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Conventional wisdom says that a chaotic inflation model with a power-law potential is ruled out

by the recent Planck-BICEP/Keck results. We find, however, that the model can be assisted by a

non-minimally coupled scalar field and still provides a successful inflation. Considering a power-law

chaotic inflation model of the type V ∼ ϕn with n = {2, 4/3, 1, 2/3, 1/3}, we show that n = 1/3

(n = {2/3, 1/3}) may be revived with the help of the quadratic (quartic) non-minimal coupling of

the assistant field to gravity.

I. INTRODUCTION

Chaotic inflation with a power-law potential V ∼ ϕn has been regarded as an attractive inflationary framework

for a long time since 1983 [1]. The power-law chaotic inflation model predicts the scalar spectral index ns and the

tensor-to-scalar ratio r as ns ≈ 1 − 2(n + 2)/(n + 4N) and r ≈ 16n/(n + 4N), respectively, where N is the number

of e-folds. However, the recent Planck [2] and BICEP/Keck [3] results put a stringent bound on the tensor-to-scalar

ratio as r0.05 < 0.036 (95% C.L.), while the bound on the spectral index is given by 0.958 . ns . 0.975 (95% C.L.). It

indicates that the power-law chaotic inflation model is ruled out for every n, which is not necessarily an integer, with

N = 50 or 60, residing outside the 2σ acceptable range of (ns, r). We are curious if the power-law chaotic inflation

can resurrect by extending the original setup.

One known way is introducing a non-minimal coupling Ω2(ϕ) with the Ricci curvature R in the Jordan frame [4–7].

The potential in the Einstein frame VE becomes flat in the large-field limit as long as the asymptotic ratio of the Jordan-

frame potential V (ϕ) and the squared non-minimal coupling term becomes constant since VE ∼ V (ϕ)/Ω4(ϕ) [7],

thereby supporting successful slow-roll inflation. A nice example is the Higgs inflation [8, 9] especially in the vicinity

of a critical point [10, 11].1

Having this success in our minds, we would like to explore another possibility. There may exist another scalar field s

(an assistant field) which does not have a direct coupling to the inflaton field ϕ but non-minimally couples to the Ricci

curvature R as smR with a power m > 0. On the other hand, we consider the case where the inflaton field ϕ is still

minimally coupled to gravity. Although many studies are devoted to investigate the case where the inflaton field is

non-minimally coupled to gravity 2, given that multiple scalar fields can naturally arise in high energy theories such as

superstring theories, scenarios with a non-minimal coupling between another scalar field and R should also be possible.

Since the assistant field is non-minimally coupled, the Einstein-frame potential and the inflationary dynamics become

non-trivial. We want to examine if chaotic inflation models can move back to observationally acceptable ranges. For

definiteness and also for simplicity, in the current study, we assume that the energy density of the assistant field

is negligible compared to that of the inflaton field which allows us to approximate the Jordan-frame potential as

V = V (ϕ). One may, of course, easily extend our setup to a more general case, but we leave the extensions for future

studies; see, e.g., Refs. [37, 38].
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‡ Corresponding author; sc.park@yonsei.ac.kr
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1 The addition of a R2 term [12–19] further improves its high energy behavior as the scalaron emerges and unitarizes the theory [20–23];

see Ref. [24] for a recent review on various aspects of Higgs-R2 inflation. For a supersymmetric version of the Higgs inflation, see e.g.,

Refs. [25–34].
2 Cases of an arbitrary power for the chaotic inflation with the inflaton non-minimal coupling are studied in e.g. Refs. [35, 36].

ar
X

iv
:2

20
3.

