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p ar a m et er t u ni n g, w e a c hi e v e st at e- of-t h e- art pr e ci si o n
o n t h e j et f o ur- m o m e nt u m, w hil e pr o vi di n g a n a c c u-

r at e d e s cri pti o n of t h e c o n stit u e nt s m o m e nt a, a n d a n
i nf er e n c e ti m e c o m p ar a bl e t o t h at of a r ul e- b a s e d f a st
si m ul ati o n.

1 I n t r o d u c ti o n

At p arti cl e c olli d er s, c olli m at e d s pr a y s of p arti cl e s ar e

pr o d u c e d a s a c o n s e q u e n c e of t h e p art o n s h o w er a n d
h a dr o ni z ati o n pr o c e s s e s t y pi c al of Q u a nt u m C hr o m o
D y n a mi c s ( Q C D). T h e s e s pr a y s of p arti cl e s, c all e d j et s,

ar e r e c o n str u ct e d a p pl yi n g a r e c o m bi n ati o n cl u st eri n g
al g orit h m, e x pl oiti n g p h y si c s-i n s pir e d m etri c s s u c h a s
t h e a nti- k t di st a n c e [ 1]. Oft e n, j et s ar e cl u st er e d fr o m
e n er g y d e p o sit s r e c or d e d i n t h e el e ctr o m a g n eti c a n d
h a dr o ni c c al ori m et er s of a p arti cl e d et e ct or. At t h e L H C,
j et s c a n b e cl u st er e d fr o m a li st of r e c o n str u ct e d p ar-
ti cl e s, t h e s o- c all e d p arti cl e- fl o w ( P F) c a n di d at e s [ 2, 3].
I n t hi s c a s e, j et s w o ul d b e s p ar s e s et s of o bj e ct s (t h e
c o n stit u e nt s), e a c h r e pr e s e nt e d b y it s m o m e nt u m 1 a n d
p o s si bl y a s et of a u xili ar y f e at ur e s, s u c h a s t h e n at ur e of

t h e p arti cl e ( el e ctr o n, m u o n, et c.), it s el e ctr o m a g n eti c
c h ar g e, et c.

A ti m e- a n d r e s o ur c e- e ff e cti v e str at e g y t o si m ul at e
j et pr o d u cti o n i s a f u n d a m e nt al a s s et f or p h y si c s st u di e s

1 A s c o m m o n f o r c olli d e r p h y si c s, w e u s e a C a r t e si a n c o o r-
di n a t e s y s t e m wi t h t h e z a xi s o ri e nt e d al o n g t h e b e a m a xi s,
t h e x a xi s o n t h e h o ri z o nt al pl a n e, a n d t h e y a xi s o ri e nt e d u p-
w a r d. T h e x a n d y a x e s d e fi n e t h e t r a n s v e r s e pl a n e, w hil e t h e
z a xi s i d e nti fi e s t h e l o n gi t u di n al di r e c ti o n. T h e a zi m u t h a n gl e
φ i s c o m p u t e d wi t h r e s p e c t t o t h e x a xi s. T h e p ol a r a n gl e θ
i s u s e d t o c o m p u t e t h e p s e u d o r a pi di t y η = − l o g ( t a n (θ / 2 ) ).
T h e t r a n s v e r s e m o m e nt u m ( p T ) i s t h e p r oj e c ti o n of t h e p a r-
ti cl e m o m e nt u m o n t h e ( x , y ) pl a n e. We fi x u ni t s s u c h t h a t
c = ¯h = 1.
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at the CERN Large Hadron Collider (LHC). Whether
testing predictions of the Standard Model (SM), search-
ing for evidence of physics beyond the SM, or assessing
systematic uncertainties associated to a given measure-
ment, physicists rely on an accurate simulation of the
full collision process and of the detector response. This
implies the need for a detailed simulation of a chain
of very different steps, from the proton collision to the
generation of the collected signal in the detector sen-
sors. Typically, physicists simulate datasets at least 10
times larger than the amount of collected data, so that
the precision on the final measurement is not limited
by the amount of simulated data at hand.

