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Abstract: Feynman diagrams constitute one of the essential ingredients for making pre-

cision predictions for collider experiments. Yet, while the simplest Feynman diagrams can

be evaluated in terms of multiple polylogarithms—whose properties as special functions are

well understood—more complex diagrams often involve integrals over complicated algebraic

manifolds. Such diagrams already contribute at NNLO to the self-energy of the electron, tt̄

production, γγ production, and Higgs decay, and appear at two loops in the planar limit of

maximally supersymmetric Yang-Mills theory. This makes the study of these more compli-

cated types of integrals of phenomenological as well as conceptual importance.

In this white paper contribution to the Snowmass community planning exercise, we pro-

vide an overview of the state of research on Feynman diagrams that involve special functions

beyond multiple polylogarithms, and highlight a number of research directions that constitute

essential avenues for future investigation.
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1 Introduction

Over the last decade, it has become clear that a broad range of scattering amplitudes can

be expressed in terms of functions called multiple polylogarithms. This realization has led to

enormous advances in our computational power, both in supersymmetric gauge theory [1–29]

and in QCD, where substantial progress has recently been made computing 2 → 3 scattering

processes to NNLO [30–56], and obtaining the first results at N3LO [57–84] and beyond [85–

90]. In particular, much of this rapid progress has been facilitated by a deep understanding

of the mathematical properties exhibited by multiple polylogarithms and the development of

tools for working with these functions [91–97], as well as by the availability of public codes

for polylogarithmic integration and numerical evaluation [98–105].

However, it has long been known that special functions beyond multiple polylogarithms

start to appear in scattering amplitudes at higher perturbative orders, especially in processes

that depend on many kinematic variables. Namely, while multiple polylogarithms correspond

to iterated integrals over rational functions, integrals over algebraic roots also start to arise
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in Feynman integrals at two loops.1 These types of integrals appear even in the simplest

quantum field theories, such as massless φ4 theory and maximally supersymmetric gauge

theory, and correspondingly also appear in precision studies of the standard model, which

will play an important role in searches for new physics in future collider programs [106, 107].

The same types of integrals also appear in other contexts, such as string theory amplitudes.

To make progress in all of these theories, we are thus led to consider classes of special functions

that go beyond multiple polylogarithms.

The simplest integrals that force us out of the space of multiple polylogarithms involve

square roots of polynomials that are cubic or quartic in one of the integration parameters,

and thereby define an elliptic curve. A heroic amount of work has gone into understanding

the first examples of Feynman integrals of this type [108–139], and as a result these integrals

are now under fairly good control. In particular, when only a single elliptic curve appears in a

Feynman integral it is known how to express it in terms of elliptic generalizations of multiple

polylogarithms, which can be formulated as iterated integrals over rational functions on the

elliptic curve [140, 141] or as iterated integrals on a genus one Riemann surface [137]. More-

over, much of the technology that has proven useful for working with multiple polylogarithms

has been extended to elliptic polylogarithms, such as symbol calculus [142–144] and tools for

numerical evaluation [145–147].

Integrals over more complicated algebraic quantities also appear in scattering amplitudes.

These include square roots of higher-order polynomials of a single integration parameter [148,

149], and square roots that depend on multiple integration parameters [115, 150–157]. In

all known examples where algebraic roots involving multiple integration parameters occur,

these roots have been found to describe Calabi-Yau manifolds. This has raised a number of

important theoretical questions, such as whether integrals over higher-dimensional varieties

that are not Calabi-Yau might also arise, and whether the geometry of these manifolds encode

physical principles such as locality or causality in a systematic way. It has also raised the

practical question of how best to evaluate these integrals, which occur as early as two loops

even in massless theories [156].

