Mixing and CPV in beauty and charm at LHCb

Laís Soares Lavra on behalf of the LHCb collaboration

Université Clermont Auvergne, LPC-Clermont, IN2P3/CNRS

Moriond QCD 19-26 March 2022

Mixing and CPV at LHCb

Outline

CKM angle γ

- LHCb combination γ and charm mixing parameters [JHEP 12(2021)141]
- CKM angle γ from $B^{\pm} \rightarrow Dh^{\pm}$ decays [arXiv:2112.10617] NEW RESULT!

CPV and mixing in charm

- Mass difference in $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ [PRL127(2021)111801]
- Measurement of the charm mixing parameter $y_{CP}-y_{CP}^{K\pi}$ using two-body D^0 meson decays [arXiv:2202.09106] NEW RESULT!
- Measurement of *CP* asymmetries in $D^+_{(s)} \to \eta \pi^+$ and $D^+_{(s)} \to \eta' \pi^+$ decays [LHCb-PAPER-2021-051 in preparation] NEW RESULT!

CPV in beauty

- Observation of large CP asymmetries in $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$ [LHCb-PAPER-2021-049 and LHCb-PAPER-2021-050 in preparation] NEW RESULT!
- Search for *CP* violation in $B^0 \rightarrow p\bar{p}K^+\pi^-$ decays [LHCb-PAPER-2022-003 in preparation] NEW RESULT!

The CKM angle γ

$$\gamma \equiv arg(-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*)$$

$$V_{CKM} \sim \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{-i\beta_s} & |V_{tb}| \end{pmatrix}$$

- Can be measured purely with tree level decays (SM benchmark)
- Theoretically very clean

Measuring γ

- Measured in the interference involving
 V_{cb} and V_{ub} to the same final state
- Golden channel: $B^{\pm} \rightarrow DK^{\pm}$

◊ Magnitude of amplitude(s): A_B , A_D ◊ Suppression factor(s): r_B , r_D ◊ Strong phase difference(s): δ_B , δ_D

- B decay parameters are independent of the D⁰ final state
- Combination of γ measurement from many decay modes gives best precision

Laís Soares Lavra (LPC-Clermont)

22 March 2022

Simultaneous determination of CKM angle γ [JHEP12(2021)141]

LHCb combination

 $\gamma = (65.4^{+3.8}_{-4.2})^{\circ}$

- Combination includes measurements from B-meson and D-meson for the first time
- Excellent agreement with indirect results:
 - $\gamma(\text{UTFit}) = (65.8 \pm 2.2)^{\circ}$ $\gamma(\text{CKM fitter}) = (65.55^{+0.90}_{-2.65})^{\circ}$
- Most precise determination of γ from a single experiment to date

 Around two sigma tension between B^+ and B^0 results

Mixing and CPV at LHCb

Constraint on the CKM angle γ from $B^{\pm} \rightarrow Dh^{\pm}$ decays

Submitted to JHEP [arXiv:2112.10617] NEW RESULT

- 9 fb⁻¹ from full LHCb dataset (2011-2018)
- Study of 8 final states
- $\diamond \ B^{\pm} \rightarrow [K^{\pm}\pi^{\mp}\pi^{0}]_{D}h^{\pm}$ (quasi-ADS) fav.
- ♦ $B^{\pm} \rightarrow [\pi^{\pm} K^{\mp} \pi^{0}]_{D} h^{\pm}$ (quasi-ADS) sup.
- $\diamond \ B^{\pm} \rightarrow [K^{\pm}K^{\mp}\pi^{0}]_{D}h^{\pm}$ (quasi-GLW)
- $▷ B^{\pm} → [\pi^{\pm}\pi^{\mp}\pi^{0}]_{D}h^{\pm}$ (quasi-GLW) (h = K, π)
- Fit to the *B* mass: simultaneous fit to 16 datasets
- 11 observables reported : ratio and asymmetries of yields \rightarrow used to determine γ , r_B and δ_B