09
20

1v
2 

 [
as

tr
o-

ph
.C

O
] 

 2
 J

un
 2

02
2

mailto:bsg04103@yonsei.ac.kr
mailto:jinsu.kim@cern.ch
mailto:sc.park@yonsei.ac.kr
mailto:tomot@cc.saga-u.ac.jp


2

The rest of the paper is organized as follows: In Sec. II, we introduce in detail chaotic inflation with a power-law

potential and a non-minimally coupled assistant field. We then analyze the two-field setup in the Einstein frame and

compute cosmological observables such as the spectral index, the tensor-to-scalar ratio, and the local-type nonlinearity

parameter, employing the δN formalism in Sec. III. In Sec. IV, we perform a numerical analysis on the cosmological

observables and check the compatibility with the latest Planck-BICEP/Keck results for various powers of the inflaton

potential with the quadratic and quartic non-minimal couplings of the assistant field to gravity. We show that a

subclass of the power-law chaotic inflation models may be revived with the help of the assistant field. We conclude

in Sec. V.

II. MODEL

The action for the inflaton field ϕ and the assistant field s is introduced in the Jordan frame as3

SJ =

∫
d4x
√
−gJ

[
M2

P

2
Ω2(s)RJ −

1

2
gµνJ ∂µϕ∂νϕ−

1

2
gµνJ ∂µs∂νs− VJ(ϕ)

]
, (1)

where MP ≡ 1/
√

8πG = 2.44 × 1018 GeV is the reduced Planck mass, and the subscript J indicates that the action

is written in the Jordan frame. We note that only the assistant field s couples to gravity non-minimally, while the

inflaton field ϕ remains minimally coupled, i.e., Ω2 = Ω2(s). We assume that the energy density of the assistant field

is negligible compared to that of the inflaton field. Moreover, the additional scalar field s is assumed to have no direct

coupling to the inflaton field ϕ. Thus, to a good approximation, the scalar potential in the Jordan frame is given by

VJ = VJ(ϕ). We consider the power-law potential,

VJ(ϕ) = λϕM
4
P

(
ϕ

MP

)n
. (2)

The power n does not necessarily take an integer value, and we consider various cases with n = {2, 4/3, 1, 2/3, 1/3}.
The cases with fractional power are motivated by axion monodromy scenario [44–47]; see also Ref. [48]. In this

parametrization, the self-coupling λϕ is a dimensionless parameter regardless of the power n.

We expand the conformal factor Ω2 as

Ω2 = 1 + ξ2

(
s

MP

)2

+ ξ4

(
s

MP

)4

+ · · · , (3)

where 1 corresponds to the Einstein-Hilbert action, and ξi (i = 2, 4, 6, · · · ) are all dimensionless coefficients. We focus

on the regime ξi(s/MP)i � 1 so that the expansion (3) remains to be valid.4 We implicitly assume Z2 symmetry

s→ −s so that ξi=odd = 0 for all odd terms, and the leading-order term is either ξ2 or ξ4 when ξ2 is negligible. From

now on, we only keep the leading-order term in the ξm expansion, and thus, we take Ω2 ≡ 1+ξm(s/MP )m with m = 2

or m = 4 (when ξ2 = 0). We will comment on the role of the higher-order terms later.

The action (1) can be brought to the Einstein frame, where the gravity part takes the standard Einstein-Hilbert

term, via the Weyl rescaling gJµν → gEµν = Ω2gJµν . The resultant Einstein-frame action is given by

SE =

∫
d4x
√
−gE

[
M2

P

2
RE −

1

2
K1g

µν
E ∂µϕ∂νϕ−

1

2
K2g

µν
E ∂µs∂νs− VE(ϕ, s)

]
, (4)

where

K1 =
1

1 + ξmsm/Mm
P

, (5)

K2 =
1 + ξms

m/Mm
P + (3/2)m2ξ2m(s/MP)2m−2

(1 + ξmsm/Mm
P )2

, (6)

3 We note that our model is different from the so-called assisted inflation [39–43].
4 In general, a certain mass scale µ may exist, and for s � µ, we can Taylor-expand the conformal factor as Ω2 = 1 + am(s/µ)m + · · · ,

where am = O(1) is the leading-order term. Defining ξm ≡ am(MP/µ)m, we recover Eq. (3).



