA is orientedwith the outward normal vector ~n, and it is contoured by

ΓA = Γdir-0,A ∪ ΓHA, (2.94)

whereΓdir-0,A = Γ\(ΓE∪ΓJ) is the exterior boundarywithout the electrical ports. The domainsΩA andΩr
c,H are

oriented such that ~n and ~nr have opposite sign at the interface Γr
HA, for all ∀r. The boundary decomposition

strategy is shown in Figure 2.7b. Once again, only the r-th source domain is shown.

2.13.2 Excitation sources

The Nr windings of the coil are assumed to be solid conductors, as in the case of cables made of HTS ReBCO
tapes. For this reason, the excitation of the domains Ωr

c,H representing the Nr windings of the coil is done
by introducing a distribution function for solid conductors ~χr

sol for each corresponding domain Ωr
c,H (see

Section 2.9.2). In this way, each winding can be powered by an independent source voltage vrs and can carry
an independent source current irs . With the previous observations, the voltages, currents and distribution
functions are given by the vectors

vs = [v1s , . . . , v
Nr
s ]>, is = [i1s , . . . , i

Nr
s ]>, χsol = [~χ1

sol, . . . , ~χ
Nr
sol]

>. (2.95)

Each distribution function allows linking the source electric field ~Er
s in the r-th winding to the related source

voltage vrs . For r = 1, ..., Nr the electric field strength reads

~Er = ρ ~Jr − ~Er
s = ρ∇× ~Hr − ~χr

solv
r
s . (2.96)

Alternatively, if the source current ~irs is prescribed, the relation in (2.66) is used. In this case, the source
voltage becomes an algebraic unknown, and one constraint equation is added for each of the independent
currents in is, as

irs =

∫
Ωr

c,H

~χr
sol · (∇× ~Hr)dΩ, k = 1, . . . , Nr. (2.97)
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serving as a Lagrange multiplier for the determination of the source voltage vrs . The domain decomposition
strategy described in (2.89) and (2.90) leads to multiply connected domains with disconnected boundaries.
As a consequence, the field quantities in ΩH are defined independently for each domain Ωr

c,H, and are given
as the sum of the contributions from all the windings in the coil, reading

~H =

Nr∑
r=1

~Hr, ~E =

Nr∑
r=1

~Er, ~Es =

Nr∑
r=1

~Er
s . (2.98)

2.13.3 Distribution functions

The distribution functions in (2.95) are independent from the field formulation applied in Ω, therefore
they can be calculated separately. From (2.68), each ~χr

sol is given by a gradient field in Ωr
c,H, and it is

zero elsewhere, that is, ~χr
sol = 0 in ΩA. The potential is obtained by solving a unitary current-flow prob-

lem for each of the windings composing the coil [161]. The field problem is formalized for r = 1, ..., Nr
as 

∇ · σχ∇ξr = 0, in Ωr
c,H,

ξr = 1, on Γr
J ,

ξr = 0, on Γr
E,

(σχ∇ξr) · ~nr = 0, on Γr
HA,

(2.99a)
(2.99b)
(2.99c)
(2.99d)

where σχ > 0 is an arbitrary nonzero conductivity. With this definition, ~χr
sol can be interpreted as a per-unit

source electric field strength.

2.13.4 Magnetoquasistatic formulation

The formulation of the field problem is composed of the ~A formulation in ΩA, and the ~H formulation for each
winding Ωr

c,H. The field excitation is obtained by means of either voltage and/or current sources. In the first
case, distribution functions apply the source voltage by means of an electric field source term, whereas in the
second case the source current is enforced by means of integral constraints. Homogeneous Dirichlet boundary
conditions are imposed to ~A on Γdir-0,A, and homogeneous Neumann boundary conditions are imposed for
r = 1, ..., Nr to ~Hr on the electrical ports Γr

J and Γr
J , corresponding to electric boundary conditions for both

the vector fields. With the previous observations, the formulation of the field problem reads: find ~A, ~Hr and
vrs , for r = 1, ..., Nr, such that

∇× µ−1∇× ~A+ σ∂t ~A = 0, in ΩA,

∇× ρ∇× ~Hr + ∂tµ ~H
r −∇× ~χr

solv
r
s = 0, in Ωr

c,H,∫
Ωr

c,H

~χr
sol · (∇× ~Hr)dΩ = irs , for r = 1, ..., Nr,

~A× ~n = 0, on Γdir-0,A,

(ρ∇× ~Hr − ~Er
s )× ~nr = 0, on Γr

E, Γ
r
J .

(2.100a)

(2.100b)

(2.100c)

(2.100d)

(2.100e)

To ensure the consistency of the overall solution, the fields ~A and ~H are linked by appropriate interface
conditions at Γr

HA. In detail, the continuity of the tangential components of ~H and ~E, and the normal
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components of ~J and ~B must be ensured. The interface conditions are given on Γr
HA for r = 1, ..., Nr,

as

(µ−1∇× ~A− ~Hr)× ~nr = 0, for ~Ht, (2.101)

(∂t ~A+ ρ∇× ~Hr − ~χrvrs )× ~nr = 0, for ~Et, (2.102)

(σ∂t ~A+∇× ~Hr) · ~nr = 0, for ~Jn, (2.103)

(∇× ~A− µ ~Hr) · ~nr = 0, for ~Bn. (2.104)

2.13.5 Heat balance equation

Thematerials typically used in superconducting devices showmagnetic- and temperature-dependent physical
properties. In particular, the temperature T influences both the critical current density of the superconducting
materials, and the resistivity of the normal conducting materials. This, in turn, determines the Joule losses PJ
occurring in the conducting domains, and acting as the main heat source term. The temperature dependency
requires characterizing the thermodynamics of the system by adding the heat balance equation, with suitable
boundary and initial conditions, to the MQS problem described by (2.100a)−(2.100c). The temperature is
obtained by solving the heat balance equation

{
ρmCp∂tT −∇ · (κ∇T ) = PJ, in Ω,

κ∇T · ~n = 0, on Γ.

(2.105a)
(2.105b)

If the domain of interest is limited to the superconducting coil, as in case of a quench, and the adiabatic
approximation is reasonable, then the Neumann boundary condition can be moved to Γc,H, thereby reducing
the model complexity.

2.14 Thin-Shell Approximation

High-temperature superconducting tapes feature a layered structure of composite materials. The tape struc-
ture is shown in Figure 2.8a. The generic tape Ωr

c,H of thickness δrt is composed of one superconducting layer
Ωr

c-sc,H of thickness δrtsc , and a normal conducting layer Ωr
c-nc,H of thickness δrtnc , which is made of composite

materials and provides mechanical and thermal support. Tapes are typically characterized by a high aspect
ratio between their width and thickness, up to two orders of magnitude for the overall cross section of the
tape, and up to three orders of magnitude if only the superconducting layer is considered. Such high aspect
ratios justify to represent the domain Ωr

c,H as a thin shell, neglecting its thickness δrt . In this way, tapes can be
represented by means of a thin-shell approximation [75]. Therefore, the tapes are reduced to an equivalent
surface Γr

c,H (see Figure 2.8b) where the material properties are homogenized. In particular, the current
sharing between the conducting layers is resolved via an equivalent resistivity ρreq which is formalized in
Section 3.7.

The volume associated to the original shape of the conducting domain Ωr
c,H is preserved as an insulating

structural element (dashed line, Figure 2.8b), and it is accounted for in ΩA. In this way, the thermal contacts
are preserved for the thermal problem in (2.105). The implications on the coupled field formulation are
discussed in the following.
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Figure 2.8. Thin-shell approximation. (a) Superconducting tape of thickness δrt , featuring superconducting and
normal conducting domains Ωr

c-sc,H and Ωr
c-nc,H. (b) Equivalent thin-shell approximation Γr

c,H. The
electrical ports Γr

E and Γr
J are reduced to the edges γr

E and γr
J , respectively.

2.14.1 Electromagnetic behavior

The discussion of the electromagnetic behavior of the thin shell is discussed with respect to a local coordinate
system (~lr, ~mr, ~nr) which is oriented according to the tangential (~lr, ~mr) and normal (~nr) directions of the
r-th tape (see Figure 2.8b). With this definition, the differential operators and vectors ~v are decomposed into
their tangential and normal components (subscripts t and n), such that

∇ = ∇t +∇n, ~v = ~vt + ~vn. (2.106)

Without loss of generality, the current density ~Jr within the r-th tape Ωr
c,H can be described by the contribu-

tions

~Jr = ∇× ~Hr

= ∇t × ~Hr
t +∇t × ~Hr

n +∇n × ~Hr
t +∇n × ~Hr

n

= ∇t × ~Hr
n +∇n × ~Hr

t ,

(2.107)

where the contributions∇t× ~Hr
t and∇n× ~Hr

n are identically zero. At this point, the thin-shell approximation
is introduced by neglecting the physical thickness δrt of the superconducting tape, collapsing its volume into
a surface (or line, in the 2D setting). By doing so, the variation of all field quantities along the perpendicular
direction of the tape ~nr is forced to be zero, therefore

∇· = (∇t·,∇n·) = (∇t·, 0) on Γr
c,H. (2.108)

Since no variation of the current density can occur along the normal direction of the tape, the current density
can be replaced by an equivalent surface current density term ~Kr in the thin shell as

~Kr = δrt ~J
r = δrt∇t × ~Hr

n on Γr
c,H, (2.109)

where the last step in (2.109) is obtained by incorporating the property in (2.108) into (2.107). Follow-
ing (2.109) the quantity ~Kr is determined only by the normal component ~Hr

n of the magnetic field strength
within the thin shell.
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2.14.2 Magnetoquasistatic formulation

The description of the magnetic field dynamics within the thin-shell approximation is obtained by projecting
the ~H formulation in (2.100b) along the ~nr component of the thin shell, that is ~Hr

n = Hr~nr, obtaining for
r = 1, ..., Nr

∇× ρ∇× (Hr~nr) + ∂tµ(H
r~nr)−∇× ~χr

solv
r
s = 0 on Γr

c,H, (2.110)

where the differential operator is intended as in (2.108), and ~χr
sol is adapted for solid conductors repre-

sented by a thin-shell approximation, that is, the current flow problem (2.99) is solved for a surface domain
where the electrical ports are represented by lines (see Figure 2.8b). The interface conditions introduced
in (2.101)-(2.104) are modified to include the thin-shell surface, ensuring the consistency of the overall so-
lution. The interface conditions are given with respect to the indexes 1 and 2 referring to the two sides of
the surface Γr

s,H, reading

µ−1(∇× ~A1 −∇× ~A2)× ~nr = ~Kr, for ~Ht, (2.111)

(∂t ~A1 − ∂t ~A2)× ~nr = 0, for ~Et, (2.112)

σ(∂t ~A1 − ∂t ~A2) · ~nr = 0, for ~Jn, (2.113)

(∇× ~A1 −∇× ~A2) · ~nr = 0, for ~Bn, (2.114)

with ~Kr introducing a discontinuity of the tangential magnetic field strength in ΩA. The magnetic perme-
ability is assumed identical on the two sides, as the source domains are assumed to be surrounded by an
insulating material. As a consequence, the tangential continuity of ~E and the normal continuity of ~B and ~J
are automatically satisfied across Γr

c,H.

2.14.3 Equivalence of the ~A− ~H and ~T − ~A formulations

Awidespread choice for modeling superconducting tapes by means of the thin-shell approximation is given by
the ~T − ~A formulation [92]. At the time of writing, the formulation has been successfully used for modeling
3D complex cable architectures such as CORC® [93] and Roebel [187], high-field solenoids [94], fault-current
limiters [188] and rotating electrical machines [91].

For the thin-shell approximation, the ~A− ~H and ~T − ~A formulations cannot be distinguished anymore as
they lead to the same field equations (cf. (2.110) with e.g. [189]). Here, it is recalled that the electric vector
potential ~T introduced in Section 2.8.2 is defined up to a gradient function ∇α. A possibility for gauging ~T
in the thin-shell approximation is provided by choosing ~T as a single-component vector field, that is, ~T = T~n
(see [189]). At the same time, the same result is obtained for the ~A− ~H formulation, see Section 2.14.2.
On the one hand, the tangential component of ~T is irrotational, and can be represented by ∇α. On the other
hand, the tangential component of ~H does not contribute to the description of the current density in the thin
shell, therefore it is also irrotational. It is concluded that the single-component vector potential corresponds
to the normal component of the magnetic field strength within the thin shell, and that the formulations are
equivalent.
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Figure 2.9. Main geometric features of a fully transposed cable. (a) The strands in the cable Ωr
c , composed of the

superconducting filaments and the conducting matrix Ωr
c-sc and Ωr

c-nc; (b) Characteristic strand loops
γω,a, γω,c and γη,a. (c) Local reference frame in the 2D setting for the cable Ωr

c .

2.15 Equivalent Magnetization Approximation

The coupled ~A− ~H field formulation is extended to stranded conductor models which is of relevance for HTS
(e.g. BSCCO), as well as LTS (e.g. Nb-Ti, Nb3Sn) materials. A practical example is given by the LHC dipole
magnets which are made of fully-transposed cables, also known as Rutherford cables, whose strands are
essentially superconducting filamentary compounds embedded in a copper matrix [1]. The cross section of a
typical cable is shown in Figure 2.9a. The cross sectionΩr

c is made of strands which feature a superconducting
region Ωr

c-sc containing the filamentary structure, and a normal conducting region Ωr
c-nc associated to the

normal conducting matrix. The voids in the cable are nonconducting and may be filled by the coolant, or
impregnated for example with an epoxy resin.

Computing the distribution of eddy currents within such cables would require a geometric resolution down to
the micrometric scale of the filaments, while a magnet has a typical dimension of a meter in the cross section
and up to ten meters in the longitudinal direction. As a consequence, solving this magnetoquasistatic problem
would lead to an unacceptable computational cost. Therefore, a homogenization method is illustrated for
modeling eddy-current phenomena in stranded LTS cables for the 2D setting with translational symmetry,
assuming a coil made of Nc turns in the cross section. In the remainder of the section, the geometric entities
and the vector field quantities are to be interpreted as two-dimensional.

2.15.1 Magnetization contributions

Three principal contributions from eddy currents are identified in superconducting Rutherford cables [1].
The first contribution is given by inter-filament coupling currents (IFCC) within a strand. These currents
form loops which follow the twisted superconducting filaments, and close through the copper matrix em-
bedding the filaments. The second contribution is given by inter-strand coupling currents (ISCC) which are
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inherently related to the Rutherford architecture. In this case, these parasitic currents form loops along the
twisted strands, and close through the contact resistances where the strands touch each other. The third
contribution is given by screening currents circulating in loops entirely contained in the filaments compos-
ing the strands. For this last contribution, the currents remain within a superconducting material, therefore
decay with a time constant which can be orders of magnitude longer than the IFCCs and ISCCs, and pro-
duce a persistent magnetization which affects the steady-state magnetic field in superconducting magnets [1,
59].

The magnetic contribution of inter-filament and inter-strand coupling currents is accounted for by means
of an equivalent magnetization formulation applied to the cable model [114, 190, 191]. The formulation
combines Faraday’s and Ampère-Maxwell’s laws, relating the magnetization of the cable with the derivative
of the magnetic flux density through an equivalent time constant [191]. This time constant can be explicitly
calculated if the paths of the coupling currents are known a-priori. The magnetic contribution of screening
currents is formulated following [1, 59], assuming a critical-state behavior for the superconducting mate-
rial [177], neglecting the hysteresis behavior. The equivalent magnetization ~Meq associated to eddy currents
reads

~Meq = ~Mifcc + ~Miscc + ~Mpers, (2.115)

where ~Mifcc and ~Miscc are the contributions from coupling currents, and ~Mpers is given by screening currents.
The contributions are calculated in the cross section of each strand, without resolving the superconducting
and normal conducting contributions, thus assuming homogenizedmaterial properties.

2.15.1.1 Inter-filament coupling currents

Following [1, 47, 190], the magnetization term ~Mifcc due to inter-filament coupling currents is formulated
as

~Mifcc = − 1

µ0
τifcc(| ~B|, T )∂t ~B, (2.116)

with τifcc(| ~B|, T ) : Ωc → R being the equivalent cable time constant which depends on the geometry and
material of the strands, the magnetic field magnitude | ~B| and the temperature T . The time constant is given
by [1]

τifcc(| ~B|, T ) = µ0
2

(
lf
2π

)2 1

ρnc(| ~B|, T )feff
, (2.117)

where lf is the filament twist pitch, ρnc(| ~B|, T ) is the resistivity of the material used for the normal conducting
matrix in the strand and feff is a parameter which depends on the fraction of superconductor in the matrix,
on the contact resistance between filaments and matrix, and on the distribution of the filaments within the
cross section [192]. Care has to be taken in the use of (2.116).

Care has to be taken with the use of (2.116). The formulation is derived by assuming an externally applied
magnetic field, therefore neglecting the magnetization due to the self magnetic field of the strand (see [193]).
However, the formulation has been satisfactorily used for the simulation of practical applications (see e.g. [24,
114]).
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2.15.1.2 Inter-strand coupling currents

The ISCC magnetization features three distinct contributions [190], which reflect the three characteristic
strand loops γω,a, γω,c and γη,a associated to the ISCCs paths in fully transposed cables, as shown in Fig-
ure 2.9b. Each of the three ISCCs contributions is homogenized over the unit length of the cable and then
linked to the equivalent time constants τω,c, τω,a and τη,c [190, Chapter 4].

In the 2D setting, the three characteristic strand loops are replaced by two equivalent loops γω and γη which
are aligned with the wide and narrow faces of the cable, and located in the two mid-planes of the cable. The
traces of the equivalent loops are shown in Figure 2.9c. In a local reference frame (ω, η) oriented according to
the cable, the tensor of the equivalent time constants τ iscc : Ωc → R2×2 reads

τ iscc =

[
τω,c + τω,a 0

0 τη,a

]
. (2.118)

Themagnetization due to inter-strand coupling currents is given, for r = 1, ..., Nc, by

~M r
iscc = − 1

µ0
τ r
iscc,θ∂t

~Br
θ , (2.119)

with the quantities τ r
iscc,θ and ~Br

θ defined as

τ r
iscc,θ = Frot(−θr)τ isccFrot(θr), ~Br

θ = Frot(−θr)Favg(γω,η)Frot(θr) ~B, (2.120)

where θr is the rotation angle of the cable, Frot(·) : R2 → R2×2 is a rotation matrix, positive definite for a
counterclockwise rotation of the 2-D Euclidean space and Favg(·) : Ωc → R2 is an operator calculating the
averaged normal components of ~B along γω and γη.

2.15.1.3 Screening currents

Following [59], the persistentmagnetization due to screening currents is given by

~Mpers = − 2

3π
dfλscJc( ~B, T )

(
1− | ~J |2

(λscJc( ~B, T ))2

)
~B

| ~B|
, (2.121)

where df is the diameter of the superconducting filaments, and λsc is the fraction of superconductor in the
strand. For LTS materials such as Nb-Ti or Nb3Sn, the critical current density in (2.121) shows an isotropic
field dependency. The filament size in accelerator magnets should be as small as possible, such that the
contribution ~Mpers decays rapidly with the increase of the source current, being negligible during high-field
operations [59].

2.15.2 Heat sources

The heat losses P in coils made of Rutherford cables are modeled as two distinct contributions PM and PJ as-
sociated to the Joule losses due to eddy currents and the transport current. The first contribution PM is calcu-
lated as the variation of the associatedmagnetic energy density function [194], reading

PM = ~Mifcc · ∂t ~B +

Nc∑
r=1

~M r
iscc · ∂t ~Br

θ +
~Mpers · ∂t ~B. (2.122)
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Figure 2.10. Sketch of the quench transition in an LTS strand.

As for HTS materials, the second contribution PJ is governed by the power-law behavior defined in (2.86).
However, for strands made of LTS materials, that is, with high n value and steep power law, the Stekly ap-
proximation is typically sufficient [59, 195]. This approximation assumes that whenever the current density
in the superconducting fraction of the cable exceeds the critical current density, only the current in excess
flows into the normal conducting fraction. this behavior is shown in Figure 2.10a, where ~J = ~Jsc + ~Jnc
with ~Jsc and ~Jnc flowing in the superconducting and normal conducting fraction of the cable. For the sake
of simplicity, the two fractions are assumed as identical. For T ≤ Tcs, that is, in the superconducting state,
being | ~Jsc| = | ~J | and | ~Jnc| = 0. Once the temperature enters the current sharing regime Tcs < T ≤ Tc,
| ~Jsc| = ~Jc and | ~Jnc| = | ~J | − ~Jc. Once T > Tc, that is, the critical temperature is exceeded, then ~Jc = 0
and | ~Jnc| = | ~J | and the transition to the normal conducting state is complete. The Stekly approximation is
implemented by means of the state variable fq( ~J, ~B, T ) : Ω → R, shown in Figure 2.10b. The function relies
on third-order polynomial function for the range [0, 1], and assumes nonzero values only if | ~J | ≥ Jc. The
Joule loss contribution is given by

PJ = fq( ~J, ~B, T )ρnc ~J · ~J, (2.123)

where ρnc is a homogenized conductivity taking into account the fraction of normal conducting material in
the cable.

2.15.3 Magnetoquasistatic formulation

Within filamentary strands, the current density distribution is assumed as homogeneous. At the same time,
eddy currents are modeled by means of an equivalent magnetization model introduced in Section 2.15.1.
Therefore, the solid conductor model is discarded for the superconducting coils in favor of the stranded con-
ductor model (see Section 2.9.1). The coil region, previously introduced as Ωc,H in the coupled ~A− ~H field
formulation, is modeled as a nonconducting source domain Ωs which includes all the superconducting mate-
rials. A known source current density ~Jr

s , r = 1, ..., Nr, is imposed in each of the Nr independent windings
composing the coil. The external source currents irs are coupled to the field model by means of distribution
functions for stranded conductors ~χr

str as ~Jr
s = ~χr

stri
r
s . Consequently, the coupled field formulation (2.100)
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can be simplified by solving the field problem only with respect to the (reduced) magnetic vector potential
~A. The formulation is derived under MQS assumptions, reading

∇× µ−1∇× ~A+∇× ~Meq + σ∂t ~A =

Nr∑
r=1

~χr
stri

r
s , on Ω,

ρmCp∂tT −∇ · (κ∇T ) = PM + PJ, on Ω,

~A× ~n = 0, on Γdir-0,

κ∇T · ~n = 0, on Γ,

(2.124a)

(2.124b)

(2.124c)
(2.124d)

where the heat equation is solved for the full computational domain Ω. The formulation is implemented and
used for example in [196] for the simulation of the inner triplet quadrupole magnets of the High-Luminosity
LHC upgrade.

2.16 Summary

The magnetothermal simulation of superconducting magnets requires suitable models. The most relevant
formulations for the eddy-current field problem are derived from Maxwell’s equations, under magnetoqua-
sistatic approximations. As magnets are part of circuits, distribution functions for both stranded and solid
conductors are implemented for the various formulations, such that the field models can be coupled with ex-
ternal circuits. The circuit dynamics is also of interest as there is a mutual influence on the magnet behavior.
Therefore, the generally applied method for circuit simulation, known as the modified nodal analysis (MNA),
is recalled.

The analysis of magnetothermal phenomena in accelerator magnets is formulated as an eddy-current problem
in the time domain. The electrical behavior of high-temperature superconductors is introduced by means of
a phenomenological power law. Then, a coupled ~A− ~H field formulation combined with a domain decompo-
sition strategy is proposed. The general formulation for magnetothermal problems in the time domain is de-
rived with respect to solid conductors, and equations are given. Afterwards, the general formulation is also ap-
proximated for two cases of practical importance: a convenient thin-shell approximation is introduced for su-
perconducting tapes, and an equivalent magnetization approximation is presented for coils made of stranded
cables. The formulation of the coupled field formulation and its thin-shell approximation are discretized in
Chapter 3 by means of the Finite Element Method, verified in Chapter 4 against theoretical references, and
applied to the analysis of full scale applications in Chapter 5 and 6.
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3 Space and Time Discretization

The systems of differential equations derived from the set of Maxwell’s equations in Chapter 2 are both space-
dependent boundary value problems as well as time-dependent initial value problems. The solution of these
two types of problems is approximated by means of numerical methods. In Section 3.2, the boundary value
problems arising from Maxwell’s equations are discretized in space by means of the Ritz-Galerkin finite el-
ement method. The obtained initial value problems are treated by means of time discretization methods,
and the most common time-integration methods are discussed in Section 3.3. In particular, the cooperative
simulation of field-circuit coupled problems is introduced in Section 3.4 with respect to the waveform re-
laxation method. Afterwards, in Section 3.5 the weak and discrete formulation for the coupled ~A− ~H field
problem is detailed for the 3D and 2D settings, and the implications of thin-shell approximation are discussed
in Section 3.7. As a key ingredient for the cosimulation, the field-circuit coupling interface is derived for the
case of solid conductor models.

3.1 Partial Differential Equations

A boundary value problem (BVP) is given by a differential equation together with a set of additional con-
straints, that is, the boundary conditions. Partial differential equations (PDEs) are introduced following [197,
Chapter 1]. They are defined as differential equations containing derivatives of the unknown function with
respect to both time- and space-dependent variables. By denoting with ~u : Ω × I → R3 the unknown func-
tion, xi the independent variables with i = 1, . . . , n, and t the time, the generic PDE P (~u,~g) is denoted
as

F

(
x1, . . . , xn, t, ~u,

∂~u

∂x1
, ...,

∂~u

∂xn
, ...,

∂p1+···+pn+pt~u

∂xp11 . . . ∂xpnn ∂t
pt

)
− ~g = 0, (3.1)

where ~g : Ω × I → R3 is the excitation term (right-hand term) onwhich the PDE depends, p1, pn pt ∈ N0, and
q = p1 + · · ·+ pn + pt is themaximal order of partial derivatives appearing in the equation.

Solving a boundary value problem requires finding a solution which satisfies both the differential equation
and the boundary conditions. In general, available analytical integration methods (such as separation of
variables) show limited applicability. Therefore, it is generally not possible to obtain an exact solution for
BVPs containing partial differential equations. From a theoretical point of view, the analysis of a given PDE
is limited to the investigation of the existence, uniqueness, and, if possible, the regularity of its solutions.
In general finding a closed-form solution is not possible. Therefore, numerical methods are of importance
because they allow to find an approximation ~uN of the exact solution ~u, and to estimate the approximation
error ~uN −~u by means of a suitable norm. Here, N is a positive integer indicating the finite dimension of the
approximate problem. This can be schematically represented by

P (~u,~g) = 0
numerical−−−−−−→
method

PN (~uN , ~gN ) = 0,
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where PN is the approximate problem, and ~gN the approximation of the excitation term on which the PDE
is dependent. The correctness of numerical methods depends on several properties. The most important
are [198]:

1. Consistency. A numerical method is consistent if PN (~u,~g) → 0 for N → ∞, and strongly consistent
if PN (~u,~g) → 0 ∀N ≥ 1. This property shows that the approximate PDE tends to the exact one as the
dimension of the approximate problem is increased.

2. Stability. A numerical method is stable if a small perturbation in the right-hand term ~δg leads to a
small perturbation in the solution ~δu, such that PN (~uN + ~δu, ~gN + ~δg) = 0 ∀N ≥ 1, where ~uN + ~δu is
the solution of the perturbed problem.

3. Convergence. A numerical method is convergent if |~uN − ~u| → 0 for N → ∞. In other words, the
numerical solution tends to the analytical solution as the dimension N of the numerical problem is
increased. A direct verification of the convergence of a numerical method might not be easy to be
demonstrated. However, a fundamental result known as the Lax-Richtmyer equivalence theorem [71]
states that if a method is consistent, then it is convergent if and only if it is stable.

Assuming that the method is consistent, stable, and converged, other fundamental properties influence
the choice of a numerical method. The most relevant are the convergence rate, that is, the order with
which the numerical error tends to zero with respect to 1/N , and the computational cost which determines
the amount of time and hardware resources required to utilize a given numerical method (CPU, memory,
etc.).

The search for an approximate solution ~uN requires first to identify the space to which the exact solution
belongs, second to define the space of the approximate solutions, and third to measure the error introduced
by the numerical approximation.

3.2 Space Discretization with the Finite Element Method

Electromagnetic field problems typically contain regions in the computational domain with heterogeneous
material properties, such as ferromagnetic and nonmagnetic regions, and field sources at the region inter-
faces, such as surface current densities. Tangent- and normal-continuous vector fields may have jump dis-
continuities in their normal and tangent direction, respectively. Scalar fields such as scalar potentials show
kinks in their equipotential lines on the material boundaries, and tangent-continuous vector fields such as
vector potentials show similar kinks in their tangent component, and may have jump discontinuities in their
normal component. Therefore, electromagnetic fields are in general not differentiable on the whole do-
main.

The consistency of the overall solution can be ensured by splitting the field problem into sub-problems where
the each of the fields is sufficiently differentiable, and enforce continuity conditions at the interface between
the sub-domains. However, a more elegant way for the treatment of EM field problems consists in weighing
the strong formulation with appropriate test functions, and integrating it over the computational domain. In
this way, the weak formulation of the field problem is obtained, [71]. Using weak formulations has several
advantages, see for example [199] for a theoretical analysis. The weak formulation turns a generic PDE
into an integral equation, and PDEs are no longer required to hold everywhere (and this is not even well
defined), but only with respect to a set of test functions. Instead of trying to solve the BVP for every point
in the computational domain, it is required that the differential equations are fulfilled only in a weak sense
over the integration domain. Moreover, the application of Gauss’s theorem and the consequent integration of
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the weak formulation by parts leads to a reduced differentiation order, such that the weak solution requires
less smoothness, and no differentiability for material properties. At the same time, it also provides a nat-
ural way to specify interface and boundary conditions by choosing appropriate function spaces for the test
functions. It can be shown that solutions of the strong formulation satisfy also the weak formulation [71,
Chapter 2].

3.2.1 Function spaces

Finding the solution of the weak form of a BVP consists in finding within a suitable function space the element
satisfying both the governing equations and the boundary conditions of the BVP [197]. The function spaces
are defined such that the solution fulfills some properties which are discussed in the following. First, the
Hilbert spaces (i.e. function spaces with scalar product) of square-integrable scalar and vector functions
L2(Ω) and L2(Ω) are introduced as

L2(Ω) := {f ∈ L2(Ω) ⇐⇒
∫
Ω
|f |2 dΩ < +∞},

L2(Ω) := {~f ∈ L2(Ω) ⇐⇒
∫
Ω

~f · ~f dΩ < +∞}.

Second, the following Sobolev spaces are defined by

H1(Ω) := {u ∈ L2(Ω); ∇u ∈ L2(Ω)},
H(curl; Ω) := {~v ∈ L2(Ω); ∇× ~v ∈ L2(Ω)},
H(div; Ω) := {~w ∈ L2(Ω); ∇ · ~w ∈ L2(Ω)},

where the gradient, curl and divergence operators ∇(·), ∇ × (·) and ∇ · (·) are well defined in the weak
sense (e.g. [71]). Fields in H1(Ω) are (weakly) continuous and their weak gradient is also square-integrable.
Vector fields in H(curl; Ω) are (weakly) tangentially continuous whereas their normal component may ex-
hibit jumps, and their weak curl is also square-integrable. Vector fields in H(div; Ω) are (weakly) normal
continuous whereas their tangential component may exhibit jumps, and their weak divergence is also square-
integrable.

The Sobolev spaces are of great importance for Maxwell’s equations since field solutions in terms of ~E and ~H
belong toH(curl; Ω), whereas the field solutions in terms of ~D and ~B belong toH(div; Ω). The spaces, together
with the differential operators, compose the de Rahm diagram [71]:

R −−→ H1(Ω)
grad−−→ H(curl; Ω) curl−−→ H(div; Ω) div−−→ L2(Ω).

The boundary conditions prescribed by the BVP are incorporated in the function spaces by means of trace
operators. These operators map the function spaces to their respective extensions on the boundary Γ. As an
example, the Dirichlet trace of fields in H1(Ω), H(curl; Ω) and H(div; Ω) are respectively continuous fields,
tangential-continuous fields and piece-wise constant fields on the boundaryΓ.
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(a) Example of a mesh made of tetrahedra.

𝒱𝑖

෨𝒱𝑖

(b) Primal and dual mesh elements.

Figure 3.1. Discretization of the computational domain.

3.2.1.1 Discrete function spaces

The aim of numerical methods is to find an approximate solution within a finite-dimensional subspace of the
respective function space. In other words, the solution is built from a finite number of basis functions which
retain themain features of the complete function space but define only a finite subset of it. Moreover, a process
of refinement exists to make the method convergent to the exact solution.

