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1 Introduction

Chaotic inflation with a power-law potential V ∼ ϕn has been regarded as an attractive
inflationary framework for a long time since 1983 [1]. The power-law chaotic inflation model
predicts the scalar spectral index ns and the tensor-to-scalar ratio r as ns ≈ 1−2(n+2)/(n+4N)
and r ≈ 16n/(n+ 4N), respectively, where N is the number of e-folds. However, the recent
Planck [2] and BICEP/Keck [3] results put a stringent bound on the tensor-to-scalar ratio as
r0.05 < 0.036 (95% C.L.), while the bound on the spectral index is given by 0.958 . ns . 0.975
(95% C.L.). It indicates that the power-law chaotic inflation model is ruled out for every n,
which is not necessarily an integer, with N = 50 or 60, residing outside the 2σ acceptable
range of (ns, r). We are curious if the power-law chaotic inflation can resurrect by extending
the original setup.

One known way is introducing a non-minimal coupling Ω2(ϕ) with the Ricci curvature
R in the Jordan frame [4–7]. The potential in the Einstein frame VE becomes flat in the
large-field limit as long as the asymptotic ratio of the Jordan-frame potential V (ϕ) and the
squared non-minimal coupling term becomes constant since VE ∼ V (ϕ)/Ω4(ϕ) [7], thereby
supporting successful slow-roll inflation. A nice example is the Higgs inflation [8, 9] especially
in the vicinity of a critical point [10, 11].1

Having this success in our minds, we would like to explore another possibility. There
may exist another scalar field s (an assistant field) which does not have a direct coupling
to the inflaton field ϕ but non-minimally couples to the Ricci curvature R as smR with a
power m > 0. On the other hand, we consider the case where the inflaton field ϕ is still
minimally coupled to gravity. Although many studies are devoted to investigate the case
where the inflaton field is non-minimally coupled to gravity,2 given that multiple scalar fields
can naturally arise in high energy theories such as superstring theories, scenarios with a
non-minimal coupling between another scalar field and R should also be possible. Since the
assistant field is non-minimally coupled, the Einstein-frame potential and the inflationary
dynamics become non-trivial. We want to examine if chaotic inflation models can move back
to observationally acceptable ranges. For definiteness and also for simplicity, in the current

1The addition of a R2 term [12–19] further improves its high energy behavior as the scalaron emerges and
unitarizes the theory [20–23]; see ref. [24] for a recent review on various aspects of Higgs-R2 inflation. For a
supersymmetric version of the Higgs inflation, see e.g., refs. [25–34].

2Cases of an arbitrary power for the chaotic inflation with the inflaton non-minimal coupling are studied in
e.g. refs. [35, 36].
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study, we assume that the energy density of the assistant field is negligible compared to that
of the inflaton field which allows us to approximate the Jordan-frame potential as V = V (ϕ).
One may, of course, easily extend our setup to a more general case, but we leave the extensions
for future studies; see, e.g., refs. [37, 38].

The rest of the paper is organized as follows: in section 2, we introduce in detail chaotic
inflation with a power-law potential and a non-minimally coupled assistant field. We then
analyze the two-field setup in the Einstein frame and compute cosmological observables such
as the spectral index, the tensor-to-scalar ratio, and the local-type nonlinearity parameter,
employing the δN formalism in section 3. In section 4, we perform a numerical analysis on
the cosmological observables and check the compatibility with the latest Planck-BICEP/Keck
results for various powers of the inflaton potential with the quadratic and quartic non-minimal
couplings of the assistant field to gravity. We show that a subclass of the power-law chaotic
inflation models may be revived with the help of the assistant field. We conclude in section 5.