First observation of $B^{\pm} \rightarrow [\pi^{\pm} K^{\mp} \pi^0]_D K^{\pm}$ with 7.8 σ significance

Laís Soares Lavra (LPC-Clermont)

Mixing and CPV at LHCb

P ► < ■ ► < ■ ►</p>
22 March 2022

< <p>I > < </p>

Results Submitted to JHEP [arXiv:2112.10617] NEW RESULT

- World-best precision for the 11 observables measured
- Global minimum found at $\gamma = (145^{+9}_{-39})^{\circ}$
- Second solution close to the combined LHCb γ measurement

Results

$$\gamma = (56^{+24}_{-19})^{\circ}$$
$$\delta_B = (122^{+19}_{-23})^{\circ}$$
$$r_B = (9.3^{+1.0}_{-0.9}) \times 10^{-2}$$

Charm mixing and CPV in a nutshell

Neutral meson mixing

$$|D_{1,2}\rangle = p \left| D^0 \right\rangle + q \left| \bar{D}^0 \right\rangle$$

• Mixing parameters

 $x = 2(m_1 - m_2)/\Gamma_1 + \Gamma_2$ $y = \Gamma_1 - \Gamma_2 / \Gamma_1 + \Gamma_2$

 \rightarrow expected to be small ($\mathcal{O}(10^{-3})$)

• CP violation

- Direct *CP* violation: $\Gamma(D^0 \to f) \neq \overline{\Gamma}(\overline{D}^0 \to f)$
- *CP* violation in mixing: $|q/p| \neq 1$
- CP violation in interference of mixing and decay: $\phi_f = \arg(q\bar{A}_f/pA_f) \neq 0$

<ロト <問ト < 注ト < 注ト = 注

Observation of the mass difference in $D^0 o K^0_S \pi^+ \pi^-$

[PRL127(2021) 111801]

Measurement of mixing and CP violation parameters

Results mixing parameters $x = (3.98^{+0.56}_{-0.54}) \times 10^{-3}$ $y = (4.6^{+1.5}_{-1.4}) \times 10^{-3}$ $|q/p| = 0.996 \pm 0.052$ $\phi = 0.056^{+0.047}_{-0.051}$

First observation of a difference between D^0 mass eigenstates $(7\sigma \text{ significance})$

Laís Soares Lavra (LPC-Clermont)

22 March 2022

Measurement of $y_{CP} - y_{CP}^{K\pi}$ using two-body D^0 meson decays

Submitted to PRD [arXiv:2202.09106] NEW RESULT

- Dataset: 6 fb⁻¹ from Run 2 (2015-18)
- D^0 mixing studied using $D^0 \to K^-\pi^+$ and $D^0 \to f(f = K^+K, \pi^+\pi^-)$
- $y_{CP} y_{CP}^{K\pi} \approx y(1 + \sqrt{R_D})$, with $R_D = \frac{\mathcal{B}(D^0 \rightarrow K^-\pi^+)}{\mathcal{B}(D^0 \rightarrow K^+\pi^-)}$
- Allows to constrain mixing parameter $y = \frac{\Gamma_1 \Gamma_2}{\Gamma_1 + \Gamma_2}$
- D^0 meson obtained from $D^{*+} \rightarrow D^0 (\rightarrow f) \pi^{\pm}$

Experimental observable

$$y_{CP} - y_{CP}^{K\pi} \equiv \frac{\tau(D^0 \to K^-\pi^+)}{\tau(D^0 \to K^-K^+(\pi^-\pi^+))} - 1$$

Laís Soares Lavra (LPC-Clermont)

