

THE UNIVERSITY of EDINBURGH School of Physics and Astronomy

Higgs highlights at ATLAS Liza Mijović on behalf of the ATLAS Collaboration MoriondQCD 2022, 20 March

ATLAS Higgs highlights

- Combined total and differential cross-sections in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$: <u>ATLAS-CONF-2022-002</u>.
- Higgs coupling & production cross-section combination, <u>ATLAS-CONF-2021-053</u>.
- Direct constraint on Higgs-charm coupling from VH,H→ cc̄ production, arXiv:2201.11428.
- **HH production:** combination <u>ATLAS-CONF-2021-052</u> and HL-LHC projection, <u>ATL-PHYS-PUB-2022-005</u>.
- New results for Moriond 2022:
 - HH searches: HEFT interpretation \leftarrow Guillermo's talk
 - CP of top Yukawa interaction in $t\bar{t}H$ and tH, $H \rightarrow b\bar{b}$, ATLAS-CONF-2022-016.
 - Fiducial cross-section of VH, $H \rightarrow b\bar{b} + 0$ leptons, <u>ATLAS-CONF-2022-015</u>.

More on cross-section & properties in Adinda's talk, more on exotic Higgs decays in Guillermo's talk.

ATLAS: data-taking

- Preparing for Run3: 2022-2025.
- Results today: **Run2** pp collision data-set, $\sqrt{s} = 13$ TeV.
- About x2 LHC design instantaneous luminosity & pile-up.
- Data-taking efficiency: 94%, data quality fraction: 95% \Rightarrow 139 fb⁻¹ of data.

Higgs Production and Decay

4/18

Combined $H \rightarrow \gamma \gamma \& H \rightarrow ZZ^* \rightarrow 4\ell$ x-sections

Comb. : $\sigma(pp \rightarrow H, \sqrt{s} = 13 \text{ TeV}) = 55.5^{+4.0}_{-3.8} \text{ pb} (\pm 3.2 \text{(stat.)} ^{+2.4}_{-2.2} \text{(sys.)})$ SM : $\sigma(pp \rightarrow H, \sqrt{s} = 13 \text{ TeV}) = 55.6 \pm 2.5 \text{ pb}$

Combined $H \rightarrow \gamma \gamma \& H \rightarrow ZZ^* \rightarrow 4\ell$ x-sections

18

Higgs couplings combination

Combination of cross-section measurements in prod./decay modes.

7/18

Higgs couplings interpretation

18

Higgs-charm coupling from VH, $H \rightarrow c \overline{c}$

- Analysis uses VH production: golden channel for $VH, H \rightarrow b\bar{b}$ measurements.
- Direct probe of Higgs-charm coupling.

Challenges of VH, $H \rightarrow c\bar{c}$ in addition to $VH, H \rightarrow b\bar{b}$ ones:

- $BR(H \rightarrow c\bar{c})=2.9\% << BR(H \rightarrow b\bar{b})$
- Tagging charm jets:
 - Based on 2 algorithms: c-tagging DL1 and b-tagging MV2.
 - MV2 vetoes b-jets, ensures orthogonality with $VH, H \rightarrow b\bar{b}$.
 - Efficiency(tag+veto): c-jet:27%, b-jet:8%, light: 1.6%

Higgs-charm coupling from VH, $H \rightarrow c\overline{c}$

0 lepton

1 lepton

2 lepton

Aim: extract signal & background from a combined fit to 44 regions:

- 16 SR-s: N(ℓ), N(c-tags), $N(jets), p_T(V)$.
- 16 CR-s: large ΔR (jet1, jet2).
- Further CRs: 0-tag and top.

Best-fit value $\mu(VH, H \rightarrow c\overline{c}) = -9$.

VH, $H \rightarrow c\overline{c}$: interpretation

 κ_c affects coupling strength & the Higgs width; under assumptions on Γ_H : $|\kappa_c| < 8.5 @ 95\%$ CL.