2 Model

The action for the inflaton field ϕ and the assistant field s is introduced in the Jordan frame as3

SJ =
∫
d4x
√
−gJ

[
M2

P
2 Ω2(s)RJ −

1
2g

µν
J ∂µϕ∂νϕ−

1
2g

µν
J ∂µs∂νs− VJ(ϕ)

]
, (2.1)

where MP ≡ 1/
√

8πG = 2.44 × 1018 GeV is the reduced Planck mass, and the subscript J
indicates that the action is written in the Jordan frame. We note that only the assistant field
s couples to gravity non-minimally, while the inflaton field ϕ remains minimally coupled, i.e.,
Ω2 = Ω2(s). We assume that the energy density of the assistant field is negligible compared
to that of the inflaton field. Moreover, the additional scalar field s is assumed to have no
direct coupling to the inflaton field ϕ. Thus, to a good approximation, the scalar potential in
the Jordan frame is given by VJ = VJ(ϕ). We consider the power-law potential,

VJ(ϕ) = λϕM
4
P

(
ϕ

MP

)n
. (2.2)

The power n does not necessarily take an integer value, and we consider various cases
with n = {2, 4/3, 1, 2/3, 1/3}. The cases with fractional power are motivated by axion
monodromy scenario [44–47]; see also ref. [48]. In this parametrization, the self-coupling λϕ
is a dimensionless parameter regardless of the power n.

We expand the conformal factor Ω2 as

Ω2 = 1 + ξ2

(
s

MP

)2
+ ξ4

(
s

MP

)4
+ · · · , (2.3)

where 1 corresponds to the Einstein-Hilbert action, and ξi (i = 2, 4, 6, · · · ) are all dimensionless
coefficients. We focus on the regime ξi(s/MP)i � 1 so that the expansion (2.3) remains to be
valid.4 We implicitly assume Z2 symmetry s→ −s so that ξi=odd = 0 for all odd terms, and
the leading-order term is either ξ2 or ξ4 when ξ2 is negligible. From now on, we only keep the

3We note that our model is different from the so-called assisted inflation [39–43].
4In general, a certain mass scale µ may exist, and for s� µ, we can Taylor-expand the conformal factor as

Ω2 = 1 + am(s/µ)m + · · · , where am = O(1) is the leading-order term. Defining ξm ≡ am(MP/µ)m, we recover
eq. (2.3).
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leading-order term in the ξm expansion, and thus, we take Ω2 ≡ 1 + ξm(s/MP )m with m = 2
or m = 4 (when ξ2 = 0). We will comment on the role of the higher-order terms later.

The action (2.1) can be brought to the Einstein frame, where the gravity part takes the
standard Einstein-Hilbert term, via the Weyl rescaling gJµν → gEµν = Ω2gJµν . The resultant
Einstein-frame action is given by

SE =
∫
d4x
√
−gE

[
M2

P
2 RE −

1
2K1g

µν
E ∂µϕ∂νϕ−

1
2K2g

µν
E ∂µs∂νs− VE(ϕ, s)

]
, (2.4)

where

K1 = 1
1 + ξmsm/Mm

P
, (2.5)

K2 = 1 + ξms
m/Mm

P + (3/2)m2ξ2
m(s/MP)2m−2

(1 + ξmsm/Mm
P )2 , (2.6)

and

VE(ϕ, s) = VJ(ϕ)
(1 + ξmsm/Mm

P )2 ≡ F (ϕ)K(s) . (2.7)

Here, we have defined F (ϕ) ≡ VJ(ϕ) andK(s) ≡ 1/(1+ξmsm/Mm
P )2. Note that K1,2 = K1,2(s)

are functions of the s field only. Henceforth, we omit the subscript E for brevity.
Let us introduce a canonically normalized field σ, which is defined by(

∂σ

∂s

)2
= K2 . (2.8)

Then, we have

S =
∫
d4x
√
−g

[
M2

P
2 R− 1

2(∂σ)2 − 1
2e

2b(∂ϕ)2 − V (ϕ, s)
]
, (2.9)

where we have defined b = b(σ(s)) via

e2b ≡ K1 = 1
1 + ξmsm/Mm

P
, (2.10)

or, equivalently, b ≡ −(1/2) ln(1 + ξms
m/Mm

P ). We note that the action (2.9) takes the
same form as the one studied in refs. [49, 50]. This form can also arise from the f(R)-type
model [51].