3

and

VE(ϕ, s) =
VJ(ϕ)

(1 + ξmsm/Mm
P )2

≡ F (ϕ)K(s) . (7)

Here, we have defined F (ϕ) ≡ VJ(ϕ) and K(s) ≡ 1/(1 + ξms
m/Mm

P )2. Note that K1,2 = K1,2(s) are functions of the

s field only. Henceforth, we omit the subscript E for brevity.

Let us introduce a canonically normalized field σ, which is defined by(
∂σ

∂s

)2

= K2 . (8)

Then, we have

S =

∫
d4x
√
−g
[
M2

P

2
R− 1

2
(∂σ)2 − 1

2
e2b(∂ϕ)2 − V (ϕ, s)

]
, (9)

where we have defined b = b(σ(s)) via

e2b ≡ K1 =
1

1 + ξmsm/Mm
P

, (10)

or, equivalently, b ≡ −(1/2) ln(1 + ξms
m/Mm

P ). We note that the action (9) takes the same form as the one studied

in Refs. [49, 50]. This form can also arise from the f(R)-type model [51].

A few remarks are in order. As we are interested in the case where ξms
m/Mm

P � 1, the scalar potential in the

Einstein frame may be expanded as

V (ϕ, s) =
λϕM

4
P(ϕ/MP)n

(1 + ξmsm/Mm
P )2

≈ λϕM4
P

(
ϕ

MP

)n(
1− 2ξm

sm

Mm
P

)
. (11)

Thus, the (n,m) = (2, 2) case, for example, contains the Higgs-portal-type interaction, ϕ2s2. Furthermore, the scalar

potential for the m = 2 case, up to the leading order in ξ2s
2/M2

P, can be approximated as

V (ϕ, s) ≈ λϕM
4
P

2

(
ϕ

MP

)n [
1 + cos

(
s

f

)]
, (12)

with f = (2
√

2ξ2)−1MP, provided ξ2 > 0. In other words, the Einstein-frame potential is a product of the chaotic

inflation model and the natural inflation model. We note that the natural inflation is also disfavored by the recent

BICEP/Keck observations. Similarly, for the m = 4 case, the potential in the Einstein frame is given by

V (ϕ, s) ≈ λϕM
4
P

2

(
ϕ

MP

)n [
1− 2ξ4

(
s

MP

)4
]
, (13)

which is a product of the chaotic inflation model and the hilltop quartic inflation model. Our model can thus be

viewed as a phenomenological model that connects between the chaotic inflation-type models and natural inflation

and hilltop inflation. We stress at this point that we did not impose any direct interaction between the fields ϕ and

s. Couplings between the two fields are due to the presence of the non-minimal coupling of the assistant field s to

gravity.

Finally, we briefly comment on the role of the higher-order terms in the conformal factor. We first note that the

potential of V = λϕM
4
P(ϕ/MP)n/(1 + ξms

m/Mm
P )2 along the s-field direction is unstable, i.e., a runaway potential,

for ξm > 0, while the potential develops a pole when ξm < 0. However, this can be viewed as an artifact of the fact

that we truncated the non-minimal potential at the leading order. In general, one has the higher-order terms in the

conformal factor Ω2, in which case, the potential may become stable without a pole. During inflation, however, the

higher-order terms have negligible effects. Thus, we do not consider those higher-order terms in our analysis below.5

5 See, for example, Refs. [52, 53]. See also Ref. [54] for higher curvature terms Rm>3.
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III. COSMOLOGICAL OBSERVABLES

For the Einstein-frame action (9), the background equations of motion are given by

H2 =
1

3M2
P

(
1

2
σ̇2 +

1

2
e2bϕ̇2 + V

)
, (14)