Measurement of $y_{CP}-y_{CP}^{K\pi}$ using two-body D^0 meson decays

Submitted to PRD [arXiv:2202.09106] NEW RESULT

• $y_{CP}^f - y_{CP}^{K\pi}$ obtained with an exponential fit to R^f

$$R^{f}(t) = \frac{N(D^{0} \to f, t)}{N(D^{0} \to K^{-}\pi^{+}, t)} \propto e^{-(\mathbf{y}_{CP}^{f} - \mathbf{y}_{CP}^{K\pi})t/\tau_{D^{0}}} \times \frac{\varepsilon(f, t)}{\varepsilon(K^{-}\pi^{+}, t)}$$

•
$$y_{CP} - y_{CP}^{K\pi}$$
: average of $y_{CP}^{KK} - y_{CP}^{K\pi}$ and $y_{CP}^{\pi\pi} - y_{CP}^{K\pi}$

- Efficiencies equalised by matching and weighting the kinematics \rightarrow cancel in the ratio
- Subtract the combinatorial bkg by fitting $\Delta m = m(h^-h^+\pi^+_{tag}) m(h^-h^+)$
- Validation of the analysis procedure with three distinct methods

Laís Soares Lavra (LPC-Clermont)

Mixing and CPV at LHCb

22 March 2022 10 / 26

Results Submitted to PRD [arXiv:2202.09106] NEW RESULT

Result combining $y_{CP}^{KK} - y_{CP}^{K\pi}$ and $y_{CP}^{\pi\pi} - y_{CP}^{K\pi}$

LHCb 2022: $y_{CP} - y_{CP}^{K\pi} = (6.96 \pm 0.26_{stat} \pm 0.13_{sys}) \times 10^{-3}$

4× more precise than current world average $(y_{CP} - y_{CP}^{\pi} = (7.16 \pm 0.93_{stat} \pm 0.60_{sys}) \times 10^{-3})$

Laís Soares Lavra (LPC-Clermont)

Mixing and CPV at LHCb

22 March 2022

Measurement of CP asymmetries in $D^+_{(s)} o \eta^{(\prime)} \pi^+$ decays

[LHCb-PAPER-2021-051 in preparation] NEW RESULT

Laís Soares Lavra (LPC-Clermont)

22 March 2022

Measurement of *CP* asymmetries in $D^+_{(s)} o \eta^{(\prime)} \pi^+$ decays

[LHCb-PAPER-2021-051 in preparation] NEW RESULT

Measured A_{CP} asymmetries

•
$$\mathcal{A}^{CP}(D^+ \to \eta \pi^+) = (0.34 \pm 0.66_{stat} \pm 0.16_{syst} \pm 0.05_{D^+ \to \phi \pi^+})\%^*$$

• $\mathcal{A}^{CP}(D_s^+ \to \eta \pi^+) = (0.32 \pm 0.51_{stat} \pm 0.12_{syst})\%$
• $\mathcal{A}^{CP}(D^+ \to \eta' \pi^+) = (0.49 \pm 0.18_{stat} \pm 0.06_{syst} \pm 0.05_{D^+ \to \phi \pi^+})\%^*$
• $\mathcal{A}^{CP}(D_s^+ \to \eta' \pi^+) = (0.01 \pm 0.12_{stat} \pm 0.08_{syst})\%^*$

*Most precise to date

13/26

All results compatible with CP conservation

Laís Soares Lavra (LPC-Clermont)

Mixing and CPV at LHCb

22 March 2022

- (日)

Direct *CP* violation in $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$ decays

[LHCb-PAPER-2021-049 in preparation] NEW RESULT

- Involve both tree $b \rightarrow u$ and penguin $b \rightarrow s, d$ transitions
- Phase-space rich in resonant structures

CP asymmetry measurements with 5.9 fb⁻¹ from Run 2 (2015-18)

Laís Soares Lavra (LPC-Clermont)

Mixing and CPV at LHCb

22 March 2022

Direct *CP* violation in $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$ decays