A few remarks are in order. As we are interested in the case where ξmsm/Mm
P � 1, the

scalar potential in the Einstein frame may be expanded as

V (ϕ, s) = λϕM
4
P(ϕ/MP)n

(1 + ξmsm/Mm
P )2 ≈ λϕM

4
P

(
ϕ

MP

)n(
1− 2ξm

sm

Mm
P

)
. (2.11)

Thus, the (n,m) = (2, 2) case, for example, contains the Higgs-portal-type interaction, ϕ2s2.
Furthermore, the scalar potential for the m = 2 case, up to the leading order in ξ2s

2/M2
P, can

be approximated as

V (ϕ, s) ≈ λϕM
4
P

2

(
ϕ

MP

)n [
1 + cos

(
s

f

)]
, (2.12)
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with f = (2
√

2ξ2)−1MP, provided ξ2 > 0. In other words, the Einstein-frame potential is a
product of the chaotic inflation model and the natural inflation model. We note that the
natural inflation is also disfavored by the recent BICEP/Keck observations. Similarly, for the
m = 4 case, the potential in the Einstein frame is given by

V (ϕ, s) ≈ λϕM
4
P

2

(
ϕ

MP

)n [
1− 2ξ4

(
s

MP

)4
]
, (2.13)

which is a product of the chaotic inflation model and the hilltop quartic inflation model. Our
model can thus be viewed as a phenomenological model that connects between the chaotic
inflation-type models and natural inflation and hilltop inflation. We stress at this point that
we did not impose any direct interaction between the fields ϕ and s. Couplings between
the two fields are due to the presence of the non-minimal coupling of the assistant field s
to gravity.

Finally, we briefly comment on the role of the higher-order terms in the conformal factor.
We first note that the potential of V = λϕM

4
P(ϕ/MP)n/(1 + ξms

m/Mm
P )2 along the s-field

direction is unstable, i.e., a runaway potential, for ξm > 0, while the potential develops a pole
when ξm < 0. However, this can be viewed as an artifact of the fact that we truncated the
non-minimal potential at the leading order. In general, one has the higher-order terms in the
conformal factor Ω2, in which case, the potential may become stable without a pole. During
inflation, however, the higher-order terms have negligible effects. Thus, we do not consider
those higher-order terms in our analysis below.5

3 Cosmological observables

For the Einstein-frame action (2.9), the background equations of motion are given by

H2 = 1
3M2

P

(1
2 σ̇

2 + 1
2e

2bϕ̇2 + V

)
, (3.1)

0 = σ̈ + 3Hσ̇ + V,σ − b,σe2bϕ̇2 , (3.2)
0 = ϕ̈+ (3H + 2b,σσ̇)ϕ̇+ e−2bV,ϕ , (3.3)

where the dot represents the derivative with respect to the cosmic time and ,i ≡ ∂/∂φi for
i = {σ, ϕ}.

We define the following slow-roll parameters:

εσ ≡ M2
P

2

(
V,σ
V

)2
= M2

P
2

(
K,σ

K

)2
, εϕ ≡ M2

P
2

(
V,ϕ
V
e−b

)2
= M2

P
2

(
F,ϕ
F
e−b

)2
,

ησσ ≡M2
P
V,σσ
V

= M2
P
K,σσ

K
, ηϕϕ ≡M2

P
V,ϕϕ
V

e−2b = M2
P
F,ϕϕ
F

e−2b ,

ηϕσ ≡M2
P
V,ϕσ
V

e−b , εb ≡ 8M2
Pb

2
,σ . (3.4)

Note that ηϕσ ∼
√
εσεϕ in our case as the Einstein-frame potential is product-separable, i.e.,

V (ϕ, s) = F (ϕ)K(s). Requiring the slow-roll conditions, {εi, |ηij |, εb} � 1 (i, j = {σ, ϕ}), the
equations of motion (3.1)–(3.3) become

H2 ≈ V

3M2
P
, 3Hσ̇ ≈ −V,σ , 3Hϕ̇ ≈ −e−2bV,ϕ . (3.5)

5See, for example, refs. [52, 53]. See also ref. [54] for higher curvature terms Rm>3.
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We note that, under the slow-roll approximation, εσ ≈ ε cos2 θ and εϕ ≈ ε sin2 θ, and thus
ε ≈ εσ + εϕ, where ε ≡ −Ḣ/H2 and θ is defined through

cos θ = σ̇√
σ̇2 + e2bϕ̇2

, sin θ = ϕ̇eb√
σ̇2 + e2bϕ̇2

. (3.6)