The domain Ω containing the field problem is subdivided into nV elements Vi, i = 1, . . . , nV. The elements
compose an oriented simplicial complex G, commonly referred to as the mesh, which defines the discretized
domain Ωh. Examples of finite elements are triangles and quadrangles for 2D geometries, or tetrahedra and
hexahedra in the 3D space. Figure 3.1a shows an example of discretization obtained for an arbitrary 3D
domain by means of tetrahedral elements. The field quantities described by Maxwell’s equations are dual to
each other and are linked by material properties, as shown by Maxwell’s house in Figure 2.5. The left side
of the house is known as the primal complex (Faraday’s fields), whereas the right side is the dual complex
(Ampère-Maxwell’s fields). Consequently, a consistent description of Maxwell’s equations requires not only
the mesh G where primal quantities are described, but also a dual mesh G̃, shown in Figure 3.1b. In the
FEM, this dual mesh is constructed implicitly [71].

The computational domain Ω is discretized into Ωh by means of the mesh G into volumes Vi and their
corresponding facets Si, edges Li and points Pi. In this context, h gives a measure of the degree of refinement
of the mesh G by corresponding for example to the diameter of a sphere which contains exactly the largest
element in the mesh. The geometrical entities in the mesh provide the support to different basis functions.
Volume si, face ~ωi, edge ~νi, and node ui basis functions are connected to the nV volumes, nS facets, nL edges
and nP nodes in the mesh. The basis functions are defined such that they generate discrete spaces which
inherit the properties of their continuous counterpart. This leads to an exact de Rahm sequence also on the
discrete set, given by

R −−→ Uh
grad−−→ Vh

curl−−→ Wh
div−−→ Sh.
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Figure 3.2. Lowest-order Whitney shape functions, in the 2D setting. From left to right: Lagrange, Nedéléc,
Raviart-Thomas and piecewise-constant shape functions. Lagrange, Nedéléc and piecewise-constant
functions may be also interpreted as the traces of the 3D Lagrange, Nedéléc and Raviart-Thomas
functions on one facet of a tetrahedron.

where the discrete subspaces are defined such that

Uh := {f ∈ L2(Ω); f =
∑nP

i=1
αiui, αi ∈ R} ⊆ H1(Ω),

Vh := {~f ∈ L2(Ω); ~f =
∑nL

i=1
αi~νi, αi ∈ R} ⊆ H(curl; Ω),

Wh := {~f ∈ L2(Ω); ~f =
∑nA

i=1
αi~ωi, αi ∈ R} ⊆ H(div; Ω),

Sh := {f ∈ L2(Ω); f =
∑nV

i=1
αisi, αi ∈ R} ⊆ L2(Ω),

Scalar fields belonging H1(Ω) are modeled by means of Lagrange shape functions, also known as hat or nodal
shape functions. Vector fields belong either to H(curl; Ω) or H(div; Ω), depending if they are evaluated along
curves or across surfaces. As a consequence, there are two types of vector shape functions. Nedéléc or edge
shape functions discretize tangential-continuous fields, whereas Raviart-Thomas or face functions discretize
normal-continuous fields. Lastly, scalar fields belonging to L2(Ω) are discretized by means of volume shape
functions. The four classes of shape functions are also called Whitney basis functions, and are shown in
Figure 3.2. The coefficients associated to the basis functions are the degrees of freedom for the approximation
of the exact solution. The coefficients represent the values of scalar fields in Uh(Ωh) over the nodes of a mesh,
the integration of tangential-continuous fields in Vh(Ωh) along the edges of a mesh, the integration of normal-
continuous fields in Wh(Ωh) across the faces of a mesh, and the integration over volumes for scalar fields in
Sh(Ωh).

3.2.2 Ritz-Galerkin method

The most widely-used method for the numerical solution of BVPs containing time-dependent PDEs is the
method of lines. Following this approach, the PDEs arising from Maxwell’s equations are firstly discretized in
space over a computational grid or mesh. The space discretization is achieved bymeans of the Ritz-Galerkin fi-
nite elementmethod (FEM) [71, 197, 200], using appropriate basis functions.

The Ritz-Galerkin method consists in approximating the exact function spaces containing the solutions of
PDEs by their discrete counterpart. The solution fields in the weak formulation are approximated by the
shape functions defined on the mesh G, reducing the dimension of the function space. At the same time,
the test functions are chosen to be the same basis functions which are used for approximating the solution
fields. Consequently, the weak formulation needs to be verified on the discrete setting only for the finite
number of basis functions composing the subspace. The basis functions can be chosen such that the space
they incorporate Dirichlet boundary conditions (essential conditions). The Neumann conditions are instead
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incorporated into the weak formulation (natural conditions). The key property of the Galerkin approach is
that the error due to the discrete approximation is minimized with respect to the chosen subspaces, that is,
the difference in the solutions of the weak and Galerkin problems is orthogonal to the subspace defined by
the basis functions used for the field approximation [71].

The accuracy of solution obtained by FEM can be increased in three ways. The first way is the h-FEM and
consists in increasing the number of finite elements, therefore decreasing the element size. The second way
is to increase the degree of polynomials building up a shape function. This is the p-FEM, and the high-order
shape functions must still fulfill the continuity, tangential continuity and normal continuity of the discretized
spaces. The combination of the h-FEM and the p-FEM leads to the hp-FEM, for which an exponential con-
vergence rate of the Euclidean norm of the error in the field solution can be obtained by refining the mesh
with a suitable combination of h-refinements and p-refinements [201]. Each element in the mesh can be
hp-refined in many different ways since once the element is subdivided, there are many combinations for the
polynomial degrees on the sub-elements. As a consequence, it is desirable to obtain optimality conditions
for the mesh via an automatic hp-adaptivity. However, dedicated error indicators are needed (e.g. [202])
as standard FEM error estimates providing only one constant number per element are not enough to guide
automatic hp-adaptivity [203].

The next section introduces the most common time-integration methods, with emphasis on the waveform
relaxation technique. Subsequently, the weak and discrete Ritz-Galerkin formulation for the coupled ~A− ~H
field formulation presented in Chapter 2 is discussed.

3.3 Time Discretization

The numerical solution of PDEs requires to adopt discretization schemes, for both space and time. The
application of the method of lines, for example as in the finite element method, reduces a time-dependent
PDE to a system of ordinary differential equations (ODEs) or differential algebraic equations (DAEs). DAEs
are systems of equations where a set of ordinary differential equations is combined with algebraic constraints.
The methods for solving ODEs and DAEs are referred to as time integration methods which are discussed for
example in [198, 204–206]. In this context, the most common approaches are briefly recalled, with emphasis
on the backward differentiation formula which provides the backbone for the solution of the field problems
described in this work.

Classic time discretization schemes are not immediately applicable to arbitrary DAEs [204]. For this reason,
the discussion is restricted to quasilinear DAEs which arise frequently in problems in science and engineering,
including eddy-current problems [207]. The initial value problem (IVP), with the potentially singular matrix
M(x, t) and consistent initial conditions x0, is defined as

M(x, t)
dx
dt

= b(x, t), (3.2a)

x(t0) = x0, (3.2b)

for t ∈ I = [t0, tend) and with x ∈ Rndof , where ndof is the number of degrees of freedom. The time
evolution of the IVP is obtained by firstly subdividing the time interval I into nt + 1 sub-intervals [tn, tn+1)
with n = 0, . . . , nt, of size ∆tn+1 = tn+1 − tn, then by calculating approximate solutions {x0, . . . , xnt} for the
given points {t0, . . . , tnt} by means of a time-integration method. In case of M(x, t) = I, the IVP in (3.2) is
reduced to a system of ODEs.
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Figure 3.3. Sketch of the propagation of the local truncation error in the global error. Figures taken from [204].

The choice of the time step size∆tn+1 is crucial. On the one hand, the total number of time steps determines
the overall computational cost. On the other hand, the size of the individual time step influences the accuracy
and the stability of the time-integration method. A flexible compromise is provided by adaptive time stepping
schemes, which are crucial for practical applications and allow to increase or reduce the time step size and, at
the same time, keep the error under control by means of estimators [198].

Consistency, stability and convergence are key properties also for time-integration methods. Due to the
fact that ODEs are solved numerically, the exact solution x(tn) differs from its numerical approximation xn,
introducing a local truncation error (LTE), see Figure 3.3a. The method is considered consistent if the LTE
tends to zero whenever the time step tends to zero. At the same time, the LTE may propagate through the
integration process, increasing the global error without control, see Figure 3.3b. If the stability of the solution
is independent from the time step size, the method is said to be A-stable. Therefore, the time step size is
not determined by the stability condition of the numerical method, but rather by the required accuracy and
the dynamics of the equation. Consistent and stable methods are convergent to the exact solution, with their
order p indicating how fast the LTE disappears with respect to the step size and/or the refinement of the
discretization.

Stiff equations are a class of problems that pose a challenge for explicit time integration methods, unless the
step size is extremely small. Although there is no formal definition, equations become stiff when they contain
dynamic phenomena occurring at different time scales [208]. The fastest phenomenon limits the time step
size for explicit methods, up to the point where the number of steps is too large for practical use [204]. There-
fore, implicit time-integrationmethods are required for stiff equations [204].

3.3.1 Time-integration methods

Time integration methods can be classified into explicit and implicit schemes. Explicit schemes are simpler,
providing an explicit formula for computing the solution at the next time step tn+1. However, they are con-
ditionally stable, as a criterion fixing the maximal allowed time step must be fulfilled in order to ensure the
stability of the scheme [198]. Explicit methods are not applicable if the mass matrix in (3.2) is singular [209].
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Instead, implicit schemes are more complex to be implemented, requiring to solve a possibly nonlinear sys-
tem of equations at each time step tn, with freedom in the choice of the maximal allowed time step. Time
integration methods are also distinguished in one-step and multi-step schemes. The first category requires
only the information from the most recent time step tn for calculating the solution at the next time step tn+1.
Instead, the second category requires a combination of multiple solutions calculated at previous time steps
in order to find the solution at the next time step.

3.3.1.1 θ-methods

An important class of one-step methods for the solution of ODEs is given by the Runge-Kutta schemes of
which both explicit and implicit versions are available [205, 206]. The most popular is the classical Runge-
Kutta method which is an explicit scheme with a convergence rate of the fourth order. Within the Runge-Kutta
schemes, a relevant class is given by the θ-methods [197]which are defined by

xn+1 = xn +∆t [θb(xn+1, tn+1) + (1− θ)b(xn, tn)] (3.3)

whit ∆t being the time step size, and 0 ≤ θ ≤ 1. By choosing θ = 0, the explicit or forward Euler scheme is
obtained, whereas θ = 1 leads to the implicit or backward Euler scheme, with both the methods being linearly
convergent. The explicit and implicit Euler schemes are conditionally stable and A-stable, respectively. The
case θ = 1/2 corresponds to the implicit trapezoidal rule, derived from integrating the differential equation
in the IVP (3.2) from tn to tn+1 obtaining

x(tn+1) = x(tn) +
∫ tn+1

tn

b(x, t)dt

≈ x(tn) +
tn+1 − tn

2
[b(xn+1, tn+1) + b(xn, tn)] .

(3.4)

The method can be extended to IVPs composed of systems of quasilinear DAEs with constant mass matrix M
(see [204]), as

M(x(tn+1)− x(tn)) ≈
tn+1 − tn

2
[b(xn+1, tn+1) + b(xn, tn)] . (3.5)

The method features second order convergence in time [210], and it is equivalent to the implicit midpoint
rule in case of linear equations.

3.3.1.2 Backward differentiation formula

An implicit multi-step method for integrating the quasilinear DAE IVP in (3.2) is provided by the backward
differentiation formula of order k (BDF-k) [211, 212], which approximates the solution xn+1 by using the
known xn+1−k, . . . , xn solutions. The method is of relevance as it is used for the numerical simulation of the
applications discussed in this work. The method is formalized as

M(xn+1, tn+1)
1

tn+1 − tn

k∑
i=0

αn+1,jxn+1−j = b(xn+1, tn+1), (3.6)

where the coefficients αn+1,j are determined by the Lagrange interpolation polynomial q(t) for the points
(tn+1−j , xn+1−j) for j = 0, . . . , k, with a time derivative ∂tq(t) such that ∂tq(tn+1) = f(xn+1, tn+1).
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Methods based on BDF-1 (order 1) and BDF-2 (order 2) are both A-stable, with BDF-1 corresponding to the
backward Euler method [198], and BDF-2 showing a quadratic convergence rate [209]. BDFs with k =
3, 4, 5, 6 are progressively less stable [204], up to k ≥ 7 which are unstable [204]. The main advantage of
the BDF is that their convergence accuracy is achieved by an efficient re-use of the solutions calculated for
the previous time step. This does not happen in case of high-order, implicit Runge-Kutta methods: although
accuracy is achieved by calculating within each time step several solution points, these solutions are discarded
in the next time step.

3.3.2 Solution of systems of equations

Implicit time-integration methods lead, in case of nonlinear differential equations, to nonlinear systems of
equations that have to be solved. The solution is sought by means of root-finding algorithms, mostly based on
iterative methods which solve at each step a linearized version of the original nonlinear system. Widely used
algorithms are the Picard method [198] which belongs to fixed point methods, and the Newton-Raphson
method [213] which provides a linearization of the original nonlinear system by means of a Taylor series
expansion limited to the first order.

On the one hand, fixed points iteration schemes may only achieve an acceptable convergence rate when a
relaxation scheme is used, that is, x̃n+1 = αxn+1 + (1 − α)xn where the relaxation factor α ∈ (0, 2] can
be tuned for achieving (α < 1) or accelerating (α > 1) convergence. On the other hand, the Newton-
Raphson method may be particularly convenient due to its second-order convergence rate. As an example,
the classic Newton method applied for solving ODEs with an implicit Euler scheme reads in its k + 1 itera-
tion [

I− tn+1 − tn
2

Jb(xkn+1, tn+1)

]
∆xn+1 = −

[
xkn+1 − xn − tn+1 − tn

2

(
b(xn, tn) + b(xkn+1, tn+1)

)]
, (3.7)

where∆xn+1 = xk+1
n+1−xkn+1, x

k+1
n+1 is the vector of unknowns, and Jb(xkn+1, tn+1) corresponds to the Jacobian

of b(x, t) in x evaluated at (xkn+1, tn+1). The solution update which is obtained for each iteration of the Newton
method would require to calculate the inverse of a term containing the Jacobian. This is not computed, as
it would be computationally too expensive. Instead, numerical methods for the solution of systems of linear
equations are adopted, as briefly discussed in the next section.

3.3.2.1 Linear Systems

Root finding algorithms for the time-integration of nonlinear differential algebraic equations, such as the New-
tonmethod, require solving at each iteration a system of linear equation in the form of

Ax = b (3.8)

where A ∈ RN×N is a matrix of sizeN , and x and b are vectors of size N representing the unknown field and
the right-hand term. The computational effort which is required for solving (3.8) depends mostly on the mag-
nitude ofN , and possibly on the condition number κ(A) of A if iterative solvers are used. For a normal matrix
A in the Euclidean space, the condition number is defined as [214, 215]

κ(A) =
|λmax(A)|
|λmin(A)|

(3.9)
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where λmin(A) and λmax(A) are the minimum and maximum absolute eigenvalues of A. A low condition
number leads to well-conditioned systems, whereas a high condition number (e.g. due to high differences in
material properties) leads to ill-conditioned systems which possibly lead to inaccurate solutions, regardless
of the numerical method.

The methods for the solution of linear systems of type Ax = b can be classified in direct and iterative [215,
216]. Especially when using iterative methods, the exact solution of (3.8) is typically not available, leading
to an approximate solution x. The condition number gives a bound on the accuracy of x with respect to
the exact solution x. The quality of the approximate solution is measured by the relative error εLS defined
by [214]

εLS =
|x− x|
|x|

≤ κ(A)
|r|

|A||x|
(3.10)

where | · | denotes the spectral norm for matrices (Euclidean norm for vectors), and r = Ax−b is the residual
associated to the approximate solution.

3.3.2.2 Solution Methods

An extensive description of direct and iterative methods, together with a historical overview is available
in [214]. Direct methods rely on algorithms specialized in solving (3.8) exactly (up to roundoff errors) by
factorizing A. Widely used algorithms include (sparse) Gaussian elimination, lower-upper (LU) decomposi-
tion, and Cholesky factorization [215, 217]. For large linear systems which are likely to occur in modeling
complex 3D applications, the construction of any factorization of A might become prohibitive due to mem-
ory constraints. Iterative methods start by guessing the initial solution, then refining it until the prescribed
accuracy is obtained. These methods are further split into stationary and non-stationary methods. The first
group include the Jacobi, Gauss-Seidel and successive over-relaxation (SOR) methods [215, 216], are eas-
ier to implement but do not always guarantee convergence or may converge slowly. The second group is
more complex to be implemented, but can be very effective if coupled with an appropriate preconditioner.
The most important are the Krylov subspace methods, of which the generalized minimal residual (GMRES)
and the conjugate gradient (CG) are examples [215, 216]. Extensions of the CG for non-symmetric matri-
ces are given by biconjugate gradient (BiCG), quasi minimal residual (QMR), and the stabilized biconjugate
gradient (BiCGStab) [215, 216]. For a comparison of the methods about reliability, robustness and ease of
implementation, see [214].

The convergence of iterative, non-stationary methods can be improved by the use of preconditioners which
provide an approximate inverse of the matrix A. The underlying idea is that the original linear system can be
simplified by means of a multiplication with a preconditoner, such that the obtained system has a lower con-
dition number and, therefore, the iterative solver converges faster. The choice of a preconditioner might be
more crucial than the choice of the solver itself, however the preconditioner is problem-dependent. Well-
known preconditioners are the Jacobi preconditoner, the Gauss-Seidel preconditoner, the incomplete LU
decomposition, the incomplete Cholesky factorization, or the symmetric SOR [215]. Nowadays, the most
efficient preconditoners are commonly considered to be the domain decomposition methods [218] and the
class of multi-grid (MG) methods [219–221], further subdivided into geometric and algebraic MG meth-
ods.
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Figure 3.4. Multiscale and multirate behavior of the quench simulation problem in the LHC [222].

3.4 Cooperative Simulation

The simulation of multiphysical coupled problems [223] of large size, such as circuits of superconducting
accelerator magnets, leads to considerable challenges. These challenges arise from the different mathematical
properties, time rates and sizes shown by the different equations representing the coupled system (see the
example in Figure 3.4). Simulations can be carried out either in a monolithic way, where the equations
representing the different physics are coupled together in one system which is very large, or they can be
cosimulated. Although tackling the problem by solving the equations system in a monolithic way may appear
as the easiest approach, it can quickly lead to unacceptable computational efforts. In particular, special
care has to be taken when considering space discretized methods such as FEM where the overall system
can become very large and expensive to solve. Available simulation software tends to be specialized in one
type of physics or technology. This is a consequence of the differences in the mathematical properties of the
equations which require different time-integration methods and linear solvers. As example, electric circuits
are simulated by means of SPICE-like solvers, whereas problems which require space-discretization of PDEs
such as magnetothermal field problems, can be simulated using specialized software such as COMSOL [224]
or GetDP [225].

To avoid monolithic simulations a possible solution consists in using cosimulation methods [226]. These
methods allow solving the systems separately while they exchange information, such that the overall be-
havior of the system is captured in a consistent way. Different coupling schemes are available, namely one-
way coupling, strong coupling, weak coupling and the waveform relaxation method (e.g. [227, Chapter 3]).
Here, focus is given to the waveform relaxation (WR) method [228, 229] which performs the information
exchange in an iterative way. These cosimulation methods are implemented in the STEAM cosimulation
framework [222, 227] which applies the WR method within a hierarchical cosimulation structure based on
deterministic finite automaton (state machine) for the management of the models representing the coupled
multiphysical problem (see [227, Chapter 4]). The framework has been used mostly for coupling the differ-
ent physics involved in the simulation of quench effects in accelerator magnets [24, 51, 117–119, 230–232].
However, the WR method can be applied to a variety of subsystems such as for example controller-circuit
coupling [233].
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Figure 3.5. Schematic representation of the waveform relaxation method, for two subsystems and windowing.

3.4.1 Waveform relaxation method

The WR method was initially introduced for the simulation of large electric networks [228]. For an initial
value problem on time t ∈ I, for t ∈ I = [t0, tend), where I is the time window of interest, the method
consists in dividing the original monolithic system into Nm subsystems which are solved separately, each
with an appropriate time stepping scheme. The initial value problem for a fully implicit DAE system F with
consistent initial condition is split, for k = 1, . . . , Nm, as

Fk
(
dxk
dt

, xk,uk, t

)
= 0 (3.11a)

xk(t0) = xk,0, (3.11b)

with the degrees of freedom xk and input uk(x1, . . . , xk−1, xk+1, . . . , xNm) for each subsystem. This is a suit-
able choice for multirate coupled systems, since distinct time stepping schemes can be applied per each
model, as well as for multiscale and multiphysics coupled systems when conversion between models is im-
practical.

Subsequently, information is exchanged between the subsystems which receive an update at each iteration.
If the iterative process is convergent, it leads for a well-posed problem to a solution that satisfies tolerances of
all the m subsystems and corresponds to the monolithical solution. Detailed convergence studies are found
for systems of ODEs in [226], and systems of DAEs [234–236].

This method is traditionally combined with a windowing of the time span I which is subdivided into Nwr
sub-windows In = [tn−1, tn) with n = 1, . . . , Nwr, and the iteration is performed for each window, un-
til convergence is reached. The windowing is advised for non-linear problems, where the size of In can
be exploited for adapting the WR method to the dynamics of the system under study, improving the con-
vergence speed [237]. The WR scheme and the windowing process is schematically represented for two
subsystems in Figure 3.5. The optimal choice of In is an open research topic (see for example [238]).

3.4.1.1 Optimized Schwarz waveform relaxation method

Classical iterative Schwarz methods [109] solve Dirichlet boundary value problems in space by subdividing
the computational domain into smaller, partially overlapping domains. The field problem is solved separately
for each of the subdomains which exchange information in an iterative way, until the solution converges to
the one of the original problem.
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Optimized Schwarz methods are obtained by means of expanding the iterative process such that the sub-
division of the computational domain is done by means of non-overlapping domains. The convergence of
the iterations can be still ensured by improving the exchange of information, also known as transmission
condition [111, 112]. The optimization consists in finding the optimized transmission conditions such that
the iteration process converges faster. The optimized Schwarz WR method can be seen as a Schwarz domain
decomposition method where the subdivision is done in the time domain. Moreover, if this subdivision is
applied to coupled systems composed of different models, this leads to the heterogeneous domain decompo-
sition method [239]. The information exchange can be optimized between circuit subsystems but also for
field-circuit coupled problems, which is of relevance for the modeling of circuits of superconducting acceler-
ator magnets.

The work in [113] shows the application of optimized Schwarz WR method applied to field-circuit coupled
systems arising from the 2D eddy-current problem (2.124) for inter-filament coupling currents in stranded
superconducting coils, whose formulation is detailed in Section 2.15.3. The optimization is detailed in [240,
Chapter 5], and moves from linearizing the original system of equations and rewriting it in the frequency
domain [110, 111], to a field model representation on the circuit side by means of the equivalent impedance
Z(ω). The impedance is typically not explicitly computable in time domain and needs to be approximated,
thus simplifying the computation of the transmission condition and applies also in case of nonlinear prob-
lems. For the eddy-current problem, this can be done by means of a Taylor series expansion of Z(ω),
truncated to the first order. This leads to the optimized transmission condition for the n-th WR itera-
tion

vnc =
d
dt

Linc − d
dt

Lin−1
f + vn−1

f (3.12)

where L is the inductace matrix, and the subscripts correspond to the field (f) and circuit (c) models. The field
model is represented by means of an inductance and a correction term on the circuit [113] and corresponds
to the engineering intuition in [241, 242]. This transmission condition has been adopted by the STEAM
framework for models of superconducting magnets solving the MQS field problem for stranded conductors
in (2.124). In this work, the STEAM framework has been extended by an optimized Schwarz transmission
condition derived in Section 3.5.7 for field-circuit coupled problems implementing a coupled ~A− ~H field
formulation on the field side.

3.4.2 STEAM cosimulation framework

The STEAM cosimulation framework applies a hierarchical cosimulation approach to the simulation of circuits
of superconducting accelerator magnets, formulated as field-circuit coupled problems. The computational
complexity is reduced by decomposing the original system into simpler subsystems, each of them modeled
by means of specialized models. At the same time, the mutual dependencies between the subsystems are
resolved by applying the WR method with the following algorithm:

1. The overall simulation time is subdivided into smaller windows;
2. Within each window, the models representing the system under study are solved, then the transmission

conditions are applied by exchanging information following a Gauss-Seidel scheme [226];
3. The previous point is repeated for the same window until the waveforms belonging to two consecutive

iterations differ by less than a prescribed tolerance, then the algorithm moves to the next window. The
convergence of the algorithm for every window ensures the consistency of the overall solution [243].

For a fully-detailed description of the algorithm and its implementation, see [227], Chapters III and IV.
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Figure 3.6. Architecture of the STEAM cosimulation framework [222]. (a) The j models representing a generic
multiphysical problem are implemented by means of k different tools. (b) The models participate to
simulations according to a hierarchy composed of m states.

3.4.2.1 Architecture

The STEAM framework is developed on a three-layer, scalable and expandable structure (see Figure 3.6a).
The top layer features the hierarchical cosimulation algorithm which implements the optimal Schwarz WR
method. The top layer provides the necessary input/output interfaces for the user, manages the execution
of the models over the simulation time windows, and checks the convergence criteria for the WR algorithm.
The middle layer handles the iterative information exchange between the models included in the cosimula-
tion, for each time window. The layer is composed of a communication bus which enforces a communication
protocol which is common to all the models. Moreover, the bus can handle both time- and space-dependent
signals. For the latter ones, the MpCCI [244] mesh-based interpolation tool is in use [245]. The bottom
layer features a modular structure, composed of blocks called tool adapters. Each tool adapter handles the
waveform exchange between the communication bus and the models belonging to a tool via a suitable Appli-
cation Programming Interface (API), which is tool-dependent. In this way, different models developed within
the same tool can reuse the same tool adapter. At the same time, the architecture is fully expandable and
scalable. By developing dedicated tool adapters, new simulation tools can be interfaced with the framework
and included in the iterative solution of the coupled problem.

3.4.2.2 Hierarchy

In general, the transient phenomena potentially occurring in a circuit of accelerator magnets might hap-
pen at different times, and with different time constants. Whenever these phenomena are distributed among
separated multiphysical models, then not all the models might be necessary in each time window. This obser-
vation leads to the introduction of a hierarchical state-machine algorithm for the management of the models.
Referring to Figure 3.6b, the user has the possibility of defining both the states and the transitions of the over-
all system. After the simulation time is windowed, each window is associated to a state which determines
the models which are required in each time window. A transition can be determined by a fixed time, or a
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conditional expression which depends on information exchanged among the models. The benefit is two-fold,
as the input of the state-machine explicitly determines the causality relations between the models, and the
overall computational cost is reduced by an efficient use of the models.

3.5 Discretization of the Coupled Field Formulation

The ~A− ~H coupled field formulation introduced in Section 2.13 is derived by first stating the weak for-
mulation for the ~A and ~H formulations separately. Subsequently, the formulations are linked by means of
interface conditions, and the system of equations is discretized in space with the Ritz-Galerkin approach. To
couple the field problem to an external circuit, an optimized Schwarz field-circuit interface is derived from
the semi-discrete system of equations.

3.5.1 Weak formulation for magnetic vector potential ~A

Themagnetoquasistatic curl-curl PDE given by the strong ~A formulation in (2.100a) is weighted with the edge
functions ~ν. The weak formulation requires to find for the domain ΩA the vector field ~A within the solution
spaceH(curl; Ω) such that, for allH(curl)-conforming test functions ~ν ∈ H(curl; Ω),∫

ΩA

∇× (µ−1∇× ~A) · ~ν dΩ+

∫
ΩA

(σ∂t ~A) · ~ν dΩ = 0. (3.13)

The Gauss’s theorem is applied to the first volume integral in (3.13), obtaining∫
ΩA

(µ−1∇× ~A) · ∇ × ~ν dΩ+

∫
ΩA

(σ∂t ~A) · ~ν dΩ+

∫
∂ΩA

(µ−1∇× ~A)× ~ν · d~Γ = 0. (3.14)

The surface integral in (3.14) is composed of the exterior boundary ΓA where boundary conditions are im-
posed, and the interior interface ΓHA related to the domain decomposition for the mixed field formulation,
such that ∂ΩA = ΓA∪ΓHA. Themagnetic vector potential and the test functions are chosen such that they fulfill
on the exterior boundary the homogeneous Dirichlet and Neumann conditions for ~A, corresponding to electric
andmagnetic boundary conditions in (2.54). The boundary integral onΓA reads∫

ΓA

(µ−1∇× ~A)× ~ν · d~Γ =

∫
Γebc,A

(~ν × ~n) · µ−1∇× ~AdΓ+

∫
Γmbc,A

(~n× µ−1∇× ~A) · ~ν dΓ = 0, (3.15)

with d~Γ = ~ndΓ and ~n being the normal unit vector. The integrals in (3.15) are zero due to the incor-
poration of electric and magnetic boundary conditions. Therefore, the surface integral on ∂ΩA is reduced
to ∫

∂ΩA

(µ−1∇× ~A)× ~ν · d~Γ = −
∫
ΓHA

(~n× µ−1∇× ~A) · ~ν dΓ, (3.16)

where the minus sign is due to the opposite orientation of the source domain ΩH with respect to the interior
boundary of the domain ΩA.
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3.5.2 Weak formulation for magnetic field strength ~H

The magnetoquasistatic curl-curl PDE given by the strong ~H formulation in (2.100b) is weighted with the
edge functions ~v r. The weak formulation requires to find for each source domain Ωr

c,H, with r = 1, . . . , Nr,
the vector fields ~Hr within the solution space H(curl; Ω) such that, for all H(curl)-conforming test functions
~v r ∈ H(curl; Ω),

∫
Ωr

c,H

∇× (ρ∇× ~Hr) · ~v r dΩ+

∫
Ωr

c,H

(∂tµ ~H
r) · ~v r dΩ−vrs

∫
Ωr

c,H

(∇× ~χr
sol) · ~v

r dΩ = 0. (3.17)

Gauss’s theorem is applied to the first and the third volume integral in (3.17), obtaining

∫
Ωr

c,H

(ρ∇× ~Hr) · ∇ × ~v r dΩ+

∫
Ωr

c,H

(∂tµ ~H
r) · ~v r dΩ−vrs

∫
Ωr

c,H

~χr
sol · ∇ × ~v r dΩ

+

∫
∂Ωr

c,H

( ~Er × ~v r) · d~Γ = 0,

(3.18)

where the electric field ~Er in the surface integral is defined in (2.96).

The surface integral in (3.18) is composed of the exterior boundary Γr
J ∪ Γr

E where boundary conditions are
imposed, and the interior interface Γr

HA related to the domain decomposition for the mixed field formulation,
such that ∂Ωr

c,H = Γr
J ∪ Γr

E ∪ Γr
HA. The magnetic field strength and the test functions are chosen such that

they fulfill on the exterior boundary the homogeneous Dirichlet and Neumann conditions for ~H, correspond-
ing to magnetic and electric boundary conditions in (2.40) and (2.39). The boundary integral on Γr

J ∪ Γr
E

reads ∫
Γr
J∪Γ

r
E

( ~Er × ~v r) · d~Γ =

∫
Γr
mbc,H

(~v r × ~n) · ~Er dΓ+

∫
Γr
ebc,H

(~n× ~Er) · ~v r
p dΓ = 0, (3.19)

with d~Γ = ~nr dΓ and ~nr being the outer normal vector of the domain Ωr
c,H. The integrals in (3.19) are zero

due to the incorporation of magnetic and electric boundary conditions. Therefore, the surface integral is
reduced to∫

∂Ωr
c,H

( ~Er × ~v r) · d~Γ =

∫
Γr
HA

(~nr × ~Er) · ~v r dΓ . (3.20)

The constraint condition for the current in (2.100c) is equivalent to a boundary condition for the normal
component of the current density on Γr

J . This is shown by first rewriting the distribution function in terms
of its corresponding scalar potential (2.68), then by applying Gauss’s theorem to the current constraint,
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as ∫
Ωr

c,H

~χr
sol · ∇ × ~Hr dΩ = −

∫
Ωr

c,H

∇ζrsol · ∇ × ~Hr dΩ

= −
∫

Ωr
c,H

∇ · (ζrsol∇× ~Hr)dΩ+

∫
Ωr

c,H

ζrsol∇ · (∇× ~Hr)dΩ

= −
∫
Γr
HA

ζrsol∇× ~Hr · d~Γ−
∫
Γr
J

ζrsol∇× ~Hr · d~Γ−
∫
Γr
E

ζrsol∇× ~Hr · d~Γ

= −
∫
Γr
J

∇× ~Hr · d~Γ,

(3.21)

where ∇ · (∇× ~Hr) = 0 is a known vector identity, and for the last step it is observed that ∇× ~Hr · ~nr = 0
on Γr

HA, and ζrsol = 0 on Γr
E as prescribed by (2.99).