0 = σ̈ + 3Hσ̇ + V,σ − b,σe2bϕ̇2 , (15)

0 = ϕ̈+ (3H + 2b,σσ̇)ϕ̇+ e−2bV,ϕ , (16)

where the dot represents the derivative with respect to the cosmic time and ,i ≡ ∂/∂φi for i = {σ, ϕ}.
We define the following slow-roll parameters:

εσ ≡ M2
P

2

(
V,σ
V

)2

=
M2

P

2

(
K,σ

K

)2

, εϕ ≡ M2
P

2

(
V,ϕ
V
e−b
)2

=
M2

P

2

(
F,ϕ
F
e−b
)2

,

ησσ ≡M2
P

V,σσ
V

= M2
P

K,σσ

K
, ηϕϕ ≡M2

P

V,ϕϕ
V

e−2b = M2
P

F,ϕϕ
F

e−2b ,

ηϕσ ≡M2
P

V,ϕσ
V

e−b , εb ≡ 8M2
Pb

2
,σ . (17)

Note that ηϕσ ∼
√
εσεϕ in our case as the Einstein-frame potential is product-separable, i.e., V (ϕ, s) = F (ϕ)K(s).

Requiring the slow-roll conditions, {εi, |ηij |, εb} � 1 (i, j = {σ, ϕ}), the equations of motion (14)–(16) become

H2 ≈ V

3M2
P

, 3Hσ̇ ≈ −V,σ , 3Hϕ̇ ≈ −e−2bV,ϕ . (18)

We note that, under the slow-roll approximation, εσ ≈ ε cos2 θ and εϕ ≈ ε sin2 θ, and thus ε ≈ εσ + εϕ, where

ε ≡ −Ḣ/H2 and θ is defined through

cos θ =
σ̇√

σ̇2 + e2bϕ̇2
, sin θ =

ϕ̇eb√
σ̇2 + e2bϕ̇2

. (19)

For later convenience, we also define

ηb ≡ 16M2
Pb,σσ . (20)

To compute cosmological observables such as the curvature power spectrum Pζ , scalar spectral index ns, tensor-

to-scalar ratio r, and the local-type nonlinearity parameter f
(local)
NL , we adopt the δN formalism [55–59], where the

curvature perturbation is given by the difference of the number of e-folds N between the initial flat hypersurface

and final uniform-density hypersurface, i.e., ζ = δN . For small enough perturbations δφi (φi = {σ, ϕ}), one may

Taylor-expand δN to obtain

ζ = δN =
∂N

∂φi
δφi +

1

2

∂2N

∂φi∂φj
δφiδφj + · · · (21)

Here, we summarize the expressions for the cosmological observables in the δN formalism (see Refs. [49, 50, 57, 58, 60–

62] for details). First, the curvature power spectrum is given by

Pζ =

(
H

2π

)2

GijN,iN,j , (22)

where Gij is the inverse metric of the field space and N,i ≡ ∂N/∂ϕi. The spectral index is

ns − 1 = −2ε− 2
1 +N,k(

M6
P

3 RkmnlV,mV,n/V
2 −M4

PV
;kl/V )N,l

GijN,iN,jM2
P

, (23)
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where the semicolon denotes the covariant derivative in the field space, and Rkmnl is the Riemann tensor in the field

space whose non-zero components, in our case, are given by

Rσϕσϕ = Rϕσϕσ = −Rσϕϕσ = −Rϕσσϕ = −e−2b
(
b,σσ + b2,σ

)
. (24)

The tensor-to-scalar ratio is given by

r =
8/M2

P

GijN,iN,j
. (25)

Finally, the local-type (shape-independent) nonlinearity parameter is obtained as

−6

5
f
(local)
NL =

GijGmnN,iN,mN,jn
(GklN,kN,l)2

. (26)

The quantities are to be evaluated at the horizon crossing, i.e., when a mode exits the Hubble radius, k = aH. We

denote the horizon-crossing point by super- or sub-script ∗ below. Similarly, the sub- or super-script e denotes the

end of inflation.