A typical high-energy physics (HEP) simulation soft-
ware relies on the GEANT4 [4] library to model the
interaction of particles traversing the detector material.
This approach, based on Monte Carlo (MC) techniques,
provides a typical accuracy at the percentage level, but
it comes at a high cost in terms of computing resource
utilization. At the LHC, the simulation workflow con-
sumes up to ∼ 50% of the total computing resources

of an experiment. With the amount of collected data
increasing, the need for MC simulation is going beyond
what the available computing infrastructure could sus-

tain. Projected to the planned High-Luminosity LHC
upgrade, this trend will eventually become unsustain-
able [5]. Jet simulation is one of the most expensive
tasks, since jets are very abundant in LHC collisions

and are made of many particles. Since the simulation
of each of these particles is a demanding operation,
the possibility of simulating all particles in a jet at

once would be a major improvement. The main dif-
ficulty of this task is to match state-of-the-art accu-
racy, which also depends on the specific use case, e.g.,
which quantity a specific analysis uses. For instance,
an algorithm reproducing the jet kinematic but not de-
scribing the angular distribution of the particles in the
jet might be suitable for an analysis needing a good

description of the jet momentum (e.g., a dijet reso-
nance search), but not for an analysis exploiting jet
substructure techniques (e.g., an all-jet diboson reso-
nance search). Certainly, an algorithm describing every
aspect of jet physics would be an ideal solution.

As a first step, a typical LHC simulation makes use
of an event generator, modeling a proton-proton colli-
sion, the consequent production of quarks and gluons
(among other particles), and their hadronization into
jets of particles. Since no detector response is involved,
this step typically requires a relatively modest amount
of computing resources 2. In addition, its content is in-
dependent of experimental aspects (reconstruction soft-

2 This picture could in principle change if next-to-leading
order precision would be adopted as a default. On the other

ware, detector configuration, etc.), so that a dataset of
these generator-level events can be stored for long term
and used many times (as is the case for the CMS exper-
iment). Computing requirements significantly increase
when detector effects are to be taken into account. At
first, one typically uses GEANT4 to simulate the de-
tector response. Then, the reconstruction software runs
on the event and produces the objects (e.g., the PF can-
didates for CMS), eventually clustered into jets. These
two steps could be bypassed by a jet response function,
taking as input the list of jet constituents at generator
level and returning the list of constituents at recon-
struction level. In this paper, we aim at approximating
this jet response function with a Variational Autoen-
coder (VAE), trained using generator-level jets as input
and the corresponding reconstruction-level jets as a tar-
get. We represent a jet as a list of particles’ momenta.
Doing so, the VAE returns a reconstructed jet in a for-
mat that is already compatible with a typical PF-based
analysis software. A different approach to the problem
of data sparsity consists of representing the jet as a

point cloud, as proposed for many HEP-specific prob-
lems [7]. We investigated that approach when training
a Generative Adversarial Network [8] to generate the

list jet constituent momenta from random numbers.
A similar approach was presented in Ref. [9], where
a graph VAE was used to generate detector hits in a

jet, from which jet constituents could be reconstructed
using standard rule-based algorithms, e.g., PF recon-
struction [2, 3]. This work has many common points
with Ref. [9], with two main differences: we do not use

graph architectures, and we aim at learning the detec-
tor response and bypassing the standard rule-based re-
construction algorithms (to offer further speed up of

the simulation process). We do so by taking the re-
constructed jet as a target. In this respect, our algo-
rithm could be used to replace detector parametrization
approaches now used in Fast Simulation tools [10–12],
while the algorithm of Ref. [9] aims at speeding up a
GEANT-based full simulation. In the future, both ap-
proaches will be useful to HEP experiment and, most
likely, the ultimate generative model will emerge from
a combination of the two.