3.5.2.1 Equivalence of distribution functions and boundary conditions

The third volume integral in (3.18) can be further simplified by replacing ~χr
sol with its corresponding scalar

potential (2.68) and applying Gauss’s theorem, obtaining

vrs

∫
Ωr

c,H

∇ζrsol · ∇ × ~v r dΩ = vrs

∫
Ωr

c,H

∇ · (ζrsol∇× ~v r)dΩ−vrs
∫

Ωr
c,H

ζrsol∇ · (∇× ~v r)dΩ

= vrs

∫
Γr
HA

ζrsol∇× ~v r · d~Γ+vrs

∫
Γr
J

ζrsol∇× ~v r · d~Γ+vrs

∫
Γr
E

ζrsol∇× ~v r · d~Γ

= vrs

∫
Γr
J

∇× ~v r · d~Γ,

where ∇ · (∇× ~v r) = 0 is a known vector identity, and for the last step it is observed that ∇× ~v r · ~nr = 0 on
Γr
HA, and ζrsol = 0 on Γr

E as prescribed by (2.99).

3.5.3 Weak formulation for temperature T

The heat balance div-grad PDE given by the strong formulation (2.105) is weightedwith the scalar functions u.
The weak formulation requires to find for the domainΩ the scalar field T within the solution space H(grad; Ω)
such that, for all H(grad)-conforming test functions u ∈ H(grad; Ω),∫

Ω

∇ · (κ∇T )udΩ+

∫
Ω

(ρmCp∂tT )udΩ =

∫
Ω

PJudΩ . (3.23)

Gauss’s theorem is applied to the first volume integral in (3.23), obtaining∫
Ω

(κ∇T ) · ∇udΩ+

∫
Ω

(ρmCp∂tT )udΩ+

∫
Γ

(−κ∇T )u · d~Γ =

∫
Ω

PJudΩ . (3.24)
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The temperature and the test functions are chosen such that they fulfill on the exterior boundary the homo-
geneous Dirichlet conditions. The Neumann conditions are imposed in a natural way by means of the surface
integral in (3.24).

3.5.4 Coupling conditions

The ~A and ~H formulations are coupled along the interface ΓHA. The field ~H is coupled to ~A by means of the
tangential continuity of the magnetic field strength. By applying the continuity condition in (2.101) to the
surface integral (3.16), the coupling reads∫

Γr
HA

(~n× µ−1∇× ~A) · ~ν dΓ =

∫
Γr
HA

(~n× ~Hr) · ~ν dΓ r = 1, . . . , Nr. (3.25)

The field ~A is coupled to ~H by means of the tangential continuity of the electric field strength. By applying the
continuity condition in (2.102) to the surface integral (3.20), the coupling reads∫

Γr
HA

(~n× ~Er) · ~v r dΓ = −
∫
Γr
HA

(~n× ∂t ~A) · ~v r dΓ r = 1, . . . , Nr. (3.26)

The temperature field T is coupled to both ~A and ~H by means of the Joule loss term appearing on the
right-hand side of (3.23). The coupling reads∫

Ω

PJudΩ =

∫
Ωr

c,H

ρ(∇× ~Hr · ∇ × ~Hr)udΩ+

∫
ΩA

σ(∂t ~A · ∂t ~A)udΩ r = 1, . . . , Nr. (3.27)

For compactness of notation, the coupling term is given as∫
Ω

PJudΩ =

∫
Ω

q(·)udΩ, (3.28)

where q( ~A, ~H) represents the nonlinear operator providing the Joule loss contribution.

3.5.5 Semidiscrete formulation

The fields ~A and ~Hr are approximated for r = 1, . . . , Nr by a finite set of Nedéléc-type shape functions ~νj
and ~v r

q which are H(curl)-conforming, and define the discrete solution space Vh (the discrete counterpart of
H(curl; Ω)). Different discretization orders need to be chosen for ~A and ~H, this to avoid potential stability
issues [189]. The field approximation reads

~A ≈
nL,A∑
j=1

~wjaj , ~Hr ≈
nr
L,H∑

q=1

~vrqh
r
q, (3.29)

where nL,A and nrL,H are the number of mesh edges in ΩA and Ωr
c,H. The voltage distribution function ~χr

sol
which is calculated a-priori (see Section 2.13.3) is approximated for r = 1, . . . , Nr by nodal shape functions
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N r
p which are H(grad)-conforming, and define the solution space Uh (the discrete counterpart of H1(Ω)). The

approximation reads

~χr
sol ≈ −

nr
P,H∑

p=1

∇N r
p ξ

r
p, (3.30)

where nrP,H is the number of mesh nodes in Ωr
c,H. The temperature field T is also discretized by nodal shape

functions Nn, as

T ≈
nP∑
n=1

Nntn. (3.31)

where nP is the number of mesh nodes in Ω. The unknowns aj , hrq and tn are the degrees of freedom for ~A,
~Hr and T , respectively. The unknown field h is given by the composition of the Nr source domains in ΩH and
is therefore represented as

h> = [(h1)>, . . . , (hNr)>]. (3.32)

The fields given by the weak formulations (3.14), (3.18), (3.24) and the current constraint in (3.21) are
replaced with their finite dimensional counterparts. The field interface conditions (3.25) and (3.26), and
the coupling (3.27) are explicitly imposed. The continuity of the normal component of the current den-
sity and magnetic flux density, given respectively by (2.103) and (2.104), is satisfied by choosing suit-
able discretization functions based on Whitney edge elements [246]. The following discrete problem is
obtained:

Kν +Mσ d
dt −Q 0 0

Q> d
dt Kρ +Mµ d

dt −X 0

0 X> 0 0

0 0 0 Kκ +Mρ d
dt




a

h

us

t

 =


0

0

is

q(·)

 . (3.33)

In detail, K? and M? represent the discrete counterparts of the differential operators and material matrices,
X is the discrete representation of ~χsol and q(a,h) is the nonlinear discrete operator providing the Joule loss
contribution.

The coefficients of the matrices of reluctance Kν , conductance Mσ, interface coupling Q, resistance Kρ, per-
meance Mµ and voltage coupling X are given for r = 1, ..., Nr as

(Kν)i,j =

∫
ΩA

(µ−1∇× ~wj) · ∇ × ~wi dΩ , (3.34)

(Mσ)i,j =

∫
ΩA

(σ ~wj) · ~wi dΩ , (3.35)

(Q)ri,q =

∫
Γr
HA

(~vrq × ~wi) · d~Γ , (3.36)
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(Kρ)rp,q =

∫
Ωr

c,H

(ρ∇× ~vrq) · ∇ × ~vrp dΩ , (3.37)

(Mµ)rp,q =

∫
Ωr

c,H

(µ~vrq) · ~vrp dΩ , (3.38)

(X)rp =

∫
Ωr

c,H

~xrp · (∇× ~vrp)dΩ = −
∫
Γr
J

(∇× ~vrp) · d~Γ . (3.39)

The matrix coefficients of heat diffusion Kκ and heat capacitance Mρ, and the vector coefficients in Joule loss
contribution q(·) are given as

(Kκ)m,n =

∫
Ω

(κ∇Nn) · ∇Nm dΩ , (3.40)

(Mρ)m,n =

∫
Ω

(ρmCpNn)Nm dΩ , (3.41)

(q(·))m =

∫
Ω

q(·)Nm dΩ . (3.42)

3.5.6 Discrete gauging

The field problem presented in (2.100) is not uniquely solvable, due to the gauge freedom of ~A for the
nonconducting parts of the domain, where the magnetic vector potential is defined up to a gradient field.
This property is inherited by the semidiscrete counterpart (3.33) which remains not uniquely solvable even
after the incorporation of the boundary and initial conditions. A possibility to overcome this impasse is given
by discrete gauging.

Gauging conditions can be applied in several ways. As an example, the original field problem can be changed
in the nonconducting regions by introducing a constant artificial conductivity, leading to a system of stiff
ODEs [247]. However, the approach introduces unecessary degrees of freedom and increases the effective
condition number of the problem. An alternative method consists in adding an additional term describing
the gauging condition, either to the original field problem [145], or to the semidiscrete counterpart [247].
Another possibility is using specific iterative solvers, such as the conjugate gradient method [248], as they
implicitly gauge the system and thus provide a valid solution without the need of an explicit gauging con-
dition [249]. Another method consists in using a tree-cotree gauge [70, 250]. This method modifies the
semidiscrete set of equations by deleting the degrees of freedom that define divergence fields, retaining only
the unknowns describing a divergence-free solution.

Once suitable gauging conditions are applied, and if initial conditions and voltages vs (currents is) are pre-
scribed, then the semi-discrete system (3.33) is ready to be solved by a time-stepping algorithm, for example
the backward differentiation formula (see Section 3.3.1.2). However, if the voltages (currents) depend on a
surrounding circuitry (e.g. [222]), then further derivations are necessary.
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3.5.7 Field-circuit coupling

Each source domain Ωr
c,H is equipped with two electrical ports Γr

E and Γr
J , providing the source terms to the

field model. If an external electrical network is present, the electrical ports can be exploited to apply the
source terms determined by the network. For this reason, a field-circuit coupling interface is introduced,
allowing to connect the electric field strength and current density in each source domain to the voltages
and currents of an external circuit model. Among the possible coupling schemes, the field-circuit coupled
simulation with the WR method [106, 242] is suitable for analyzing the magnetothermal transients in high-
field accelerator magnets [114].

The field-circuit coupling interface is derived as a Schwarz transmission condition for a linearized system [251]
which optimizes cosimulation schemes, promising faster convergence of the cosimulation algorithm [113].
The coupling interface can be formalized as a voltage-current relation us = Zis for a multi-port electrical
device, where the impedance Z is a Nr × Nr dimensional matrix. The expression for Z is obtained in the
frequency domain, with ω being the angular frequency. The discrete counterpart of the magnetic vector po-
tential a is assumed to be gauged in ΩA, such that the matrix Kν + jωMσ is positive-definite, thus invertible.
Moreover, Kρ is positive semidefinite, Mµ is positive-definite, and Q and X have full-column rank. Thus, it is
possible to use the Schur complement in (3.33) to derive the voltage-current relation, leading to the following
equations

a = [Kν + jωMσ]−1Qh, (3.43a)
h = [Kρ + jω[Mµ +Q>[Kν + jωMσ]−1Q]]−1Xv, (3.43b)
i = X>h. (3.43c)

By eliminating a and h in (3.43) the impedance is derived, obtaining the following expression

Z(jω) = [X>[Mz]−1X]−1, (3.44)

where the impedance matrix Mz and reluctance matrix Kϕ are defined as

Mz = Kρ + jωKϕ, (3.45)
Kϕ = Mµ +Q>[Kν + jωMσ]−1Q. (3.46)

In the frequency domain, the impedance in (3.44) is immediately computable, providing an optimized trans-
mission condition. However, when dealing with nonlinear systems in the time domain, the time derivatives
contained in Z must be approximated. This is achieved by following [113], that is, Z is approximated by a
Taylor series expansion truncated to the first order, as

Z(jω) ≈ Z(0) + jω
∂

∂jω
Z(jω)

∣∣∣∣
ω=0

. (3.47)

By using (3.44) into (3.47), the first term is expanded as

Z(0) = [X>[Kρ]+X]−1, (3.48)

and second term is expanded as

jω
∂

∂jω
Z(jω)

∣∣∣∣
ω=0

= jωZ(0)X>[Mz(0)]−1 ∂

∂jω
Mz
∣∣∣∣
ω=0

[Mz(0)]−1XZ(0)

= jωZ(0)X>[Kρ]+[Mµ +Q>[Kν ]+Q][Kρ]+XZ(0).

(3.49)
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where [Kρ]+ and [Kν ]+ are the (Moore-Penrose) pseudo-inverse matrices of [Kρ] and [Kν ] (see e.g. [217]). Us-
ing the results (3.48) and (3.49) in (3.47), the voltage-current relation reads in time domain

us(t) ≈ Ris(t) + L
d
dt

is(t), (3.50)

whereR and L represent equivalent resistance and inductancematrices, respectively. Thematrices are defined
as

R = Z(0) = [X>[Kρ]+X]−1, (3.51)
L = RX>[Kρ]+[Mµ +Q>[Kν ]+Q][Kρ]+XR, (3.52)

and may be used to approximate the finite element model in the circuital counterpart, as an RL-series com-
ponent. The low-order model introduced by (3.47) disregards several effects, in particular the contribution
of the eddy currentsMσ occurring in the domains outside the source region. As the Taylor series is expanded
around jω = 0, the approximation should only be used for low frequencies.

3.5.8 2D approximation

For field problems featuring translational symmetry, it is possible to limit the discretization of the field problem
to a two-dimensional cut plane. Given a Cartesian reference frame (x,y,z), the symmetry is assumed to occur
along the z-direction for geometry, material properties and excitation sources, thereby bounding the field
problem to the x-y plane. Therefore, ~A = (0, 0, Az(x, y)), ~H = (Hx(x, y),Hy(x, y), 0) and T = T (x, y). As a
consequence, ~A does not need an explicit gauge since ∇ · ~A = 0 is automatically satisfied. The orientation
and position dependency of ~A is encoded using dedicated shape functions based on nodal elements, whereas
classical Nedéléc-type shape functions are used for ~H.

The distribution function ~χr
sol is given in the 2DCartesian case as [156, 252]

~χr
sol = ± ~z

δz
for r = 1, ..., Nr, (3.53)

where the sign in (3.53) depends on the direction of the current in the conducting domain, δz is the depth
of the field problem in the direction of the translational symmetry. With these definitions, the system entries
introduced in (3.33) read

(Kν)i,j =

∫
ΩA

µ−1(∂xNj∂xNi + ∂yNj∂yNi)dΩ, (3.54)

(Mσ)i,j =

∫
ΩA

(σNj)Ni dΩ, (3.55)

(Q)ri,q =

∫
Γr
HA

(vrq,ynx − vrq,xny)Ni dΓ, (3.56)

(Kρ)rp,q =

∫
Ωr

c,H

ρ(∂xv
r
q,y − ∂yv

r
q,x)(∂xv

r
p,y − ∂yv

r
p,x)dΩ, (3.57)
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(X)rp = ± 1

δz

∫
Ωr

c,H

(∂xv
r
p,y − ∂yv

r
p,x)dΩ, (3.58)

(Kk)m,n =

∫
Ω

k(∂xNm∂xNn + ∂yNm∂yNn)dΩ, (3.59)

(Mρ)n,m =

∫
Ω

(ρmCpNn)Nm dΩ, (3.60)

where the integrals over the domains Ω? and Γ? are 2D and 1D integrals.

3.6 Discretization of the Thin-Shell Approximation

The field problem is formulated with respect to the general weak formulation described by (3.14), (3.18)
and (3.24), taking into account the properties of the thin-shell approximation described in Section 2.14.
Instead of modeling the tape as the volume Ωr

c,H, the geometry is collapsed to the surface Γr
c,H. As a conse-

quence, the domain Γr
c,H reduces to the interface Γr

HA.

3.6.1 Weak formulation

The weak formulation for the vector field ~A in the domain ΩA is determined as illustrated in Section 3.5.1,
up to the surface integral in (3.16) which is rewritten as

∫
∂ΩA

(µ−1∇× ~A)× ~ν · d~Γ = −
∫
ΓHA

[~n× µ−1(∇× ~A1 −∇× ~A2)] · ~ν dΓ = −
Nr∑
r=1

∫
Γr
HA

~Kr · ~ν dΓ, (3.61)

where the subscripts 1 and 2 refer to the field components on the two sides of the tapes, and from (2.111)
the tangential discontinuity of the magnetic field strength in ΩA is associated to the surface current ~Kr for
each of the Nr tapes.

The weak formulation for the vector field ~H in the thin-shell domain Γc,H is determined by following the same
formalism as in Section 3.5.2, but integrating the strong formulation provided by (2.110) over a thin-shell
instead of a domain. The obtained weak formulation reads

δrt

∫
Γr
c,H

(ρ∇×Hr~nr) · ∇ × ~v r dΓ +δrt

∫
Γr
c,H

(∂tµH
r~nr) · ~v r dΓ−vrs δrt

∫
Γr
c,H

~χr
sol · ∇ × ~v r dΓ

+ δrt

∫
∂Γr

c,H

( ~Er × ~v r) · d~γ = 0.

(3.62)
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The second surface integral is further developed, and the continuity condition of the normal component of
the magnetic field given in (2.114) is incorporated, leading to

δrt

∫
Γr
c,H

(∂tµH
r~nr) · ~v r dΓ = δrt

∫
Γr
c,H

(∂t∇× ~A) · ~v r dΓ

= δrt

∫
Γr
c,H

(∂t ~A) · ∇ × ~v r dΓ+ δrt

∫
∂Γr

c,H

(∂t ~A× ~v r) · d~γ .
(3.63)

The surface integral in (3.63) provides the interface condition for ~A, and the line integrals in (3.62) and (3.63)
are combined and disappear, due to the tangential continuity condition (2.102) on the electric field strength.

The volume of the tape is preserved for the thermal problem, with the exception of the heat source term
which follows the thin-shell approximation. In detail, the source term in the heat balance equation in (3.24)
is transformed into a surface integral in Γc,H, weighted with the tape thickness δrt . The source term reads for
r = 1, . . . , Nr∫

Ωr
c,H

PJudΩ = δrt

∫
Γr
c,H

PJudΓ = δrt

∫
Γr
c,H

(ρreq
~Jr · ~Jr)udΓ, (3.64)

where ρreq is the equivalent tape resistivity which is detailed in Section 3.7.

3.6.2 Semidiscrete formulation

The fields ~A and T are discretized as in Section 3.5.5. The field ~Hr = Hr~nr is discretized for r = 1, . . . , Nr
by defining a suitable set of edge functions ~v r

q which read

~Hr =

nr
P,H∑

q=1

~v r
q h

r
q, ~v r

q =
N r

q

δrt
~nr, (3.65)

where nrP,H is the number of mesh nodes in Γr
c,H, and N r

q represents a set of nodal basis functions defined
at the surface of the thin shell, and zero elsewhere. Again, different discretization orders are used for ~A
and ~Hr, r = 1, . . . , Nr, avoiding potential stability issues [189]. Once all the field variables are replaced
with their discrete counterparts and boundary conditions are considered, the following discrete problem is
obtained:

Kν +Mσ d
dt −Q 0 0

Q> d
dt Kρ −X 0

0 X> 0 0
0 0 0 Kκ +Mρ d

dt



a
h
us

t

 =


0
0
is
q(·)

 . (3.66)

The coefficients in (3.66) differing from those in (3.33) are given for r = 1, ..., Nr as

(Q)ri,q = δrt

∫
Γr
c,H

(∇× ~vrq) · ~wi dΓ, (3.67)
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(K
ρ
)rp,q = δrt

∫
Γr
c,H

(ρreq∇× ~vrq) · ∇ × ~vrp dΓ, (3.68)

(X)rp = δrt

∫
Γr
c,H

~xrp · (∇× ~vrp)dΓ, (3.69)

(q(·))m = δrt

∫
Γr
c,H

q(·)Nm dΓ, (3.70)

where the integrals over the domains Γ? are 1D integrals. The elements composing the heat source q(·) in
the right-hand side of (3.66) are given by the sum of (3.42) and (3.70), the second term occurring only in
the thin shell.

3.6.3 Field-circuit coupling

For the field-circuit coupling, the interface is derived following a procedure formally identical to the one in
Section 3.5.7, but applied to (3.66). The obtained interface reads

us(t) ≈ RΓis(t) + LΓ
d
dt

is(t), (3.71)

where RΓ and LΓ represent equivalent resistance and inductance matrices related to the thin-shell approxi-
mation. The matrices are defined as

RΓ = [X>[Kρ
]−1X]−1, (3.72)

LΓ = RΓX
>
[Kρ

]+[Q>
[Kν ]+Q][Kρ

]−1XRΓ, (3.73)

where Kρ is positive-definite in the thin-shell approximation, thus invertible. The relation (3.73) can be used
to approximate the finite elementmodel in the circuital counterpart, as an RL-series component.

3.6.4 2D approximation

For field problemswhich show translational symmetry, source domains Γr
c,H are represented by 1D curves γr

c,H,
for r = 1, . . . , Nr. With respect to a local reference frame (lr,nr,zr) oriented according to the tangential lr
and normal nr directions of γr

c,H, the magnetic field strength ~Hr in each thin shell is given as ~Hr = (0,Hr, 0),
and discretized with the edge functions defined in (3.65). The treatment of the fields ~A and T , and the
distribution function χr

sol is analogous as in Section 3.5.8. With the previous observations, the system entries
introduced in (3.66) differing from those in Section 3.5.8 read

(Q)ri,q =

∫
γr
HA

(∂lN
r
q )Ni dγ, (3.74)

(K
ρ
)rp,q =

1

δrt

∫
γr
c,H

ρ(∂lN
r
q )(∂lN

r
p )dγ, (3.75)

(X)rp = ± 1

δz

∫
γr
c,H

∂lN
r
q dγ =

~z

δz
(N r

q,2 −N r
q,1), (3.76)
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Figure 3.7. Sketch of the electrical behavior of the thin-shell approximation. (a) The two paths Γr
c-sc,H and Γr

c-nc,H
representing the superconducting layer and the normal conducting layer, are homogenized into (b)
the equivalent path Γr

c,H.

where the indices 1 and 2 refer to the nodes at the two edges of γr
c,H, and the sign in (3.76) depends from the

orientation of the current in γr
c,H. This simplification is crucial, since the line integrals are replaced by Dirichlet

boundary conditions for each tape. This brings a major advantage in modeling applications containing up to
several thousand turns, such as accelerator magnets.

3.7 Current Sharing in the Thin-Shell Approximation

The layered structure of superconducting tapes provides electrical paths in parallel connection, such that the
source current can redistribute between all the conducting layers. The current sharing occurs when the super-
conducting layer cannot carry anymore all the transport current. This situation can be caused either by an in-
crease of the transport current beyond the critical current of the tape into the overcritical regime, or by a tem-
perature increasewhich reduces the critical current, leading to a quench regime.

The electrical behavior of the thin-shell approximation for a generic HTS tape is discussed with respect to
two conducting paths arranged in a parallel connection, as shown in Figure 3.7a. The first path Γr

c-sc,H is
associated to the superconducting layer, the second path Γr

c-nc,H to a shell homogenization of the remaining
Nnc normal conducting layers, that is, the stabilizer, the substrate, the buffer layers and the silver coating (see
Section 1.2). The two paths are then homogenized into an equivalent shell Γr

c,H, as shown in Figure 3.7b. The
equivalent shell Γr

c,H carries the surface current density ~Kr defined in (2.109). The magnitude of the surface
current density depends on the equivalent resistivity ρreq obtained from the homogenization of the resistivities
ρrsc and ρrnc related to the superconducting and normal conducting layers. From the relation (2.86), ρrsc shows
a current density dependency and therefore the current sharing needs to be resolved to obtain the equivalent
resistivity ρreq.

Since Γr
c-sc,H and Γr

c-nc,H are assumed to be geometrically identical, Kirchhoff’s current (KCL) and voltage
(KVL) laws hold true also in their differential formulation. On the one hand, KCL allows to introduce the
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Figure 3.8. Sketch of the polynomial associated to the zero-finding problem, as a function of the current-sharing
index λr in the superconducting layer. The curves are parametrized by the surface current density
saturation index rr in the tape.

current-sharing index λr ∈ [0, 1]. The index relates ~Kr to the current densities ~Jr
sc and ~Jr

sc in the supercon-
ducting and the normal-conducting layers, as

~Jr
sc = λr

~Kr

δrsc
, ~Jr

nc = (1− λr)
~Kr

δrnc
, (3.77)

where δrsc and δrnc are the thicknesses of the superconducting and the normal-conducting layers, such that
δrt = δrsc + δrnc. On the other hand, KVL allows to formulate the electric field balance of the superconducting
and normal conducting layers as

ρrsc
~Jr
sc − ρrnc

~Jr
nc = 0, (3.78)

which can be further developed by using (3.77), obtaining

λrρrsc
~Kr

δrsc
− (1− λr)ρrnc

~Kr

δrnc
= 0. (3.79)

The superconducting and normal conducting resistivities are given by

ρrsc(λ
r, | ~Jr|) = Ec

Jc
(λrjr)n−1, jr =

| ~Jr|
Jc

, (3.80)

and

ρrnc = δrnc

( Nnc∑
k=1

δr,knc

ρr,knc

)−1

, (3.81)

where jr is the current density saturation index. The determination of λr is done by substituting (3.80)
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and (3.81) into (3.77). The root-finding problem is formulated, for r = 1, . . . , Nr, as

find λr ∈ [0, 1] :

{
f(αr, λr) = 0,

αr ≥ 0,

with f(αr, λr) = αr(λr)n + λr − 1,

αr =
δrnc
δrsc

ρrsc(λ
r, | ~Jr|)
ρrnc

∣∣∣∣∣
λr=1

.

(3.82)

The problem in (3.82) cannot be solved analytically, due to the circular dependency on the current density
| ~Jr|. However, the continuity property of the polynomial and the intermediate zero theorem ensure that for
αr > 0, f(αr, λr) = 0 admits at least one real root in the interval [0, 1]. Moreover, applying Descartes’ rule
of signs [253] to the polynomial f(αr, λr) guarantees the existence of only one real and positive root, at
most.

It is worth observing that the behavior of the polynomial derivative f ′(αr, λr) strongly depends on the current
density saturation. The behavior is shown in Figure 3.8, for different jr. For low saturation jr → 0, then
f ′(αr, λr) = 1, whereas for saturation in the overcritical regime jr → +∞, then f ′(αr, λr) = +∞. This
behavior is shown in Figure 3.7 for increasing values of the saturation index. From the previous observations,
the scalar root-finding problem (3.82) is solved using the bisection method (e.g. [254]) which guarantees
linear convergence independently of the saturation index. The current-sharing algorithm is implemented
as an inner loop within the time-stepping algorithm. Once λr is found, it is used in (3.80) such that the
equivalent surface resistivity ρreq can be calculated as

ρreq = (δrsc + δrnc)

(
δrsc
ρrsc

+
δrnc
ρrnc

)−1

. (3.83)

3.8 Summary

The solution of the multiphysical field problems requires finding a solution of boundary value and time-
dependent initial-value problems composed of partial differential equations. In general, such equations do
not allow to determine the exact solution, therefore numerical methods are needed. Approximate solutions
are sought for in finite subspaces of the function spaces of the exact solution, where the subspaces are defined
by means of suitable basis functions. The partial differential equations are reduced to a system of either
ordinary differential or differential algebraic equations, and the most common time-integration methods are
discussed.

The weak formulation of the coupled ~A− ~H field problem is obtained by means of the Ritz-Galerkin method.
The semi-discrete system of equations is presented for the 3D and 2D settings, and the implications of the
thin-shell approximation are detailed. Then, the field-circuit coupling interface is derived as an optimized
Schwarz transmission condition. The obtained set of equations are implemented in a numerical solver which
relies on the finite element method. The implementation of the coupled ~A− ~H field formulation is verified
in Chapter 4 and validated in Chapter 5. To deal with field-circuit coupled problems, the optimized Schwarz
waveform relaxation method is discussed, as it allows decomposing the coupled problems into a set of inde-
pendent models, solved in an iterative way. This method is implemented in the STEAM cosimulation frame-
work, allowing for the hierarchical cosimulation of field-circuit coupled problems of circuits containing su-
perconducting accelerator magnets. The framework is used in Chapter 4.
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4 Numerical Verification

In this chapter, the coupled ~A− ~H field formulation is implemented with the finite-element method, using
the proprietary software COMSOL, and it is verified by means of test cases. The formulation is first verified in
Section 4.1 against the ~A formulation for both the bulk and shell implementations of a single tape in the 3D
and 2D setting, assuming constant material properties. The influence of the tape thickness is assessed with
respect to the shell approximation. Subsequently, in Section 4.2 the electric nonlinear behavior of supercon-
ducting materials is introduced by means of the power law discussed in Chapter 2, and it is verified against the
~H formulation for superconducting blocks and stacks in the 3D setting.

In Section 4.3, the shell implementation of a single superconducting tape is verified in the 2D setting against
analytical solutions from literature. Subsequently, in Section 4.4 the single tape model is extended to the
geometry of a superconducting coil in the 2D setting. The formulation is verified for different connection
schemes, for both the bulk and shell representation of the tapes. In Section 4.5, the field-circuit coupling
interface derived in Chapter 3 is verified within the waveform relaxation method. In detail, a quench event
occurring in an HTS solenoid protected by quench heater strips is cosimulated, and the results are compared
with the monolithic solution.

4.1 Normal Conducting Tape

This section provides the verification for the implementation of the coupled ~A− ~H field formulation for both
the bulk and shell representations of tapes. The model geometry is kept simple and the material properties
are chosen as constant, such that focus is given to the verification of the implementation of the formulation.
The calculated quantities of interest are compared with the solution provided by the monolithic ~A formula-
tion.

4.1.1 Problem setting

The model is composed of one normal conducting tape represented as a 3D bulk object surrounded by air, as
shown in Figure 4.1a. The computational domainΩ is decomposed into the source regionΩc,H containing the
tape, and the passive and nonconducting region Ω0,A. The field problems is solved in Ωc,H for the magnetic
field strength ~H, and in Ω0,A for the (reduced) magnetic vector potential ~A. The interface ΓHA between the
two regions corresponds to the four lateral faces of the tape, as the tape ends touch the exterior boundary.
The red and blue arrows show the positive orientation of the current in the tape. The 3D bulk tape is first
simplified into a 3D shell tape by neglecting its thickness, as shown by Figure 4.1b whereΩc,H is collapsed into
the surface Γc,H. Subsequently, the 3D bulk and shell models are further simplified by exploiting their trans-
lational symmetry into the 2D bulk and shell models shown in Figure 4.1c and 4.1d. The relevant geometric
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(a) 3D bulk tape.
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(b) 3D shell tape.
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(c) 2D bulk tape.
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(d) 2D shell tape.

Figure 4.1. Numerical models for bulk and shell tapes, in the 3D and 2D setting.

Parameter Unit Value Description

δw mm 10 Tape width
δt mm 0.5 Tape thickness
δl mm 100 Tape length
ρ nΩm 10 Tape resistivity

Table 4.1. Tape specifications.

and material properties are given in Table 4.1. For the 3D models, homogeneous Dirichlet boundary condi-
tions are applied to ~A on Γdir-0,A, the exterior boundary of Ω0,A, whereas homogeneous Neumann boundary
conditions are applied to ~H on the tape ends. In the 2D setting, only homogeneous Dirichlet boundary con-
ditions are imposed to ~A on the exterior boundary Γdir-0,A. Homogeneous boundary conditions are justified
by considering the exterior boundary sufficiently far from the tapes.

All four models are powered by means of a voltage source which follows the general source signal vs(t) shown
in Figure 4.2, parametrized with the DC and AC contributions Ydc and Yac, and the frequency f . The curve
ys(t) is defined as

ys(t) =



Ydcft if t ∈ [0, 0.9)/f

pdc(t) if t ∈ [0.9, 1.1)/f

Ydc if t ∈ [1.1, 2.9)/f

pac(t) if t ∈ [2.9, 3.1)/f

Ydc + Yac sin (2πft) if t ∈ [3.1, 5.0]/f,

(4.1)

where pdc(t) and pac(t) denote fifth-order polynomial functions which ensure that ys(t) is derivable twice,
hence C2 continuous at the two transitions. For the case under study, the source signal parameters are
chosen as Ydc = 1mV, Yac = 0.5mV, and f = 10Hz. The problem setting is the same for the four mod-
els with respect to the source signal and initial and boundary conditions, leading to the same field prob-
lem.
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Figure 4.2. Source signal, for f = 1Hz.

4.1.2 Simulation setup

For each of the four models, the field problem is solved by using the coupled field formulation, adapted to
the geometry and the representation of the tape. The reference solution is obtained for the 3D models with
bulk and shell tapes by using the monolithic ~A formulation which is provided by COMSOL. The comparison
of results is done consistently with the tape geometry. A set of quantities of interest q(t) are extracted from
each of the simulations and then compared as

∆q(t) =
|qA(t)| − |qAH(t)|

|qA(t)|
, (4.2)

where the subscripts A and AH refer to the two formulations used for computing the field solution, and
∆q(t) is the relative difference. For bulk tapes in the 3D setting, the quantities of interest are defined
by

is =

∫
Ωc,H

~χ · ~J dΩ [A] Source current,

RDC =

(∫
Ωc,H

1

ρ
~χ · ~χdΩ

)−1

[Ω] DC resistance,

Ps = vsis [W] Source power,

PJ =

∫
Ωc,H

ρ ~J · ~J dΩ [W] Joule power,

Ws =

∫ t

0
Ps dt [J] Source energy,

WJ =
1

2

∫
Ω

~B · ~H dΩ [J] Magnetic energy.