The number of e-folds is given by

N = −
∫ t∗

te

H dt ≈ 1

M2
P

∫ σ∗

σe

K

K,σ
dσ , (27)

where the slow roll is assumed. The first and second derivatives of the number of e-folds, N,i and N,ij , have been

worked out in, e.g., Ref. [50] for the action (9). The resultant expressions for N,i are given as follows:

MP
∂N

∂σ∗
=

1√
2

sgn

(
K∗

K∗,σ

)
1
√
εσ∗

(
1− εϕe

εe
e2b

e−2b∗
)
, (28)

MP
∂N

∂ϕ∗
=

1√
2

sgn

(
F ∗

F ∗,ϕ

)
1√
εϕ∗

(
εϕe
εe

)
e2b

e−b∗ . (29)

Here, we have used ε ≈ εσ+εϕ. Positivity of the scalar potential for each field allows us to write sgn(K/K,σ) = sgn(V,σ)

and sgn(F/F,ϕ) = sgn(V,ϕ). We shall thus use sσ ≡ sgn(V,σ) and sϕ ≡ sgn(V,ϕ) in the following. Similarly, we define

sb ≡ sgn(b,σ). The expressions for N,ij are

M2
P

∂2N

∂σ2
∗

=

(
1− ησσ∗

2εσ∗

)(
1− εϕe

εe
e2b

e−2b∗
)

+
1

2
sb∗s

σ
∗

√
εb∗
εσ∗

εϕe
εe
e2b

e−2b∗

+ e4b
e−4b∗ ε

ϕ
e ε
σ
e

εσ∗ ε
2
e

[
εσe η

ϕϕ
e + εϕe η

σσ
e

εe
− 4

εϕe ε
σ
e

εe
− 1

2
sbes

σ
e

√
εbe
εσe

(εϕe )2

εe

]
, (30)

M2
P

∂2N

∂ϕ2
∗

=

(
1− ηϕϕ∗

2εϕ∗

)
εϕe
εe
e2b

e

+ e4b
e−2b∗ ε

ϕ
e ε
σ
e

εϕ∗ ε2e

[
εσe η

ϕϕ
e + εϕe η

σσ
e

εe
− 4

εϕe ε
σ
e

εe
− 1

2
sbes

σ
e

√
εbe
εσe

(εϕe )2

εe

]
, (31)

M2
P

∂2N

∂ϕ∗∂σ∗
= −sϕ∗ sσ∗e4b

e−3b∗ εϕe ε
σ
e

ε2e
√
εσ∗ ε

ϕ
∗

[
εσe η

ϕϕ
e + εϕe η

σσ
e

εe
− 4

εϕe ε
σ
e

εe
− 1

2
sbes

σ
e

√
εbe
εσe

(εϕe )2

εe

]
. (32)
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Putting the expressions for the first and second derivatives of N into Eqs. (22)–(26), we obtain

Pζ =
H2
∗

8π2M2
P

e2X
(
u2α2

εσ∗
+
v2

εϕ∗

)
, (33)

ns = 1− 2ε∗ −
4e−2X

u2α2/εσ∗ + v2/εϕ∗
− 1

12

ηb∗ + 2εb∗
u2α2/εσ∗ + v2/εϕ∗

(
uα

√
εϕ∗
εσ∗
− v
√
εσ∗
εϕ∗

)2

+
2

u2α2/εσ∗ + v2/εϕ∗

[
u2α2 η

σσ
∗
εσ∗

+ v2
ηϕϕ∗
εϕ∗

+ 4uvα+
1

2
sb∗s

σ
∗

√
εb∗ε

σ
∗v

(
v

εϕ∗
− 2uα

εσ∗

)]
, (34)

r =
16e−2X

u2α2/εσ∗ + v2/εϕ∗
, (35)