 $|\kappa_c/\kappa_b|$ is extracted from combination with $VH, H \rightarrow b\bar{b}$:

- Key: b-jet veto in $VH, H \rightarrow c\bar{c}$; ensures orthogonality.
- No assumptions on Γ_H .
- $m_b/m_c = 4.578 \pm 0.008$
- $|\kappa_c/\kappa_b| <$ 4.5 @ 95% CL.
- Higgs-charm coupling < Higgs-bottom coupling.

Searches for HH production

$$V(H) = \frac{1}{2}m_{H}^{2}H^{2} + \lambda_{3}vH^{3} + \frac{1}{4}\lambda_{4}H^{4}$$

SM : $\lambda_{3} = \lambda_{4} = \lambda^{SM} = m_{H}^{2}/(2v^{2})$
Define : $\kappa_{\lambda} = \lambda_{3}/\lambda_{3}^{SM}$

HH production cross-sections and event shapes sensitive to κ_{λ} .

HH: combination results

Interpreted in terms of κ_{λ} , accounting for cross-section, shape & acceptance \times efficiency effects.

HH: HL-LHC projection

Projection of $HH \rightarrow b\bar{b}\gamma\gamma$ and $HH \rightarrow b\bar{b}\tau\tau$.

- Assume 3000 $\,{\rm fb}^{-1}$ of HL-LHC data at $\sqrt{s}=14\,$ TeV.
- Various scenarios for evolution of the uncertainty; baseline scenario: halved theory, scaled Run2 syst. uncertainty
- *HH* signal strength: 23% stat. and $\frac{34\%}{-31\%}$ stat. \oplus syst.
- κ_{λ} 1- σ interval: [0.6,1.5] stat. and [0.5,1.6] stat. \oplus syst.

Top Yukawa CP: $t\bar{t}H$ and tH, $H \rightarrow bb$

1.5

0.5

New measurement probing:

$$\mathcal{L} = -\frac{\mathbf{m}_t}{\mathbf{v}} \overline{\Psi}_{\top} \kappa'_{\top} (\cos(\alpha) + i\sin(\alpha)\gamma^5) \Psi_{\top} H$$

- Background dominated by $t\bar{t}+b\bar{b}$. Shape from MC prediction, normalisation from data.
- Fit to CP sensitive variables in analysis regions:

0.5

b4 15/ 18

Top Yukawa CP: $t\bar{t}H$ and tH

$$\mathcal{L} = -\frac{\mathrm{m}_t}{\mathrm{v}}\overline{\Psi}_{\top}\kappa_{\top}'(\cos(\alpha) + i\sin(\alpha)\gamma^5)\Psi_{\top}H$$

New $H \rightarrow b\bar{b}$ result: Best fit: $\alpha^{CP} = 11^{\circ}_{-77^{\circ}}^{+56^{\circ}}$; Systematic uncertainty: $^{+43^{\circ}}_{-58^{\circ}}$ Disfavours pure CP odd: 1.2σ

 $\frac{H \rightarrow \gamma \gamma \text{ result (2020):}}{\left|\alpha^{CP}\right| < 43^{\circ} @ 95CL}$ Stat. uncertainty $\ll \text{ syst..}$ Excludes pure CP odd: 3.9σ

16/18

VH, $H \rightarrow b\bar{b} + 0$ leptons

New fiducial cross-section measurement:

• Particle-level selection criteria as close as $q \sim V=W,Z$ possible to detector-level. Unfolded measurement can be interpreted with particle-level predictions & BSM models.

• μ_{T1} : 150 GeV < E_T^{miss} < 250 GeV, μ_{T2} : E_T^{miss} > 250 GeV.

Complementary to VH, $H \rightarrow b\bar{b}$ STXS measurement, which: uses 0, 1 & 2 lepton channels, WH sensitivity: 4.0 σ , ZH sensitivity: 5.3 σ . 17/18

Summary

- Combined cross-sections in H→γγ and H→ZZ*→4ℓ and couplings&production cross-section combination:
 <10% probe of Higgs mechanism, consistent with the SM.
- Direct constraint on Higgs-charm coupling from VH,H→cc̄ production:

Higgs-charm coupling < Higgs-bottom coupling (95% CL).