(4.3a)

(4.3b)

(4.3c)

(4.3d)

(4.3e)

(4.3f)

The quantities of interest are chosen such that both electric and magnetic phenomena are compared. The
definitions given in (4.3) can be adapted for bulk tapes in the 2D setting by replacing the volume integrals
with surface integrals weighted with the tape length δl. For the thin-shell approximation, volume and surface
integrals for bulk tapes in the 3D and 2D settings are replaced by surface and line integrals, weighted with
the tape thickness δt.
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(a) Mesh of the 3D bulk tape.

Ωc,H

Γc,H

(b) Mesh detail.

Figure 4.3. (a) Mesh of the 3D bulk tape. (b) From top to bottom, detail of the bulk and shell tape.
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Figure 4.4. Relative difference ∆WJ between the ~A and ~A− ~H formulation. Results are given for (a) bulk and
(b) shell tape models, in dependency of the number of mesh elements in the cross section of the tape.
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Figure 4.5. Relation between the skin depth and the thin-shell approximation. (a) Relative difference ∆WJ be-
tween 3D bulk and shell tapes. (b) Skin depth, as a function of the frequency.
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The mesh used for the 3D bulk tape is shown in Figure 4.3a. The cross section of the bulk tape is discretized
by a structured grid of quadrilateral elements, using 15 elements in the width and 4 elements in the thick-
ness, whereas for the thin-shell approximation the structured grid is replaced with 15 line elements evenly
distributed along the tape width (Figure 4.3b, top and bottom). The cross section of the nonconducting air
is discretized with triangular elements, and the mesh is propagated along the tape length for the 3D models
using 10mm long hexahedra. The models with 3D bulk and shell tapes use a mesh first-order elements. The
models with 2D bulk and shell tapes use a mesh of first-order elements in Ωc,H and Γc,H, and second-order
elements in Ω0,A.

4.1.3 Numerical convergence analysis

The accuracy of the numerical solution provided by the ~A− ~H formulation is investigated for the four mod-
els. The Joule energy WJ is calculated for increasingly refined meshes in the cross section of the tape, and
compared with the results obtained with the ~A formulation and a highly refined mesh. The results for the
bulk tape in both 3D and 2D settings are shown in Figure 4.4a where the reference solution is obtained with
500 elements in the cross section. The results for the shell tape in both 3D and 2D settings are shown in
Figure 4.4b where the reference solution is obtained with 125 elements in the cross section. For all the four
models, the relative difference in the Joule energy ∆WJ shows a monotonic decrease with the number of
elements, indicating that the solution converges to the exact solution.

4.1.4 Thickness analysis

The shell model introduces an approximation which depends on the thickness of the tape in comparison to
the skin penetration depth of eddy currents. In general, the thin-shell approximation produces reliable results
only if the thickness is significantly smaller than the skin penetration depth. In quasistatic regimes, the skin
depth δskin is defined by the approximate expression [255]

δskin =

(
ρ

πfµ

)1/2

. (4.4)

The approximation is quantified by comparing the results obtained from the 2D models with bulk and shell
tapes. The results are shown in Figure 4.5, parametrized by the tape thickness and the frequency. The
relative difference of the Joule energy ∆WJ between the bulk and the shell model for the tape is shown in
Figure 4.5a, as a function of the frequency and parametrized by the thickness of the tape δt. The difference
shows a monotonic increase, with higher values for thicker tapes. This behavior can be explained with respect
to Figure 4.5b showing a comparison of the skin depth of the tape with respect to the thicknesses considered
for the bulk-shell comparison. For frequencies above 10Hz, the skin depth is smaller than 1mm, therefore
the equivalent shell model shows a difference which quickly increases above 1%. In the other two cases, the
tape thickness is below the skin depth, and the difference remains below 1% for almost all the frequency
spectrum. For the case under study, that is, a 1mm thick tape and f = 10Hz, the skin depth is about a factor
five thicker than the tape. The case under study assumes a frequency of f = 10Hz, where the skin depth is
about five times greater than the total tape thickness of 1mm.
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Geometry Source ydc yac f εrel εabs Time stepping ∆tmax

Bulk
vs 1mV 0.5mV 10 1× 10−4 1× 10−3 adaptive BDF-5 (100f)−1

Shell

Table 4.2. Main solver settings.

~A ~A− ~H bulk ~A− ~H shell

3D
se
tti
ng

(a) (b) (c)

2D
se
tti
ng

(d) (e) (f)

Ta
pe

(g) (h) (i)

Figure 4.6. Comparison of the numerical solutions for the magnetic flux density in mT at t = 0.425 s, obtained
with the ~A formulation (first column), and the ~A− ~H formulation with both bulk (second column)
and shell tapes (third column). Simulations are done for voltage driven models. The first and second
rows in the figure refer to models in the 3D and 2D settings. The third row shows the magnetic flux
density in the cross section of the tape.

4.1.5 Numerical results

The time stepping scheme is implicit and based on the adaptive BDF-5 (of order 1-5), using an adaptive time
step limited to a maximum size of ∆t = (100f)−1, for both the bulk and shell tape simulations. The most
relevant solver-setting parameters adopted in the simulations are given in Table 4.2. The field solution for the
magnetic flux density is shown in Figure 4.6. The results are organized in columns corresponding respectively
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Figure 4.7. Results comparison for the voltage-driven model of a bulk tape in 3D and 2D setting. The reference
results are obtained by means of the ~A formulation.
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Figure 4.8. Results comparison for the voltage-driven model of a shell tape in 3D and 2D setting. The reference
results are obtained by means of the ~A formulation.
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to the ~A, bulk ~A− ~H and shell ~A− ~H formulations. The first and the second rows give the field solution for
the 3D and 2D setting, whereas the last row highlights the cross section of the tape, showing that the 2D field
distribution within the tape is neglected by the shell approximation.

The results of the comparison for the bulk tape model are shown in Figure 4.7. The left and right columns
show the quantities of interest and the relative differences. The results are in quantitative agreement, showing
relative differences which remain below 1% for most of the time steps. The differences tend to be higher at
the beginning of the simulations, showing values above 10%. The difference tends to increase whenever the
quantities of interest tend to zero, as a consequence of the relative error definition, because for quantities
|x| → 0, small absolute errors |∆x| can still lead to relevant relative errors. The results of the comparison for
the shell tape model are shown in Figure 4.8, with the same layout as for the bulk tape. The results are again
in quantitative agreement. Relative differences are found below 1% for most of the time steps, with higher
discrepancies in the order of 10% difference at the beginning of the simulations. Overall, results obtained for
a normal conducting tape powered via a voltage source with the ~A− ~H formulation are consistent with the
~A formulation.

4.2 Superconducting Block

With respect to the previous section, the verification of the implementation of the ~A− ~H field formulation is
extended to passive and conducting domains made of superconducting materials. A superconducting block
exposed to a time-varying magnetic field is modeled by means of both a bulk and an equivalent stack repre-
sentation, the latter using the thin-shell approximation. The Joule losses in the block are calculated for the
two models, and compared with the solution provided by the monolithic ~H formulation. The problem setting
and the simulation setup closely follow the work in [256].

4.2.1 Problem setting

The 3D model is composed of a block made of superconducting material surrounded by air, as shown in
Figure 4.9a. The superconducting bulk has a square base of 10mm and a thickness of 1mm. The material
parameters related to the superconducting properties of the bulk are chosen as Jc = 1× 108 Am−2 and n =
25 [256]. The computational domain is decomposed into the conducting region Ωc,H representing the block
solved for ~H, and the passive regionΩ0,A solved for ~A. The interface ΓHA between the two regions corresponds
to the outer surface of the block. A second model, shown in Figure 4.9b, is obtained by approximating the
bulk geometry of the block by means of a stack of layers implementing the thin-shell approximation. In
this way, the geometric thickness of the bulk is neglected, and the domain Ωc,H is replaced by the stack
of thin shells Γr

c,H, with r = 1, . . . , Nt, each of them representing 1/Nt of the thickness of the block. The
value of Nt is set to five, as a compromise between the accuracy of the approximation and the computational
cost. The two models do not feature any actively powered domains, therefore distribution functions are not
required.

Nonhomogeneous Dirichlet boundary conditions are applied to ~A on the exterior boundary Γdir,A, imposing
the magnetic field Bs(t) = Bp sin (2πft) as an external source. Consequently, the source region corresponds
for this case to the exterior boundary. Two simulation scenarios are investigated [256]. In the first scenario
themagnetic field is applied with parametersBp = 200mT and f = 50Hz, with an angle of 30◦ with respect to
the wide surface of the block. In this way, the currents induced in the superconducting bulk show components
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(a) Block, 3D setting.
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ΓHA
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(b) Stack, 3D setting.

Figure 4.9. Models for the superconducting block and stack, in the 3D setting.

Ωc,H

(a) Mesh for the bulk representation.

Γc,H
𝑟

(b) Mesh for the shell representation.

Figure 4.10. Mesh of the superconducting block, for (a) bulk and (b) shell representations.

in all the three dimensions, intrinsically requiring a bulk model. In the second scenario, the magnetic field is
applied with parameters Bp = 100mT and f = 50Hz, perpendicularly to the wide surface of the block. Here,
the induced currents have only in-plane components, therefore the results from block and stack models can
be compared.

4.2.2 Simulation setup

The field problem is solved by using the coupled ~A− ~H field formulation for bulk and shell geometries in the
3D setting. The reference solution is obtained for themodel with bulk geometry by using themonolithic ~H for-
mulationwhich is provided by COMSOL. The quantities of interest q(t) are compared as

∆q(t) =
|qH(t)| − |qAH(t)|

|qH(t)|
, (4.5)

where the subscripts H and AH refer to the two formulations used for computing the field solution, and∆q(t)
is the relative difference. The quantities of interest are limited for this case to the Joule losses PJ occurring
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Geometry Source Value f εrel εabs Time stepping ∆tmax

Block
Bp 100mT-200mT 50 1× 10−6 1× 10−4 adaptive BDF-5 (100f)−1

Stack

Table 4.3. Main solver settings.
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Figure 4.11. Results comparison for a superconducting block in the bulk and shell representation. The reference
results are obtained by means of the ~H formulation.

in the superconducting material, and are given by

PJ,block =

∫
Ωc,H

ρ ~J · ~J dΩ [W] Joule power,

PJ,stack =

Nt∑
r=1

δrt

∫
Γr
c,H

ρ ~Jr · ~Jr dΓ [W] Joule power,

(4.6a)

(4.6b)

where for the thin-shell approximation the volume integral is replaced by a sum of Nt surface integrals, one
per each shell in the stack.

The mesh used for the 3D block is shown in Figure 4.10. The block is discretized with hexahedra using
45 × 45 elements on the basis and 7 elements in the thickness (Figure 4.10a). For the thin-shell approx-
imation, each layer in the stack is discretized using a structured grid of 45 × 45 quadrilateral elements
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Figure 4.12. Normalized current density in the superconducting block, modeled as a bulk, for a field incidence
angle of 30◦ with respect to the wide surface of the block.
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Figure 4.13. Normalized current density in the superconducting block, modeled both as a bulk and a stack of
shells, for a field incidence angle of 0◦ with respect to the wide surface of the block.
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(Figure 4.10b). The models implementing bulk and stack geometries use a mesh of first-order elements
everywhere.

4.2.3 Numerical results

The time stepping scheme is implicit and based on the second-order BDF, using an adaptive time step limited
to a maximum size of ∆t = (100f)−1, for both the bulk and shell tape simulations. The most relevant
solver-setting parameters adopted in the simulations are given in Table 4.3. Simulations are carried out
for two and a half periods of the sinusoidal field source. The results of the comparison for the block and
stack models are shown in Figure 4.11. The left and right columns show the Joule losses and the relative
differences between the different formulations. The results are in agreement, showing relative differences
which are below 1% for most of the time steps. The difference tends to increase whenever the quantities of
interest tend to zero. Figure 4.12 shows the three spatial components of the current density distribution in
the bulk, normalized by the critical current density and given with respect to a local reference frame (x, y, z)
oriented along the superconducting block. Results are shown for the bulk representation in the ~H and ~A− ~H
formulations, for the case where the source field has a 30◦ incidence angle. Figure 4.13 shows the same
field quantities as Figure 4.12, but for the ~H formulation and the ~A− ~H formulations for bulk and shell
geometries, for the case where the source field is perpendicular to the wide surface of the superconducting
domain. Overall, the implementation of the ~A− ~H formulation for a superconducting block powered via an
external field source delivers results for both bulk and shell representations which are consistent to the ~H
formulation.

4.3 Superconducting Tape

This section provides the verification for the implementation of the coupled ~A− ~H field formulation for HTS
tapes represented by means of the thin-shell approximation, as described in Section 2.14. The dynamic
behavior of a single HTS tape is investigated while exposed to an externally applied field and in self-field.
These two cases are chosen since analytical solutions from existing literature are available for the verification
of the numerical results. A third case investigates the influence of the thin-shell approximation in the case of
normal conducting coating added to the tape, analyzing the result in comparison to a bulk tape model solved
for ~H, where the layers are explicitly meshed.

4.3.1 Problem setting

The reference model shows translational symmetry, therefore is represented in the 2D setting. It is composed
of one superconducting tape represented by the 1D line Γc,H surrounded by air, as shown in Figure 4.1d.
The decomposition of the computational domain has already been discussed in Section 4.1.1 for the 2D shell
approximation case. The specifications for the superconducting tape are given in Table 4.4. Two scenarios
are considered, differing in the source quantity applied to the model. In the first scenario, a zero net cur-
rent is imposed to the tape, and an external magnetic field Bs = Bp sin (2πft) is applied in the y-direction,
perpendicularly to the tape, by means of nonhomogeneous Dirichlet boundary conditions imposed to ~A on
the exterior boundary of Ω0,A. In the second scenario, an external source current is = Ip sin (2πft) is ap-
plied to the tape, and homogeneous Dirichlet conditions are applied to ~A on the exterior boundary. In this
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(a) Magnetic field distribution at 1.25 s. (b) Magnetic field distribution at 1.25 s.

Figure 4.14. Magnetic field produced by a superconducting tape with n-value of 20, powered by (a) an external
sinusoidal field of 25mT and frequency of 1Hz, and (b) a sinusoidal current of 500A and frequency
of 1Hz.

Name Unit Value Description

δw mm 10 Tape width
δt µm 1 Tape thickness
δl mm 100 Tape length
Jc kAmm−2 100 Critical current density
Ic kA 1 Current density
n - {5, 20, 40} Power law index

Table 4.4. Tape specifications.

case, the tape is said to be in self-field. The magnetic field distribution is shown for the two scenarios in
Figure 4.14.

4.3.2 Simulation setup

The quantity of interest is given by the specific Joule losses wJ occurring in the tape within a sinusoidal cycle,
and it is defined as

wJ =
1

δwδtδl

2τ∫
τ

δtδl

∫
Γc,H

ρ ~J · ~J dΓdt, (4.7)

where δw, δt and δl are the width, thickness and length of the tape, and τ = 1/f . In the calculation of wJ, the
first period of the sinusoidal cycle is discarded since it corresponds to the first magnetization cycle which is
not representative of the specific Joule losses occurring in sinusoidal regime. The numerical model of the HTS
tape is used over a frequency range of several orders of magnitude. For this reason, the mesh distribution
is adapted to the magnitude of the current in the tape. The mesh elements are denser at the tape edges,
with their size following an exponential distribution such that the ratio between the biggest and the smallest
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Geometry Source Value f εrel εabs Time stepping ∆tmax

Shell Bp 1mT-10T
1mHz-100Hz 1× 10−6 1× 10−4 adaptive BDF-5 (100f)−1

Shell Ip 10A-1.2 kA

Table 4.5. Main solver settings.

Γc,H

(a) Fine mesh.

Γc,H

(b) Coarse mesh.

Figure 4.15. Mesh of the HTS tape, represented as a thin shell in the 2D setting. (a) Fine and (b) coarse mesh,
for the low- and high-field and current scenarios.

element is 25 (see Figure 4.15a). This allows for resolving the highly-nonlinear current density distribution
in the tape. About 500 elements are used for the simulations at low field and current, whereas about 20
elements are used for a saturated tape (see Figure 4.15b), in accordance with the relaxation of the magnetic
field within the tape. The model uses a mesh of first-order elements in Γc,H, and second-order elements in
Ω0,A. The maximum time step size is given as∆t = (100f)−1, where f is the frequency of the source quantity
in the model.

4.3.3 Numerical results: external field

In this scenario, a single HTS tape with no supply current is exposed to a time-dependent, sinusoidal field
applied perpendicularly to the wide face of the tape. The layout of the simulated scenario is shown in the
box of Figure 4.16a. The source term is provided by the magnetic field Bs = Bp sin (2πft), with f = 1Hz.
The specific loss per cycle wJ is calculated as a function of the peak field Bp, and parametrized for the
power-law index values n = 5, 20 and 40. The case with n = ∞ corresponds to critical state model [176,
177], and it is calculated analytically. In detail, the theory of infinitely thin films with finite width and one
dimensional current distribution in a perpendicular field [100, 257, 258] provides an analytical expression
for wJ as

wJ = δwJcBc

(
2

bp
ln(cosh bp)− tanh bp

)
, (4.8)

where the normalizedmagnetic field bp and critical magnetic fieldBc are given by

bp =
Bp

Bc
, and Bc = µ0

δtJc
π
. (4.9)

The specific losseswJ are shown in Figure 4.16a and 4.16b as a function ofBp and f , showing that for increas-
ing n-values of the power-law index, the losses converge to the theoretical solution in (4.8) [257]. Therefore,
the numerical results meet the expectations given that the critical state model corresponds to (2.86) where n
goes to infinity. For field values Bp � Bc, the losses follow a quartic scaling law with respect to the magnetic
field amplitude. Once the magnetic field exceeds Bc, it fully penetrates in the tape, and the distribution of
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Figure 4.16. Specific Joule losses per cycle in a single HTS tape of critical current Ic = 1kA. The numerical results
are parametrized by n = 5, 20, 40, and compared with the analytical solution from literature where
n→ ∞.

screening currents relaxes into a homogeneous distribution. For field values Bp � Bc the specific losses grow
proportionally with the amplitude Bp, as the model considers the critical current density to be constant and
field-independent. For the sake of completeness, Figure 4.16a shows also a trend line for a cubic scaling law,
which is found in models accounting for finite n-values and two dimensional current density distributions in
the tape [14, 259, 260].

The specific losses shown in Figure 4.16b are obtained for a peak field of 10mT. The value for Bp is set
below the penetration limit, such that the simulation results are determined by the field-screening behavior
of the tape. For high n-values, the frequency dependency in the losses tends to vanish, as expected by
the hysteresis-like behavior of screening currents, and wJ converges to the theoretical solution in [257] for
n→ ∞.

4.3.4 Numerical results: self-field

In this scenario, a time-dependent, sinusoidal source current is imposed to a single HTS tape with no exter-
nally applied field. The layout of the simulated scenario is shown in the box of Figure 4.17a. The source
term is provided by the external current is = Ip sin (2πft), with f = 1Hz. The specific loss per cycle wJ is
calculated as a function of the peak current Ip, and parametrized for the power-law index n = 5, 20 and
40. The case with n = ∞ corresponds to the critical state model [176, 177], and is calculated analytically.
In detail, the theory of infinitely thin films with finite width and one dimensional current distribution [100,
261] provides an analytical expression for wJ as

wJ =
µ0

δwδh
I2c
i4p
6π
, (4.10)
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Figure 4.17. Specific Joule losses per cycle in a single HTS tape of critical current Ic = 1kA. The numerical results
are parametrized by n = 5, 20, 40, and compared with the analytical solution from literature where
n→ ∞.

where Ic is the critical current of the tape and ip is the normalized peak current given by

ip =
Ip
Ic
. (4.11)

The specific losses wJ are shown in Figure 4.17a and 4.17b as a function of Ip and f , showing that for increas-
ing n-values of the power-law index, the losses converge to the theoretical solution in (4.10) [257]. Therefore,
the numerical results meet the expectations given that the critical state model corresponds to (2.86) where n
goes to infinity. For current values Ip � Ic, the losses follow a quartic scaling law with respect to the current
amplitude. Once the supply current exceeds Ic, the current density distribution relaxes into a homogeneous
distribution in the cross section of the tape. For current values Ip � Ic, the specific losses grow proportionally
to In+1, in accordance with the power-law behavior in (2.86).

The specific losses shown in Figure 4.17b are obtained for a current of Ip = 0.5Ic. The value for Ip is set
below the penetration limit, such that the simulation results are determined by the field-screening behavior
of the tape. For high n-values, the frequency dependency in the losses tends to vanish, as expected by
the hysteresis-like behavior of screening currents, and wJ converges to the theoretical solution in [257] for
n→ ∞.

4.3.5 Numerical results: thin-shell approximation

The ~A- ~H formulation is applied in combination with the thin-shell approximation to an individual HTS tape
in a transverse-field 2D configuration, as shown in Figure 4.1d. The model accounts for the current sharing
by including the normal conducting part of the tape as discussed in Section 3.7. The reference results are ob-
tained solving the field problem for the ~H formulation for bulk tapes, and compared with the results from the
~A− ~H formulation for thin-shell tapes. The most relevant solver-setting parameters adopted in the simula-
tions are given in Table 4.6. The superconducting layer has the same dimensions as in Table 4.4, a power-law
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Geometry Source Value f εrel εabs Time stepping ∆tmax

Bulk
Ip 0.25Ic-2Ic 1Hz-1 kHz 1× 10−6 1× 10−4 adaptive BDF-5 (100f)−1

Shell

Table 4.6. Main solver settings.
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Figure 4.18. Joule losses per cycle in a single tape powered with a sinusoidal current, as a function of the cur-
rent normalized by the critical current. The losses are parametrized by the frequency of the source
current, and are given at 1, 10, 100, 1000Hz.
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Figure 4.19. Computational time in hours, as function of the number of tapes included in the model. The reference
model features 2D domains for the superconducting tapes, whereas the ~A− ~H formulation relies on
the thin-shell approximation.

index n = 20 and a critical current Ic = 200A. The normal conducting layer has a thickness δtnc = 100µm
and a resistivity of 0.1nΩm. The Joule losses are compared against the reference model, which used explicit
2D domains for the superconducting tapes. The tape is powered by a sinusoidal current is(t) = I0sin(2πft).
Currents with frequencies 1, 10, 100, 1000Hz are applied as source. The current amplitude I0 ranges between
0.25Icrit and 2Icrit, where Icrit = 200 A is the critical current of the tape. By increasing the frequency and
the magnitude of the applied current, it is possible to quantify the approximations introduced by the shell
geometry and the equivalent surface resistivity, respectively.
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Figure 4.20. Sketch of the superconducting coil model.

The time stepping scheme is implicit and based on the second-order BDF, using an adaptive time step limited
to a maximum size of∆t = (100f)−1, for both the bulk and shell tape simulations. The Joule losses per cycle
are reported in Fig. 4.18. For sub-critical currents (I < Ic), the difference of the curves decreases but does not
vanish. The difference is due to a weak frequency dependency in the losses per cycle (see for example [262]).
For over-critical currents (I > Ic), the losses are dominated by the contribution from the normal conducting
part of the tape. This is reflected by the substantial frequency dependency in the curves. For currents above
Ic and frequencies up to 100Hz the relative error is below 5%

The gain on the computational time of the model due to the thin-shell approximation is shown in Fig. 4.19.
In detail, the same equations have been solved for models featuring an increasing number of tapes, stacked
on each other, for both the ~H and the ~A- ~H formulations. The performance improvement achieved with the
thin-shell approximation is about two orders of magnitude. For the most computationally-intensive model
containing ten thousand tapes implementing the thin-shell approximation, the computational time was eight
hours.

4.4 Superconducting Coil

This section provides the verification for the implementation of the coupled ~A− ~H field formulation in case
the tapes are electrically connected, composing a coil in the 2D setting. The tapes are composed of a su-
perconducting layer coated with normal conducting material, and are represented as bulk and thin-shell
conductors, in two distinct models. The electrical connections of the tapes implement the series, parallel and
mixed connection schemes.

4.4.1 Problem setting

The reference model in this section shows translational symmetry and includes a simple coil surrounded by
air, as shown in Figure 4.20a. The model exploits a four-quadrants symmetry and contains a coil of Nt HTS
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tapes, with Nt = 4, with each tape made of a thin superconducting layer coated with a normal conducting
material. The computational domain Ω is split into the conducting regions Ωr

c,H with k = 1, · · · , Nt and
solved for ~H, and the passive region Ω0,A solved for ~A. The conducting region is further subdivided into the
superconducting and normal conducting parts Ωr

c-sc,H and Ωr
c-nc,H referring to the superconducting layer and

the coating of the tape.

The reference model is then simplified into a shell by neglecting the thickness of the tape, as shown in Fig-
ure 4.20b where Ωr

c,H collapses into the surface Γr
c,H. As the tape is made of a composite material, the equiv-

alent resistivity is obtained by means of the homogenization method detailed in Section 3.7. The relevant
geometric and material properties are given in Table 4.7.

The tapes can be arranged following different connection schemes, namely the series, parallel and mixed
connection schemes known in literature as no coupling, all coupling and end coupling schemes [263]. The
different schemes are obtained by appending dedicated sets of algebraic constraints to the formulation of the
field problem. The constraints are applied by introducing the coil voltage and current sources vs,coil and is,coil,
reading for the different connection schemes

series connection

{
vs,coil =

∑Nt
r=1 v

r
s

is,coil = irs with i = 1, · · · , Nt
(4.12)

parallel connection

{
vs,coil = vrs with i = 1, · · · , Nt

is,coil =
∑Nt

r=1 i
r
s

(4.13)

mixed connection


vs,coil =

∑2
r=1 v

r
s =

∑4
i=3 v

r
s

is,coil =
∑2

r=1 i
2r−1
s =

∑2
r=1 i

2r
s

i1s = i2s
i3s = i4s

(4.14)

The voltage and current constraints in (4.12), (4.13) and (4.14) are scalable to arbitrary number of connec-
tions and tapes, and can be added to models in a programmatic way.

Homogeneous Dirichlet boundary conditions are imposed to ~A on the exterior boundary of Γdir-0,A. The
models are powered using both a voltage and a current source derived from the general source signal ys(t)
shown in Figure 4.2. The coil voltage source vs,coil is parametrized with Ydc = 10mV, Yac = 5mV, and
f = 10Hz, whereas is,coil is parametrized with Ydc = 100A, Yac = 50A, and f = 10Hz. The comparison has
been carried out for all the connection schemes; here the focus is given to the mixed connection case since it
contains features from both the series and parallel connection schemes.

4.4.2 Simulation setup

The field problem is solved by using the ~A− ~H coupled field formulation, for both the bulk and the shell
models and the three connection schemes detailed in (4.12)-(4.14). The reference solutions are obtained by
using the monolithic ~H formulation which is provided by COMSOL. The quantities of interest are extracted
from each of the simulations and then compared as in (4.5). The quantities of interest previously defined
in (4.3) are further expanded, with the aim of separating the calculation of the Joule loss contributions PJsc
and PJnc from the superconducting and normal conducting parts of the tapes. The losses in terms of power
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Parameter Unit Value Description

δw mm 10 Tape width
δt µm 500 Tape thickness
δz m 10 Tape length
δwnc mm 10 Normal conductor width
δtnc µm 499 Normal conductor thickness
δwsc mm 9.8 Superconductor width
δtsc µm 1 Superconductor thickness
ρnc nΩm 10 Normal conductor resistivity
Ic A 500 Critical current
n − 20 Power-law index

Table 4.7. Tape specifications.

and energy are given for the coil made of bulk tapes as

PJsc =

Nt∑
r=1

∫
Ωr

c-sc,H

ρ ~Jr · ~Jr dΩ [W] Superconducting Joule power,

PJnc =

Nt∑
r=1

∫
Ωr

c-nc,H

ρ ~Jr · ~Jr dΩ [W] Normal conducting Joule power,

WJsc =

∫ t

0
PJsc dt [J] Superconducting Joule energy,

WJsc =

∫ t

0
PJnc dt [J] Normal conducting Joule energy.

(4.15a)

(4.15b)

(4.15c)

(4.15d)

In the casewhere the coil is made of shell tapes, the power losses are given as

PJsc =
1

δt

Nt∑
r=1

∫
Γr
c,H

λrρreq
~Kr · ~Kr dΓ [W] Superconducting Joule power,

PJnc =
1

δt

Nt∑
r=1

∫
Γr
c,H

(1− λr)ρeq ~K
r · ~Kr dΓ [W] Normal conducting Joule power,

(4.16a)

(4.16b)

whereas the energy losses follow the same definition given for the bulk tapes in (4.15).

The mesh used for the 2D coil is shown in Figure 4.21, for the (a) bulk and (b) shell representation. The cross
section of the tape in the 2D setting is discretized by a structural grid of quadrilateral elements counting 15
elements in the width, and 1 and 4 elements in the thickness of the superconducting and normal conducting
layers. The cross section of the air is discretized with triangular elements. For the shell approximation, the
structural grid is replaced with line elements evenly distributed along the tape width. The models with 2D
bulk and shell tapes use a mesh of first-order elements in Ωc,H and Γc,H, and second-order elements in Ω0,A.

4.4.3 Comparison of results

The results for the model implementing the ~H formulation are compared with the ~A− ~H formulation, for
the bulk and shell representation for the tapes. Two cases are detailed, assuming end connection schemes
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Figure 4.21. Mesh of the HTS coil in the 2D setting, shown for the models with (a) bulk and (b) shell tapes.

Geometry Source ydc yac f εrel εabs Time stepping ∆tmax

Bulk vs,coil 10mV 5mV 10 1× 10−6 1× 10−4 adaptive BDF-5 1msShell vs,coil
Bulk is,coil 100A 50A 10 1× 10−6 1× 10−4 adaptive BDF-5 1msShell is,coil

Table 4.8. Main solver settings.

powered by means of voltage and current sources. All the connection schemes in (4.12)-(4.14) have been
tested, but the results are particular cases of the end-connection scheme, and are omitted. Still, Figure 4.22
shows the magnetic flux density obtained for the three connection schemes with the ~H formulation and the
~A− ~H formulation for bulk and shell tape models. Qualitative agreement is obtained for all the cases. The
time stepping scheme is implicit and based on the second-order BDF, using an adaptive time step limited to
a maximum size of ∆t = (100f)−1, for both the bulk and shell tape simulations. The most relevant solver-
setting parameters adopted in the simulations are given in Table 4.8.

4.4.4 Voltage driven scenario

The results of the comparison for the voltage driven scenario are shown in Figure 4.23. The left and right
columns show the quantities of interest and the relative errors. The results are in quantitative agreement,
showing relative errors which are below 1% for most of the time steps, except for the Joule power losses
which show differences above 1% at the beginning of the simulations. This is due to the relative difference
criterion which is more sensitive to numerical errors for quantities which tend to zero. The differences are
reduced as the current is increased to values which are more relevant for practical applications. The shell
model provides a relative difference which tends to be higher than for the bulk model. These differences are
in the range of 1% to 2% for the Joule power loss contribution in the normal conducting part of the coil. This
discrepancy is expected, and it is explained by the fact that the shell model neglects the current dynamics
due to the skin effect, as discussed in Section 4.1.4.
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Figure 4.22. Comparison of the numerical solutions for the magnetic flux density at t = 0.425 s, obtained with
the ~H formulation (first column), and the ~A− ~H formulation with both bulk (second column) and
shell tapes (third column). Simulations are done for current driven models. The three rows in figure
refer to no-coupling, full-coupling and end-coupling connection schemes for the superconducting coil.
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Figure 4.23. Results comparison for a coil implementing the end-connection scheme, powered using a voltage
source. The reference results are obtained by means of the ~H formulation.
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Figure 4.24. Results comparison for a coil implementing the end-connection scheme, powered using a current
source. The reference results are obtained by means of the ~H formulation.
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4.4.5 Current driven scenario

The results of the comparison for the current driven scenario are shown in Figure 4.24. The left and right
columns show the quantities of interest and the relative errors. The results are in quantitative agreement,
showing relative errors which are below 1% for most of the time steps. It is possible to observe spikes in the
relative differences of the voltage and resistance signals. The spikes occur for the time steps in which the
quantities of interest tend to zero, and they are higher for the shell-tape model. This discrepancy is again
justified with the behavior of the relative difference criterion. Similarly to the voltage driven scenario, the
Joule power loss shows differences well above 1% at the beginning of the simulations. Again, the Joule power
loss contribution in the normal conducting part of the coil shows a difference of 1-2% for the model with shell
tapes. Overall the voltage and current models implementing the ~A− ~H formulation are consistent with the
~H formulation.