This paper is organized as follows: Section 2 dis-

cusses related work. Sections 3 and 4 describe the bench-
mark dataset and the model architecture, respectively.
A strategy to apply the model to realistic use case is
discussed in Section 5. Training results are discussed in
Section 6. Conclusions are given in Section 7.

hand, ongoing work on parallelizing event generation libraries
on GPUs [6] may compensate for this precision increase.
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2 Related Works

In the recent past, several studies explored the possi-
bility of speeding up the data simulation process us-
ing generative models based on deep neural networks
(NNs). In particular, convolutional neural networks (CNNs)
have been proposed to generate single-particle show-
ers in a calorimeter [13–19], full jets at the LHC [20–
22], multi-dimensional functions of kinematic quanti-
ties [23, 24], event kinematics at colliders [25, 26], and
cosmic ray showers [27]. Both generative adversarial
networks (GANs) [28–30] and variational autoencoders
(VAEs) [31] were considered.

These studies clearly demonstrate that integrating
deep generative models in the data simulation work-
flows of HEP experiments could lead to an important
saving in terms of computing resources. But there is
an objective difficulty when scaling up these proof-of-
concept solutions to production-ready simulation tools.

The main problem lies in the complexity of a typi-
cal HEP detector, characterized by detector elements
with different technology and geometry, partially over-
lapping with each other and with passive material (e.g.,

absorbers in calorimeters) in between. As a consequence
of this, a typical HEP dataset consists of a sparse set of
energy deposits, which often cannot be represented as

a regular grid of pixels. Future detectors will be charac-
terized by higher granularity, with small-size sensors de-
signed to resolve hits from individual particles in dense
environments, such as jet cores. This will make the spar-

sity of the event even more complicated. This is the
main reason why most of the great ideas based on CNNs
had so far a little impact on HEP experiments. In-

stead, other approaches were explored as alternatives to
CNNs, e.g., a recurrent neural network (RNN) trained
adversarially [32], graph neural networks [8, 9, 33], or
normalizing flows [34]. Similar issues are present in other
domains, e.g., galaxy simulation in cosmology [35].

In this paper, we investigate an alternative strat-
egy to overcome difficulties with the peculiar nature
of HEP data. In previous studies, we discussed how to
sample jets as sparse data from a probability density

function, modeled using deep generative models. To this
purpose, we considered both GANs [8] and VAEs [36].
Here we take a different approach, in which the input is
a generator-level jet (as opposed to a vector of random
coordinates in some latent space) and the aim of the
training is to learn a morphing function from generator
to reconstruction level.

The strategy is similar to what is discussed in Ref. [37],
where a similar approach is followed to morph a set of
analysis-specific features from generator- to reconstruction-

level precision.

3 Dataset

The reference dataset consists of jets generated in pp→
WW collisions at a center-of-mass energy

√
s = 13 TeV.

The W bosons are forced to decay to quarks, that then
shower to jets. The event generation is performed using
PYTHIA8 [38]. The generated list of particles is passed
to DELPHES [10], which applies detector effects using
the CMS DELPHES description. At this stage, additional
collision events are superimposed to the generated colli-
sion, to mimic the effect of so-called pileup. The number
of collisions is randomly sampled from a Poisson distri-
bution with expectation value set to 50, in agreement
with the expected LHC running conditions for Run 3.
The DELPHES particle-flow reconstruction algorithm is
applied to the event, returning the list of reconstructed
particles. Reconstructed particles are required to have
pT > 250 MeV and be within |η| < 3.2. These par-
ticles are then clustered into jets using the anti-kt [1]
algorithm with jet-size parameter R = 0.5. Jets with

pT > 200 GeV and within |η| < 2.5 are retained. These
jets represent the target dataset. With the same set-
ting, generator-level jets are clustered from the stable

and detectable particles produced in the collision, be-
fore detector effects are taken into account. These jets
represent the input dataset.