In this white paper, we provide a broad review of the current state of knowledge about

the types of integrals and special functions that appear beyond multiple polylogarithms in

perturbative scattering amplitudes, and the technology that has been developed for dealing

with them. We do this with the main goal of highlighting the many open questions and future

research directions that deserve significant attention in the coming years. In particular, we

emphasize the novel conceptual issues that are encountered when working with integrals

over elliptic and Calabi-Yau manifolds, and the tradeoffs that are associated with different

approaches to their evaluation. The importance of these questions is also highlighted, both

for developing our conceptual understanding of perturbative quantum field theory and for

1While understanding the types of functions (such as hypergeometric functions) that appear in amplitudes

nonperturbatively and in generic spacetime dimension D also constitute interesting research avenues, we here

focus on perturbative amplitudes in integer numbers of dimensions, or near integer numbers of dimensions in

dimensional regularization.
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increasing our capacity to make phenomenologically-relevant predictions for upcoming collider

experiments. Just as the discovery that multiple polylogarithms provide the right language

for certain classes of amplitudes led to a revolution in computational techniques, finding the

right mathematical language to frame amplitudes beyond multiple polylogarithms can be

expected to lead to equally important and exciting advances.

This paper is structured as follows. In section 2, we give a brief introduction to how

non-polylogarithmic integrals arise in scattering amplitudes, and in section 3 we catalog the

best-studied examples of Feynman diagrams that give rise to such integrals. The current

state of the art for dealing with elliptic polylogarithms and integrals over higher-dimensional

varieties is then reviewed in section 4. In section 5, we highlight a number of important open

questions and directions for future research, and motivate their practical and theoretical

importance. We end with a brief outlook in section 6.

2 Integrals Beyond Multiple Polylogarithms in Scattering Amplitudes

We begin by illustrating how integrals that go beyond the space of multiple polylogarithms

first arise in scattering amplitudes. To do so, let us recall that the integral expression corre-

sponding to an L-loop Feynman diagram takes the form

I =

∫ ∏

ℓ

dDkℓ
(2π)D

∏

j

i

[qj(k, p)]2 −m2
j + iǫ

, (2.1)

where D is the spacetime dimension, ℓ indexes the L loop momenta, and j indexes the internal

propagators. (We have assumed all particles are scalars.) The loop momentum associated

with the ℓth loop is denoted by kℓ, while mj and qj(k, p) respectively denote the mass and

momentum flowing through the jth propagator. The specific form taken by each momentum

qj(k, p) will depend on the topology of the Feynman diagram, but will in general involve only

linear dependence on the external momenta (collectively denoted by p) and the loop momenta

(collectively denoted by k).

Feynman diagrams involving particles with nonzero spin will involve numerators that

depend on the loop momenta. However, these integrals can always be reduced to scalar

integrals using integration-by-parts (IBP) identities [158, 159] and dimensional recurrence

relations [160, 161], at the cost of considering integrals in different spacetime dimensions

and that involve propagators raised to higher (integer) powers. For this reason, we will only

consider Feynman integrals with loop-momentum-independent numerators.

We can attempt to evaluate an integral of the form (2.1) directly, using Feynman param-

eters. To translate to the Feynman parameter representation, we use the identity

E∏

j=1

1

Aj
=

∫

xj≥0

[
dE−1xj

] (E − 1)!
(∑E

j=1 xjAj

)E , (2.2)

where E denotes the total number of internal propagators, and
[
dE−1xj

]
is the canonical

volume form on the projective space RP
E−1 of Feynman parameters. After collecting all
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propagators into a single denominator factor using this identity, the integrals over loop mo-

menta can be performed using standard techniques. This leaves what is sometimes referred

to as the Symanzik form of the Feynman integral I:

I ∼ Γ(E − LD/2)

∫

xj≥0

[
dE−1xj

] UE−(L+1)D/2

FE−LD/2
, (2.3)

where we have ignored an overall prefactor, and the U and F polynomials are defined by

U =
∑

{T}∈T1

∏

ej /∈T

xj , (2.4)

F =




∑

{T1,T2}∈T2

sT1




∏

ej /∈T1∪T2

xj




+ U

∑

ej

xjm
2
j . (2.5)

Here, Tk denotes the set of spanning k-forests of the Feynman diagram, and sT1 represents the

squared sum of momentum flowing into the tree T1. For more details on this representation,

see for instance [162].

One can always carry out at least one of the integrations in (2.3), since the F polynomial

is at most quadratic in each integration variable (while the U polynomial is linear in each).

