CERN Accelerating science

If you experience any problem watching the video, click the download button below
Download Embed
Preprint
Report number arXiv:2203.07700 ; FERMILAB-CONF-22-173-PPD
Title Snowmass2021 Cosmic Frontier: Modeling, statistics, simulations, and computing needs for direct dark matter detection
Author(s) Kahn, Yonatan (Illinois U., Urbana) ; Monzani, Maria Elena (SLAC ; KIPAC, Menlo Park ; Vatican Astron. Observ.) ; Palladino, Kimberly J. (Oxford U.) ; Anderson, Tyler (SLAC ; KIPAC, Menlo Park) ; Bard, Deborah (LBL, Berkeley) ; Baxter, Daniel (Fermilab) ; Buuck, Micah (SLAC ; KIPAC, Menlo Park) ; Cartaro, Concetta (SLAC ; KIPAC, Menlo Park) ; Collar, Juan I. (Chicago U., EFI) ; Diamond, Miriam (Toronto U.) Visualizza tutti i 37 autori
Imprint 2022-03-15
Number of pages 23
Note Contribution to Snowmass 2021
Presented at 2021 Snowmass Summer Study, Seattle, WA, United States, 11 - 20 July 2021, pp.
Subject category physics.data-an ; Other Fields of Physics ; physics.comp-ph ; Other Fields of Physics ; hep-ex ; Particle Physics - Experiment
Abstract This paper summarizes the modeling, statistics, simulation, and computing needs of direct dark matter detection experiments in the next decade.
Other source Inspire
Copyright/License preprint: (License: CC BY 4.0)



 


 Record creato 2022-04-01, modificato l'ultima volta il 2024-10-16


Testo completo:
2203.07700 - Scarica documentoPDF
jt - Scarica documentoPDF
Collegamenti esterni:
Scarica documentoFermilab Library Server
Scarica documentoeConf
  • Send to ScienceWise.info