Target jets within pT and η acceptance are matched
to input jets minimizing the angular distance ∆R =√
∆φ2 +∆η2. An input-target pair is formed taking

the closest input jet to each target jet. For both input
and target jets, constituents are ordered by decreasing
pT and the first 50 particles are retained. When fewer

particles are present, the list is zero-padded. The list
contains the momentum of each constituent in Carte-
sian coordinates (px, py, pz). The constituent mass is
implicitly assumed to be zero. The main advantages of
this specific choice are: it retains information of the po-
sition of the jet in the detector (as opposed to local
coordinate choice); the distribution of these quantities

is unbounded and symmetric around 0, which makes
the learning process easier. In particular, we avoid is-
sues related to the periodicity of φ and hard-threshold
at boundaries (e.g., on pT).

We apply feature-dependent standardization by sub-
tracting the mean and scaling the features to unit vari-
ance. During early stages of this work, we verified that
these choices help the model training to converge to
more accurate configurations of the network weights.

After this pre-processing, each jet is represented as a
2D array of 3×50 numbers. The whole dataset includes
∼ 1.7M jets. We split these data in three parts: 60% for
training, 20% for validation, and 20% for testing. The
dataset is published on Zenodo [39].
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Fig. 1 Graphical representation of the VAE architecture.

4 VAE Architecture

The VAE architecture is schematically shown in Fig. 1.
The encoder receives a single-channel 3×50 table, which
is processed by three 2D convolutional layers, with 32
3×5 kernels, 64 1×5 kernels, and 128 1×5 kernels, re-
spectively. The stride is set to 1 and zero padding is
used when the kernel arrives at the edge of the table.
The output tensor is flattened and passed to two dense
layers, with 640 and 150 nodes, respectively. From the

second layer, two 20-dimension vectors are derived, cor-
responding to the mean µ and log-variance values of the
latent-space variables z. These values are used to define

the Gaussian prior function from which a set of z values
is sampled and passed to the decoder. The decoder ar-
chitecture mirrors the encoder, with the Conv2D layers

being replaced by ConvTrans2D layers. Leaky ReLU
activation functions are used across the whole archi-
tecture with the coefficient of the negative slope set
to 0.1, except for the encoder and decoder output lay-

ers, for which a linear activation function is used. Max
pooling with the kernel size 1×2 and stride of 2 is ap-
plied after each of the first two convolution operations

in the encoder. Respectively, two upsampling opera-
tions are used in the decoder, each placed before the
last two ConvTrans2D layers with a bilinear interpo-
lation scheme. Dropout is added to the output of the
first dense layer in the encoder and to the output of the
two dense layers in the decoder with a dropout rate of
0.2. The deep learning (DL) model is implemented in
PyTorch [40].

The model is trained using an input dataset, con-
taining the list of particles at generator level, and a

target dataset, containing the corresponding list after
detector effects and event reconstruction. In this way,
the model is trained to regress the detector response
function starting from a generator-level jet, i.e. it cor-
responds to what a Fast Simulation software in HEP
computing literature. For this kind of application, a
typical state-of-the-art simulation has a 10% accuracy
on jet kinematic properties.

The model training is performed minimizing a domain-
specific loss function:

LVAE =
1

N

N∑
i=0

[
βDi

KL + (1− β)
(
Li
R+

+ αm

(
mi

jet − m̂i
jet

)2
+ αpT

(
pjet,iT − p̂jet,iT

)2)]
(1)

where N is the dataset size, LR is the reconstruction
loss (i.e., a distance between the target and the out-

put), DKL is the Kullback–Leibler (KL) divergence reg-
ularizer usually employed to force the data distribu-
tion in the latent space to a multi-dimensional Gaus-
sian with unitary covariance matrix [41], and β is a

parameter that controls the relative importance of the
two terms [42]. The reconstruction loss LR is computed
using the permutation-invariant Chamfer loss [43]:

LR =
∑
i

min
j

(pi − p̂j)2 +
∑
j

min
i

(pi − p̂j)2 , (2)

where pi is the feature for the i-th target particle, and
p̂j is the corresponding quantity for the j-th output par-
ticle. By construction, this quantity is invariant under
the permutation of the input or output particle lists. We
also experimented with a mean squared error (MSE)
loss, observing typically worse results.