−6

5
f
(local)
NL =

2e−X

(u2α2/εσ∗ + v2/εϕ∗ )2

[(
1− ησσ∗

2εσ∗

)
u3α3

εσ∗
+

(
1− ηϕϕ∗

2εϕ∗

)
v3

εϕ∗

+
1

2
sb∗s

σ
∗
u2vα2

εσ∗

√
εb∗
εσ∗

+

(
uα

εσ∗
− v

εϕ∗

)2

eXC

]
, (36)

where we have defined

u ≡ εσe
εe
, v ≡ εϕe

εe
, X ≡ 2be − 2b∗ ,

C ≡ εσe ε
ϕ
e

ε2e

(
εσe η

ϕϕ
e + εϕe η

σσ
e

εe
− 4

εϕe ε
σ
e

εe
− 1

2
sσe s

b
e

√
εbe
εσe

(εϕe )2

εe

)
,

α ≡ e2b
∗−2be

[
1 +

εϕe
εσe

(
1− e2b

e−2b∗
)]

. (37)

We perform a numerical analysis to obtain the cosmological observables for our model, exploiting Eqs. (33)–(37).

IV. RESULTS

The number of e-folds (27) for the system (9) is given by

N =


3

4
ln

(
M2

P + ξ2s
2
e

M2
P + ξ2s2∗

)
+

1

4ξ2
ln

(
se
s∗

)
for m = 2 ,

3

4
ln

(
M4

P + ξ4s
4
e

M4
P + ξ4s4∗

)
+
M2

P

16ξ4

(
1

s2∗
− 1

s2e

)
for m = 4 .

For a given set of values of {m, ξm}, the number of e-folds becomes a function of s∗ and se. We treat the value of the

s field at the CMB pivot scale, s∗, as a parameter. Then, once s∗ is specified, se can be given in terms of s∗ and N .

The evolution of the ϕ field is governed by

dϕ

dN
≈ −e−2b V,ϕ

3H2
= −nM

2
P

ϕ

(
1 + ξm

sm

Mm
P

)
, (38)

where the slow-roll approximation is used; see Eq. (18). Inserting the evolution of the s field obtained from the

number of e-folds above and integrating the ϕ evolution equation, we obtain an expression of the ϕ-field value at the

end of inflation, ϕe, as a function of s∗, ϕ∗, and N , for a given value of n.

From the end-of-inflation condition, which we choose to be ε = 1, one may relate ϕe and se. Since ϕe and se are

given in terms of s∗, ϕ∗, and N , we obtain a relation between s∗ and ϕ∗. Since we are treating s∗ as a parameter, all

the other quantities, such as se, ϕe, and ϕ∗, are functions of s∗ together with N . In our analysis, we take N = 60.

We then use Eqs. (34)–(37) to compute the spectral index ns, the tensor-to-scalar ratio r, and the local-type

nonlinearity parameter f
(local)
NL . We examine the power-law potential with n = {2, 4/3, 1, 2/3, 1/3} for m = 2 and



7

0.95 0.96 0.97 0.98 0.99 1.00

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ns

r
m=2

n=2, s*/MP=10
-3

n=2, s*/MP=10
-1

n=4/3, s*/MP=10
-3

n=4/3, s*/MP=10
-1

n=1, s*/MP=10
-3

n=1, s*/MP=10
-1

n=2/3, s*/MP=10
-3

n=2/3, s*/MP=10
-1

n=1/3, s*/MP=10
-3

n=1/3, s*/MP=10
-1

0.950 0.955 0.960 0.965 0.970 0.975 0.980 0.985

0

1

2

3

4

5

6

ns

f N
L

(lo
ca
l)