[LHCb-PAPER-2021-049 in preparation] NEW RESULT

Results for the phase-space integrated *CP* asymmetries • $A_{CP}(B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}) = (+1.1 \pm 0.2_{stat} \pm 0.3_{syst} \pm 0.3_{J/\psi K^{\pm}})\%(2.4\sigma)$ • $A_{CP}(B^{\pm} \to K^{\pm}K^{+}K^{-}) = (-3.7 \pm 0.2_{stat} \pm 0.2_{syst} \pm 0.3_{J/\psi K^{\pm}})\%(8.5\sigma)$ • $A_{CP}(B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}) = (+8.0 \pm 0.4_{stat} \pm 0.3_{syst} \pm 0.3_{J/\psi K^{\pm}})\%(14.1\sigma)$ • $A_{CP}(B^{\pm} \to \pi^{\pm}K^{+}K^{-}) = (-11.4 \pm 0.7_{stat} \pm 0.3_{syst} \pm 0.3_{J/\psi K^{\pm}})\%(13.6\sigma)$

First observation of *CPV* in $B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$ at 8.5 σ and $B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ at 14.1 σ

CPV in $B^{\pm} \rightarrow \pi^{\pm} K^+ K^-$ consistent and more precise than previous measurement [PRD90(2014)112004]

Laís Soares Lavra (LPC-Clermont)

Mixing and CPV at LHCb

22 March 2022

Local CP asymmetries in the phase space

[LHCb-PAPER-2021-049 in preparation] NEW RESULT

Selected result: $B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$

Local CP asymmetries in the phase space

[LHCb-PAPER-2021-049 in preparation] NEW RESULT

Laís Soares Lavra (LPC-Clermont)

Mixing and CPV at LHCb

22 March 2022

Search for direct *CP* violation in $B \rightarrow PV$ decays

[LHCb-PAPER-2021-050 in preparation] NEW RESULT

• Model-independent experimental approach to measure CP asymmetries in $B \rightarrow PV$ decays [PRD94(2016)054028]

 \rightarrow obviate the need of amplitude analysis

For low mass and narrow resonances B^{\pm} decay amplitudes (\mathcal{M}_{\pm}) : $|\mathcal{M}_{\pm}|^2 = f(\cos\theta(m_V^2, s_{\perp})) = p_0^{\pm} + p_1^{\pm}\cos\theta(m_V^2, s_{\perp}) + p_2^{\pm}\cos^2\theta(m_V^2, s_{\perp})$

CP violation observable Quadractic fit for $\rho(770)^0$ in $B^{\pm} \rightarrow K^{\pm} \pi^{+} \pi^{-}$ $A_{CP}^{B \to PV} = \frac{|\mathcal{M}_{-}|^{2} - |\mathcal{M}_{+}|^{2}}{|\mathcal{M}_{-}|^{2} + |\mathcal{M}_{+}|^{2}} = \frac{p_{2}^{-} + p_{2}^{+}}{p_{2}^{-} + p_{2}^{+}}$ LHCb $B^{\pm} \rightarrow \rho(770)^0 K^{\pm}$ (b) 5.9 fb^{-1} $\chi_{+}^{2/\text{ndf}} = 0.8$ $\chi_{-}^{2/\text{ndf}} = 0.6$ $p_{\perp}^{+} = 1557 \pm 45$ $p_{\perp}^{-} = 2319 \pm 56$ Selected result: $p^+ = -237 \pm 7$ $p' = -337 \pm 8$ $p_{\pm}^{+} = 9.7 \pm 0.3$ $p_{\pm}^{-} = 13.0 \pm 0.3$ CPV in $B^{\pm} \rightarrow \rho(770)^0 (\rightarrow \pi^+\pi^-) K^{\pm}$ $\mathcal{A}_{CP}^{\rho(770)^{0}\kappa} = (+15.0 \pm 1.9_{stat} \pm 1.1_{syst})\%$ First time observed (6.8 σ) 200 8 10 12 14 18 20 6 16 $m^2(K^{\pm}\pi^{\mp})$ [GeV²/c⁴]