- HH production:
 - Current Run2 combination: $\kappa_{\lambda} \subset$ [-1.0, 6.6] (95% CL).
 - HL-LHC projection: $\kappa_{\lambda} \subset [0.5, 1.6] (1-\sigma)$.
- New results for Moriond 2022:
 - Probe CP of top Yukawa interaction in $t\bar{t}H$ and tH, $H \rightarrow b\bar{b}$: $\alpha^{CP} = 11^{\circ}_{-77^{\circ}}^{+56^{\circ}}$
 - Fiducial cross-section measurement of $VH, H \rightarrow b\bar{b} + 0$ leptons: complementary to $VH, H \rightarrow b\bar{b}$ STXS results.
 - *HH* searches: HEFT interpretation will be discussed by Guillermo.

For many ATLAS Higgs results I did not cover, please see ATLAS Higgs <u>results page</u> and Adinda's & Guillermo's talks today. 18/18

Extra

Simplified Template X-Sections

STXS targets phase space regions within production modes, using Standard Model kinematics as a template.

Compromise: maximise experimental sensitivity vs minimise dependence on theory assumptions.

VH, $H \rightarrow c \overline{c}$: κ_c interpretation

- κ_c affects coupling strength Combination with VH, $H \rightarrow b\bar{b}$: & the Higgs width.
- Negative best-fit value pushes κ_c toward 0.
- $|\kappa_c| < 8.5(12.4)$ @ 95% CL.

- $m_b/m_c = 4.578 \pm 0.008$
- $|\kappa_b/\kappa_c| < 4.5$ @ 95% CL.
- Higgs-charm coupling Higgs-bottom coupling.

HH: combination

 ${
m H}{
ightarrow} bar{b}\gamma\gamma$ analysis:

- BDT for background rejection: yy+jets, single-H production.
- 4 categories: *m_{HH}*, BDT
- Signal from $m_{\gamma\gamma}$ fit.
- Limited by statistical uncertainty.

 ${
m H}{
ightarrow}$ $bar{b} au au$ analysis:

- Non-resonant background norm. & shape from data.
- 3 categories: trigger & $\{\tau_{had}\tau_{had}, \tau_{had}\tau_{lep}\}$
- Fit to MVA output.
- Limited by stat. uncertainty.

22

HH: HL-LHC projection

Combination of $HH \rightarrow b\bar{b}\gamma\gamma$ and $HH \rightarrow b\bar{b}\tau\tau$ analyses.

- Assume 3000 fb⁻¹ of HL-LHC data at $\sqrt{s} = 14$ TeV.
- Various scenarios for evolution of the uncertainty.
- HH signal strength: 23% stat. $\binom{34\%}{-31\%}$ stat. + syst.)
- κ_{λ} 1- σ interval: [0.6,1.5] stat. ([0.5,1.6] stat.+syst.)

VH, $H \rightarrow b\overline{b}$

New VH, $H \rightarrow b\bar{b}+0$ leptons fiducial cross-section measurement is complementary to VH, $H \rightarrow b\bar{b}$ STXS measurement (2021), which:

- Uses 0, 1 & 2 lepton channels.
- Fit to MVA discriminant; fit to $m_{\rm b\bar{b}}$ used as control analysis.
- WH sensitivity: 4.0 (4.1) σ expected (observed).
- ZH sensitivity: 5.3 (5.1) σ expected (observed).

VH, $H \rightarrow b\overline{b}$

New VH, $H \rightarrow b\bar{b} + 0$ leptons <u>fiducial cross-section</u> measurement is complementary to VH, $H \rightarrow b\bar{b}$ <u>STXS measurement</u>, which:

- Uses 0, 1 & 2 lepton channels.
- Fit to MVA discriminant; fit to $m_{\rm b\bar{b}}$ used as control analysis.
- WH sensitivity: 4.0 (4.1) σ expected (observed).
- ZH sensitivity: 5.3 (5.1) σ expected (observed).