m=2

n=2, s*/MP=10
-3

n=2, s*/MP=10
-1

n=4/3, s*/MP=10
-3

n=4/3, s*/MP=10
-1

n=1, s*/MP=10
-3

n=1, s*/MP=10
-1

n=2/3, s*/MP=10
-3

n=2/3, s*/MP=10
-1

n=1/3, s*/MP=10
-3

n=1/3, s*/MP=10
-1

FIG. 1. Effects of the quadratic non-minimal coupling ξ2 of the assistant field on the cosmological observables in the ns –

r plane (left) and in the ns – f
(local)
NL plane (right). The power-law potential is considered with n = 2 (red), n = 4/3 (blue),

n = 1 (magenta), n = 2/3 (cyan), and n = 1/3 (green). The points represent the predictions of the standard power-law chaotic

inflation models which is recovered when ξ2 = 0, while the ns ' 0.95 points correspond to ξ2 ' 0.01 (0.02) for s∗ = 10−1MP

(10−3MP). The dashed (solid) lines correspond to the s∗ = 10−3MP (10−1MP) case. As ξ2 increases, the spectral index ns

and the tensor-to-scalar ratio r decrease. On the other hand, the nonlinearity parameter f
(local)
NL increases as ξ2 grows, while

remaining compatible with the Planck 2σ bound [63]. The Planck [2] (Planck-BICEP/Keck [3]) 1σ and 2σ bounds on the ns–r

plane are depicted by the gray (black) solid and gray (black) dashed lines, respectively. The n = 1/3 may be revived with the

help of the assistant field. The n = 2/3 is marginally ruled out and the other higher powers remain to be ruled out by the

Planck-BICEP/Keck results.

m = 4 cases. One may notice that the model parameter λϕ does not enter in the expressions of ns, r, and f
(local)
NL

and that only the curvature power spectrum (33) depends on λϕ. We use this degree of freedom to match the Planck

normalization, namely Pζ ' 2 × 10−9 at the CMB scale. Therefore, there remain only two free parameters, ξm and

s∗. We explore the behavior of ns, r, and f
(local)
NL by varying ξm and s∗.

We present our numerical analysis in Fig. 1 for the quadratic (m = 2) non-minimal coupling and in Fig. 2 for

the quartic (m = 4) non-minimal coupling. In both Figs. 1 and 2, we present by varying ξm the behavior of the

cosmological observables in the ns – r plane (left panels) and in the ns – f
(local)
NL plane (right panels), for n = 2

(red), n = 4/3 (blue), n = 1 (magenta), n = 2/3 (cyan), and n = 1/3 (green). For the m = 2 case, we consider

s∗ = 10−3MP (dashed) and s∗ = 10−1MP (solid). For the m = 4 case, we take s∗ = 10−1MP (solid) and s∗ = MP

(dashed). In the ns – r plane, we overlay the Planck 1σ (solid gray) and 2σ (dashed gray) bounds as well as the

Planck-BICEP/Keck 1σ (solid black) and 2σ (dashed black) bounds. The dots correspond to the standard power-law

chaotic inflation predictions, namely the ξm = 0 case. We clearly see that they sit outside the Planck-BICEP/Keck

bounds.

In the left panel of Fig. 1, one may see the effect of the assistant field s on ns and r for the m = 2 case. While

recovering the standard predictions of the power-law chaotic inflation models when ξ2 = 0, the presence of the assistant

field that couples only to gravity decreases both the spectral index ns and the tensor-to-scalar ratio r. As a result,

the n = 1/3 case becomes compatible with the latest Planck-BICEP/Keck results. The n = 2/3 case is marginally

ruled out, and the higher powers, n = {2, 4/3, 1}, remain to be ruled out. The tendency of the local-type nonlinearity
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FIG. 2. Effects of the quartic non-minimal coupling ξ4 of the assistant field on the cosmological observables in the ns – r

plane (left) and in the ns – f
(local)
NL plane (right). The power-law potential is considered with n = 2 (red), n = 4/3 (blue),

n = 1 (magenta), n = 2/3 (cyan), and n = 1/3 (green). The points represent the predictions of the standard power-law chaotic

inflation models which is recovered when ξ4 = 0, while the ns ' 0.95 points correspond to ξ4 ' 0.1 (0.001) for s∗ = 10−1MP