For later convenience, we also define

ηb ≡ 16M2
Pb,σσ . (3.7)

To compute cosmological observables such as the curvature power spectrum Pζ , scalar
spectral index ns, tensor-to-scalar ratio r, and the local-type nonlinearity parameter f (local)

NL ,
we adopt the δN formalism [55–59], where the curvature perturbation is given by the difference
of the number of e-folds N between the initial flat hypersurface and final uniform-density
hypersurface, i.e., ζ = δN . For small enough perturbations δφi (φi = {σ, ϕ}), one may
Taylor-expand δN to obtain

ζ = δN = ∂N

∂φi
δφi + 1

2
∂2N

∂φi∂φj
δφiδφj + · · · (3.8)

Here, we summarize the expressions for the cosmological observables in the δN formalism
(see refs. [49, 50, 57, 58, 60–62] for details). First, the curvature power spectrum is given by

Pζ =
(
H

2π

)2
GijN,iN,j , (3.9)

where Gij is the inverse metric of the field space and N,i ≡ ∂N/∂ϕi. The spectral index is

ns − 1 = −2ε− 2
1 +N,k(

M6
P

3 RkmnlV,mV,n/V
2 −M4

PV
;kl/V )N,l

GijN,iN,jM2
P

, (3.10)

where the semicolon denotes the covariant derivative in the field space, and Rkmnl is the
Riemann tensor in the field space whose non-zero components, in our case, are given by

Rσϕσϕ = Rϕσϕσ = −Rσϕϕσ = −Rϕσσϕ = −e−2b
(
b,σσ + b2

,σ

)
. (3.11)

The tensor-to-scalar ratio is given by

r = 8/M2
P

GijN,iN,j
. (3.12)

Finally, the local-type (shape-independent) nonlinearity parameter is obtained as

−6
5f

(local)
NL = GijGmnN,iN,mN,jn

(GklN,kN,l)2 . (3.13)

The quantities are to be evaluated at the horizon crossing, i.e., when a mode exits the Hubble
radius, k = aH. We denote the horizon-crossing point by super- or sub-script ∗ below.
Similarly, the sub- or super-script e denotes the end of inflation.
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The number of e-folds is given by

N = −
∫ t∗

te
H dt ≈ 1

M2
P

∫ σ∗

σe

K

K,σ
dσ , (3.14)

where the slow roll is assumed. The first and second derivatives of the number of e-folds, N,i

and N,ij , have been worked out in, e.g., ref. [50] for the action (2.9). The resultant expressions
for N,i are given as follows:

MP
∂N

∂σ∗
= 1√

2
sgn

(
K∗

K∗
,σ

)
1√
εσ∗

(
1− εϕe

εe
e2be−2b∗

)
, (3.15)

MP
∂N

∂ϕ∗
= 1√

2
sgn

(
F ∗

F ∗
,ϕ

)
1√
εϕ∗

(
εϕe
εe

)
e2be−b∗

. (3.16)

Here, we have used ε ≈ εσ + εϕ. Positivity of the scalar potential for each field allows us to
write sgn(K/K,σ) = sgn(V,σ) and sgn(F/F,ϕ) = sgn(V,ϕ). We shall thus use sσ ≡ sgn(V,σ)
and sϕ ≡ sgn(V,ϕ) in the following. Similarly, we define sb ≡ sgn(b,σ). The expressions for
N,ij are

M2
P
∂2N

∂σ2
∗

=
(

1− η
σσ
∗

2εσ∗

)(
1− ε

ϕ
e

εe
e2be−2b∗

)
+ 1

2s
b
∗s
σ
∗

√
εb∗
εσ∗

εϕe
εe
e2be−2b∗

+e4be−4b∗ εϕe ε
σ
e

εσ∗ ε
2
e

[
εσe η

ϕϕ
e +εϕe η

σσ
e

εe
−4ε

ϕ
e ε
σ
e

εe
− 1

2s
b
es
σ
e

√
εbe
εσe

(εϕe )2

εe

]
, (3.17)