4.5 Cosimulation of a Superconducting Solenoid

The model discussed in this section implements the magnetothermal formulation in (2.100)-(2.105) for bulk
tapes, and is powered by an external circuit via the field-circuit coupling interface derived in (3.12). The
STEAM cosimulation framework introduced in Section 3.4.2 is adopted for a field-circuit coupled simulation
of an HTS solenoid, via the WR method. At the same time, the proposed model is sufficiently simple that a
monolithic solution is also achieved, and used for comparison. Therefore, the purpose of the section is two-
fold: 1. showing the implementation of the thermal part of the coupled ~A− ~H formulation, and 2. verifying
the field-circuit coupling interface for a simplified circuit example. Generally speaking, for such a simplified
problem the complexity associated to the cosimulation approach may not be justified. However, this approach
allows to tackle full-scale applications involving several field models implemented with different tools and
complex circuits containing nonlinear elements (e.g. [116, 227]), which would be extremely difficult to be
solved with high resolution in a monolithic simulation.

4.5.1 Problem setting

The solenoid is shown in Figure 4.25a and is composed, from the central axis to the outside, by a cylindrical
core made of pure iron (Fe > 99.8%), a nonconducting holder made of polymide which provides mechanical
support to the superconducting coil, and Nhs = 2 stainless steel strips. For the sake of clarity, parts of the
insulating material have been removed from Figure 4.25a, such that the coil and the strips are visible. The
coil is made of Nt = 30 turns of an individually insulated HTS tape. The principal geometric parameters
of the model and details of the superconducting tape are given in Table 4.9. Concerning the materials used
in the model, the magnetothermal properties are taken for copper and polymide from [264], for Hastelloy
from [265] and for silver from [266]. The nonlinear iron magnetization curve is taken from [267]. The
relevant material parameters are also given in Table 4.9.

The strips work as quench heaters [3, 46], delivering heat to the coil via thermal conduction, heating up
the superconducting material. The strips are powered only in case a quench is detected, for the purpose of
increasing the volume of the normal conducting region, reducing the density of the energy dissipation and
ultimately, limiting the peak temperature reached in the coil.
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Figure 4.25. Model of a superconducting solenoid protected by quench heaters, in the 2D axial symmetric setting.

4.5.1.1 Field problem setting

The field problem is formulated for the 2D domain shown in Figure 4.25a by exploiting the axial symmetric
geometry of the HTS solenoid. The field problem is shown in Figure 4.25b where the solenoid surrounded
by air is decomposed into iron yoke, holder, coil and quench heaters regions. The tape composing the coil
is made of a thin superconducting layer on a Hastelloy substrate, coated with two normal conducting layers
made of silver and copper, respectively.

The computational domain Ω is split into conducting and passive regions. The conducting region Ωr
c,H with

r = 1, · · · , Nt +Nhs accounts for the coil and the quench heaters, and it is solved for ~H. The passive region
Ω0,A accounts for the iron yoke, the holder, the insulating materials and the air region, and it is solved for ~A.
The conducting region is further subdivided into the superconducting and normal conducting parts Ωr

c-sc,H
and Ωr

c-nc,H referring to the superconducting layer and the coating of the tape. As each tape is individually
insulated, the interface Γr

HA between the conducting and passive regions is set on each of the boundaries of the
conducting regions, namely the tapes and the quench heaters. Homogeneous Dirichlet boundary conditions
are applied to ~A on the exterior boundary of Γdir-0,A.

The thermal domain ΩT accounts for both the superconducting coils and the quench heaters, and their in-
sulation. Therefore, the thermal domain corresponds to a subset of the overall computational domain. Ho-
mogeneous Neumann conditions are prescribed to T on the boundary ΓT, therefore solving for adiabatic
conditions which provide a conservative assumption in terms of the maximum temperature Tmax reached in
the coil.

The power law in (2.86) depends on the ratio | ~J |/Jc and may cause numerical instabilities in case of a
transition from the superconducting to the normal conducting state, where both | ~J | → 0 and Jc → 0. Several
methods for stabilizing solvers based on the Newton’s method are available in literature [268]. Here, the
adopted strategy is similar to the Gmin-stepping homotopy method used in network solvers [269], and
consists in adding a damping factor to the ratio | ~J |/Jc whose magnitude depends on the iteration index of
the Newton’s scheme.
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Parameter Unit Value Description

riron mm 15 Iron radius
rcoil,in mm 20 Coil inner radius
rcoil,out mm 23.75 Coil outer radius
hiron mm 14 Iron height
hsupp mm 14 Support height
hcoil mm 12.25 Coil height
nturns − 30 Number of turns

δw mm 12 Bare tape width
δt mm 0.1 Bare tape thickness
δti µm 12.5 Insulation thickness
δtsc µm 1 Superconductor thickness
δtag µm 2 Silver thickness
δtcu µm 40 Copper thickness
δths µm 57 Hastelloy thickness

RRRcu − 100 Copper residual resistivity ratio
RRRag − 100 Silver residual resistivity ratio
Ic kA 1.8 @ 10K
Jc(T ) Amm−2 fit See Figure 4.27
n - 25 Power-law index

Table 4.9. Model specifications.

4.5.1.2 Circuit problem setting

The HTS solenoid is powered via an external circuit whose schematics is shown in Figure 4.26. The su-
perconducting coil is powered via the primary circuit on the left, by means of a current source generator
representing the power converter. The generator can also be short-circuited by the switch Scrow in series with
the resistorRcrow, in case a power-abort is required. The quench heaters are powered by the secondary circuit
on the right by means of a capacitor. The capacitor is assumed to be charged, and can be series-connected
to the quench heaters by means of the switch Sqh. The parameters Rcir,i and Lcir,i represent the parasitic
resistances and inductances associated to the electrical connections between the power sources and the HTS
solenoid.

The circuital representation of the field model is shown in the dashed box of Figure 4.26. The lumped
parameters are chosen according to the Schwarz optimized transmission condition as in (3.12), with the field
voltage represented by a resistor-inductor series as derived in (3.50). The inductors are mutually coupled due
to the magnetic coupling of the coil and the quench heaters. The circuital parameters are given in Table 4.10.

4.5.1.3 Cosimulation setting

The field and circuit models are coupled by means of the cosimulation framework discussed in Section 3.4.2,
adopting the WR method [270]. The simulation time interval I = [t0, tend], with t0 = 0ms and tend = 150ms
is subdivided into nine time windows Ij = [tj0, t

j
end] of variable span ∆tj . For each of the time windows, the

field and circuit solvers are executed independently, with prescribed maximum time steps. The size of time
windows and the maximum time step for each solver are given in Table 4.11. Within the j-th window, k WR
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Figure 4.26. Circuit model.

Parameter Unit Value Description

Rcrow µΩ 100 Crowbar resistance
Rcir1 mΩ 1 Circuit resistance
Rcir2 mΩ 1 Circuit resistance
Lcir1 µF 10 Circuit Inductance
Lcir2 µF 10 Circuit Inductance

Rm(Top) nΩ < 1 Coil resistance
Rqh(Top) Ω 9 Quench heater resistance
Lm(Is) µH 50 Coil inductance
Lqh(Is) µH 0.5 Quench heater inductance
M(Is) µH 0.4 Mutual inductance

Table 4.10. Circuit parameters, for Is = 1.25 kA and Top = 10K.

iterations are performed until the stopping criterion

Fconv =

{
0 if k < 3

εwr,k < 1 if k ≥ 3,
(4.17)

is fulfilled. A minimum of three iterations is enforced for each time window, before Fconv can be satisfied.
The WR error εwr,k is defined for the k-th iteration as

εwr,k = max
(

|xk − xk−1|
εabs + |xk|εrel

)
, (4.18)

where xk and xk−1 are waveforms from two consecutive iterations belonging to the signal chosen as con-
vergence variable, and εabs = 0.1 and εrel = 0.001 are two parameters prescribing the maximum absolute
and relative errors for the WR method. The accuracy and the computational cost of the overall cosimula-
tion is determined by the choice of εabs and εrel. Moreover, the size of the time windows can be adjusted
for improving convergence, as shorter time windows should be used when significant changes occur in the
system.
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Parameter Unit I1 I2 I3 I4 I5 I6 I7 I8 I9

tj0 ms 0 5 15 30 45 60 75 90 120

tjend ms 5 15 30 45 60 75 90 120 150
∆tj ms 5 10 15 15 10 15 15 30 30
∆tmax circuit µs 10 10 50 50 50 50 50 100 100
∆tmax field µs 200 200 500 500 500 500 500 1000 1000

Table 4.11. Cosimulation parameters.
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Figure 4.27. Tape critical current Ic, as a function of the temperature.

For the problem under study, the current in the solenoid is is used as convergence variable, that is, the iter-
ations are repeated until the maximum difference between two subsequent waveforms satisfies the stopping
criterion in (4.17).

4.5.2 Simulation setup

The HTS solenoid is initially at stationary conditions, powered in series by the ideal current generator at the
nominal current Is = 1.25 kA, and kept at a temperature of 10K. The working point of the superconducting
tape is at 70% of the critical current which is shown in Figure 4.27 as a function of the temperature. The
quench heaters capacitor is assumed to be charged with an initial voltage Vc0 = 50V. The quantities of
interest are given by the currents is,m and is,qh in the coil and quench heaters, as well as the maximal temper-
atures therein. At the same time, the performance of the WR method is quantified in terms of iterations and
computational time. Results are given in the next section. The cross section of the tape in the 2D setting is
discretized by a structural grid of quadrilateral elements counting 15 elements in the width, and 1, 2 and 3
elements in the thickness of the superconducting, normal conducting, and insulating materials, respectively.
The iron yoke, holder and air domain are discretized with triangular elements. The model uses a mesh of
first-order elements in Ωc, and second-order elements in Ω0,A.

4.5.3 Numerical results

A quench is assumed to be detected at t = 0ms, for the sake of simplicity. However, a dedicated quench
detection model simulating the quench initiation and propagation can be also coupled to the cosimulation
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(see [116]). After the detection, a power abort is subsequently triggered. The switch Scrow commutes at
t = 2.5ms, bypassing the current source generator and inserting the resistor Rcrow in series with the solenoid.
At t = 5ms, the switch Sqh is also activated, transferring the energy stored in the capacitor into the quench
heater as Ohmic losses.

The dynamics of the coil and quench heater currents is shown in Figure 4.28a, for both the monolithic and
cosimulated models. The current is,m in the coil shows an initial decay in the first two time windows I1
and I2, due to Rcrow. At the same time, the quench heaters are powered by the current is,qh which follows a
double exponential profile with a fast rise time and a slower decay. The temperature rise in the coil increases
its equivalent resistance, contributing to the current discharge in the primary circuit. The sharp variation in
the derivative of the main current occurs in the time interval I3 as the coil starts to quench. The increase of the
temperature due to the quench heaters reduces the critical current of the tape, eventually below the transport
current. At this point, the current starts to flow in the stabilizer fraction of the tape, generating Joule losses
which further increase the temperature. Although the time constant of the primary circuit is equal to 500ms
in the absence of a quench, the resistive build-up in the superconducting coil leads to a complete discharge
of the solenoid in less than 150ms.

The evolution of the peak temperature in the quench heaters and in the coil, and the coil equivalent resistance,
is shown in Figure 4.29a and 4.29b. For the simulated scenario, the peak temperature never exceeds 130K.
The temperature distribution in the cross section of the coil is shown for different times in Figure 4.30,
highlighting the contributions from the quench heaters on the right side of the coil, the quench and the
subsequent heat diffusion.

Once the dynamics of the current in the superconducting coil is known, the hotspot criterion is used for
determining t the maximum detection time which is allowed in case of a quench. This criterion provides
pessimistic but conservative results. The hotspot consists in a quench thermal model of spatial dimension
zero used for calculating the temperature in the coil, assuming adiabatic conditions and neglecting heat
diffusion phenomena. The energy deposited in the hotspot is defined by means of the Joule integral in MA2 s
units (MIITS), and is used in the zero dimensional model to obtain themaximum temperature Thotspot. Results
are shown in Figure 4.31a, parametrized by the residual resistivity ratio RRRCu of the copper stabilizer in
the tape.

At this point, the MIITS associated to the coil current is calculated as

MIITS(tdelay) = I2mtdelay +

∫ tend

t0

i2m dt, (4.19)

where tdelay represents the time interval between the starting of the quench and its detection at t0. By using
MIITS(tdelay) into Figure 4.31a, the curve in Figure 4.31b is calculated for RRRCu = 100, correlating the
delay in the quench detection time with the peak temperature in the coil. As an example, for a maximum
temperature Tmax = 300K, it is found that a maximum delay of about 15ms can be tolerated to ensure
Thotspot ≤ Tmax.

4.5.4 Cosimulation results

The convergence rate of the WR method is shown in Figure 4.32a, whereas the number of iterations per time
window is shown in 4.32b. For I1-I3, the convergence criterion is already met after the minimum number of
iterations has been performed. Starting from I4, the number of iterations is always ≥ 4, consequently to the
quench transition in the coil which enforces a faster dynamics is the coil-circuit system. This, in turn, leads to
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Figure 4.28. Currents in the circuit, obtained by means of monolithic and cosimulation models.
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Figure 4.29. Quantities of interest in the solenoid.
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Figure 4.30. Temperature distribution in the coil, for six different times. The temperature dynamics is initially
driven by the thermal contribution from the heater strips, subsequently by the quench contribution,
and in the last part of the current discharge by heat diffusion phenomena.
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Figure 4.31. Maximum quench detection time, obtained via an adiabatic coil approximation.
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Figure 4.32. Performance of the waveform relaxation method. (a) Convergence rate of the stopping criterion for
each time window. (b) Number of iterations per each time window.
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Figure 4.33. Computational cost of the waveform relaxation method. (a) Maximum time step size for the field
and circuit solvers. (b) Computational time for each iteration and time window.
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higher variations in the current signal within each time window, requiring higher number of iterations before
the waveform relaxes to the actual solution.

The maximum time step enforced for the field and circuit solvers at each time window is shown in Fig-
ure 4.33a. Concerning the field solver, the smallest time step is imposed in the model for the first three time
windows, such that the dynamics of the quench heaters is accurately resolved. This is crucial for accurately
resolving the quench induced in the coil, and the consequent transient effects. Subsequently, the step is re-
laxed by a factor 2.5 for the central time windows, and further increased by a factor 2 for the resolution of
the final part of the current decay, where the coil is almost completely discharged. Concerning the circuit
solver, the first two time windows require a fine time stepping to resolve the state transition of the switches in
the primary and secondary circuits. Later, the time stepping is progressively relaxed, following a relaxation
strategy which is qualitatively the same as for the field solver. Convergence in the solution is acquired where
the field and circuit maximum time stepping differ by up to an order of magnitude, showing the effectiveness
of the WR method in tackling problems involving multirate phenomena. The computational time required
for the monolithic and cosimulation solutions is about 15 and 60 minutes; the computational cost per each
iteration of the WR method is shown in Figure 4.33. The windows I3 and I4 resolve the quench in the coil
induced by heaters, and are the most expensive.

4.6 Summary

This chapter provides a rigorous verification of the implementation of the coupled ~A− ~H field formulation
with the finite element method. A set of models with increasing complexity allows verifying the numerical
features which are required for field-circuit coupled simulations of applications based on HTS materials, in
an incremental way. For all the verification cases, good agreement is obtained for the quantities of inter-
est.

Starting from the simple model of a normal conducting tape, the coupled ~A− ~H field formulation is verified
against the results obtained with the monolithic ~A formulation for bulk and shell tape geometries, both in the
3D and 2D settings. For the thin-shell approximation, the consistency of results is investigated with respect
to the skin depth of the tape. Subsequently, the non-linear electrical behavior associated to HTS materials is
introduced by means of the power law in a model where a superconducting block is exposed to an external
field. The block is modeled both as a bulk and a stack of shells, and results are compared with the monolithic
~H formulation.

The modeling of superconducting tapes and coils with the thin-shell approximation in a 2D setting is of great
relevance for this work, as it allows simulating the dynamic field quality in both superconducting magnets
and experimental devices, see Chapters 5 and 6. For this reason, a dedicated model of an individual HTS tape
is discussed, and its results are compared to analytical solutions available in literature. The influence of the
normal conducting coating and the impact of the thin-shell approximation on the computational performance
is also discussed. Subsequently, tapes are arranged in coils implementing different connection schemes, and
results are compared with the monolithic ~H formulation.

The last step consists in the verification of the field-circuit coupling interface, derived as an optimized Schwarz
transmission condition. After the STEAM cosimulation framework is expanded to field models implementing
the ~A− ~H field formulation, a quench event occurring in an HTS solenoid protected by quench heaters is
investigated. The cosimulation results obtained by means of the WR method are verified with the monolithic
solution.
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5 Validation: Feather-M2.1-2 Magnet

Screening currents are field-induced dynamic phenomena which occur in superconducting materials, leading
to persistent magnetization. Such currents are of importance in ReBCO tapes, where the large size of the
superconducting filaments and the high critical current density lead to strong magnetization phenomena. In
consequence, superconducting accelerator magnets based on ReBCO tapes might experience a relevant degra-
dation of the magnetic field quality in the magnet aperture, eventually leading to particle beam instabilities.
Thus, persistentmagnetization phenomena need to be accurately evaluated.

In this Chapter, the 2D finite element model of the Feather-M2.1-2 magnet is presented. The model is used
to analyze the influence of the screening current-induced magnetic field on the field quality in the magnet
aperture. The model relies on the coupled ~A− ~H field formulation for eddy-current problems in the time do-
main introduced in Chapter 2. The numerical model of the Feather-M2.1-2 magnet is detailed, highlighting
the key assumptions and simplifications. The numerical results for both the overall field quality in the mag-
net, and the contribution from persistent magnetization phenomena are compared with available magnetic
measurements.

5.1 Magnetic Field Quality

This section closely follows [59, Chapter 6]. The magnetic field quality is commonly defined for accelerator
magnets by means of a set of Fourier coefficients, known also as field harmonics or multipole coefficients.
These coefficients are calculated from the general solution of the Laplace equation in a suitable coordinate
system. The general solution is obtained with the method of separation of variables, and the integration
constants are determined by comparison with the field values at the boundary. These values are given, for
a circular coordinate system, by the radial or azimuthal components of the magnetic field at the prescribed
boundary radius.

Themagnetic field problem is given bymeans of the ~A formulation discussed in Section 2.8.4, as

∇× µ−1∇× ~A+ σ∂t ~A = ~Js, (5.1)

with appropriate boundary and initial conditions. The magnetic field quality evaluation is typically restricted
to the magnet aperture, where the particle beams traveling through the accelerator interact with the field
produced by magnets. The magnet aperture is free of currents and magnetized materials, therefore ~Js = 0,
σ = 0, and µ = µ0. The field problem is therefore reduced to the boundary problem given by the Laplace
equation

∆ ~A = 0. (5.2)
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In the two-dimensional approximation of accelerator magnets, the axial field variations are neglected along
the z-direction (the longitudinal axis of the magnet). This yields a scalar Laplace equation, whose general
solution can be expressed as

Az(r, ϕ) =
∞∑
k=1

rk(Ak sin kϕ+ Bk cos kϕ), (5.3)

where Az gives the longitudinal component of the magnetic vector potential, Ak and Bk are the integration
constants associated to the multipole coefficients, and (r, ϕ, z) represent the spatial coordinates of a cylindri-
cal reference frame which is consistent with the magnet aperture. The magnetic field components are derived
from (5.3) as

Br(r, ϕ) =
1

r

dAz
dϕ

= +

∞∑
k=1

krk−1(Ak cos kϕ− Bk sin kϕ), (5.4)

Bφ(r, ϕ) = −dAz
dr

= −
∞∑
k=1

krk−1(Ak sin kϕ+ Bk cos kϕ). (5.5)

The index k represents solutions which can be interpreted as field distributions provided by ideal magnet
geometries. As an example, the indexes k = 1, 2, and 3 correspond to the dipole, quadrupole, and sextupole
field distributions, respectively.

5.1.1 Calculation of the multipole coefficients

The radial field component (5.4) is assumed to be known along a circle, either by simulations or measure-
ments. The Fourier series expansion of the field components is given for a reference radius r = r0 usually
chosen as 2/3 of the radius of the magnet aperture, as a function of the angular coordinate ϕ. The field
components are given by

Br(r0, ϕ) = +
∞∑
k=1

(Bk(r0) sin kϕ+Ak(r0) cos kϕ), (5.6)

Bφ(r0, ϕ) = +
∞∑
k=1

(Bk(r0) cos kϕ−Ak(r0) sin kϕ). (5.7)

The skew and normalmultipole coefficientsAk(r0) andBk(r0) are obtained for k = 1, 2, 3, . . ., as

Ak(r0) =
1

π

∫ 2π

0
Br(r0, ϕ) cos kϕ dϕ, (5.8)

Bk(r0) =
1

π

∫ 2π

0
Br(r0, ϕ) sin kϕ dϕ, (5.9)

whereas the coefficients for k = 0 are zero since the magnetic flux density is divergence-free. Fig. 5.1 shows
the flux lines in cylindrical coordinates associated to the first k = 6 multipoles, for both the normal Bk and
skew Ak components.

The numerical calculation of the field multipoles occurs in practice for a discrete series of Nk points equally
spaced in the interval [0, 2π), such that ϕk = 2πk/Nk, with k = 0, 1, 2, . . . , Nk − 1. By using the Discrete
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Figure 5.1. Magnetic field lines of the field multipoles in cylindrical coordinates, shown for k = 1, 2.., 6. The first
and second row show the normal Bk and skew Ak multipole components.

Fourier Transform algorithm, Nk Fourier coefficients are calculated twice (due to the Hermitian symmetry of
the transformation), as

Ak(r0) =
2

Nk

Nk−1∑
k=0

Br(r0, ϕk) cos kϕk, (5.10)

Bk(r0) =
2

Nk

Nk−1∑
k=0

Br(r0, ϕk) sin kϕk, (5.11)

which establishes a relation between the field components in (5.4) and (5.5), and the multipole coefficients
Ak(r0) andBk(r0) at a given reference radius r0. For r < r0, the field components are given by

Br(r, ϕ) = +

∞∑
k=1

(
r

r0

)k−1

(Bk(r0) sin kϕ+Ak(r0) cos kϕ), (5.12)

Bφ(r, ϕ) = +

∞∑
k=1

(
r

r0

)k−1

(Bk(r0) cos kϕ−Ak(r0) sin kϕ). (5.13)

The coefficients are often combined in the complex notation Ck(r0) = Bk(r0) + iAk(r0) as the skew and
normal pairs are orthogonal to each other. Moreover, the coefficients are typically normalized by the main
field componentBK(r0) and denoted as bk and ak, withK being the index of the main field component. Thus,
the field quality is quantified as a relative error ck, for k = 1, 2, 3, . . ., as

ck(r0) = bk(r0) + iak(r0) = 104
Ck(r0)

BK
, (5.14)

and given in 1×10−4 units with respect toBK at the reference radius r0. It is worth mentioning that for reach-
ing accelerator quality standards, the field multipoles shall be kept within a few units at nominal magnetic
field, avoiding the need for strong corrector magnets [59].
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Figure 5.2. Simplified rendering of the Feather-M2.1-2 magnet. The coil is composed of two pairs of central and
wing decks. The cable is made of 15 tapes fully transposed with the Roebel technique. The cross
section of the cable is shown in the lower-right corner. The magnetic circuit is composed of four iron
poles and a cylindrical iron yoke (half-shown).

The magnetic field quality can also be conveniently given in terms of the total harmonic distortion (THD)
factor Fd(r0), which is a scalar quantity defined as

Fd(r0) =

√√√√ ∞∑
k=1; k 6=K

b2k(r0) + a2k(r0). (5.15)

The skew harmonics ak are often omitted because they are usually zero due to the symmetric construction
of accelerator magnets. Moreover, as the multipoles vanish according to rk−1, only low-order coefficients are
considered, typically up to the dodecapole component.

5.2 Numerical Model of the Feather-M2.1-2 Magnet

The Feather-M2.1-2 magnet is an HTS accelerator dipole insert-magnet [14, 21, 22] recently developed at
CERN within the framework of the projects EuCARD-2 [19] and ARIES [20]. This demonstrator magnet is
designed to produce a peak field of 5T in its aperture at a nominal current of 10 kA, in a background field of
13T. The Feather-M2.1-2 magnet is specifically designed for being operated as an insert inside the aperture
of the FRESCA2 dipole magnet [23, 24, 271–273] which is used for cable testing purposes. The combination
of the two magnets is referred to as a graded-coil configuration, since the FRESCA2 magnet is wound with a
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Parameter Unit Value Description

Sunam [277] Producer
IBAD [278, 279] Technology
Hastelloy C-276[265] Substrate
Copper Stabilizer
δt,sub µm 100 Substrate thickness
δt,stab µm 40 Stabilizer thickness
δt µm 150 Tape thickness
δw mm 5.5 Tape width
Ic,meas A 300 @ 77K, self-field
Jc( ~B, T ) Amm−2 fit Fit in [280]
n - 4 ≤ n ≤ 30 Power-law index

Table 5.1. Tape specifications.

Rutherford cable made of the LTS material Nb3Sn. At the date of writing, the integration of the two magnets
is in progress [274].

A simplified 3D graphical rendering of the Feather-M2.1-2 magnet is shown in Figure 5.2, where for the sake
of clarity, only the components relevant for the numerical analysis are shown. The coil is composed of two
poles, each of them made of two windings labeled as central and wing decks. Each deck implements the
field-alignment concept, that is, decks are arranged such that the superconducting tapes are aligned with the
magnetic field lines on the cross-sectional plane [68]. The magnetic field shape is controlled in the magnet
aperture by means of iron poles. The functional role of the outer iron yoke is to intercept the stray field lines,
such that the magnet can be operated in stand-alone mode. The central cross section of the magnet is used
as input for the geometry of the 2D FEM model.

The magnetothermal behavior of the Feather-M2.1-2 magnet was recently tested in a stand-alone configu-
ration [275], and the influence of the superconducting coil dynamics on the magnetic transfer function was
measured by means of both Hall-probes [276] and rotating coil magnetometers. To better understand the
dynamics of magnetization phenomena within the superconducting coil, the numerical model of the Feather-
M2.1-2 magnet is verified against experimental data. The model refers to the magnet version M.1-2 [275],
which is characterized by the use of a superconducting tape provided by the producer Sunam [277] which
does not allow reaching the nominal performance of the magnet. This specific tape limits the magnet current
to 5 kA and the peak field in the magnet to maximum value of about 3T.

5.2.1 Problem setting

The numerical model of the Feather-M2.1-2 magnet exploits the translational symmetry of the device, being
implemented for a 2D setting. The model is composed of the superconducting coil, the iron yoke and the air
region surrounding the magnet. The field problem is formulated using the coupled ~A− ~H field formulation
combined with the thin-shell approximation (see Section 2.14.2).

The computational domain Ω is decomposed into the conducting region Γc,H representing the coil solved
for the magnetic field strength ~H, and the region ΩA solved for the reduced magnetic vector potential ~A,
containing the conducting iron yoke Ωc,A and the nonconducting air region Ω0,A. The computational domain
is shown in Figure 5.3a, where the boundary Γref shows the reference circumference where the magnetic field
quality is evaluated in terms of a multipole series expansion. The dynamic effects occurring in the iron yoke
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(a) Sketch of the computational domain.

T

(b) Magnetic field, in T.

Figure 5.3. Numerical model of the Feather-M2.1-2 magnet. (a) Decomposition of the computational domain.
(b) Magnetic field in T, at 5 kA and 4.5K, shown for the cross section of the Feather-M2.1-2 magnet.
The peak magnetic field reached in the aperture is about 2.5T.

and the structural elements of the magnet are neglected in the model because the magnetic field quality is
always evaluated after these contributions are settled. According to the experimental conditions in [275], the
temperature was kept constant during the data acquisition phases. For this reason, the thermal part of the
field formulation is not implemented, and the heat balance equation is replaced with a constant temperature
constraint T = Top, where Top is themagnet operational temperature during experiments. The representation
of the source domain Γc,H by means of thin shells is justified by the high aspect ratio of the superconducting
tapes composing the coil. In this way, the geometric thickness of the tape is neglected, and the discretization
of the thickness of the superconductor is avoided. As a consequence, the interface ΓHA between the source
and source-free regions corresponds to the coil domain Γc,H.

The physical properties of the materials composing the tape are homogenized according to Section 3.7. The
thin-shell approximation is adopted to ensure an acceptable computational time, as the 2D model accounts
for 648 tapes over four quadrants. The geometric and superconducting properties of the tape are given in
Table 5.1. In the 2D setting, homogeneous Dirichlet boundary conditions are imposed to ~A on the exterior
boundary Γdir-0,A. Homogeneous boundary conditions are justified by considering the exterior boundary
sufficiently far from the tapes and the iron yoke (note that the exterior boundary in Figure 5.3a is not in
scale). As an example, the magnetic field solution is shown in Figure 5.3b, in T, for a current of 5 kA at 4.5K.
The model is implemented for a 2D transverse field configuration, thus neglecting the magnetic effects of the
end-coils. This approximation is assumed since the aspect ratio between the coil width and length is greater
than ten. Due to the presence of the layer jumps connecting the lower and the upper windings in the coil, the
magnetic symmetry in the cross section of the magnet is not preserved. For this reason, the model accounts
for a four-quadrants geometry, including the layer jumps in the first and third quadrant. The layer jump is
visible in Figure 5.3, as a turn that is slightly misaligned with respect to the coil decks. The key features and
the relevant simplifications of the model are discussed in the following.
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(a) Photograph of a coiled Roebel cable (by Henry
Barnard). Figure taken from [2], © CERN.

(b) Photograph of the upper and lower pole of
the Feather-M2.1-2 magnet (by Jeroen Van
Nugteren).

Figure 5.4. Roebel geometry, applied to (a) cables and (b) coils.

5.2.2 Current-sharing approximation

The cable adopted for the superconducting coil is composed of 15 tapes. The tapes are fully transposed by
following the Roebel geometry [281, 282], a 100-years-old concept originally developed for reducing the AC
losses in power-busbars made of copper [283]. Photographs of a Roebel cable and the superconducting coil of
the Feather-M2.1-2 magnet are shown in Figures 5.4a and 5.4b. The cross section of the cable used in the 2D
numerical model is shown in the box of Figure 5.2, where each line represents a tape. The tapes composing
the Roebel cable are electrically connected at the ends in a parallel configuration. Moreover, the fully trans-
posed geometry ensures that each superconducting path within the cable has the same electrical impedance,
such that the source current is evenly distributed between the tapes. For this reason, it is assumed that each
of the tapes carries the same fraction of source current, neglecting current redistribution phenomena between
different tapes. Coupling currents possibly circulating between the tapes are also neglected, since they rep-
resent a second-order effect with respect to screening currents [14].

Current sharing phenomena are allowed between the superconducting and normal conducting fraction of
the tapes. This is taken into account by means of the equivalent resistivity defined in Section 3.7 which
homogenizes the conducting materials composing the multilayered structure of the tapes. This includes also
the superconducting layer whose electrical properties are implemented by means of the power law (2.86).
The power law is affected by the n-value given to the power-law index, which was experimentally quantified
as n = 5 by dedicated measurements of the magnet [275]. Such a low value is outside the expected range of
20-30 [174], and it may be caused by unbalanced tape joints at the coil terminals [275]. However, the joint
resistance does not have a relevant role in the determination of screening current phenomena and the related
persistent magnetization, since the screening currents form loops which close within the tape, without being
affecting by the tape joints. Unfortunately, the tape was not characterized individually and so the uncertainty
of the superconducting properties of the tapes is significant and the n-value is not known. To overcome this
issue, a parametric sweep is performed for 4 ≤ n ≤ 30, quantifying the sensitivity of the model. The results
are compared with measurements in Section 5.3.
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symbol g0 g1 g2 g3 Tc0 pc qc Bi0,c γc αc

unit − − − − K − − T − MATmm−2

value 0.03 0.25 0.06 0.06 93 0.5 2.5 140 2.44 1.86

symbol νg a n0 n1 n2 pab qab Bi0,ab γab αab

unit − − − − K − − T − MATmm−2

value 1.85 0.1 1 1.4 4.45 1 5 250 1.63 68.3

Table 5.2. Parameters used for the function Jc,fit [280].