In integer spacetime dimensions, this amounts to partial fractioning the integrand so that

each factor in the denominator is linear in the chosen integration variable, after which the

integral can be performed either rationally or logarithmically.2 In some cases, this strategy

can be repeated and all integrals can be evaluated using the iterative definition of multiple

polylogarithms:

Ga1,...,aw(z) =

∫ z

0

dt

t− a1
Ga2,...,aw(t) , (2.6)

where G∅(z) = 1, and the indices ai and the argument z are complex numbers that can

depend algebraically on external kinematics. When the first w integrations involve ai that

are all 0, this definition diverges, and we instead define

G0, . . . , 0
︸ ︷︷ ︸

w

(z) =
logw z

w!
. (2.7)

For more details on multiple polylogarithms, see [163, 164], and for a discussion of when all of

the integrals in (2.3) can be carried out in terms of multiple polylogarithms, see [12, 165–168].

In more complicated Feynman integrals, partial fractioning will eventually lead to square

roots in the denominator, which cannot be integrated using the definition (2.6). For instance,

2In dimensional regularization, one must first subtract possible divergences and expand in the dimensional

regularization parameter.
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p

m1

m2

m3

Figure 1: The two-loop banana (or sunrise) diagram with generic internal masses.

carrying out an integral of the form

∫ ∞

0

dx

x2 + 2fx + g
=

∫ ∞

0

dx

2
√

f2 − g

(
1

x + f −
√

f2 − g
− 1

x + f +
√

f2 − g

)

=
1

2
√

f2 − g
log

(
f +

√
f2 − g

f −
√

f2 − g

)
(2.8)

leads to a square root that depends on the coefficients f and g. In situations where f and g

depend on further integration variables, we end up with an integral over an algebraic variety

that is parameterized by these integration variables.

Consider, for instance, the two-loop banana (or sunrise) integral, shown in Figure 1. In

two dimensions this integral is finite and the U polynomial drops out, leaving us with

I(2)
ban =

∫

xj≥0

[
d2xj

] 1

x1x2x3

(
−p2 +

(
1
x1

+ 1
x2

+ 1
x3

) (
x1m2

1 + x2m2
2 + x3m2

3

)) , (2.9)

where p is the momentum flowing into the diagram, and mj is the mass of the jth internal

edge. Carrying out the integral over x3, we find

I(2)
ban =

∫

xi≥0

[
dxi

] log(X + y) − log(X − y)

y
, (2.10)

which depends on the polynomial

X = m2
1x

2
1 + m2

2x
2
2 + x1x2(m

2
1 + m2

2 + m2
3 − p2) (2.11)

and a square root y, defined by the equation

y2 = x21x
2
2

[(
−p2+m2

3+

(
1

x1
+

1

x2

)(
x1m

2
1+x2m

2
2

))2

− 4m2
3

(
1

x1
+

1

x2

)(
x1m

2
1+x2m

2
2

)
]
.

(2.12)

If we deprojectivize (2.9) by setting x2 = 1, equation (2.12) becomes easily recognizable as

an elliptic curve in the variable x1, with kinematic-dependent coefficients:

y2
∣∣
x2=1

= m4
1x

4
1 + m2

1Y x31 + Y ′x21 + m2
2Y x1 + m4

2 , (2.13)
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where

Y = 2(m2
1 + m2

2 −m2
3 − p2) , (2.14)

Y ′ = 2m2
1m

2
2 − 4(m2

1 + m2
2)m

2
3 + (m2

1 + m2
2 + m2

3 − p2)2 . (2.15)

The remaining integral over x1 thus takes us out of the space of multiple polylogarithms

defined in (2.6) and (2.7), and into the space of elliptic multiple polylogarithms. We defer a

discussion of this space of functions to section 4.2.

It is also worth seeing how integrals over elliptic curves (and higher-dimensional mani-

folds) appear in the differential equations approach to computing Feynman integrals [169–172].