 $s_{\perp} = m^2(h_1^-h_3^+)$ $s_{\parallel} = m^2(h_1^-h_2^+)$ $\theta \equiv \text{helicity angle}$

 $B \rightarrow R(\rightarrow h_1^- h_2^+)h_2^+$

Search for *CP* violation using \hat{T} -odd correlations in $B^0 ightarrow p ar{p} K^+ \pi^-$ decays [LHCb-PAPER-2022-003 in preparation] NEW RESULT

 \hat{T} -odd Triple Product Asymmetries $(A_{\hat{\tau}})$

Based on scalar triple products $C_{\hat{\tau}} \equiv \vec{p}_{K^+} \cdot (\vec{p}_{\pi^-} \times \vec{p}_{\bar{p}})$

$$A_{\hat{T}} = \frac{N_{B^0}(C_{\hat{T}} > 0) - N_{B^0}(C_{\hat{T}} < 0)}{N_{B^0}(C_{\hat{T}} > 0) + N_{B^0}(C_{\hat{T}} < 0)}$$

CP and P violating asymmetries observables:

$$a_{CP}^{\hat{T}-odd} = \frac{1}{2}(A_{\hat{T}} - \bar{A}_{\hat{T}})$$

$$a_P^{\hat{T}-odd}=rac{1}{2}(A_{\hat{T}}+ar{A}_{\hat{T}})$$

Insensitive to production and detector-induced asymmetries

Measurements in bins and integrated over the phase space

- Simultaneous fit to four subsamples: $(B^0(C_{\hat{\tau}} > 0), B^0(C_{\hat{\tau}} < 0), \bar{B}^0(C_{\hat{\tau}} > 0), \bar{B}^0(C_{\hat{\tau}} < 0))$
- Dataset: 8.4 fb⁻¹ from Run1+Run2

Search for *CP* violation using \hat{T} -odd correlations in $B^0 \rightarrow p\bar{p}K^+\pi^-$ decays [LHCb-PAPER-2022-003 in preparation] NEW RESULT

Results

Phase-space integrated asymmetries

$$a_{CP}^{\hat{T}-odd} = (0.51 \pm 0.85_{stat} \pm 0.08_{syst})\%$$

 $a_P^{\hat{T}-odd} = (1.49 \pm 0.85_{stat} \pm 0.08_{syst})\%$

No evidence for *P* violation

Phase space bins measurements

- 2 binning schemes based on m_{K+π}-, m_{pp̄} and angular variables
- No evidence for CPV in regions of the phase space
- Local P violation at 5.8σ

20 / 26

Laís Soares Lavra (LPC-Clermont)

Mixing and CPV at LHCb

22 March 2022

Summary

- Tree-level γ measurements approaching precision of global fits
- Highest precision measurements on charm mixing parameters:
 - First observation of a nonzero mass difference in the D^0 system (Statistical uncertainty of 0.18 $\times 10^{-3}$)
 - Measurement of the charm oscillation parameter $y_{CP} y_{CP}^{K\pi}$ (Statistical uncertainty of 0.26 $\times 10^{-3}$)
- First observation of phase-space integrated *CPV* in $B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$ and $B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ decays
- Highest *CP* asymmetry ever measured in a localized region of the phase-space (+75% in $B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ decays)
- Many exciting beauty and charm results to be released this year with the Run 2 dataset

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Thank you for your attention

A D N A B N A B N A B N

э

backup

3

23 / 26

<ロト <問ト < 目と < 目と

Backup

Simultaneous determination of CKM angle γ [JHEP12(2021)141]