5.2.3 Critical current density fit

The critical current density Jc in (2.86) is a property of superconducting materials which is of crucial impor-
tance for the numerical model of the Feather-M2.1-2 magnet and, in general, for the numerical modeling of
devices containing HTS materials. In accelerator magnets, Jc determines the resistivity of the tapes in the
coil, affecting the dynamics of screening currents and, therefore, the field quality in the magnet aperture.
For high-temperature superconducting tapes based on ReBCO compounds, Jc shows an anisotropic, field-
and temperature-dependent behavior as Jc(| ~B|, T, θB), where θB is the magnetic field angle with respect to
the direction perpendicular to the wide surface of the tape. The anisotropy in the critical current density is
shown in Figure 5.5a for a ReBCO tape from Fujikura [284], as a function of the magnetic field magnitude
| ~B|, temperature T and magnetic field angle θB.

The critical current density behavior is included in the model by means of the numerical fit Jc,fit(| ~B|, T, θB)
provided in [280], see also Appendix A. Since no characterization data was available for the Sunam tape
used for the coil, the fit parameters are taken from [14] and given in Table 5.2. As a consequence, the fit
is scaled to be consistent with the critical current measured in the magnet [275], by means of the fitting
factor fc : R → R determined as follows. First, the magnetic characteristic of the magnet, known also as
the load line, is calculated by means of magnetostatic simulations. Due to the static regime, no dynamic
effects can occur, and the current density is assumed homogeneous in the coil cross-section. The load line is
shown in Figure 5.5b, given by the peak magnetic field Bp,coil in the coil, as a function of the source current.
Figure 5.5b shows also the critical current Ic,fit as a function of the magnetic field and parametrized by the
temperature, calculated from Jc,fit by assuming the magnetic field angle θB = 0◦, thus for a magnetic field
which is perpendicular to the wide face of the tapes in the cable. Second, the intersection points between
the magnet load line and Ic,fit are used for constructing the curves in Figure 5.5c which show Ic,fit as a
function of temperature and parametrized by the field angle. The same figure includes also the measured
data points concerning the critical current of the coil Ic,meas. It is observed that the assumption of field
perpendicularity gives the best agreement with the measured data. Finally, the fitting factor is obtained
as

fc(T ) =
Ic,meas(T )

Jc,fit(Bp,coil(T ), T, θB)SHTS

∣∣∣∣
θB=0◦

, (5.16)

where SHTS is the cross section of the superconducting fraction in the cable. The fitting factor is calculated as
a function of temperature and shown in Figure 5.5d, parametrized by the field angle. The fitting factor fc ob-
tained for θB = 0◦ is used in themodel for scaling the critical current density fit.
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Figure 5.5. Lifting factor for the critical current density of the Feather-M2.1-2 coil. (a) Critical current density
fit Jc,fit(| ~B|, T, θB). (b) Calculated critical current by means of the magnet load line, for θB = 0◦.
(c) Comparison of the calculated and measured critical current, for different field angles. (d) Lifting
factor fc, for different field angles.

5.2.4 Mesh sensitivity

The model uses a mesh of first-order elements in Γc,H, and second-order elements in Ω0,A. The magnetic
field quality in the aperture of the Feather-M2.1-2 magnet is expressed by means of multipole coefficients,
as discussed in Section 5.1. The multipole coefficients are calculated by applying the Fast Fourier Transform
algorithm to the radial component of the magnetic field which is evaluated along the reference circumference
in the magnet aperture. However, the finite resolution of the mesh in the spatial discretization (i.e. the
finite number of mesh elements) introduces a numerical error perturbing the calculation of the multipole
coefficients, as discussed in [285]. Therefore, a mesh sensitivity analysis is carried out to quantify the error
in the multipoles.

The model used in the analysis is given by a circular non-conducting and source-free computational domain
Ω0,A, solved for the magnetic vector potential ~A. The model is shown in Figure 5.6a. A known magnetic field
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Figure 5.6. Mesh sensitivity analysis. (a) Sketch of the computational domain. (b) Relative error in the calcu-
lation of the total harmonic distortion index and number of elements in the mesh, as function of the
reciprocal of the maximum mesh size.

configuration is used as an external field source, and it is applied by imposing a non-homogeneous Dirichlet
boundary condition for ~A on the exterior boundary Γdir,A. In practice, by expressing a field in terms of its
multipole decomposition, every multipole can be associated to a boundary condition, which can be applied
independently on the exterior boundary such that the desired field configuration is obtained in Ω0,A. The
multipoles are then calculated from the model along the reference circumference Γref, and compared with
the multipoles calculated analytically by knowing the solution field at the boundary. The relative error ε∆x

is defined as

ε∆x( ~B) =
|Fd( ~B)− F∆x

d ( ~B)|
Fd( ~B)

, (5.17)

where Fd and F∆x
d are the THD factors in (5.15) for the field solutions obtained analytically and numerically.

The error is shown in Figure 5.6b as a function of the reciprocal of the maximum element size ∆xmax. The
analysis shows that by adopting triangular elements with ∆xmax = 1mm for the mesh discretization, the
estimated error in the calculation of the field multipoles is bounded below 3 × 10−5 units of THD. This
threshold is assumed in the following as a sufficient accuracy.

5.2.5 Iron hysteresis

The choice for the magnetic material used in the iron yoke of the Feather-M2.1-2 magnet is optimized for
minimizing the detrimental influence of the iron hysteresis on the magnetic field quality. Unfortunately,
no material characterization data was available, however the magnetic material in use is similar to the one
in use for the LHC main dipole magnets. Therefore, the nonlinear magnetic permeability curve µ( ~B) tra-
ditionally used for the simulation of the LHC magnets [286] is adopted in this magnet model. The µ( ~B)
curve, also referred at as the first magnetization curve, is shown in Figure 5.7a by means of a dashed
line.

From magnetostatic simulations, it is observed that in stand-alone operations, most of the outer iron yoke of
the Feather-M2.1-2 magnet remains unsaturated up to the maximum current of 5 kA. As a consequence, it
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Figure 5.7. Magnetization contribution to the field quality due to iron hysteresis. (a) Nonlinear magnetic char-
acteristics of the iron. (b) Amplitude of the magnetization loop of the field multipoles, as a function
of current.

Name Unit Value Description

Ms Am−1 1.35× 106 Saturation magnetization
a Am−1 90 Domain wall density
k Am−1 40 Pinning loss
c - 1× 10−6 Magnetization reversibility
α - 50× 10−6 Inter-domain coupling

Table 5.3. Parameters for the Jiles-Atherton hysteresis model.

is not possible to neglect a-priori the contribution of the iron hysteresis on the field quality. A coercive field
Hc = 40Am−1 is considered for the material used in the iron yoke, in agreement with the LHC specifications
(Hc ≤ 60Am−1 [59]). The hysteresis behavior of the iron is captured in the numerical simulations by using
the Jiles-Atherton model [287]. The magnetization loop is determined from the first magnetization B(H)
which is used as reference. The relevant parameters for the hysteresis model are obtained using the open-
source algorithm from [288] and are given in Table 5.3.

The hysteresis contribution is quantified for a simplified version of the Feather-M2.1-2 numerical model. In
detail, the simplified model assumes a homogeneous current density distribution in the coil cross section, and
neglects dynamic and nonlinear effects with the exception of the hysteresis behavior of the iron. The field
multipole coefficients are extracted as a function of the source current, for both the upper and the lower curve
of the hysteresis loop from the Jiles-Atherton model. Then, the two obtained data sets bup(is) and bdn(is) are
compared, and their difference ∆b(is) = bup(is) − bdn(is) provides the amplitude of the magnetization loop
for each multipole coefficient and level of current source. In this way, the influence of the iron hysteresis
on the magnetic field quality is estimated. The variation in the multipole coefficients ∆b(is) is shown in
Figure 5.7b, in units, as a function of the source current. At low current, the hysteresis of the iron produces a
minor influence on the main field component b1, with a peak value of about 20 units rapidly decreasing once
the current increases. Concerning the higher order multipoles b3, b5 and b7, the hysteresis shows almost no
influence since themagnetic contribution remains below one unit. Overall, the hysteresis contribution reduces
once the current increases, since the width of the hysteresis loop narrows.
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Scenario Top (K) Ip (kA) Bp (T)

1 4.5 5 2.5
2 9 4.75 2.4
3 25 3.75 2.0
4 68 1.75 1.0

Table 5.4. Main parameters for the simulated scenarios.

The analysis shows a limited influence from the iron hysteresis on the magnetic field quality, at the price of
an increased computational cost. Moreover, the influence of the iron hysteresis on the screening currents in
the coil can be reasonably assumed a second order effect, thus negligible. For this reason, the iron hysteresis
is excluded from the numerical model of the Feather-M2.1-2 magnet.

5.3 Comparison of Simulations with Measurements

The numerical model of the Feather-M2.1-2 magnet is validated by comparing available experimental ob-
servations with the simulation results of the magnetic field quality in the magnet aperture. The comparison
is carried out for four scenarios differing in the peak source current Ip, that is, in the peak magnetic field,
and the operational temperature Top of the magnet. The relevant parameters characterizing the scenarios
are given in Table 5.4. In accordance with the measurements, Top is assumed as homogeneous and constant
in the numerical model, for each scenario. The scenarios at higher Top feature the use of lower peak cur-
rents, keeping the ratio between the peak current and the critical current of the cable as constant. In the
following, the measurement and simulation setups are discussed, and the comparison between experimental
and numerical results is presented. All the simulations are carried out on a standard workstation (Intelr
Core i7-3770 CPU @ 3.40GHz, 32GB of RAM, Windows-10r Enterprise 64-bit operating system), using the
proprietary FEM software COMSOL.

5.3.1 Measurement setup

The magnetic field multipoles Bk and Ak introduced in Section 5.1 are measured by means of rotating-
coil magnetometers, also known as harmonic or rotating coils, which work as electromagnetic transducers.
Rotating coils are mounted on a shaft which is positioned parallel to the magnetic axis of the magnet, and
rotated within the magnet aperture. The change of flux linkage Φ in the pick-up coil induces a voltage signal
Um according to the integral Faraday’s law for MQS problems

Um = − d

dt
Φ (5.18)

which is measured at the terminals of the coil. The voltage signal is integrated in time, and the obtained
flux linkage is decomposed into a series expansion, as a function of the radial component of the magnetic
field [59]. For rotating coils wound from wires of negligible thickness, and perfectly centered in the aperture
of amagnet and rotatingwith angular velocityω, the flux linkage is given at time t as

Φ(t) =
∞∑
k=1

fs(k) [Ak(rc0) cos kϕ−Bk(rc0) sin kϕ] , (5.19)
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(b) Second scenario.
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Figure 5.8. Current profiles used as source terms for the simulations of the four scenarios. The current follows a
trapezoidal pre-cycle, then a staircase profile, up to the peak current and back. The markers at the
current plateaus (up and down labels) represent the evaluation points for the magnetic field quality
for both the ascending and descending part of the staircase.

where ϕ(t) = ωt+ ϕ0 is an arbitrary angle. The coil sensitivity factor fs : R → R embeds the coil geometric
parameters, namely the number of turns Nc, longitudinal length lc and the mean radius rc0, and it is given
by

fs(k) =
2Nclcrc0

k
. (5.20)

The geometric parameters related to the coil sensitivity factor are known, being obtained either by calculation
or by calibration of the rotating coil in reference dipole magnets [289], resulting in a constant coil sensitivity
factor.

A dedicated rotating-coil magnetometer was developed and employed to test the Feather-M2.1-2 magnet
in the variable temperature cryostat at CERN, after the encouraging results obtained from the flux sensors
presented in [276]. The adopted coil shaft hosts a chain of five printed-circuit boards (PCBs), (200mm in
length and 35mm in width), that cover the entire magnet length including the fringe-field areas in the end-
coil region. Every PCB board contains three coils which are mounted radially, providing an active surface
of 1817 cm2. For measuring the magnetic-field harmonics, the sensitivity is improved by connecting two coils
in anti series; in case of measurements in a dipole magnet, such as the Feather-M2.1-2, the signal from the
central coil is subtracted to the one from the external coil. The rotating frequency of the coils is set to 2Hz,
and the integration of the induced voltage signals is done by means of CERN proprietary digital cards [290].
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The measurement results used for validating the numerical model of the magnet are taken from the longi-
tudinal center of the magnet (the central element of the rotating shaft of 200 mm in length), delivering a
measurement precision of a magnetic-field harmonic of ±0.05 units.

5.3.2 Simulation setup

In the numerical model, the magnet is powered via a current source which matches the one used in the
experimental procedure. As shown in the example in Figure 5.8, the current source profile can be separated
in two phases consisting in a trapezoidal pre-cycle, and a staircase profile:

1. The pre-cycle waveform goes from 0A up to the peak current for the given scenario, and then back to
100A. The pre-cycle is used for magnetizing the iron yoke, and for removing the dependency of the
superconducting coil on the first magnetization cycle.

2. The staircase waveform spans from a minimum value of 0.25 kA up to the peak current, and back. The
steps in the signal are composed of ramps of ∆I = 250A at a rate of change of 10A s−1, and plateaus
where the values are kept constant for∆tflat = 120 s. The purpose of the staircase is to bring the magnet
into static conditions, at different current values.

The magnetic field is evaluated at the reference radius for each midpoint in the staircase plateaus, shown in
Figure 5.8 with a marker, and the field quality is then calculated and compared with measurements. The
shape of the steps in the staircase and the field evaluation point is kept consistent between the different
scenarios given in Table 5.4, however the number of steps is adapted such that the prescribed peak current
is not exceeded.

The staircase profile is chosen since it allows quantifying the influence of hysteresis phenomena occurring
within both the superconducting coil and the iron yoke of the magnet (see [276]). With respect to Figure 5.8,
each discrete current level in the staircase profile is reached twice, first during the current ramp-up and then
again during the ramp-down. Therefore, it is possible to group the measured and simulated field quality
dataset into pairs sharing the same current level. The related datasets are highlighted by the up and down
labels. Subsequently, the difference of the field multipoles is calculated for each pair. In this way, the con-
tributions of the non-ideal geometry of the coil and the iron saturation are canceled out, being the same for
both evaluations in each pair, and the residual can be fully attributed to the hysteresis phenomena. In other
words, the procedure allows for a calibration of all the non-hysteresis phenomena occurring in the magnet.
Moreover, since the iron hysteresis was previously found to produce only a second-order effect on the field
quality (see Section 5.2.5), the hysteresis contribution is fully attributed to the persistent magnetization of
the superconducting coil.

5.3.3 Results: field quality

The measured and simulated field multipole coefficients are shown in Figure 5.9. In detail, the markers are
assigned to the measurements which are grouped in the up and down datasets, according to the upward
and downward part of the current staircase (see Figure 5.8), as discussed in the previous section. The area
provided by the shaded region shows the upper and lower envelope of the numerical solutions obtained by
means of parametric sweep of the n-value in the power law, for values between 4 and 30. As an example,
solid lines present the simulation results for the value n = 20.

120



0 1 2 3 4 5
0

1

2

3

is [kA]

B 1
[T
]

Top = 4.5K

0 1 2 3 4 5
0

1

2

3

is [kA]

B 1
[T
]

Top = 9K

0 1 2 3 4 5
0

1

2

3

is [kA]

B 1
[T
]

Top = 25K

0 1 2 3 4 5
0

1

2

3

is [kA]

B 1
[T
]

Top = 68K

0 1 2 3 4 5
0

100

200

300

400

500

is [kA]

b 3
[u
ni
ts
]

0 1 2 3 4 5
0

100

200

300

400

500

is [kA]

b 3
[u
ni
ts
]

0 1 2 3 4 5
0

100

200

300

400

500

is [kA]

b 3
[u
ni
ts
]

0 1 2 3 4 5
0

100

200

300

400

500

is [kA]

b 3
[u
ni
ts
]

0 1 2 3 4 5
0

20

40

60

80

100

is [kA]

b 5
[u
ni
ts
]

0 1 2 3 4 5
0

20

40

60

80

100

is [kA]

b 5
[u
ni
ts
]

0 1 2 3 4 5
0

20

40

60

80

100

is [kA]

b 5
[u
ni
ts
]

0 1 2 3 4 5
0

20

40

60

80

100

is [kA]
b 5

[u
ni
ts
]

0 1 2 3 4 5
0

2

4

6

8

10

is [kA]

b 7
[u
ni
ts
]

0 1 2 3 4 5
0

2

4

6

8

10

is [kA]

b 7
[u
ni
ts
]

0 1 2 3 4 5
0

2

4

6

8

10

is [kA]

b 7
[u
ni
ts
]

0 1 2 3 4 5
0

2

4

6

8

10

is [kA]

b 7
[u
ni
ts
]

up down n=sweep n=20 | ~J | homogeneous

Figure 5.9. Magnetic field quality in the magnet aperture as a function of the current, using a current staircase
profile (see Figure 5.8). Measurements are given by markers, whereas the shaded area corresponds
to the envelope of the numerical solutions, obtained with the parametric sweep of the n-value as
4 ≤ n ≤ 30. The solution for n = 20 is marked with a solid line. The dashed line is obtained
by assuming a homogeneous current density distribution in the superconducting tapes. From left to
right: results at 4.5, 9, 25, and 68K. From top to bottom: results for the B1, b3, b5, b7 multipole
coefficients.
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Figure 5.10. Screening currents-induced magnetic field contribution to the magnetic field quality, in units, as a
function of the current in the magnet. Measurements are given by markers, whereas the shaded
area corresponds to the envelope of the numerical solutions, obtained with the parametric sweep of
the n-value as 4 ≤ n ≤ 30. The solution for n = 20 is marked with a solid line. The dashed line
is obtained by assuming a homogeneous current density distribution in the superconducting tapes.
From left to right: results at 4.5, 9, 25, and 68K. From top to bottom: results for the b1, b3, b5, b7
multipole coefficients.
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The dashed lines show a limit case where the screening currents are disabled, thus not having any influ-
ence on the field quality. For instance, this is done for the ~A− ~H coupled field formulation by artificially
increasing the resistivity of the superconducting coil, such that a homogeneous current density distribution
is achieved. The rows show, from top to bottom, the normal dipole field B1 and the multipoles b3, b5 and
b7, as a function of the source current applied to the magnet. The columns discriminate the results accord-
ing to the operational temperature of the magnet, namely 4.5, 9, 25, and 68K which define the simulated
scenario.

It is observed that the field multipoles show the same qualitative behavior through the different scenarios
(see Figure 5.9, row by row). Moreover, the b3 and b5 multipoles decrease for increasing current. The
b7 coefficient is negligible with respect to the other multipoles. The scenario at 4.5K shows the highest
variation in the magnitude of the multipoles. At low current, the b3 contribution increases of about a factor
2, from 200 to 400 units, and the b5 multipole shows an increase of a factor 8, from 10 to 80 units. This is
explained by higher screening currents at low temperature, due to the higher critical current density of the
tape.

In Figure 5.9, the curves associated to the field multipoles create loops. Therefore, the magnetic configuration
of the magnet is different for the ramp-up and ramp-down phases. As the measurements and simulations are
done for static conditions, this difference is associated to hysteresis phenomena due to magnetization currents
occurring in the superconducting coil. The loops are found to be at least one order of magnitude smaller than
the absolute value of the multipole coefficients. For this reason, the width of the loops is presented separately
in Figure 5.10. The layout of the figure and the meaning of symbols is consistent with Figure 5.9. The rows
show, from top to bottom, the variation in units for the multipoles defined as ∆b1, ∆b3, ∆b5 and ∆b7, as
a function of the source current. The columns separate the results by the operational temperature of the
magnet, namely 4.5, 9, 25, and 68K.

The width of the magnetization loops associated to screening currents does not exceed twenty units for
b1 and b3, two units for b5 and one unit for b7. A generally monotone trend is observed, showing that
the field multipoles decrease in magnitude as the current increases, and tend to disappear as the current
reaches its peak value. The b1 coefficient is an exception, as it has a peak around 3.5 kA, when the pole
of the iron yoke saturates. In the limit case where the screening currents are neglected, the magneti-
zation loops degenerate into a line or, in other words, the width of the magnetization loops is always
zero.

5.3.4 Results: parametric sweep

Numerical simulations are carried out for a parametric sweep on the n-value of the power-law index for
the range 4 ≤ n ≤ 30, see Section 5.2.2. To compare simulations and field quality measurements, two
quantities are introduced as a function of the n-value. The first is the field quality error εb(n) which gives the
relative difference of the measured and simulated field multipoles. The second is the persistent magnetization
error ε∆b(n) which provides the relative difference between the measured and simulated magnetic loops
associated to screening current phenomena. The two quantities combine the datasets from all the measured
and simulated scenarios (subscripts m and s), reading

εb(n) =
bm,tot − bs,tot

bm,tot
, (5.21)

ε∆b(n) =
∆bm,tot −∆bs,tot

∆bm,tot
, (5.22)
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Figure 5.11. Difference between field quality measurements and simulations. Results are shown for (a) the field
quality and (b) persistent magnetization contribution.

with

bm,tot =

Top∑
tk

b7∑
bk=b3

∑
ik

|bk,m(n, tk, ik)|, ∆bm,tot =

Top∑
tk

b7∑
bk=b1

∑
ik

|∆bk,m(n, tk, ik)|,

bs,tot =

Top∑
tk

b7∑
bk=b3

∑
ik

|bk,s(n, tk, ik)|, ∆bs,tot =

Top∑
tk

b7∑
bk=b1

∑
ik

|∆bk,s(n, tk, ik)|,

where tk, bk and ik refer to the k-th temperature scenario, multipole component and current level in the
staircase profile. The calculation of εb(n) excludes the fundamental components b1 which are trivial, whereas
ε∆b(n) accounts also for the magnetization loops in the fundamental component of the magnetic field. The
differences betweenmeasurements and simulations are quantified for each scenario as a function of n. The re-
sults are shown in Figure 5.11a and 5.11b for the differences in the field quality and persistent magnetization
contributions. The errors tend to decrease as the index in the power law is increase.

5.4 Discussion

The analysis of the field quality in the Feather-M2.1-2 magnet provides b3 and b5 coefficients up to hundreds
of units. This magnitude is much higher than the few units typically required by accelerator quality stan-
dards [59] (see Figure 5.9). The overall field error is dominated by the b3 coefficient, whereas b5 is about
one order of magnitude smaller, and b7 is negligible. These high multipoles are justified by the influence
of the outer iron yoke. The yoke is designed for allowing the magnet to be operated in stand-alone mode,
but it is not optimized for field quality purposes. At the same time, the measured field error is not an issue
since the Feather-M2.1-2 magnet is designed to work as an insert in the FRESCA2 magnet where accelerator
quality standards are not required.

The trend observed in the multipoles from Figure 5.9 can be justified as follows. The magnet design is op-
timized to deliver the best field quality when operating in nominal conditions [14]. For this reason, for
increasingly higher source currents (i.e. by increasing main dipole field), the multipole coefficients are de-
creasing reaching their minimum for the nominal current of 5 kA. However, if the operational temperature is
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Figure 5.12. Current density distribution in the superconducting coil, normalized by the critical current density
at zero field and 4.5K Jcrit,0 = 138 kAmm−2. The distribution is given for different current levels
and operational temperatures.
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Figure 5.13. Net magnetic field contribution from screening currents in the superconducting coil, in T. The field
map is given for different current levels and operational temperatures.
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increased, the source current needs to be reduced accordingly, to not exceed the cable critical current which
is temperature-dependent. In consequence, the b3 and b5 multipole coefficients increase since the working
point of the magnet then shifts from nominal conditions.

Concerning the behavior of the screening currents in the superconducting coil, their contribution to the field
quality never exceeds 20 units, see Figure 5.10. Therefore, the influence of screening currents is about
one order of magnitude smaller than the total field error (see Figure 5.9). The numerical analysis shows
better agreement with measurements for high n-values (≥20), whereas for small n-values (≤10), the con-
tribution of the screening currents tends to be overestimated, as shown in Figure 5.11. Numerical results
seem to support the conclusion in [275] where the low n-value of 5 measured in the coil was attributed
to the tape joints which do not play a role in the dynamics of the screening currents. Overall, the limited
influence of the persistent magnetization on the field quality might be justified by the design of the coil.
The alignment of the tapes is optimized to limit the interaction of the wide surface of the tapes with the
magnetic field lines [68], limiting the flux linked to the surface of the tapes, and thus magnetization phe-
nomena.

Once the operational temperature of themagnet is increased, the critical current density of the tape is reduced
and, for the samemagnitude of the source current, the resistivity of the superconductingmaterial is increased.
As a consequence, field diffusion phenomena in the tape occur at shorter time scale, consequently leading to a
more homogeneous current density distribution in the tape and, ultimately, in the cable. This is shown by the
current density distribution in the first quadrant of the coil in Figure 5.12. The current density distribution is
normalized by Jc(4.5K, 0T, 0◦) = 138 kAmm−2. The net magnetic field contribution given by the screening
currents in the superconducting coil is shown in Figure 5.13. Once the source current is increased, the
screening currents tend to vanish independently from the operational temperature. This might be explained
by the saturation of the tape due to the external source current.

The numerical simulations are overall in good agreement with measurements, consistently reproducing both
the global magnetic field quality and the contribution from persistent magnetization phenomena. However,
simulation results are still affected by the uncertainty regarding the properties of the superconducting tapes
used for the coil. Still, the analysis captures the most relevant dynamic phenomena characterizing the field-
quality-behavior of HTS accelerator magnets. An extensive tape characterization is always recommended for
future magnets, such that uncertainties can be minimized, and the confidence and accuracy in dynamic field
quality simulations can be enhanced.

5.5 Summary

This chapter presents the analysis in the time domain of the demonstrator magnet Feather-M2.1-2, an HTS in-
sert dipole developed for providing an additional 5T to the background field produced by the Nb3Sn FRESCA2
magnet, such that a peak field of 18T is reached in the magnet aperture. The 2D finite element model of
the Feather-M2.1-2 magnet relies on the coupled ~A− ~H field formulation introduced in Chapter 2. Further-
more, the thin-shell approximation is applied for modeling the ReBCO tapes composing the Roebel cable
which is used for the coil. Although uncertainty affects the critical current density of the tapes, the model
requires only one scalar correction parameter which is applied to the power law. A parametric sweep is used
to cope with uncertainty in the power-law index. Subsequently, a mesh sensitivity analysis is carried out to
determine the maximum size for the mesh elements in the model. The hysteresis contribution of the ferro-
magnetic materials to the field quality is quantified by means of the Jiles-Atherton model for the iron yoke
of the magnet.
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The numerical analysis quantifies the impact of the screening current-induced magnetic field on the magnetic
field quality in the magnet aperture. Simulations follow the same staircase-shaped powering cycle used
for the magnet measurements at different temperatures. Numerical results are compared with available
measurements for the magnet in a stand-alone configuration. The model provides an accurate quantification
of the dynamic distribution of the screening currents, resolving the individual tapes. Simulations achieve
satisfactory agreement withmeasurements, with a computational time less than one hour for each simulation,
on a standard workstation. For the investigated case study, results show that the field quality error due to
persistent magnetization phenomena affects mostly the main field component, and it is limited to 20 units.
Furthermore, the error is significantly dampened once the source current is increased up to the operational
value, as a consequence of the saturation of the current transport capacity of the tape. The iron hysteresis
is estimated as a second-order effect, and the coupling between the screening currents and the hysteresis of
the iron is found to be negligible.
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6 Case Study: HALO

This chapter closely follows the work in [291], presenting a proof of concept for HTS screens leading to a
passive cancellation of the magnetic field error in accelerator magnets. The device presented here is called
HALO (harmonics-absorbing layered object) and relies on the persistent magnetization produced by stacks
of ReBCO tapes.

The working principle of HTS screens is discussed with respect to the behavior of perfect electric conduc-
tors. Then, the experimental setup used for the proof of concept is described, with focus on the design of
the HTS screens. A dedicated 2D numerical model is developed using the finite element method, imple-
menting the coupled ~A− ~H field formulation. Simulations are used for evaluating the performance limits
of the HTS screens, and tracing the residual error measured in the magnetic field due to geometric defects.
Afterwards, numerical and experimental results are compared. The performance of the screen is then ex-
plored for different design parameters, both with respect to experimental conditions and in accelerator-like
working conditions, that is, in a 10T background dipole field. Results are discussed, and conclusions and
recommendations for the design of future HTS screens are given.

6.1 Working Principle

The working principle for superconducting screens is discussed with respect to a non-magnetized shell with
finite thickness δs and constant resistivity ρ. The shell is surrounded by air, and all the magnetic properties
are considered as constant. The shell is assumed to have translational symmetry, therefore the working
principle is discussed with respect to a 2D setting. The cross section of the shell is shown in Figure 6.1a,
together with a local coordinate system (~t, ~n) oriented according to the shell wide surface. The shell is
exposed to a time-dependent magnetic flux density ~Bs with initial condition ~Bs(0) = 0, applied as an external
source. Starting from Faraday’s law, the current density ~Ji induced in the shell is described by means of the
relation

∇× ρ ~Ji + ∂t( ~Bs + ~Bi) = 0, (6.1)

where ~E = ρ ~Ji represents the electric field strength driving the induced currents, and ~Bi is the magnetic
contribution from the shell to the total magnetic flux density ~B. Due to the linearity of the field problem, ~B
is given by the superposition of the source and induced magnetic fields, that is, ~B = ~Bs+ ~Bi. The distribution
of the field lines is shown in Figure 6.1b, for an arbitrary orientation of the source field with respect to the
shell.

The magnetic behavior for ideal screens is obtained in two steps. First, the thickness of the shell is assumed
to be negligible, that is, δs → 0 (see Figure 6.1c). In this way, the magnetic coupling occurs only for the
normal component of the external field source, leaving the parallel component unaffected. At the same time,
the induced current density flows only in the plane of the shell. Then, the differential operators and vectors
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Figure 6.1. (a) Cross section of a non-magnetized, conducting shell of thickness δs and resistivity ρ. The magnetic
flux lines distribution is shown for the cases of (b) finite δs and ρ, (c) negligible δs but finite ρ, and
(d) negligible δs and ρ.

~v are decomposed into their tangential and normal components (subscripts t and n) as ∇ = ∇t + ∇n and
~v = ~vt+~vn, according to the local coordinate system in Figure 6.1a. The assumption of δs → 0 is incorporated
by following Section 2.14, that is, by assuming no field variation can occur along the perpendicular direction
of the tape. The relation (6.1) is therefore reduced to

∇t × ρ ~Ji,t + ∂t( ~Bs,n + ~Bi,n) = 0. (6.2)

Second, the resistivity of the shell is assumed to be negligible, that is, ρ→ 0 (see Figure 6.1d). In this way, the
material composing the shell becomes a perfect electric conductor (PEC). As a consequence, (6.2) is reduced
to

∂t( ~Bs,n + ~Bi,n) = 0, (6.3)

showing that the magnetic field has a constant value within the shell. By recalling that the external field
was initially assumed to be zero, it is concluded that ~Bi,n is always equal and opposite to ~Bs,n. Consequently,
the induced currents screen out the magnetic field and are persistent, showing no decay over time. The
magnitude of these screening currents is fixed by the magnetization which is required for canceling out
the source field contribution from within the shell. Therefore, PECs can be considered as ideal magnetic
screens.

Although PECs provide a perfect magnetic screening, they are a mathematical abstraction. However, the
superconducting properties of HTS tapes can be exploited for achieving a reasonable approximation of ρ→ 0,
producing persistent magnetization by means of screening currents. The persistent magnetization, combined
with the negligible thickness of the tapes and their strong geometric anisotropy, produces a selective magnetic
coupling with respect to the spatial components of the applied field. The tapes can be used for guiding
the magnetic field lines by choosing a suitable orientation, thus achieving a field compensation only for
specific field components. This is obtained by aligning the tapes with the main field direction, such that the
cancellation effect occurs only for the undesired field components. In this way, the screens do not require
any active control, and store a negligible fraction of the total magnetic energy in the main field. The working
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[-]

Figure 6.2. Example showing a normalized, non-ideal dipole magnetic field, before (left) and after (right) the
introduction of the HTS screens. The expected and actual position of the screens is marked by dashed
and solid lines.

principle is illustrated by the example provided in Figure 6.2, where a non-ideal dipole magnetic field is shown
before (left) and after (right) the introduction of the HTS screens. Since the width of commercially available
tapes is typically limited to 12mm, the equivalent screening surface can be increased by arranging the tapes
side by side into layers. Layers can be stacked on top of each other, increasing the equivalent magnetic
screening properties. The discussion of the working principle is carried out for straight screens and dipole
magnetic field configurations, however the field-error cancellation is applicable also to 2D magnetic field
configurations with higher number of magnetic poles (e.g. quadrupole fields) as long as the superconducting
screens are shaped following the main field component.