This approach, which is used in most modern calculations of Feynman integrals, first consists

of expressing the set of integrals one needs for a given phenomenological process in terms of a

minimal set of independent Feynman integrals, referred to as master integrals. This reduction

is often done using IBP identities, as implemented in a number of publicly available computer

codes [173–177], although other methods also exist (see for instance [178, 179]). One then

assembles the set of master integrals into a vector f and takes the derivative of f with respect

to different kinematic variables (such as Mandelstam variables, or internal masses). Denoting

these kinematic variables schematically by x, this will give rise to a system of differential

equations that can be put in the form

∂

∂x
f = Af , (2.16)

where the entries of the matrix A are rational functions of the spacetime dimension D and

kinematic variables.3 The matrix A will be block triangular, since the Feynman integrals on

the left can only couple to integrals on the right that involve a subset of the same propagators.

While one can attempt to solve (2.16) using traditional differential equation methods, it

has been found that there often exists a change of variables or way of redefining the basis of

master integrals such that (2.16) is recast in the form

∂

∂x
f = ǫAf , (2.17)

where ǫ is the small parameter in dimensional regularization, and where the matrix A has no

further dependence on ǫ. If all entries of A are d logs of rational functions of the kinematic

variables, this differential equation is considered to be in canonical form [180], and can be

directly integrated to polylogarithms.

In cases involving integrals over elliptic curves or higher-dimensional varieties, traditional

methods for obtaining a canonical form [181–187] usually fail, or will lead to a matrix A
that involves transcendental factors [188]. For example, in the case of the two-loop banana

3The kinematic derivatives of f can always be put in the form (2.16), since the action of these derivatives

can be expressed in terms of Feynman integrals involving propagators raised to different powers, which can be

reduced to the master integrals via IBPs. For a more pedagogical presentation of how differential equations

of the form (2.16) can be generated, see for instance [164].
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integral, the ǫ dependence of the matrix A can be factored out to realize a differential equation

of the form (2.17), but this requires a non-algebraic change of variables that introduces

periods of the elliptic curve (2.12) into the matrix A [123, 124] (see [164] for a pedagogical

presentation of this example). In such cases, one can follow an alternate strategy by putting

the system of differential equations into a form that is merely linear in ǫ (but that is no

longer homogeneous). Then, one can iteratively construct the solution to these differential

equations starting from the maximal cuts of each master integral, which provide solutions

to the homogeneous part of these equations [154, 189] and can be conveniently computed in

the so-called Baikov representation [190–192]. We defer further details about the types of

functions these differential equations integrate into to section 4.

Before moving on, let us briefly highlight that elliptic polylogarithms (and integrals over

higher-dimensional varieties) can sometimes be avoided even when algebraic roots appear

during integration, by finding changes of variables that rationalize these roots. Even so,

finding such a change of variables can prove hard in practice. We provide a discussion of

when it is expected it can be done in section 4.1. The algebraic roots that appear in Feynman

integrals can also rationalize in special kinematic limits. For instance, in the p2 → 0 limit of

the two-loop banana, the right side of (2.12) becomes a perfect square and the elliptic curve

degenerates:

y2
∣∣
p2→0

=
(
(x1 + x2)(m2

1x1 + m2
2x2) −m2

3x1x2
)2

. (2.18)

In this limit, one can carry out the remaining integration in (2.10) in terms of multiple

polylogarithms [118].4 While it can be useful to determine the kinematic limits in which these

elliptic curves (or higher-dimensional varieties) degenerate, this can prove hard in practice

when the corresponding square roots depend on many kinematic variables. Such questions

thus constitute important directions for future work.

3 The Non-Polylogarithmic Zoo

Before describing the technology that has been developed for dealing with elliptic polylog-

arithms and integrals over higher-dimensional Calabi-Yau varieties, we briefly outline some

of the best-studied examples of Feynman integrals that require this technology. We focus on

Feynman integrals in the context of particle physics calculations, although it is worth noting

that elliptic integrals have also been observed in the classical limit of gravity [193, 194].