In Eq. (1), pjetT and mjet are the transverse mo-

mentum and mass of a target jet, respectively. Jet fea-
tures are computed from the momenta of the target-jet
constituents, while p̂jetT and m̂jet are the corresponding
quantities computed from the model output. The coef-
ficients αm = 1.0 and αpT

= 0.1 were chosen such that
the reconstruction loss LR and the jet-pT and jet-mass
MSE constraints in Eq. (1) have similar magnitudes.

The expression in Eq. (1) is only one of the possible
ways one could enforce kinematic constraints on the
jet generator. Similar approaches have been followed in
previous works, e.g., for particle energy in GAN-based
single-particle generators [14, 44]. The main difference
here is that the quantity on which the constraint is ap-
plied on is analytically computed from the output list,
as opposed of being regressed from an image. We also
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tried other combinations of kinematic constraints, e.g.,
the three momentum components in Cartesian coordi-
nates, observing similar or worse results after training.

5 Target application

The aim of this work is to create a fast-simulation work-
flow for an analysis demanding a large sample of mul-
tijet events. As a reference, we consider the case of di-
jet resonance searches. Traditionally, these searches are
carried on through a bump-hunt maximum-likelihood
fit, in which the background is analytically modeled [45,
46]. Large samples of simulated multijet events are used
to find an adequate model. In addition, a novel simulation-
assisted strategy uses ratios of simulated distributions
to avoid the need of a specific background analytical
model [47]. Also in this case, having at hand a large sim-
ulated sample is crucial. Finally, the proposed strategy
could be crucial to move the default event-generation
precision to next-to-leading order, trading simulation
computing time for generation computing time. This

would be also relevant for analyses exploiting angular
information about the dijet system [48]. Similar consid-
erations hold for multijet searches.

The reference analysis requires an accurate model of
jet kinematic properties for jets momenta larger than
200 GeV. As we will see, this can be achieved. But
some care is required to model the sharp threshold

at 200 GeV. As we experienced in the early stages of
this study, an ML-based simulation struggles to model
such a sharp threshold. As a solution, we extend the

jet phase space in the training sample down to pT >
130 GeV and we apply the selection of pT > 200 GeV
on the jets obtained as output of the VAE. A simi-
lar problem exists for the pT threshold of the jet con-
stituents. In this case, we also extend the pT range of
the predicted model down to pT > 0 MeV and apply
the selection pT > 250 MeV afterwards. Similar consid-

erations hold for η, where the acceptance requirements
are imposed on the predicted jets after inference.

As discussed in Section 6, this setup provides an
adequate description of the jet kinematic but it fails in
providing an accurate description of jet substructure. In
this respect, the proposed model cannot be extended to
other dijet bump-hunt analyses, e.g., diboson resonance

searches, where the accurate modelling of jet substruc-
ture is crucial. One could have then enforced a limited
scope from the beginning and avoided generating jet
constituents, working directly at the level of jet four
momenta. However, we see two added values in work-
ing with jet constituents: on the one hand, we obtain a
faithful description of the jet mass, the most crucial jet-
substructure high-level features; on the other hand, we

establish a baseline model which could further improve
to also model jet substructure. This will be the subject
of future studies exploiting a permutation-equivariant
graph architecture.