M2
P
∂2N

∂ϕ2
∗

=
(

1− η
ϕϕ
∗

2εϕ∗

)
εϕe
εe
e2be

+e4be−2b∗ εϕe ε
σ
e

εϕ∗ ε2e

[
εσe η

ϕϕ
e +εϕe η

σσ
e

εe
−4ε

ϕ
e ε
σ
e

εe
− 1

2s
b
es
σ
e

√
εbe
εσe

(εϕe )2

εe

]
, (3.18)

M2
P

∂2N

∂ϕ∗∂σ∗
=−sϕ∗ sσ∗e4be−3b∗ εϕe ε

σ
e

ε2e

√
εσ∗ ε

ϕ
∗

[
εσe η

ϕϕ
e +εϕe η

σσ
e

εe
−4ε

ϕ
e ε
σ
e

εe
− 1

2s
b
es
σ
e

√
εbe
εσe

(εϕe )2

εe

]
. (3.19)

Putting the expressions for the first and second derivatives of N into eqs. (3.9)–(3.13),
we obtain

Pζ = H2
∗

8π2M2
P
e2X

(
u2α2

εσ∗
+ v2

εϕ∗

)
, (3.20)

ns = 1− 2ε∗ −
4e−2X

u2α2/εσ∗ + v2/εϕ∗
− 1

12
ηb∗ + 2εb∗

u2α2/εσ∗ + v2/εϕ∗

(
uα

√
εϕ∗
εσ∗
− v

√
εσ∗
εϕ∗

)2

+ 2
u2α2/εσ∗ + v2/εϕ∗

[
u2α2 η

σσ
∗
εσ∗

+ v2 η
ϕϕ
∗
εϕ∗

+ 4uvα+ 1
2s

b
∗s
σ
∗

√
εb∗ε

σ
∗v

(
v

εϕ∗
− 2uα

εσ∗

)]
,

(3.21)

r = 16e−2X

u2α2/εσ∗ + v2/εϕ∗
, (3.22)
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(local)
NL = 2e−X

(u2α2/εσ∗ + v2/εϕ∗ )2

[(
1− ησσ∗

2εσ∗

)
u3α3

εσ∗
+
(

1− ηϕϕ∗
2εϕ∗

)
v3

εϕ∗

+ 1
2s

b
∗s
σ
∗
u2vα2

εσ∗

√
εb∗
εσ∗

+
(
uα

εσ∗
− v

εϕ∗

)2
eXC

]
, (3.23)

where we have defined

u ≡ εσe
εe
, v ≡ εϕe

εe
, X ≡ 2be − 2b∗ ,

C ≡ εσe ε
ϕ
e

ε2e

(
εσe η

ϕϕ
e + εϕe η

σσ
e

εe
− 4ε

ϕ
e ε
σ
e

εe
− 1

2s
σ
e s
b
e

√
εbe
εσe

(εϕe )2

εe

)
,

α ≡ e2b∗−2be
[
1 + εϕe

εσe

(
1− e2be−2b∗)]

. (3.24)

We perform a numerical analysis to obtain the cosmological observables for our model,
exploiting eqs. (3.20)–(3.24).

4 Results

The number of e-folds (3.14) for the system (2.9) is given by

N =



3
4 ln

(
M2

P + ξ2s
2
e

M2
P + ξ2s2

∗

)
+ 1

4ξ2
ln
(
se
s∗

)
for m = 2 ,

3
4 ln

(
M4

P + ξ4s
4
e

M4
P + ξ4s4

∗

)
+ M2

P
16ξ4

( 1
s2

∗
− 1
s2
e

)
for m = 4 .

For a given set of values of {m, ξm}, the number of e-folds becomes a function of s∗ and se.
We treat the value of the s field at the CMB pivot scale, s∗, as a parameter. Then, once s∗ is
specified, se can be given in terms of s∗ and N .

The evolution of the ϕ field is governed by

dϕ

dN
≈ −e−2b V,ϕ

3H2 = −nM
2
P

ϕ

(
1 + ξm

sm

Mm
P

)
, (4.1)

where the slow-roll approximation is used; see eq. (3.5). Inserting the evolution of the s field
obtained from the number of e-folds above and integrating the ϕ evolution equation, we
obtain an expression of the ϕ-field value at the end of inflation, ϕe, as a function of s∗, ϕ∗,
and N , for a given value of n.