(MP). The dashed (solid) lines correspond to the s∗ = MP (10−1MP) case. As ξ4 increases, the spectral index ns and the

tensor-to-scalar ratio r decrease. On the other hand, the nonlinearity parameter f
(local)
NL tends to increase as ξ4 increases. For

the s = 10−1MP case, the nonlinearity parameter goes outside the Planck 2σ bound [63], −11.1 < f
(local)
NL < 9.3. The region

that is incompatible with this bound is grayed out in the ns – r plot. The s∗ = MP case is, however, compatible with the

Planck 2σ bound on the local-type nonlinearity parameter. The Planck [2] (Planck-BICEP/Keck [3]) 1σ and 2σ bounds on

the ns–r plane are depicted by the gray (black) solid and gray (black) dashed lines, respectively. In the case of the quartic

non-minimal coupling, both the n = 1/3 and n = 2/3 powers may be revived with the help of the assistant field. The other

higher powers remain to be ruled out by the Planck-BICEP/Keck results.

parameter f
(local)
NL is shown in the right panel of Fig. 1 for the m = 2 case. We observe that the nonlinearity parameters

are small for the s∗ = 10−1MP. The nonlinearity parameters may become sizable for the s∗ = 10−3MP, while residing

inside Planck 2σ bound, −11.1 < f
(local)
NL < 9.3.6

Similarly, the left panel of Fig. 2 shows how the presence of the assistant field s affects the ns and r for the

m = 4 case. Again, as ξ4 increases, both ns and r decrease from the standard predictions marked by points which

correspond to ξ4 = 0. Consequently, both the powers of n = 1/3 and n = 2/3 may become compatible with the latest

Planck-BICEP/Keck results. The higher powers, n = {2, 4/3, 1}, remain to be ruled out. We observe from the right

panel of Fig. 2 that the local-type nonlinearity parameter f
(local)
NL tends to increase as ξ4 increases. While the values

of f
(local)
NL are within the Planck 2σ bound, −11.1 < f

(local)
NL < 9.3, for the s∗ = MP case, they may become too large

for the s∗ = 10−1MP case. The region that is incompatible with the Planck 2σ bound on the local-type nonlinearity

parameter is grayed out in the ns – r plot in the left panel of Fig. 2.

6 The Planck 1σ bound for the local-type nonlinearity parameter corresponds to f
(local)
NL = −0.9± 5.1 [63].
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V. CONCLUSION

A single-field chaotic inflation with a power-law potential V ∼ ϕn is known to reside outside of observationally

acceptable range of (ns, r) space regardless of the value of the power n. To remedy this problem, we have considered

an additional scalar field (an assistant field) s which non-minimally couples to the curvature R in the form of smR

with some power m.

As explicit examples, we have performed a numerical analysis of the two-field setup with m = 2 and m = 4 for

various powers of n, employing the δN formalism. We have found that the model with n = 1/3 for m = 2, 4 and

n = 2/3 for m = 4 moves into the acceptable ranges and becomes compatible with the latest Planck-BICEP/Keck

results, even though the assistant field s is assumed to have no sizable potential in the Jordan frame and no direct

coupling between the inflaton field ϕ and the assistant field s is introduced. In a multi-field setup, non-Gaussianities

may become large. We have computed the local-type nonlinearity parameter f
(local)
NL and checked the agreement with

the Planck data.

The resurrection of the potential with a higher power n > 2/3 is found to be difficult with the assistance of a

non-minimally coupled field within the simple setup we considered in this paper. Of course, one may easily extend

our setup e.g. by allowing a non-trivial potential for the assistant field in the Jordan frame. We leave the extensions

for future studies.
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