3.1 The Sunrise and Banana Integrals

The class of integrals that have been studied in most depth are the banana (or sunrise)

integrals with massive internal propagators, depicted in Figure 2. They are usually analyzed

in D = 2 − 2ǫ dimensions, where they are simplest, as it is possible from these results to

obtain the integral in 4 − 2ǫ dimensions using dimensional shift identities. This infinite class

4The elliptic curve defined by (2.12) also degenerates when m3 → 0. However, this limit is infrared

divergent, so to compute it one should work in D = 2− 2ǫ dimensions.
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p

m1

m2

mL−2

mL−1

Figure 2: The L-loop banana integral, whose internal masses are all distinct, and which

involves integrals over (L−1)-dimensional Calabi-Yau manifolds.

of integrals has proven particularly useful as a nontrivial playground in which to explore the

geometries and classes of special function that can appear in high-loop Feynman integrals.

As was discussed in section 2, the two-loop banana integral already involves a family

of elliptic curves that is parameterized by the internal and external masses [108, 109, 114,

124, 195–198]. Early studies of this integral considered it as a generalized hypergeometric

function, and derived various series and integral representations that allowed it to be evaluated

numerically [109–113]. More recently, the diagram involving equal internal masses has been

evaluated in terms of elliptic dilogarithms [114, 118] and iterated integrals over modular

forms [126, 133], while the diagram involving distinct masses has been evaluated in terms

of integrals over the periods of the elliptic curve [119], elliptic generalizations of multiple

polylogarithms [120–122, 130, 199], and iterated integrals on the (properly compactified)

moduli space of a Riemann surface of genus one with three marked points [137].5 The family

of elliptic curves that arises in this diagram has also been analyzed in great detail [152, 153,

156, 200].

At three loops, the banana integral with equal internal masses in strictly two dimensions

also involves integrals over an elliptic curve. It has been evaluated in terms of elliptic poly-

logarithms and iterated integrals of modular forms [139]. More generally, for distinct internal

masses in dimensional regularization, the L-loop banana diagram involves integrals over a

family of (L−1)-dimensional Calabi-Yau manifolds, which are parameterized by external and

internal masses [151, 152, 156]. A good understanding of the classes of special functions associ-

ated with integrals over these higher-dimensional varieties is currently lacking, and constitutes

an important direction of ongoing research. However, these Calabi-Yau geometries have al-

ready been used to derive systems of differential equations for the banana integrals [201] and

to express their solutions in terms of integrals over Calabi-Yau periods [202, 203].

3.2 Traintracks

The massless ten-point double box, shown in Figure 3, has also long been known to involve

an elliptic curve from studies of its maximal cut and its representation in Mellin space [204–

207]. This Feynman diagram contributes to even the simplest quantum field theories, such

5We will discuss these classes of special functions in section 4.2.
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Figure 3: The massless ten-point double box integral, which involves integrals over an elliptic

curve.

p1

p2 p3 pL+1 pL+2

pL+3

pL+4

pL+5pL+6p2L+4p2L+5

p2L+6

Figure 4: The traintrack class of Feynman integrals, where all internal propagators are

massless. The dots in the middle loop represent 2−L additional boxes with a single massless

external lines emerging from each new vertex. At L loops, this diagram involves integrals

over an (L−1)-dimensional Calabi-Yau manifold.

as massless φ4 theory, maximally supersymmetric Yang-Mills theory, and integrable fishnet

theories [208–211]. In fact, it constitutes the leading contribution to one of the component

amplitudes in planar maximally supersymmetric Yang-Mills theory, further highlighting its

physical relevance [205]. However, as this diagram depends on seven independent kinematic

variables it has proven difficult to evaluate, and was only recently integrated in terms of

elliptic polylogarithms [144]. In the same work, the symbol of this integral was computed and

found to have a remarkable similarity with the non-elliptic case. For instance, the symbol

satisfies the same physical first entry condition [212] as multi-loop amplitudes in planar N = 4

supersymmetric Yang-Mills theory [2, 23, 28, 213], and elliptic symbol letters only appear in

the last two entries; in particular, the last entry only involves elliptic integrals of the form∫
dx/y.

The ten-point double box is just the first nontrivial member of the class of traintrack

integrals, which occur at every loop order [155]. These integrals are depicted in Figure 4,
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Figure 5: The tardigrade diagrams, which exist for even numbers of loops and involve

integrals over (2L−2)-dimensional Calabi-Yau manifolds at L loops.