From the end-of-inflation condition, which we choose to be ε = 1, one may relate ϕe and
se. Since ϕe and se are given in terms of s∗, ϕ∗, and N , we obtain a relation between s∗ and
ϕ∗. Since we are treating s∗ as a parameter, all the other quantities, such as se, ϕe, and ϕ∗,
are functions of s∗ together with N . In our analysis, we take N = 60.

We then use eqs. (3.21)–(3.24) to compute the spectral index ns, the tensor-to-scalar
ratio r, and the local-type nonlinearity parameter f (local)

NL . We examine the power-law potential
with n = {2, 4/3, 1, 2/3, 1/3} for m = 2 and m = 4 cases. One may notice that the model
parameter λϕ does not enter in the expressions of ns, r, and f (local)

NL and that only the curvature
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Figure 1. Effects of the quadratic non-minimal coupling ξ2 of the assistant field on the cosmological
observables in the ns – r plane (left) and in the ns – f (local)

NL plane (right). The power-law potential
is considered with n = 2 (red), n = 4/3 (blue), n = 1 (magenta), n = 2/3 (cyan), and n = 1/3
(green). The points represent the predictions of the standard power-law chaotic inflation models which
is recovered when ξ2 = 0, while the ns ' 0.95 points correspond to ξ2 ' 0.01 (0.02) for s∗ = 10−1MP
(10−3 MP). The dashed (solid) lines correspond to the s∗ = 10−3 MP (10−1 MP) case. As ξ2 increases,
the spectral index ns and the tensor-to-scalar ratio r decrease. On the other hand, the nonlinearity
parameter f (local)

NL increases as ξ2 grows, while remaining compatible with the Planck 2σ bound [63].
The Planck [2] (Planck-BICEP/Keck [3]) 1σ and 2σ bounds on the ns–r plane are depicted by the
gray (black) solid and gray (black) dashed lines, respectively. The n = 1/3 may be revived with the
help of the assistant field. The n = 2/3 is marginally ruled out and the other higher powers remain to
be ruled out by the Planck-BICEP/Keck results.

power spectrum (3.20) depends on λϕ. We use this degree of freedom to match the Planck
normalization, namely Pζ ' 2×10−9 at the CMB scale. Therefore, there remain only two free
parameters, ξm and s∗. We explore the behavior of ns, r, and f (local)

NL by varying ξm and s∗.
We present our numerical analysis in figure 1 for the quadratic (m = 2) non-minimal

coupling and in figure 2 for the quartic (m = 4) non-minimal coupling. In both figures 1
and 2, we present by varying ξm the behavior of the cosmological observables in the ns – r
plane (left panels) and in the ns – f (local)

NL plane (right panels), for n = 2 (red), n = 4/3 (blue),
n = 1 (magenta), n = 2/3 (cyan), and n = 1/3 (green). For the m = 2 case, we consider
s∗ = 10−3MP (dashed) and s∗ = 10−1MP (solid). For the m = 4 case, we take s∗ = 10−1MP
(solid) and s∗ = MP (dashed). In the ns – r plane, we overlay the Planck 1σ (solid gray) and
2σ (dashed gray) bounds as well as the Planck-BICEP/Keck 1σ (solid black) and 2σ (dashed
black) bounds. The dots correspond to the standard power-law chaotic inflation predictions,
namely the ξm = 0 case. We clearly see that they sit outside the Planck-BICEP/Keck bounds.