6 Results

We train all models using the Adam [49] optimizer with
a learning rate of 0.0001 for 300 epochs. The training
was repeated for several values of β, and the value cor-
responding to the best agreement between input and
target (β = 1/9) was chosen. During the training, we
monitor the values of the total loss and its individ-
ual components evaluated on the training and valida-
tion datasets to check for over-training. To quantita-
tively evaluate the performance of different training
settings, in addition to comparing the loss values, we
also use the symmetrized version of the KL divergence
(KLD) [50] between probabilities of the predicted and
target jet-kinematic distributions (mass, pT, energy, η,
φ). The KLD is computed every 10 epochs on the test-
ing dataset, after rescaling the DL-predicted and tar-

get distributions so that the reconstructed distribution
is contained in the [0, 1] range. The best model is se-
lected based on the values of total and individual com-

ponents of the loss and the KLD, while ensuring no
over-training.

Figure 2 (left) shows the evolution of various contri-
butions to the loss function (see Eq.(1)), evaluated on

the training and validation datasets, as a function of the
epoch. The monitored evolution of the KLD computed
on the testing dataset for the three jet features (mass,

pT, φ) and the total KLD sum of 5 features (mass, pT,
energy, η, φ) is shown in Fig. 2 (right). The model from
epoch number 100 is chosen as the best.

We compare the distributions of the DL predicted
and the target px, py, and pz of the jet constituents in
Fig. 3. These distributions are obtained applying the
constituents acceptance thresholds (see Section 3) to
the list of particles which is output by the VAE, as dis-
cussed in Section 5. We observe a good agreement be-
tween the model prediction and the target reconstruc-
tion.

The output list of particles is then used to analyt-
ically compute the jet kinematic properties. Figure 4
(Fig. 5) shows the distribution of the jet kinematic
properties explicitly used (not used) in the likelihood.
The jet acceptance thresholds (see section 5) are im-
posed on the jet pT and η for both the target and

output jets. In general, a good agreement is observed.
The residual discrepancies between the model predic-
tion and the target reconstruction are smaller than the
modelling differences typically observed between the
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Fig. 3 Comparison of the jet-constituent px (left), py (center), and pz (right) distributions, for the output (DL prediction) and
target (Reconstruction) datasets. In the bottom panels, the ratio between the two distributions is shown. These distributions
are obtained removing the zero-padding particles from the target list, and enforcing on the output of the DL model the same
acceptance requirements that define the jet constituents (see section 3).
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Fig. 4 Comparison of the jet pT (left) and mass (right) distributions, for the output (DL prediction) and target (Recon-
struction) datasets. In the bottom panels, the ratio between the two distributions is shown. These distributions are obtained
removing the zero-padding particles from the target list, and enforcing on the output of the DL model the same acceptance
requirements that define the jet constituents (see section 3).

jets data and MC reconstruction. Remarkably, once forced
to learn the jet mass and transverse momentum com-
ponents, the model learns to model the entire jet kine-
matic, including non-linear functions of the three quan-

tities above. This aspect proves that the training pro-

cess converges to a solution that preserves the main
physics of the jet shower. At this stage, such a genera-
tor would be useful to generate events for most of the
physics studies performed at the LHC.
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Fig. 5 Comparison of the jet px (top-left), py (top-center), pz (top-right), energy (bottom-left), η (bottom-center), and φ
(bottom-right) distributions, for the output (DL prediction) and target (Reconstruction) datasets. In the bottom panels, the
ratio between the two distributions is shown. These distributions are obtained removing the zero-padding particles from the
target list, and enforcing on the output of the DL model the same acceptance requirements that define the jet constituents
(see section 3).

In Appendix A, we show the distribution of the jet
features in the entire generation phase space, i.e., with-
out enforcing the jet pT > 200 GeV requirement on the

target and output jets. There, the problem of modeling
the sharp pT threshold is visible. Remarkably, this issue
has little impact on the agreement observed in the jet
mass distribution.