6.2 Experimental Setup

The proof of concept for HTS screens is shown by improving the magnetic field quality in a given region of
space by means of screening currents. The proof is achieved by quantifying the magnetic field quality with
and without the presence of the HTS screens, using differential measurements. The experimental setup is
composed of four key-elements:

1. a dipole field of known magnetic properties, provided by the reference dipole magnet MCB24 from the
magnetic measurement laboratory at CERN;

2. a source of field perturbation, that is, two iron bars introduced in the magnet aperture such that the
reference field is distorted;

3. the field-error cancellation, provided by two HTS screens;
4. a magnetic measurement system for characterizing the field quality, composed of a rotating coil [292,

293], a motor drive, and the data acquisition system for processing the probe signal.

6.2.1 Prototypes

The mechanical assembly ensures that the HTS screens and the iron bars are kept in the desired position, and
provides the cryogenic environment needed for cooling the screens such that they enter the superconducting
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Figure 6.3. Exploded view of the experimental assembly. 1. iron bars, 2. polymide foam box, 3. aluminum
support plate, 4. stainless steel tube, 5. aluminum collars, 6. aluminum HTS holder, 7. HTS screens,
8. aluminum counter plates, 9. stainless steel clips.

(a) Experimental assembly. (b) First and second HTS holder prototype.

Figure 6.4. Photographs of (a) the experimental assembly and (b) the first and second prototype.
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(b) Photograph of one HTS screen.

Figure 6.5. Multilayered composite structure characterizing the HTS screens. The figure shows one of the HTS
screens, as (a) designed and (b) manufactured.

state. The assembly is composed of an aluminum base plate, a stainless steel tube, two iron bars and a box
made of polymide foam, hosting the HTS holder with the superconducting screens. The assembly is shown
in Figure 6.3 as an exploded view highlighting the sub-components.

The plate provides both the mechanical reference for the alignment in the magnet aperture and the mechani-
cal support for the remaining parts. The tube is bolted by means of collars to the front and back folded tabs of
the plate, hosting the field measurement system. The iron bars are bolted on perforated folded tabs located
on the left and right sides of the plate. A set of holes allows the iron bars to be vertically displaced, such
that the field-error cancellation can be investigated for different iron configurations and, therefore, field-error
scenarios. The box is made of a plastic foam (Solymider) which is leak-tight and acts as a cryostat for cooling
down the HTS screens to 77K in liquid nitrogen. Three grooves are machined in the box, see Figure 6.4a:
the central groove ensures the clearance for the tube containing the rotating coil, and two lateral grooves
create two slots such that the HTS holder can slide into the box. The HTS holder provides the mechanical
support and keeps the screens in parallel position. For this experimental setup, two prototype iterations for
the HTS holder were developed and tested.

The HTS screens are manufactured with commercially available, second-generation HTS tapes; their relevant
parameters are given in Table 6.1. The HTS spool is cut in 500mm long tapes which are arranged in a
multilayered composite structure, as shown in Figure 6.5a. Each layer composing the screen is obtained by
aligning the tapes along their narrow edge, and then gluing them together with a 25µm thick layer of epoxy
adhesive. The process is iterated, stacking the layers on top of each other, until the prescribed number of
layers is obtained. An offset equal to half of the tape width is introduced between each layer, obtaining a
brick wall structure. The offset enhances the screening properties of the structure by preventing the magnetic
flux lines to escape through the gaps between the tapes belonging to the same layer. All the even-order layers
are one tape-width less wide than the odd-order layers, for symmetry reasons. The screens are finalized by
applying a 75µm thick polymide foil on both sides. The main advantages of this multilayered structure are
the electrical insulation between each HTS layer and for the overall screen, the mechanical flexibility, and
the scalability in terms of both width and thickness. The two 60mm wide screens used for the proof of
concept are composed of four layers, containing 5 and 4 tapes. The width of the screens is limited by the
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Parameter Unit Value Description

Superpower Inc [294] Producer
SCS12050-AP Tape label
Hastelloy C-276 Substrate
δw mm 12 Tape width
δt µm 100 Tape thickness
δt,Sc µm 1 ReBCO thickness
δt,Ag µm 2 Silver thickness
δt,Cu µm 20 Copper thickness
δt,Hs µm 50 Hastelloy thickness
n-value - 28 Power-law index
Ic,min(77K) A 304 Minimum critical current (self field)
Ic,avg(77K) A 320 Average critical current (self field)
σIc - 0.042 Standard deviation

Table 6.1. Tape specifications.

available space within the aperture of the reference magnet, and the depth of the cryogenic box. One of the
manufactured screens is shown in Figure 6.5b. The curvature in the screen is a result of stacking all the tapes
on the same side which caused an amplification of the typical tape curvature. This mechanical behavior does
not represent an issue, since the screens are flexible enough to be straightened by the HTS holder. For higher
number of layers, therefore for stiffer screens, the curvature effect may be mitigated by turning the tapes in
every second layer of each screen.

The first HTS holder prototype aimed for the simplicity of construction (see Figure 6.4b, left). The holder
was obtained by bending an aluminum plate, and keeping the screens in place by means of a compression
force between the holder and the foam box. The holder was used mainly as an exercise to better understand
the behavior of the experimental assembly. However, it was found that the mechanical alignment of the first
prototype was not sufficiently accurate for the proof of concept. In fact, the bending of the aluminum slab
introduced stresses in the material which were released during the thermal cycles of the holder, degrading
the mechanical alignment of the screens. Thanks to the experience gained with the first holder, an improved
design was defined for the second prototype, see Figure 6.4b, right. Starting from an aluminum block, the
holder was obtained by machining. The screens are kept straightened by means of two aluminum counter-
plates pushed by clips positioned at every 50mm along the holder. The clips are made of non-magnetic
stainless steel, and are locked into holes drilled in the two fins at each side of the holder (Figure 6.4b, right).
The second prototype is characterized by an improved mechanical tolerance and higher stiffness, producing
a better cancellation of the field error. For this reason, experimental activity focused mainly on the second
prototype.

6.2.2 Reference dipole and measurement system

The reference dipolemagnet used for the experiment is shown in Figure 6.6. Themagnet is normal-conducting
and has a linear transfer function of 316AT−1 for the 0-1T field range. The magnet operations are always
preceded by an initial de-gaussing cycle. Before each experiment, the magnet goes through a pre-cycle, such
that the magnetization of the iron yoke is kept consistent through all the measurements. The profile used for
the source current im(t) is shown in Figure 6.7. The pre-cycle consists in a trapezoidal profile, going from
zero up to the nominal current In = 316A, and back.
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Figure 6.6. Photographs of the reference dipole magnet MCB24. (a) Side and (b) front view. The magnet aperture
is detailed in (c) and (d).

After the pre-cyle, the setup is fixed into the magnet aperture, see Figure 6.6c. The foam box is 500mm longer
than the HTS screens and sticks out from the magnet aperture, allowing for refilling with liquid nitrogen,
see Figure 6.6d. Each test cycle is made of two trapezoidal curves, up to the peak source current Is = 31.6A
producing 100mT of magnetic field in the magnet aperture. The peak value of the magnetic field is kept well
below the nominal value of the magnet, being limited by the critical current density of the tapes at 77K;
the experimental HALO screen is expected to withstand higher magnetic fields when cooled to 4K due to
the higher critical current density, but this test was not possible due to practical considerations. In addition,
the relatively low operating current of the magnet limited the forces on the iron bars. The current is kept
constant for about 120 s, to settle possible dynamic effects in the normal conducting parts of the experimental
setup. For each test cycle, measurements are acquired for both the current plateaus (see Figure 6.7), showing
negligible difference. The data presented in this work are taken from the second curve, such that the HTS
tapes are always exposed to at least one magnetization cycle.

The magnetic field quality is measured in the magnet aperture by means of rotating coils whose working
principle is discussed in Section 5.3.1. The coil used for the HALO characterization is composed of a printed-
circuit board (PCB), (36.5mm long and 47mmwide), aligned with the longitudinal center of the HTS screens.
The PCB contains five coils mounted radially, with a total active surface of 312 cm2. CERN proprietary digital
cards [290] integrate the induced voltages in the coils rotating at a frequency of 1Hz. Each measurement is
given by the average of sixty rotations of the coils. The measurements have a typical precision of a magnetic-
field harmonic of ±0.05 units.
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Figure 6.7. Current cycle used in the reference dipole magnet.

6.3 Numerical Model

The HALO experimental setup features translational symmetry, therefore the related numerical model is
implemented in the 2D setting. The model contains the reference dipole magnet comprising the normal-
conducting coils and iron yoke, the superconducting screens, and the iron bars in themagnet aperture.

The computational domain Ω corresponds to the regions ΩH and ΩA, such that ΩH ∪ ΩA = Ω. The region
ΩH corresponds to the superconducting tapes composing the HTS screens. The region ΩA is further sepa-
rated into the source region Ωs,A containing the coils of the magnet, the conducting region Ωc,A containing
the iron yoke and the iron bars, and the nonconducting region Ω0,A containing the air region and the ex-
perimental setup except for the superconducting tapes. A constant magnetic permeability µ0 is assumed
in Ωc,H, whereas a nonlinear dependency µ( ~B) is considered for the iron yoke and the iron bars in Ωc,A.
Due to the high aspect ratio of the tapes, and their negligible thickness δt, the thin-shell approximation dis-
cussed in Section 2.14 is applied to ΩH. The region is reduced to r conducting shells Γr

c,H, one per tape, such
that

Γc,H =

Nt∑
r=1

Γr
c,H, (6.4)

where Nt is the number of tapes. The domain decomposition is shown in Figure 6.8. The equivalent resis-
tivity of the superconducting tapes in the thin-shell approximation is obtained as discussed in Section 3.7.
The dynamic effects occurring in the iron yoke, the iron bars, the normal conducting coils, and the normal
conducting part of the experimental setup are neglected in the model because the magnetic field quality is
always evaluated after these contributions are settled.

The domain Ωs,A is equipped with a distribution function for stranded conductors ~χstr (see Section 2.9.1),
whereas each of the domains Γr

c,H is equipped with a distribution function for solid conductors ~χr
sol (see Sec-

tion 2.9.2), for r = 1, ..,Nt. The function ~χstr is used for assigning the source current is to the magnet coil,
whereas the function ~χr

sol is used to enforce a zero net current through each of the tapes in the 2D setting. With
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Figure 6.8. Sketch of the computational domain. (a) The domain is decomposed into the nonconducting air Ω0,A,
the conducting iron yoke Ωc,A, and the coil Ωs,A providing the field source. (b) Detail of the magnet
aperture showing left and right iron bars Ωc-l,A and Ωc-r,A, and the HTS screens Γc,H. The reference
radius is indicated by Γref.

the previous definitions, the obtained field problem is given for r = 1, ..,Nt as

∇× µ−1∇× ~A+ σ∂t ~A− ~χstris = 0 in ΩA, (6.5)

∇× ρ∇× ~Hr
n + ∂tµ ~H

r
n −∇× ~χr

solu
r
s = 0 in Γr

c,H, (6.6)

δt

∫
Γr
c,H

~χr
sol · (∇× ~Hr

n)dΓ = 0, (6.7)

where urs is source voltage for the r-th tape treated as an algebraic unknown. For the purpose of this analysis,
the algebraic constraint in (6.7) prescribes a total current equal to zero since the tapes are passive and do not
form closed loops. Homogeneous Dirichlet boundary conditions are imposed to ~A on the exterior boundary
Γdir-0,A which is set sufficiently far from the magnetic field sources in the model. The model uses a mesh of
first-order elements in Γc,H, and second-order elements in Ω0,A.

As an example, the field solution is shown in Figure 6.9a for a dipole magnetic field of 100mT in the magnet
aperture. The field source is provided by means of a normal conducting coil, marked with crossed boxes.
The c-shaped iron yoke guides the field lines in the magnet aperture, where the experimental setup is po-
sitioned. A detailed view of the magnet aperture is given in Figure 6.9b, where the top and bottom plots
refer to the cases without and with the experimental setup. For the second case, the field perturbation in-
troduced by the iron bars is clearly visible. The position of the HTS screens is highlighted by dashed lines.

6.3.1 Constitutive relations

The ferromagnetic material used in the model for both the iron yoke and the iron bars consists of pure iron
(Fe > 99.8%). The ferromagnetic curve was measured with a split-coil permeameter for a sample of the
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Figure 6.9. Numerical simulations of the experimental setup. (a) Magnetic field, in T, in the cross section of the
reference dipole magnet. (b) Detailed view of the magnet aperture, without (top) and with (bottom)
the experimental setup.

material used for the bars [267], and implemented in the numerical model as a lookup table. The B-H curve
and the relative permeability µr are shown in Figures 6.10a and 6.10b.

The highly nonlinear electric field-current density relation characterizing HTS materials is modeled by means
of the power law in (2.86). The anisotropic and field-dependent behavior of the critical current density Jc is
modeled by means of the lifting function fl( ~B, T ). The function is shown in Figure 6.10b, as a function of the
field angle with respect of the normal direction of thewide surface of the tape (see the box in Figure 6.10b), for
a background field of 100mT. The lifting function is taken from data in [295], where tapesmanufacturedwith
the same technology and by the same producer are considered. The critical current density is implemented
in the model as

Jc( ~B, T ) = fl( ~B, T )
Ic,min
δwδt,Sc

, (6.8)

where the minimum critical current Ic,min, the width δw and the thickness δt,Sc of the superconducting layer
are given in Table 6.1.

6.3.2 Geometric defects and field quality

After the first cool-down and the leak-tight test for the experimental assembly, a visual inspection was carried
out for the first prototype. The inspection highlighted the presence of gaps between the HTS holder and the
foam box, as well as displacements and corrugations for both the left and right screens, see Figure 6.11a. Such
undesired geometric deformations arise from intrinsic stresses in the materials which were released during
the cool-down, and were found to detrimentally affect the field quality. As a consequence of the separation
of the holder from the box and the loss of compression force, both HTS screens suffered from displacement
and deformation.

The numerical model accounts for the observed geometric deformations as follows. The HTS screens are
implemented as two joint arcs of a parabola, whose shape is determined by the parameters dup and ddn.
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Figure 6.10. Constitutive relations. (a) Measured ferromagnetic curve for the nonlinear µ( ~B) relation. (b) Lifting
function as a function of the field angle, for tapes at 77K, parametrized with the magnetic field
magnitude.

Also, screens are allowed to rotate around their central point, with an angle dθ. Therefore, three degrees of
freedom are introduced in the geometry of each screen, and the overall geometric defect of the HTS screens
dg is defined by the vector

dg =
[
dup,l, ddn,r, ddn,l, ddn,r, dθ,l, dθ,r

]>
, (6.9)

where the subscripts l and r denote the left and right screens. The geometric defects introduced in the model
are shown in Figure 6.11b. It is worth noting that the case with flat screens corresponds to dup, ddn → 0,
whereas for perfectly parallel screens the further constraint dθ → 0 needs to be fulfilled. The parameters
composing the vector dg are quantified by solving a minimization problem. The minimum is sought by means
of the Matlabr [296] implementation of the particle swarm optimization (PSO) algorithm [297]. The
penalty function fp(dg) adopted for the PSO minimizes the difference between field quality measurements
and simulations. The optimization problem reads



min
dg

fp(dg)

with fp(dg) =

6∑
k=2

(
|ak,m − ak,s(dg)|+ |bk,m − bk,s(dg)|

)
s.t.

{
|dup,j |, |ddn,j | − xc ≤ 0 with j = l, r
|dθ,j | − θc ≤ 0

(6.10)

where the multipole coefficients ak,m and bk,m are obtained from measurements, whereas the coefficients
ak,s(dg) and bk,s(dg) are calculated numerically. The maximum geometric defects in displacement and angle
are set to xc = 2.5mmand θc = 50mrad. The index k is limited to the dodecapole component, given that high
order field components are found to be of much lower magnitude. The results of the optimization problem
are discussed in Section 6.4, where the simulated field error arising from geometric defects is matched with
the experimental observations.

139



Di
sp
la
ce
m
en
t

A

B

B

A

Co
rr
ug
at
io
n

(a) Visual inspection.

±εup,l

∓εdn,l

∓εθ,l

∓εup,r

±εdn,r

±εθ,𝑟

(b) Geometric error parameters.

Figure 6.11. (a) Visual inspection of the first HTS holder prototype, highlighting gaps between the holder and
the foam box, as well as displacements and corrugations for both the left and right HTS screens. (b)
Geometric error parameters, used to implement a realistic geometry for the HTS screen.

6.3.3 Forces on iron bars

The magnetic force ~Fm acting on the iron bars during the tests may cause deformation of the support plate,
causing an undesired displacement of the HTS screens. If uncontrolled, the force may compromise the in-
tegrity of the experimental assembly, causing a spill of the liquid nitrogen over the normal conducting coils
of the magnet and their powering system, possibly leading to irreversible damage. For this reason, the ab-
solute value of the horizontal and vertical components Fm,x and Fm,y of the magnetic force are required to
remain below 5 kg, thus limiting the peak magnetic field during the tests. The magnetic force is calculated
in magnetostatic regime by means of the Maxwell’s magnetic stress tensor σm [255]. The force acting on a
body Ω is given by

~Fm =

∫
Ω
∇ · σm dΩ =

∫
∂Ω

σm · ~ndΓ, (6.11)

whereΓ = ∂Ω and ~n is the normal unit vector. The tensorσm is formulated component-wise as

σk,jm = µ

[
HkHj −

1

2
H2δk,j ,

]
with k, j = x, y, z and δk,j =

{
0 if k 6= j

1 if k = j
(6.12)

where δk,j is the Kronecker delta. The x and y components of the peak magnetic force acting on the iron bars
are shown in Figure 6.12, as a function of the dipole magnetic field. The different cases refer to all possible
geometric configurations for the iron bars, given in terms of left and right vertical offset with respect to the
mid-plane of the rotating coil. The results for y-symmetric configurations, that is, for iron bars with the same
y-coordinate, are shown in Figure 6.12a and 6.12b. The other configurations are shown in Figure 6.12c
and 6.12d. By limiting the magnetic flux density to 100mT, the components of ~Fm never exceed the limit
Fm,max = 5 kg.
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Figure 6.12. Peak magnetic force acting on the iron bars. Results are presented for the x and y force components,
and grouped in symmetric and non-symmetric iron bar configurations. The vertical offset of the left
and right iron bars is given in mm in the legends.

6.4 Experimental and Numerical Results

The test campaign for the two HALO prototypes is organized in two main parts, assessing the behavior of the
HALO device without and with the iron bars. In this way, the net contribution of the HTS screens is assessed
by differential measurements.

In the first part, the HTS screens are characterized both at room temperature (300K) and in liquid nitrogen
(77K), in a dipole background field. The first measurement quantifies the magnetic contribution from the
normal conducting materials in the assembly, for example the aluminum support plate. The second mea-
surement quantifies the magnetic coupling of the HTS screens with the background field, which is strongly
influenced by the precise alignment of the tapes with respect to the magnetic field lines. The tests at room
temperature and at cold are made for both prototypes of the HTS holder. The field quality measured in the
tests at cold is used for calibrating the numerical model. In the second part, a field-error contribution is added
to the dipole magnetic field of the reference magnet by introducing two iron bars in the magnet aperture.
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No. Top Bop r0 Iron ∆yl ∆yr Scenario
K mT mm bars mm mm label

1st HTS holder prototype

1. 300 100 15 No n.a. n.a.2. 77 100 15 No n.a.
3. 300 100 15 Yes +5 −20 medium4. 77 100 15 Yes +5 −20

2nd HTS holder prototype

5. 300 100 15 No n.a. n.a.6. 77 100 15 No n.a.
7. 300 100 15 Yes +5 +0 low8. 77 100 15 Yes +5 +0
9. 300 100 15 Yes +5 −20 medium10. 77 100 15 Yes +5 −20
11. 300 100 15 Yes −20 −10 high12. 77 100 15 Yes −20 −10
13. 300 100 15 Yes −20 +5 check14. 77 100 15 Yes −20 +5

Table 6.2. Test campaign.

The magnitude of the field-error contribution is modulated by applying the vertical offsets ∆yl and ∆yr to
the left and right iron bars, ranging between +5 and −20 mm with respect to the horizontal mid-plane of
the rotating coil. The field quality is measured first at 300K where it is influenced only by the iron bars,
and then at 77K, where the HTS screens are superconducting and also affect the magnetic field. In this
way, a comparison of the two measurements gives the net contribution of the HTS screens to the field-error
cancellation.

Four different scenarios are proposed. In the first three scenarios the magnitude for the field error is progres-
sively increased by acting on the position of the iron bars, therefore they are labeled as low,medium and high.
The fourth scenario features an anti-symmetric geometric configuration for the iron with respect to the second
scenario, providing field errors of the same magnitude. This last scenario was used for checking the analysis
method, therefore it is labeled as check. The most relevant parameters and features are given in Table 6.2.
All the test are performed in a 100mT background dipole field determined by evaluating the Lorentz forces
acting on the iron bars, as discussed in Section 6.3.3. All the multipoles are evaluated at a reference radius of
r0 = 15mm. The first HTS holder prototype was characterized only for themedium error scenario, as it was
found that the field contribution from the HALO itself was significant due to geometric deformation in the
tapes. The second prototype was characterized for all the four scenarios.

Measurements are compared with simulations. With respect to the tests at 77K, two geometric models for
each HTS screen prototype are considered. The first assumes perfectly parallel and flat HTS tapes, whereas
the second includes the geometric defects introduced in the optimization problem (6.9). All the simulations
are carried out on a standardworkstation (Intelr Core i7-3770 CPU@ 3.40GHz, 32GB of RAM,Windows-10r
Enterprise 64-bit operating system), using the proprietary FEM software COMSOL.
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Figure 6.13. Measured and simulated magnetic field quality for both the prototypes, without iron bars. Left:
multipole series expansion at both 300K and 77K, in a dipole background field. Right: Magnetic
field error seen by the rotating coil, reconstructed from measurements.

6.4.1 Prototypes without iron bars

The magnetic field quality is evaluated for the experimental setup mounted without iron bars in the magnet
aperture in a dipole background field. Measurement and simulation results are shown for the first proto-
type in Figures 6.13a and 6.13b. Measurements performed at 300K quantify the influence of undesired
magnetization and dynamic phenomena possibly occurring in the normal conducting parts of the experi-
mental setup. Their influence is found to be within 0.5 units of field error. Subsequently, measurements
with the HTS screen at 77K show an undesired self-field error characterized by the a2 and b3 components,
with contributions from b2 and a4. The measured and simulated THD factor for the first prototype is equal
to 21. If flat screen geometries are considered in simulations, the absence of geometric defects ensures a
negligible THD factor, highlighting the importance of minimal geometric tolerances for practical HALO de-
vices.

The samemeasurement and simulation results are shown for the second prototype in Figures 6.13c and 6.13d.
The field error obtained at room temperature remains unchanged, whereas measurements at cold show five
units of a2 with minor contributions below one unit, thus giving a THD factor of five. With respect to the
first prototype, the overall self-field error is reduced by about a factor of four. Simulation results accounting
for geometric defects reproduce measurements well, showing that the origin of the remaining field error
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is quite well understood. Results suggest that further reductions of the THD factor require to improve the
manufacturing techniques of the HTS assembly.

The net magnetic contribution provided by the HTS screens is shown for the rotating coil region in Fig-
ure 6.13b and 6.13d. The field solution is numerically reconstructed from the measured multipoles for both
the versions of the HTS holder, at 77K. The field distribution shows a quadrupole field component dominating
in both cases, with a field gradient qualitatively higher for the first prototype.

6.4.2 Geometric quality analysis

The minimization problem in (6.10) is solved by using as a reference the field quality measured for both the
prototypes at 77K, without iron bars. The performance of the PSO is shown in Figure 6.14, where the left
and right columns refer to the first and second prototype. From top to bottom, the first three rows show the
behavior of the penalty function fp(dg) within the parametric space, by means of 2D projections where each
dot corresponds to a function evaluation. The fourth row represents the minimum value of fp(dg) for each
iteration of the PSO. Residuals below 1.5 and and 0.5 units were obtained for the first and second prototypes,
respectively.

The calculated parameters are given in Table 6.3. Although the first prototype suffered from relevant ge-
ometric defects, with magnitudes up to a few millimeters, the improved design of the second prototype
reduced the imperfections affecting both curvature and rotation by more than two orders of magnitude. The
geometric parameters are used for reconstructing the shape of the two HTS screen prototypes, as shown in
Figure 6.15a. For the sake of clarity, imperfections are graphically magnified by a factor ten. The position
of the rotating coil and the horizontal mid-plane are also included. Note that from Figure 6.11, the dis-
tortion shown in Figure 6.15a is already apparent. The first prototype is affected by substantial geometric
deformation, whereas the second prototype is much closer to the reference geometry. A residual deforma-
tion of the left screen still persists in the second prototype, causing a non-perfect parallelism between the
tapes.

The self-field contribution from the HTS screens is affected by mechanical tolerances. The worst-case screens
are determined numerically using the model of the experimental setup. In detail, the PSO algorithm is used
for finding the worst-case screen deformation in terms of maximum THD factor. The PSO constraints are
provided by prescribing the mechanical tolerances as maximum geometric defects in (6.10). Results in Fig-
ure 6.15b show that the THD factor can be kept below 1 unit by applying tolerances of 25µm. As an example,
the same tolerances were used for the manufacturing of the austenitic steel collars of the superconducting
coils in the LHC main dipole magnets [298]. For perfectly parallel screens in the thin-shell approximation,
the self-field error disappears. In practice, the residual error is expected to be nonzero due to the finite thick-
ness of the superconducting tapes, however it is considered as a second-order effect since the approximation
introduced by the thin-shell model is negligible (see Section 4.3.5).

6.4.3 HTS screens with iron bars

After the iron bars are mounted in the magnet aperture, the resulting magnetic field quality is determined.
Measurements at 300K are influenced only by the iron bars, whereas at 77K, the HALO contribution is also
included.
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Figure 6.14. Geometric imperfections in the screens, calculated with the PSO algorithm. The two columns refer to
the first and the second prototype. Results show the curvature of the left (a,b) and right (c,d) screens,
their rotation (e,f), and the residual of the PSO algorithm in fitting the measured field error.
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Screen Error Unit 1st holder 2nd holder

Left
dup µm 1200 −1
ddn µm −1900 170
dθ mrad 47 −5

Right
dup µm −1000 −75
ddn µm 2100 5
dθ mrad −42 1

Table 6.3. Geometric error parameters.
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Figure 6.15. Geometric and self-field error of the HTS screens. Left: deformation of the two prototypes, rendered
with a factor ten amplification, compared with the reference geometry of perfectly parallel HTS
screens. Right: simulated self-field error, in THD units, as a function of the mechanical tolerance
prescribed for the screens. The results are given for the worst-case design within prescribed toler-
ances.

For the first prototype, the iron bars are mounted according to the medium error scenario (see Table 6.2),
introducing 30 units of a2 and 15 units of a3, with a minor contribution from the b2 component. The magnetic
field quality is shown in Figure 6.16. The plot on the left provides measurement and simulation results as a
multipole series expansion, whereas the plot on the right shows the field distribution in the region defined
by the rotating coil, within the magnet aperture. For this magnetic configuration, the HALO reduces the a2
and a3 contributions, whereas the b2, b3 and b4 errors are increased. This increase is due to the self-field
generated by the HTS screen, and it is caused by the geometric deformation in the first HALO prototype (see
Section 6.4.1).

For the second prototype, the iron bars are mounted according to all the four scenarios given in Table 6.2.
The magnetic field quality is shown in units in Figure 6.17. Again, the left column provides measurements
and simulation results as a multipole series expansion, whereas the right column shows the field distribution
within the magnet aperture. The field error introduced by the iron bars at 300K is given for the low error
scenario by 10 units of a2, withminor contributions of b3 and a3 (Figure 6.17a); for themedium error scenario
by 30 units of a2 and 15 units of a3, with minor contribution of b2 (Figure 6.17c); for the high error scenario
by 70 units of a2 and 10 units of a3 with minor contribution from b2 and a4 (Figure 6.17e). The check error
scenario provides an error equal in magnitude to the medium error scenario, but with inverted sign for the
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Figure 6.16. Measured and simulatedmagnetic field quality for the first prototype, with iron bars. Left: multipole
series expansion at both 300K and 77K, in a dipole background field. Right: Magnetic field error
seen by the rotating coil, reconstructed from measurements.

normal even-order and the skew odd-order multipoles (Figure 6.17g). By cooling the HTS screens to 77K, the
HALO is turned into the superconducting state, and a reduction of the field error is measured. The reduction
occurs for each scenario, and for every multipole component introduced by the iron bars (see Figure 6.17
and 6.16). The reduction factor for the principal error multipoles is found to be between three and four,
higher for components with higher magnitude. Concerning the higher order multipoles with order > 4, no
field perturbation is observed with respect to 300K. These components remain within the noise floor of the
background field. The net magnetic contribution provided by the HTS screens in the rotating coil region is
shown in the right column of Figure 6.17, from top to bottom for the low, medium, high, and check error
scenarios. Results are shown for both the setup at 300K and 77K. For all the scenarios, from the left to the
right column, a reduction in the field error and an improvement in the homogeneity of the magnetic field
distribution is achieved.

Simulation results accounting for geometric defects reproduce measurements quite well showing that curved
and flat geometries are in qualitative agreement, with the screens working closer to ideal conditions with re-
spect to the first prototype. The geometric defects of the HTS layers in the two prototypes are determined only
once and in the absence of iron. With the subsequent addition of iron, the measured and simulated results
(Figure 6.16 and 6.17) show a high degree of consistency, without the need of ’re-fitting’ for geometric defor-
mation, suggesting excellent predictive properties of the simulationmodel.

6.4.4 Field-error cancellation

The THD factor previously defined in (5.15), is calculated for the magnetic field quality obtained for the
first and second prototype (Figures 6.16 and 6.17) in the different iron configurations, at 300K and 77K.
Results are shown in Figure 6.18, for both measurements and simulations. The magnetic contribution pro-
duced by the screening currents in the HTS screens produces a reduction of the THD factor for each scenario,
and for both the first and the second prototype. The highest reduction is obtained in the scenario at high
field error, because the self-field contribution due to geometric deformation in the HTS screens is less rele-
vant.
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(e) Second prototype, high field error.
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Figure 6.17. Measured and simulated magnetic field quality for the second prototype, with iron bars. Left:
multipole series expansion at both 300K and 77K, in a dipole background field. Right: Magnetic
field error seen by the rotating coil, reconstructed from measurements.
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Figure 6.18. Measured and simulated magnetic field quality, given in units as a THD factor. Results are shown
for four different positions of the iron bars. The field error is shown for the prototypes at both 300K
and 77K. Simulation results are also shown for HTS screens with flat geometry.

The overall field-cancellation performance of the HTS screens is quantified by means of two efficiency pa-
rameters. The first parameter is the geometric efficiency ηg which measures the performance degradation
caused by non-ideal screen geometries. It is defined as

ηg(dg) = 1− Fd( ~Bhalo)

Fd( ~Biron)
= 1− 1

Qg
, (6.13)

where Qg is the geometric quality factor, and ~Bhalo and ~Biron indicate the field in the dipole magnet affected
by the geometric defects dg in the HTS screens and by the iron bars, respectively. For ensuring a high
efficiency, therefore a high geometric quality factor, the field error from the screens must be negligible with
respect to the overall field error. For perfectly parallel and infinitely thin screens, that is, |dg| → 0 and
ηg(dg) → 1, the screens reach the theoretical performance predicted by simulations with flat screens. The
second parameter is the magnetic efficiency ηm which measures the overall field quality improvement after
the field-error cancellation. It is defined as

ηm = 1− Fd( ~Bboth)

Fd( ~Biron)
= 1− 1

Qm
, (6.14)

where Qm is the magnetic quality factor, ~Bboth is the magnetic field in the dipole magnet with both HALO
and the iron bars. The magnetic efficiency is affected not only by the geometric defects, but also by the
width, thickness, and position of the screens, therefore their design. In case of a complete cancellation of the
magnetic field error, that is, Fd( ~Bboth) → 0, then ηm = 1.

The geometric and magnetic efficiency and their quality factors are given in Table 6.4 for both prototypes,
and all iron configurations. The first prototype features ηg = 0.4, ηm = 0.6 and Qm = 2.4. A performance
increase is observed with the second prototype, achieving a ηg of up to 90% and ηm of up to 75%, producing
a Qm between 2.9 and 3.8. It is found that the field quality is improved by a factor of almost four for the high
field-error scenario. For the scenarios where Qg < Qm, a partial compensation of the field error due to the
iron bars was accidentally obtained by the HALO self-field contribution.
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No. Holder Field error ηg ηm Qg Qm

1 1st medium 0.40 0.58 1.7 2.4
2 2nd low 0.65 0.72 2.8 3.5
3 2nd medium 0.86 0.68 6.9 3.1
4 2nd high 0.92 0.74 12.6 3.8
5 2nd check 0.85 0.66 6.7 2.9

Table 6.4. HALO performance.