(a) Paramecia (b) Amoebas

Figure 6: The paramecia and amoeba diagrams, which exist for odd numbers of loops and

involve integrals over (2L−2)-dimensional Calabi-Yau manifolds at L loops.

where the dots in the middle loop represent L−2 additional boxes, and each internal vertex

is understood to involve a single massless external leg. Correspondingly, the number of kine-

matic parameters that appear in these integrals grows with the number of loops, making them

harder to study beyond the first few loop orders. However, similar to the banana integrals,

these Feynman diagrams are expected to involve integrals over increasingly high-dimensional

manifolds as the loop order grows; in particular, the L-loop traintrack integral is conjectured

to involve integrals over a Calabi-Yau manifold of dimension L−1 [155]. This expectation

has been explored at low loop orders by computing residues until algebraic obstructions

occur [155], and through an analysis of the leading singularity of the integral directly in

momentum twistor space [205, 214]. In particular, the latter approach makes it clear that

the leading singularity of the L-loop integral involves a family of Calabi-Yau (L−1)-folds.

As is the case for the two-loop double box, each of the traintrack diagrams constitutes the

leading-order contribution to a component amplitude in planar N = 4 supersymmetric Yang-

Mills theory [155] (that is, no other diagrams of equal or lower loop order contribute to these

component amplitudes), making them important candidates for further study.

3.3 Tardigrades, Paramecia, and Amoebas

In the nonplanar sector, three further classes of massless Feynman integrals have been shown

to involve integrals over Calabi-Yau manifolds [156]. They are known as the tardigrade,

paramecium, and amoeba diagrams, and are shown in Figures 5 and 6. While the tardigrades

only exist at even loop orders, and the paramecia and amoebas only exist at odd loop orders,

these diagrams all involve 2(L+1) propagators at L loops, and thus the U polynomial in (2.3)

drops out in four dimensions. This simplification makes it possible to carry out the integral

– 10 –



m1

m2

m3

Figure 7: The kite diagram with three distinct internal masses, which involves integrals

over an elliptic curve. The three massive internal propagators are shown in bold, and the

remaining two propagators are massless.

over any three of the xi variables explicitly. As observed in [156], these integrations give rise

to a square root that encodes a Calabi-Yau of dimension 2(L−1) for every choice of three

variables one chooses to integrate out.6

While none of these diagrams has yet been evaluated beyond one loop, it is worth noting

that they all contribute to massless φ4 theory and QCD. This implies that integrals over

K3 surfaces can already appear in these theories at two loops (in the guise of the two-loop

tardigrade diagram). However, this contribution may still drop out of any given amplitudes

in these theories; for instance, while the two-loop tardigrade integral appears as a contact

term of many of the diagrams that appear in the local integral representation of the n-particle

MHV amplitude in N = 4 supersymmetric Yang-Mills theory presented in [215, 216], all K3

contributions can be seen to drop out of the full expression.

3.4 Further Integrals at Two and Three Loops

A number of additional integrals of phenomenological interest are known to involve elliptic

curves at low loop orders. For instance, the kite diagram shown in Figure 7 contributes to the

self-energy of the electron in QED when all three internal masses are equal (m1 = m2 = m3).

This diagram was first recognized to involve an elliptic integral nearly sixty years ago [108],

and has now been evaluated in terms of iterated integrals over products of elliptic integrals

and polylogarithms [124], as iterated integrals over modular forms [123, 126, 127, 132, 217],

and as elliptic multiple polylogarithms [143]. Moreover, the full two-loop contribution to

the self-energy of the electron has been evaluated in terms of iterated integrals of modular

forms, which can be used to obtain q-expansions for efficient numerical evaluation [136]. The

kite integral with three distinct internal masses has also recently been computed in terms of

elliptic multiple polylogarithms [138].

6The one exception seems to be the three-loop amoeba diagram; in this case, at least one further integration

can be performed in terms of multiple polylogarithms.
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(a) Four internal masses (b) Two internal masses

Figure 8: Nonplanar two-loop integrals involving both massless and massive internal prop-

agators (indicated by normal and bold lines, respectively). When all internal masses are the

same, these diagrams can be expressed in terms of elliptic multiple polylogarithms.