While our algorithm could serve the bulk of data
analyses at the LHC, it still fails in faithfully describ-

ing the jet dynamic at constituents level. In fact, we
verified that jet substructure quantities are not well re-
produced. This is shown in Fig. 6, where the distri-
bution of four momentum flows [51] are shown. The

momentum flows are computed as Flown =
∑

p
pp
T

pJet
T

,

where the sum runs over all particles with distance
∆R =

√
∆φ2 +∆η2 from the jet axis falling within

(n−1)/4×R and n/4×R, where R is the jet size param-
eter. We tracked the cause of the mismodeling to the
noise induced by zero-momentum fake particles (both
in input and target), resulting from zero-padding the jet
representation to a fixed dimension. This problem could
be solved moving to a graph-based VAE architecture,

as in Ref. [9]. Through a PyTorch Geometric [52] im-
plementation, for example, one could avoid the need of
zero-padding the datasets, possibly leading to a better
representation of the jet substructure. This approach
will be investigated in future studies.

The inference speed of the algorithm was measured
running it on 1000 generator-level jets, and measur-
ing the execution time. The test was performed call-

ing the Pytorch library from a python script and run-
ning the algorithm on different hardware platforms. We
obtain an inference time of 0.007 (0.004) seconds per
event when running on a Intel Xeon Silver 4216 CPU

(NVIDIA T4), while the traditional approaches typi-
cally require O(100) seconds per event of CPU time.
This demonstrates how the proposed strategy repre-

sents a major speedup with respect to currently em-
ployed simulation algorithms. One should also keep in
mind that this is an overestimate of the actual inference
time in real world C++ computing environment, where
tools such as ONNX run time [53] typically offer a fur-
ther speed up with respect to a python environment.
When running on a GPU, one could further increase
the throughput by running the difference on a batch of
all jets in an event.

7 Conclusions

We present a jet fast-simulation algorithm based on a
Variational Autoencoder, trained to learn the detector
response function to a generator-level jet, represented
as a list of particle momenta, and returning a list of re-
constructed particle momenta. This algorithm correctly
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Fig. 6 Distribution of the four Flown quantities (see text) for the output and target jets.

captures the reconstructed jet kinematic with high ac-
curacy.

By bypassing the detector simulation and particle
reconstruction step, an algorithm of this kind could be

important to make simulation on demand a concrete
possibility at the High-Luminosity LHC.

The main strength of the current algorithm is in its
speed and high accuracy when modeling jet kinematic
quantities, which makes it applicable to the majority

of LHC physics studies. Its main limitation stands with
the poor description of the jet substructure, a conse-
quence of the noise induced by zero-momentum ghost
particles introduced to equalize the length of the input
particle list. A possible solution to this problem could
be the use of a graph architecture with variable-length
input, which we aim at investigating in the future.
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A Appendix

In this appendix, we show the distribution of the jet features in the entire generation phase space before applying the jet pT
selection pT > 200 GeV. Figure 7 (Fig. 8) shows the distribution of the jet kinematic properties explicitly used (not used) in
the likelihood within the extended jet phase space before any selections.
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Fig. 7 Comparison of the jet pT (left) and mass (right) distributions, for the output (DL prediction) and target (Reconstruction)
datasets before applying the jet pT selection pT > 200 GeV. In the bottom panels, the ratio between the two distributions is shown.
These distributions are obtained removing the zero-padding particles from the target list, and enforcing on the output of the DL model
the same acceptance requirements that define the jet constituents (see section 3).
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Fig. 8 Comparison of the jet px (top-left), py (top-center), pz (top-right), energy (bottom-left), η (bottom-center), and φ (bottom-
right) distributions, for the output (DL prediction) and target (Reconstruction) datasets before applying the jet pT selection pT >
200 GeV. In the bottom panels, the ratio between the two distributions is shown. These distributions are obtained removing the
zero-padding particles from the target list, and enforcing on the output of the DL model the same acceptance requirements that define
the jet constituents (see section 3).
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