6.5 Numerical Extrapolation at 100mT

Numerical simulations of the experimental setup at 100mT and 77K show that in case the geometric defects
are fully compensated, flat screens would further improve the prototype performance in each of the iron
scenarios. However, this is not sufficient for ensuring a cancellation of the field error below 1 unit of THD. At
the same time, measurements do not allow to draw conclusions regarding the persistency of the currents over
time. Therefore, the prototype performance is extrapolated by means of simulations beyond the reference
design parameters. Perfectly flat and parallel screens are assumed, and the extrapolation is carried out with
regards to the width of the screens, the number of layers per screen, and the critical current of the tapes.
The magnetic field quality is evaluated 100 s after steady state operations. Also, simulations are carried out
for time intervals up to 100h of steady state operations, and the drift of the screening currents is assessed.

6.5.1 HTS screens geometry

The number of tapes per layer is increased from 5 to 6 (4 to 5 for the odd-order layers) to obtain up to
70mm-wide screens. The maximum width of the screens, that is, the maximum number of tapes per layer,
is fixed by the magnet aperture. At the same time, the number of layers per screen is increased, from 4 to
16. Although the magnet coil design and the clearance of the magnet aperture may pose geometric limits
to the design of the screen, the number of layers shall pose less challenges due to the negligible thickness
of the tapes. The number of tapes per layer is combined with the number of layers, and the possible design
combinations are investigated. Results are given in the left column of Figure 6.19, for all four iron scenarios,
where the dashed lines show the field error without the screens. The calculated THD factor is shown as a
function of the number of tapes per layer, and it is parametrized with the number of layers in the HTS screens.
The experimental conditions correspond to 5 tapes per layer, and 4 layers. By increasing both the width of
the screens and the number of layers, it is possible to obtain a residual in the THD factor below one unit, in
each of the iron scenarios.

6.5.2 Critical current

The experimental setup is simulated for all four iron scenarios, applying a scaling factor 0.5 ≤ kIc ≤ 1.5 to
the critical current Ic of the superconducting tapes. Results are shown in Figure 6.20a, in THD units, as a
function of the scaling factor applied to the tape critical current, for the four iron scenarios. The experimental
conditions correspond to a unitary scaling factor. A reduction of the critical current (kIc < 1) has a detrimental
effect on the HALO performance as it increases the residual THD factor after the field-error cancellation,
with an exception for the low iron scenario where the Ic is still sufficient since no degradation is observed.
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(b) THD drift, low-error scenario.
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(c) THD, medium-error scenario.
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(d) THD drift, medium-error scenario.
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(e) THD, high-error scenario.
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(f) THD drift, high-error scenario.
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(g) THD, check-error scenario.
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Figure 6.19. Left column: simulated THD factor, in units, as a function of the number of tapes per layer. Right
column: simulated drift of the THD factor, in units, as a function of time.
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Figure 6.20. (a) THD factor, as a function of the scaling factor applied to the tape critical current. (b) Simulated
drift of the THD factor, in units, as a function of time.

Conversely, an increase of the critical current (kIc > 1) is beneficial, as the residual THD factor is decreased,
again with the exception of the low iron scenario. However, the reduction of the field error is marginal and
tends to disappear for higher critical currents.

6.5.3 Screening currents drift

The magnetic behavior of the HTS screens is simulated by means of the numerical model detailed in Sec-
tion 6.3. By using a linear ramp for the source current, the magnetic field in the dipole magnet is increased
from zero up to the reference value of 100mT. Then, the magnetic contribution of the screening currents is
evaluated for up to 100h of stable operations. The field drift is calculated as the evolution in time of the THD
factor with respect to the value at the end of the field ramp.

The influence of the number of tapes and layers on the field drift is shown in the right column of Figure 6.19.
Numerical results show a drift of the THD factor for the high iron scenario exceeding 1 unit within 100h
in the 4-layers configuration, whereas in the 16-layers configuration the increase remains below 0.01 units.
The same qualitative behavior is found for the remaining scenarios. Concerning the influence of the tape
critical current, a general trend is observed in Figure 6.20b where, with an insufficient critical current, the
THD factor exceeds 10 units over a duration of 100 h, whereas with a sufficiently high critical current, the
increase in THD with time is negligible in all scenarios.

Higher critical currents are beneficial for the stability of the screening currents, and are therefore preferable
for the screens also in case there is no performance increase in the residual of the THD factor. The increase can
be achieved by using high-IC tapes and increasing the number of layers.
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[T][T]

Figure 6.21. Case study for numerical extrapolation. Left: dipole magnetic field of 10T, affected by 10 units
of b3. The two circles represent the reference circumference and the magnet aperture. The HALO
position is also shown. Right: magnetic field inside the reference circumference.

6.6 Numerical Extrapolation at 10T

Although the prototype is operated at 77K and 100mT, within accelerator magnets the expected conditions
for HTS screens are characterized by lower temperatures and higher fields. An increase in the magnetic field
leads to a reduction of the critical current in the tapes, whereas a decrease in the temperature has the opposite
effect (see e.g [30]). The behavior of the HALO technology is extrapolated to accelerator-like operational
conditions by means of numerical simulations. Perfectly flat and parallel screens are assumed. Simulations
are parametrized by the width of the screen, the number of layers per screen, and the horizontal distance of
the screens from the magnet aperture. Following the same method described in Section 6.5, the magnetic
field quality is evaluated 100 s after steady state operations, and the drift of the screening currents is assessed
for 100h of steady state operations.

The screens are assumed to be operated at 4.5K, in a background dipole field of 10T with an error of 10 units
of b3. The model used for the extrapolation is shown in Figure 6.21, where the magnetic field is imposed
by a boundary source. The magnetic field and the field error are chosen to qualitatively reproduce a field-
scenario within the LHC [3]. The geometric setup of the screens and the reference radius is retained from the
experiment. The screens are positioned with an horizontal gap of 2mm with respect to the magnet aperture.
The magnet aperture radius is 3/2 bigger than the reference radius. The gap accounts for the structural
elements such as the beam screen and the surrounding steel pipe [3].

The magnetic field error is negligible if compared to the dipole field. As a consequence, the magnetic field
lines are assumed to be aligned with the HTS screens. The anisotropic behavior of the HTS tapes allows
achieving a higher critical current in the screens. In the following, a critical current per unit of length Ic =
250Amm−1 is assumed, conformwith themeasurements on commercially available tapes from [30] and [31].

6.6.1 HTS screens geometry

The number of tapes per layer is increased from 5 to 8 (4 to 7 for the odd-order layers), obtaining up to
100mm-wide screens. The number of layers per screen is also increased, from 4 to 16. The number of
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Figure 6.22. (a) Simulated THD factor, in units, as a function of the number of tapes per layer. (b) Simulated
drift of the THD factor, in units, as a function of time.

tapes per layer is combined with the number of layers, and the possible design combinations are investi-
gated.

The magnetic field is linearly increased from zero up to 10T within 10 s, then it is kept constant. The
results are shown in Figure 6.22a, in terms of the THD factor as a function of the number of tapes per
layer, and parametrized with the number of layers in the HTS screens. For the given magnetic config-
uration, the magnetic field error is reduced below one unit. If a field quality constraint is prescribed,
for example in terms of maximum THD value, the screen design can be adapted to match the require-
ments.

The field-error cancellation is more effective for superconducting screens closer to the magnet aperture. This
is shown in Fig. 6.23a, where the THD factor is calculated as a function of the number of tapes per layer, and
parametrized with the distance between the screens and themagnet aperture. For the shortest screenmade of
5 tapes, an increase of about 0.3units/mm is found, whereas for the longest screenmade of 8 tapes an increase
of about 0.1units/mm is obtained. Therefore, for this case, the sensitivity of the screen to the horizontal offset
with respect to the magnet aperture is weaker for longer screens.

6.6.2 Screening currents drift

The drift of the THD factor is calculated as discussed in Section 6.5.3. The influence of the number of tapes
and layers on the field drift is shown in Figure 6.22b. Numerical results show an increase for the THD fac-
tor below 0.1 units within 100h, for HTS screens with 4 layers. For the case of a 16-layers design, the drift
is reduced by about one order of magnitude, remaining below 0.01 units. If a maximum drift constraint is pre-
scribed, it is possible to scale the screen design such that requirements aremet.

The influence of the horizontal distance of the screens from the magnet aperture is shown in Figure 6.23b,
considering 16-layers screens. For all the considered cases, the drift shows the same qualitative behavior,
remaining below 0.1 units within 100h of stable operations. Results confirm that higher critical currents
are beneficial for the stability of the screening currents, and that the distance from the magnet aperture
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Figure 6.23. (a) Simulated magnetic field quality for 16-layers screens, in units as a THD factor. Results are given
as a function of the number of tapes per layer, and parametrized with the horizontal displacement
of the HTS screens with respect to the magnet aperture. (b) Simulated drift of the THD factor, in
units, as a function of time.

influences the screen performance in terms of field-error cancellation, but is not crucial for the drift of the
screening currents.

6.7 Discussion

The field quality measurements obtained for both the first and the second prototype (see Figures 6.16
and 6.17) highlight a relevant reduction of the field error in all the presented scenarios. The field quality im-
provement appears after the HALO has transitioned to the superconducting state, and it is obtained thanks to
the magnetic contribution of screening currents induced in the HTS tapes.

The cancellation of the undesired field error occurs for all multipole components, contributing to the homog-
enization of the magnetic field in the magnet aperture, as shown by the magnetic field distribution in the right
column of Figures 6.16 and 6.17. Considering the second prototype, the THD factor is reduced by a factor of
three to four depending on the field-error scenario (see Figure 6.18). Overall, the field-error cancellation pro-
vided by means of HTS screens constitutes a net improvement for the magnetic field quality. Therefore, the
proof of concept for the HALO technology can be considered successful.

The measured field-error cancellation for the two prototypes was about 70% and 90% of the value predicted
by simulations, assuming perfectly positioned and straight screens. The discrepancy is due to geometric
deformation of the HTS screens, caused by mechanical tolerances which affected the manufacturing of the
prototypes. Such deformation introduces a self-field error which has a detrimental influence, posing an upper
limit to the HALO performance. It is found that the self-field error delivers a constant field contribution whose
relevance decreases as the overall field error increases.

With the second prototype, the THD factor due to the self-field error went down from twenty-one to five
units. This error can be further reduced by suitable design choices, sufficiently tight mechanical toler-
ances, and a precise manufacturing process. Stiff HTS holders are recommended for mechanically sup-
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porting the tapes. As an example, rectangular blocks with precisely machined outer surfaces may be used
as both beam pipes and HTS holders, providing a natural integration of the screen within accelerator mag-
nets.

Simulations considering flat-screen geometries are in qualitative agreement with measurements, although
they systematically overestimate the HALO performance. A visual inspection of the first HTS holder prototype
identified geometric defects. These imperfections were integrated in the model by means of curved screens,
and quantified via an optimization algorithm, leading to simulations that are in full quantitative agreement
with measurements. Optimization results shall be used carefully, since over-fitting is a risk, for example
of the superconducting properties of the tapes. However, the geometric defects for the two prototypes are
determined only once and in the absence of iron. With the subsequent addition of iron, and in spite of the
absence of ’re-fitting’ for geometric deformation, the measured and simulated results in Figures 6.16 and 6.17
show a high degree of consistency, which is a strong indication of the good predictive value of the numerical
model. At the same time, simulations supported the interpretation of the self-field error in the first prototype,
providing valuable insights for the design of the second iteration.

The HTS screens are simulated at 4.5K and in 10T dipole background field which are working conditions
typical of accelerator magnets.The field-error cancellation is still effective as long as the equivalent crit-
ical current density of the screens is increased accordingly, that is, by increasing the number of layers
and decreasing the operational temperature. Numerical results show also that the field-error cancellation
can be improved by increasing the width and the number of layers of the HTS screens. The THD factor
is reduced below one unit, leading to a nearly perfect cancellation of the field error. The decay of the
screening currents over time, and the consequent degradation of the field quality, is expected to remain
within 0.1 units over 10 hours, being negligible in comparison with the operating time of accelerator cir-
cuits [3].

The persistency of the screening currents is the cornerstone of the overall HALO technology. For this reason,
the screening currents decay rate must cope with the field quality requirements in the target application. The
field drift can be kept within specifications by choosing appropriate design features for HALO, such as the criti-
cal current of the tapes and number of layers in the screens. In an acceleratormagnet, the HTS screensmust be
centered as close as possible around the beam vacuum chamber. The HALO technology is expected to provide
the maximal benefit to magnets made of ReBCO tapes, as at low current the field quality in those magnets is
expected to be heavily degraded by persistent magnetization phenomena.

The maximum field error which can be possibly canceled is determined by the equivalent critical current
of the HTS screens. This parameter can be increased either by increasing the number of layers of tapes, or
decreasing the operational temperature. In order to integrate HALO in accelerator magnets, the combination
of both strategies is envisioned, as the magnetic fields are expected to be up to two orders of magnitude higher
than in the experimental setup used for the proof of concept. For this reason, an operational temperature
below 20K is recommended.

6.8 Proposed Next Steps

The experimental and simulation studies of HALO show that the experimentally observed behavior is well
understood and that HALO may have a significant positive impact on the field quality of accelerator mag-
nets. An interesting candidate for a future practical application of HALO is the common coil design [299].
The common coil design features large race-tracks that give most of the field magnitude over the bore, in
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Figure 6.24. Magnetic field in the simplified model of the FCC common coil. (a) Magnetic field, in T, in the cross
section of the magnet. (b) Detail of the magnet aperture.

combination with smaller correction coils that are needed for improving the field quality. This design is of
relevance, as race-track coils can be combined in a common-coil design which is one of the candidates for the
superconducting magnets to be used in the Future Circular Collider [9]. However, despite the simplicity in
the design of race-track coils, correction coils must be added to the magnet design. The correction coils are
unfortunately necessary, as the race-track coils by themselves cannot match the accelerator standards in the
field quality [300, 301].

The common coil is a very interesting candidate for use with HALO, as HTS screens could replace the correc-
tion coils. Consequently, the magnet design could focus on easy-to-produce race-track coils in combination
with HALO. To motivate this subsequent study, we present a preliminary investigation for a simplified model
in the 2D setting of the common coil proposed in [300]. The magnet geometry and the magnetic field map
are shown in Figure 6.24a. Here, two HTS screens are added between each of the aperture and the race-track
coil, as highlighted by the detail view in Figure 6.24b. The screens are 140mm wide and are composed of
12 layers, each with a critical current per unit of length Ic = 200Amm−1. The simulated magnetic field
quality is reported in Figure 6.25a as a multipole series expansion, for the cases without and with HALO. The
magnetic field error in the magnet aperture is shown in Figure 6.25b. The THD factor of the common coil
design without correction coils is reduced from 147 to 6 units in the cross-sectional plane. Unfortunately,
a detailed study of the common coil design in combination with HALO (including a detailed study of the
ends) is outside the scope of this thesis work, but the preliminary results presented here give motivation to
proceed with HALO for high-field accelerator magnets, in particular for fully-racetrack-based common coil
magnets.

6.9 Summary

This chapter discusses the proof of concept of HALO, a device composed of HTS screens for the magnetic
field-error cancellation in accelerator magnets. The working principle is based on the persistent magneti-
zation phenomena produced by screening currents in ReBCO tapes. The magnetization is used for shap-
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Figure 6.25. Simulated magnetic field quality for the FCC common coil design, before and after the introduction
of HTS screens. (a) Multipole series expansion. (b) Magnetic field error in the magnet aperture.

ing the magnetic field in the aperture of accelerator magnets. The screens are aligned with the main field
component, providing a selective field-error cancellation for both dynamic and static field-error contribu-
tions.

Two prototypes were built and tested, differing in the design of the HTS holder. It was found in the first
prototype that undesired geometric defects add a detrimental effect on the measured field quality, limiting
the sensitivity of the experimental assembly. The lessons learned were applied to the second prototype whose
geometric defects were substantially smaller. The prototypes were tested in the aperture of a reference
dipole magnet whose field was perturbed by means of iron bars. The magnetic field quality was measured
for four field-error configurations, obtained by varying the position of the iron bars in the magnet aperture.
Measurements show that the second HALO prototype provides a significant reduction of the THD factor
associated to the field error, up to a factor of four, reaching up to 90% of the performance predicted by
numerical simulations.

The numerical analysis is carried out under magnetoquasistatic assumptions, using a model in the 2D setting
implementing the coupled ~A− ~H formulation from Chapter 2, and the thin-shell approximation for the tapes
composing the HTS screens. Simulations provide the theoretical performance of HALO in case of perfectly
parallel HTS screens, and quantify the influence of geometric defects in the screens, achieving quantitative
agreement with measurements. Numerical extrapolation on the prototype shows that a complete error can-
cellation may be achieved by increasing the width and the thickness of the screens. At the same time, the
field-quality drift due to the decay of screening currents can be reduced by increasing the equivalent critical
current of the screens. The screens are also simulated for operational conditions compatible with accelera-
tor magnets, showing that the decay of screening currents is not an issue, and that the typical field quality
requirements for accelerator magnets are at reach.
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7 Conclusions and Outlook

This work is motivated by the recent advancements in the application of high-temperature superconducting
technology to accelerator magnets for particle physics. It focuses on the development of a coupled ~A− ~H
field formulation for transient magnetothermal simulations of systems comprising high-temperature super-
conductors, especially ReBCO tapes, and on the development of proof-of-concept superconducting screens
for magnetic field-error cancellation in accelerator magnets.

The electromagnetic behavior of HTS materials is simulated as an eddy-current problem in the time domain
by means of the finite element method. This allows resolving the current density distribution within the
superconductor, in particular screening current phenomena and their influence on the magnetic field quality.
As screening currents are the principal contribution to Joule losses, the field problem is extended by the heat
balance equation, such that quench phenomena are also included. In this way, it is possible investigating
the magnetothermal behavior in systems made of high-temperature superconductors. The main challenge
is identified in the nonlinear electrical behavior of superconducting materials, traditionally represented by
means of an empirical power law. It has been shown that finite material properties are ensured in both (su-
per)conducting and nonconducting materials by means of a coupled ~A− ~H field formulation combined with
a domain decomposition strategy. On the one hand, magnetic-field conforming formulations are resistivity-
based, and can be easily extended to superconducting materials. On the other hand, the magnetic vector
potential is preferred to scalar-potential formulations in the remaining computational domain for ensuring
higher precision in ferromagnetic regions, avoiding cut-sets in case of domains with non-trivial topology. Such
advantages come at a price of a higher number of degrees of freedom in the 3D setting. The formulation
is complemented with solid conductor models for the coupling with voltages and/or currents belonging to
external circuits. The implementation of the formulation is verified against reference solutions for individual
tapes in the 3D setting, and coils in the 2D setting. To cope with field-circuit coupled simulations of circuits
containing accelerator magnets, a coupling interface is derived as an optimized Schwarz transmission con-
dition which is approximated for small frequencies by a Taylor series expansion, truncated to the first order.
The transmission condition is physically interpreted as connecting the magnetothermal field model to the
circuit as the series of an inductance, a resistance, and a voltage correction term. The coupling interface is
successfully used for the cosimulation of a quench event in an HTS solenoid, using the waveform relaxation
method.

It is found that superconducting tapes exhibiting a high aspect ratio can be approximated as thin shells by
solving for the normal component of ~H within the superconductor. The formulation is understood as formally
identical to a ~T formulation with a single-vector component. For stranded multifilamentary conductors, the
field problem is reduced to a monolithic ~A field formulation which implements an equivalent magnetization
model. The thin-shell approximation is verified by comparison with analytical solutions available in litera-
ture. It is also verified that accurate results are obtained as long as the thickness of the tape is below the
skin depth. Consequently, it is shown that a block of superconducting material can be modeled by means of
a stack of shells, obtaining consistent results for magnetic fields applied perpendicularly to the wide surface
of the block. The thin-shell approximation plays a crucial role in reducing the computational time: in case of
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superconducting tapes in the 2D setting, a speed-up of about two orders of magnitude is observed with re-
spect to models of fully-resolved tapes implementing the ~H formulation. The approximation is recommended
for simulating coils with a high number of individually-insulated turns. However, in case of no-insulation (or
partial-insulation) coils, the thin-shell approximation cannot capture the local current redistribution phe-
nomena occurring between different tapes in case of a quench, therefore models with fully-resolved tapes
are necessary.

The coupled ~A− ~H field formulation is validated against field quality measurements in the HTS insert dipole
magnet Feather-M2.1-2. It is shown that the 2D numerical model provides an accurate quantification of
the dynamic distribution of the screening currents. The model requires a free parameter for the power law
obtained from the critical current of the coil, compensating for the uncertainty in the critical current density
of the tape. At the same time, a parametric sweep is used to cope with the uncertainty in the power-law
index. The influence of the iron hysteresis on the field quality is found to be negligible with respect to
screening currents. Although simulations and measurements are in satisfactory agreement, the model can
be improved by a better knowledge of both the critical surface of the tape used in the coil, thus eliminating
the free parameter used for describing the critical current, and the magnetization curve of the iron used for
the yoke. These numerical results can be used not only for the magnetic field quality analysis, but also for
the calculation of the Joule losses and the dynamic forces in the coil. Therefore, such modeling approach can
be integrated in the future design of HTS magnets, for example within a numerical optimization workflow
for quench protection studies.

The need for high magnetic field quality in accelerator magnets has resulted in the proposal of superconduct-
ing screens for magnetic field-error cancellation, and the subsequent development of HALO. Experiments
have confirmed the effectiveness of brick-layer structures composed of HTS tapes in improving the magnetic
field quality by means of persistent magnetization. Tight mechanical tolerances are necessary for the manu-
facturing of the mechanical support for the screens, this to minimize geometric deformations and to ensure
the geometric alignment with the main field component. The performance of the screens depends also on
their geometric properties and equivalent critical current. It is found that the error cancellation is improved
by increasing the width of the screens, their number of layers, and by positioning the screens as close as
possible to the magnet aperture. In particular, the number of layers can be adjusted such that the associ-
ated time constant for decay of the screening currents is well above the cycle time in circuits of accelerator
magnets.

The HTS screens are applicable regardless of the technology used for the magnet, and might be applied
to simple and inexpensive coils with large field errors. Promising candidates for the HALO technology are
race-track coils (such as common coils), as they are simple to construct and might rely on superconduct-
ing screens instead of auxiliary coils for field quality improvement. Moreover, HTS screens might be of
use for applications beside accelerator magnets where stringent field quality requirements need to be satis-
fied.

7.1 Outlook

The theoretical, numerical and experimental results presented in this work have led to new questions to be
investigated in future work.

The ~A− ~H coupled field formulation could be further extended to include a scalar potential φ for the noncon-
ducting domains, limiting the use of the magnetic vector potential to ferromagnetic materials. This would
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(a) HALO applied to a racetrack coil.

[T]

(b) Simple no-insulation coil.

Figure 7.1. Examples of 3D models. (a) Current density distribution in a HTS screen for the end-coil region
of a racetrack coil (only 1/8 of the model is shown). The half-cylinder shows the position of the
magnet aperture. (b) Magnetic field produced by a simple no-insulation coil made of five turns, once
stationary conditions are reached.

lead to an ~A, ~H − ϕ formulation, reducing the number of degrees of freedom in 3D models which could
reduce the computational cost. A further step would be extending the scalar potential to the conducting
regions, thus obtaining a coupled ~A,~T − ψ, formulation which would be suitable also in the magnetostatic
approximation. Another point consists in improving the optimized transmission condition in the waveform
relaxation algorithm for accelerator magnets in circuits, which has been approximated by means of a Taylor
series expansion. This leaves the possibility of adding more terms of the series to potentially further speed
up the iteration convergence.

Field quality in HTS accelerator magnets is an open topic. The HTS screens are a promising technology for
reducing the impact of screening currents. They should be tested in accelerator-like conditions, and possibly
integrated into the design of a full-size accelerator magnet. The end coil region is of particular interest, and
for this detailed 3D modeling is required. As an example, Figure 7.1a shows the current density in an HTS
screen for the end-coil region of a racetrack coil.

Another open topic is the protection of HTS cables from the consequences of a quench. A potential solution is
offered by the no-insulation (NI) coil concept, which must be carefully studied due to potentially unbalanced
Lorentz forces once the current redistributes in the coil. Moreover, NI coils could be combined with HTS
screens for compensating the field error introduced by eddy currents. Figure 7.1b shows an example of a five-
turns, no-insulation coil simulated with ~A− ~H coupled field formulation.

As shown in Figures 7.1a and 7.1b, it is already demonstrated that the formulation described in this thesis is
sufficiently advanced to model three-dimensional transient effects in accelerator magnets and non-insulated
coil transient behavior, however further studies are needed to fully work out the implications of this type
of modeling. The formulation might support the design of future accelerator magnets based on HTS tapes,
investigating the impact of persistent magnetization phenomena on screening currents, and the effectiveness
of quench detection and protection methods.
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A ReBCO Critical Current Density

Numerical Fit

In ReBCO conductors, the critical current density Jc( ~B, T ) shows an anisotropic, field- and temperature-
dependent behavior. This can be modeled, for example, by means of the angular-dependent scaling relation
in [280]. The fit is formalized with respect to the tangential and normal directions of the tape associated to
the subscripts ab and c, consistently with [280]. The fit requires the input quantities | ~B|, T , θB. The field
angle θB is defined as the angle between ~B and the normal unit vector ~n perpendicular to the tape wide
surface, reading

θB = arccos

(
~B · ~n
| ~B|

)
. (A.1)

The temperature and magnetic flux density are normalized by the critical temperature Tc0, and the tangential
and normal irreversibility fields Bi,ab and Bi,c, as

t =
T

Tc0
, bab =

| ~B|
Bi,ab

, bn =
| ~B|
Bi,c

. (A.2)
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symbol g0 g1 g2 g3 Tc0 pc qc Bi0,c γc αc

unit − − − − K − − T − MATmm−2

value 0.03 0.25 0.06 0.06 93 0.5 2.5 140 2.44 1.86

symbol νg a n0 n1 n2 pab qab Bi0,ab γab αab

unit − − − − K − − T − MATmm−2

value 1.85 0.1 1 1.4 4.45 1 5 250 1.63 68.3

Table A.1. Parameters used for the Jc fit

The irreversibility fields are given by

Bi,ab = Bi0,ab ((1− tn1)n2 + a (1− tn)) , (A.3)
Bi,c = Bi0,c (1− tn) , (A.4)

whereBi0,ab andBi0,c are the maximum irreversibility fields for the two tape directions, and n, n1, and n2 are
fitting parameters. The critical current density is obtained separately for the tangential and perpendicular
directions, reading

Jc,ab(| ~B|, T ) =


αab

| ~B|
(bab)

pab (1− bab)
qab ((1− tn1)n2 + a((1− tn))γab if t and bab < 1,

0 otherwise,
(A.5)

Jc,c(| ~B|, T ) =


αc

| ~B|
(bc)

pc (1− bc)
qc (1− tn)γc if t and bc < 1,

0 otherwise,
(A.6)

where αab and αc are normalization constants, and pab, pc, qab, qc, γab, and γc are fitting parameters related to
the field and temperature dependency for the two tape directions. The angular dependency on the critical cur-
rent density is included bymeans of the anisotropy factor g(| ~B|, T ), defined by

g(| ~B|, T ) = g0 + g1e
g2| ~B|e−g3T (A.7)

where g0, g1 and g2 are fitting parameters. The previous definitions are combined into the critical current
density fit which reads

Jc(| ~B|, T, θB) = min(Jc,c(| ~B|, T ), Jc,ab(| ~B|, T )) +
max((Jc,ab(| ~B|, T )− Jc,ab(| ~B|, T )), 0)

1 +

(
θπ/2−B

g(| ~B|, T )

)νg , (A.8)

where νg is a fitting parameter. The purpose of the min and max functions is to ensure a consistent fit
behavior for Jc,c > Jc,ab which may occur at temperatures close to Tc0. The fit is unstable for | ~B| → 0,
therefore a lower limit of Bmin = 10mT is prescribed, that is, | ~B| = Bmin if | ~B| < Bmin. As an example,
the fit (A.8) is shown in Figure A.1 for a tape produced by Fujikura [284], using the parameters given in
Table A.1.
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B Material Law for Resistivity

The comparison proposed in this section follows closely the work in [172]. The nonlinear resistivity ρ in HTS
materials can be modeled by means of the phenomenological percolation-depinning law proposed in [170].
The relation introduces a lower limit Jc,min( ~B, T ) for the current density. For | ~J | ≤ Jc,min, the magnetic field
is frozen in the superconductor, therefore no flux creep can occur and the current density flow is perfectly
lossless [1]. The percolation-depinning law reads

ρ(| ~J |, ~B, T ) =


0, if | ~J | < Jc,min( ~B, T )

Ec

Jc( ~B, T )

(
| ~J | − Jc,min( ~B, T )

Jc( ~B, T )− Jc,min( ~B, T )

)n( ~B,T )−1

, if | ~J | > Jc,min( ~B, T )
(B.1)

where ~J is the current density, Ec is the critical electric field, and Jc( ~B, T ) and n( ~B, T ) are the anisotropic
field- and temperature-dependent critical current density and power-law index.

In practice, Jc,min( ~B, T ) decreases to zero as ~B or T are increased (see [170] and the references therein).
Therefore, the percolation-depinning law can be simplified into the widely used power law [171], obtained
by applying the asymptotic approximation Jc,min → 0 to (B.1), thus neglecting frozen-field phenomena. The
power law reads

ρ(| ~J |, ~B, T ) = Ec

Jc( ~B, T )

(
| ~J |

Jc( ~B, T )

)n( ~B,T )−1

, (B.2)

where the value ofEc is arbitrary, and it is typically set to 1×10−4 Vm−1 [173]. Subsequently, Jc is determined
as the value for which Ec is reached in the material. The n-value typically ranges from 40 to 50 for LTS
materials [174], and from 20 to 30 in HTS materials [175]. An example of the Jc behavior is given in
Appendix A.

For increasing n-values, (B.2) gets steeper for | ~J | > Jc. Therefore, the power law can be simplified into
the critical-state model [176, 177], obtained from (B.2) by the asymptotic approximation n → ∞. The
critical-state model reads

ρ(| ~J |, ~B, T ) =


0, if | ~J | ≤ Jc( ~B, T ),

[0,+∞), if | ~J | = Jc( ~B, T ),

∅, if | ~J | > Jc( ~B, T ),

(B.3)

and corresponds to a nonsmooth, multivalued relation where the current density is either equal to zero or
Jc( ~B, T ). Numerical methods for implementing (B.3) are provided for example in [302, 303].
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Figure B.1. Quantitative behavior of ρ in HTS materials, normalized by Jc and Ec, assuming constant parame-
ters. (a) Comparison of the percolation law, power law and critical state model. (b) Comparison of
the power law, parametrized by n, and the critical state model.

Comparison

The quantitative behavior of (B.1)-(B.3) is shown in Figure B.1a, assuming constant n and Jc. The percolation-
depinning law converges to the power law as the current density is increased above Jc,min. The power-law
behavior is parametrized by the n value and shown in Figure B.1b. For n→ ∞ the power law approximates
the behavior of the critical state model.

The percolation-depinning law provides the most general relation, whereas the power law and the critical
state model are particular cases obtained by successive simplifications. On the one hand, the magnetic field
and temperature values adopted in practical applications ensure that the current density is typically much
higher than the lower limit considered in the percolation-depinning relation. On the other hand, the critical
state model does not allow for field relaxation phenomena occurring in HTS materials. A comparison of
numerical examples implementing (B.1)-(B.3) is available in [172].
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List of acronyms

BC Boundary condition
CF Current flow
BDF Backward differentiation formula
BSCCO Bismuth strontium calcium copper oxide
BVP Boundary value problem
CERN European Organization for Nuclear Research
CLIQ Coupling-loss induced quench
DAE Differential algebraic equation
DW Darwin
EM Electromagnetic
EQS Electroquasistatic
ES Electrostatic
FCC Future Circular Collider
FEM Finite element method
FM Full Maxwell
HALO Harmonics-absorbing layered-object
HTS High-temperature superconductor
IC Initial condition
IFCC Inter-filament coupling current
ISCC Inter-strand coupling current
IVP Initial value problem
KCL Kirchhoff’s current law
KVL Kirchhoff’s voltage law
LHC Large Hadron Collider
LTE Local truncation error
LTS Low-temperature superconductor
MNA Modified nodal analysis
MQS Magnetoquasistatic
MS Magnetostatic
NI No-insulation
ODE Ordinary differential equation
PDE Partial differential equation
PEC Perfect electric conductor
PMC Perfect magnetic conductor
PSO Particle swarm optimization
ReBCO Rare-earth copper barium oxide
SPICE Simulation program with integrated circuit emphasis
STEAM Simulation of transient effects in accelerator magnets
THD Total harmonic distortion
WR Waveform relaxation
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