The non-planar three-point integral shown in Figure 8a, which has four integral propa-

gators of the same mass, also involves an integral over an elliptic curve [138, 178, 218]. This

diagram contributes to tt̄ production and γγ production in gluon fusion through a massive

top-quark loop, and is thus relevant to our understanding of processes being investigated at

the LHC. In recent years, it has been computed in terms of integrals over products of elliptic

integrals and polylogarithms [218] as well as in terms of elliptic multiple polylogarithms [138].

The integral shown in Figure 8b, which has only two massive internal propagators, has also

been studied in the context of electroweak form factors [219], and was recently computed in

terms of elliptic multiple polylogarithms [138].

Versions of the double box integral with internal masses and various numbers of external

legs have also been studied, both at the level of cuts [205, 220] and iterated integrals [134,

135, 221]. These diagrams are relevant to Higgs decay [221], and to tt̄ production via a top

loop [134, 135]. Of particular interest is the integral studied in [134, 135], which we have

p1 p2

p3p4

Figure 9: The double box integral that contributes to tt̄ production via a top loop. All

massive lines, shown in bold, are assigned the same mass. This integral involves integrals

over three distinct elliptic curves.
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m1

m1

m1

m2

m1 m2

m1m1

Figure 10: Two of the diagrams that contribute to the ρ parameter in the Standard Model

and that involve integrals over an elliptic curve.

depicted in Figure 9. Unlike the other integrals we have encountered, this one involves three

distinct elliptic curves, which can be associated with the subtopologies one gets by contracting

all four horizontal propagators (giving rise to a two-loop banana topology), or the massless or

massive pairs of horizontal propagators separately. While we expect that this integral cannot

be expressed in terms of elliptic multiple polylogarithms, it has been computed to all orders

in ǫ in terms of iterated integrals over kernels involving all three elliptic curves [134, 135].

Interestingly, when (p1+p2)
2 = m2, the elliptic curves all degenerate and this integral becomes

expressible in terms of multiple polylogarithms, while in the (p1 + p4)
2 → ∞ limit all three

elliptic curves become equal and the integral can be expressed as iterated integrals of modular

forms.

Integrals over elliptic curves also appear in perturbative contributions to the ρ parameter,

which encodes the difference between the vacuum polarizations of the W and Z bosons in the

standard model [222–224]. These elliptic contributions first appear at three loops, when both

the bottom and top quark masses are taken into account. Two of the diagrams in which these

elliptic contributions appear are shown in Figure 10; these diagrams are vacuum graphs, and

just depend on the quark masses m1 and m2. This perturbative correction to the ρ parameter

was first computed as a series expansion in the ratio of the two quark masses nearly a decade

ago [222], and so has long been under good numerical control. However, it has more recently

been computed analytically in terms of certain ‘iterative non-iterative integrals’ [223, 224], as

well as in terms of elliptic multiple polylogarithms [225]. Moreover, similar to the two-loop

contribution to the self-energy of the electron, the three-loop correction to ρ also turns out to

be expressible in terms of the more restricted class of iterated integrals of modular forms [225].

Finally, the massless three-loop wheel diagram shown in Figure 11 has been shown to in-

volve an integral over a Calabi-Yau threefold [156, 157]. Like the classes of integrals described

in sections 3.2 and 3.3, this diagram contributes to massless φ4 theory and supersymmetric

Yang-Mills theory. However, it has currently only been evaluated in special kinematic limits

in which it can be expressed in terms of multiple polylogarithms [157].
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Figure 11: The three-loop wheel diagram, which involves an integral over a Calabi-Yau

threefold.

3.5 String Amplitudes

While integrals over nontrivial algebraic varieties appear in Feynman integrals due to the

appearance of square root factors in the denominator, they also arise naturally in string

theory as Green’s functions.7 Namely, string amplitudes admit an expansion as integrals over

surfaces of different genus, where the Green’s functions on these surfaces determine the classes

of differential forms that are integrated over. This makes string theory a perfect laboratory

for exploring the classes of special functions associated with a particular surface, such as a

complex torus or surfaces with higher genus.