LHCb measurements used in the combination

B decay	D decay	Ref.	Dataset	Status since
				Ref. [17]
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+h^-$	[20]	Run 1&2	Updated
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	[21]	Run 1	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+ h^- \pi^0$	[22]	Run 1	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_S^0 h^+ h^-$	[19]	Run 1&2	Updated
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_S^0 K^{\pm} \pi^{\mp}$	[23]	Run 1&2	Updated
$B^{\pm} \rightarrow D^*h^{\pm}$	$D \rightarrow h^{+}h^{-}$	[20]	Run 1&2	Updated
$B^{\pm} \rightarrow DK^{*\pm}$	$D \rightarrow h^+h^-$	[24]	Run 1&2(*)	As before
$B^{\pm} \rightarrow DK^{*\pm}$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	[24]	Run 1&2(*)	As before
$B^{\pm} \rightarrow Dh^{\pm}\pi^{+}\pi^{-}$	$D \rightarrow h^+h^-$	[25]	Run 1	As before
$B^0 \rightarrow DK^{*0}$	$D \rightarrow h^+h^-$	[26]	Run 1&2(*)	Updated
$B^0 \rightarrow DK^{*0}$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	[26]	Run 1&2(*)	New
$B^0 \rightarrow DK^{*0}$	$D \rightarrow K_S^0 \pi^+ \pi^-$	[27]	Run 1	As before
$B^0 \rightarrow D^{\mp} \pi^{\pm}$	$D^+ \rightarrow \tilde{K}^- \pi^+ \pi^+$	[28]	Run 1	As before
$B_s^0 \rightarrow D_s^{\mp} K^{\pm}$	$D_s^+ \rightarrow h^+ h^- \pi^+$	[29]	Run 1	As before
$B_s^0 \rightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ \rightarrow h^+ h^- \pi^+$	[30]	Run 1&2	New
D decay	Observable(s)	Ref.	Dataset	Status since
				Ref. [17]
$D^0 \rightarrow h^+h^-$	ΔA_{CP}	[31,32,33]	Run 1&2	New
$D^0 \rightarrow h^+ h^-$	y_{CP}	[34]	Run 1	New
$D^0 \rightarrow h^+h^-$	ΔY	[35, 36, 37, 38]	Run 1&2	New
$D^0 \rightarrow K^+\pi^-$ (Single Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	[39]	Run 1	New
$D^0 \rightarrow K^+\pi^-$ (Double Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	[40]	Run 1&2(*)	New
$D^0 \rightarrow K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	$(x^2 + y^2)/4$	[41]	Run 1	New
$D^0 \rightarrow K_S^0 \pi^+ \pi^-$	x, y	[42]	Run 1	New
$D^0 \rightarrow K_S^0 \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[43]	Run 1	New
$D^0 \rightarrow K_S^0 \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[44]	Run 2	New

- Same strategy used in previous LHCb combination
- Frequentist treatment: 151 observables used to determine 52 parameters
- Combination includes new and updated measurements from *B*-meson and *D*-meson measurements for the first time
- Auxiliary input from other experiments used in the combination (hadronic parameters and coherence factors)

22 March 2022

< □ > < □ > < □ > < □ > < □ > < □ >

Backup

Measurement of y_{CP} - $y_{CP}^{K\pi}$ using two-body D^0 meson decays

Submitted to PRD [arXiv:2202.09106] NEW RESULT

New value of the charm mixing parameter **y** and $\delta_D^{K\pi}$ using LHCb CHARM combination

$$y = (6.46^{+0.24}_{-0.25}) \times 10^{-3}$$

×2 improvement

$$\delta_D^{K\pi} = (192.1^{+3.7}_{-4.0})$$

 3σ deviation from 180° Evidence for U-spin symmetry breaking

22 March 2022

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Local CP asymmetries in the phase-space

[LHCb-PAPER-2021-049 in preparation] NEW RESULT

- Model-independent method for mapping local CP asymmetries [Phys.Rev.D80,096006]
- Adaptive binning algorithm \rightarrow same number of signal yield per bin
- Acceptance correction implemented
- 10 regions defined to study localised CP asymmetries

Laís Soares Lavra (LPC-Clermont)

22 March 2022