In the left panel of figure 1, one may see the effect of the assistant field s on ns and
r for the m = 2 case. While recovering the standard predictions of the power-law chaotic
inflation models when ξ2 = 0, the presence of the assistant field that couples only to gravity
decreases both the spectral index ns and the tensor-to-scalar ratio r. As a result, the n = 1/3
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Figure 2. Effects of the quartic non-minimal coupling ξ4 of the assistant field on the cosmological
observables in the ns – r plane (left) and in the ns – f (local)

NL plane (right). The power-law potential
is considered with n = 2 (red), n = 4/3 (blue), n = 1 (magenta), n = 2/3 (cyan), and n = 1/3
(green). The points represent the predictions of the standard power-law chaotic inflation models which
is recovered when ξ4 = 0, while the ns ' 0.95 points correspond to ξ4 ' 0.1 (0.001) for s∗ = 10−1 MP
(MP). The dashed (solid) lines correspond to the s∗ = MP (10−1 MP) case. As ξ4 increases, the spectral
index ns and the tensor-to-scalar ratio r decrease. On the other hand, the nonlinearity parameter
f

(local)
NL tends to increase as ξ4 increases. For the s = 10−1 MP case, the nonlinearity parameter goes
outside the Planck 2σ bound [63], −11.1 < f

(local)
NL < 9.3. The region that is incompatible with this

bound is grayed out in the ns – r plot. The s∗ = MP case is, however, compatible with the Planck 2σ
bound on the local-type nonlinearity parameter. The Planck [2] (Planck-BICEP/Keck [3]) 1σ and
2σ bounds on the ns–r plane are depicted by the gray (black) solid and gray (black) dashed lines,
respectively. In the case of the quartic non-minimal coupling, both the n = 1/3 and n = 2/3 powers
may be revived with the help of the assistant field. The other higher powers remain to be ruled out by
the Planck-BICEP/Keck results.

case becomes compatible with the latest Planck-BICEP/Keck results. The n = 2/3 case
is marginally ruled out, and the higher powers, n = {2, 4/3, 1}, remain to be ruled out.
The tendency of the local-type nonlinearity parameter f (local)

NL is shown in the right panel of
figure 1 for the m = 2 case. We observe that the nonlinearity parameters are small for the
s∗ = 10−1MP. The nonlinearity parameters may become sizable for the s∗ = 10−3MP, while
residing inside Planck 2σ bound, −11.1 < f

(local)
NL < 9.3.6

Similarly, the left panel of figure 2 shows how the presence of the assistant field s affects
the ns and r for the m = 4 case. Again, as ξ4 increases, both ns and r decrease from the
standard predictions marked by points which correspond to ξ4 = 0. Consequently, both the
powers of n = 1/3 and n = 2/3 may become compatible with the latest Planck-BICEP/Keck
results. The higher powers, n = {2, 4/3, 1}, remain to be ruled out. We observe from the right
panel of figure 2 that the local-type nonlinearity parameter f (local)

NL tends to increase as ξ4

6The Planck 1σ bound for the local-type nonlinearity parameter corresponds to f (local)
NL = −0.9± 5.1 [63].
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increases. While the values of f (local)
NL are within the Planck 2σ bound, −11.1 < f

(local)
NL < 9.3,

for the s∗ = MP case, they may become too large for the s∗ = 10−1MP case. The region that
is incompatible with the Planck 2σ bound on the local-type nonlinearity parameter is grayed
out in the ns – r plot in the left panel of figure 2.

5 Conclusion

A single-field chaotic inflation with a power-law potential V ∼ ϕn is known to reside outside
of observationally acceptable range of (ns, r) space regardless of the value of the power n. To
remedy this problem, we have considered an additional scalar field (an assistant field) s which
non-minimally couples to the curvature R in the form of smR with some power m.

As explicit examples, we have performed a numerical analysis of the two-field setup with
m = 2 and m = 4 for various powers of n, employing the δN formalism. We have found
that the model with n = 1/3 for m = 2, 4 and n = 2/3 for m = 4 moves into the acceptable
ranges and becomes compatible with the latest Planck-BICEP/Keck results, even though the
assistant field s is assumed to have no sizable potential in the Jordan frame and no direct
coupling between the inflaton field ϕ and the assistant field s is introduced. In a multi-field
setup, non-Gaussianities may become large. We have computed the local-type nonlinearity
parameter f (local)

NL and checked the agreement with the Planck data.
The resurrection of the potential with a higher power n > 2/3 is found to be difficult

with the assistance of a non-minimally coupled field within the simple setup we considered in
this paper. Of course, one may easily extend our setup e.g. by allowing a non-trivial potential
for the assistant field in the Jordan frame. We leave the extensions for future studies.
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