The simplest examples are tree-level open-string amplitudes [227, 228], which are calcu-

lated by integrating over the positions of marked points (that give the locations of operator

insertions) on the boundary of a disk. These integrals each take the form dx
x−a , corresponding

to the derivative of the appropriate Green’s function. Accordingly, all tree-level open-string

scattering amplitudes can be evaluated as multiple polylogarithms, using the definition from

equation (2.6) [229–231]. Multiple zeta values also make an appearance in these amplitudes,

as they arise as special values of multiple polylogarithms [94, 232, 233]. Using the methods

described in [230, 231], tree-level open-string amplitudes can be calculated at any multiplicity

and to any order in the expansion in the inverse string tension α′.

Tree-level closed-string amplitudes are similar to tree-level open-string amplitudes, except

that the marked points are now integrated over the whole Riemann sphere. Accordingly, the

differential forms that appears in these amplitudes take the form dz2

|z−a|2
, which leads to a

subclass of multiple polylogarithms: the so-called single-valued multiple polylogarithms [142,

234–236], which correspond to special linear combinations of multiple polylogarithms in which

all branch cuts cancel.8 As a result, only single-valued multiple zeta values (which correspond

7In fact, it was in the context of string amplitudes that elliptic multiple polylogarithms first appeared in

the physics literature [226].
8Single-valued multiple polylogarithms also make an appearance in the multi-Regge limit of N = 4 super-
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to the sub-class of multiple zeta values that appear as special values of single-valued multiple

polylogarithms) appear in these amplitudes [236, 246]. Using the so-called KLT relations

[247] and related ideas, tree-level closed-string amplitudes can in principle be calculated at

any multiplicity and any order in α′ from their open-string counterparts.

In one-loop open-string amplitudes, one encounters integrals over the positions of marked

points on the two boundaries of an annulus. These integrals must respect the double peri-

odicity of this surface, while also remaining invariant under smooth deformations of the

integration contour. This double requirement gives rise to an infinite tower of differential

forms, which arise as the coefficients of the Eisenstein-Kronecker series (see equation (4.25)

in the next section). Iterated integrals over these differential forms give rise to the same class

of multiple elliptic polylogarithms encountered in Feynman integrals [141, 226]. These string

amplitudes also involve elliptic multiple zeta values, which (despite their name) are functions

of the modulus of the torus [248, 249]. Using the recursive methods developed in [250, 251],

one-loop open-string amplitudes can also be calculated algebraically at any multiplicity and

to any order in α′.

One-loop closed-string amplitudes involve integrals over marked points on a torus, and

correspondingly also give rise to elliptic multiple polylogarithms.9 As with tree-level closed-

string amplitudes, they only seem to involve a restricted class of single-valued analogues of

elliptic multiple polylogarithms [252]. However, a clear understanding of the relation between

the full space of elliptic multiple polylogarithms and their single-valued counterparts remains

a topic of ongoing investigation. Far easier to access are the single-valued elliptic multiple

zeta values, which make an appearance as so-called modular graph functions [253], which are

also subjects of ongoing investigation (see for example [254–256]).

Going to higher loops, one encounters integrals over surfaces of higher genus. While the

mathematics for dealing with these surfaces has in principle been developed and will involve

special functions beyond elliptic multiple polylogarithms, few explicit results exist at two and

three loops (but see for instance [257, 258]).

4 Technological State of the Art

A considerable amount of technology has already been developed for computing the types

of Feynman integrals that were highlighted in the last section. This technology includes

algorithmic tools for working with the types of special functions these integrals evaluate to

analytically, as well as methods for their numerical evaluation. Given that the complicated

manifolds that appear in these integrals arise as square roots, techniques for rationalizing

such roots (and for knowing when they can be rationalized) also prove to be important. We

symmetric Yang-Mills theory; see for instance [237–245].
9The points on an elliptic curve can be mapped to points on a complex torus, and so elliptic multiple

polylogarithms can be equivalently formulated as iterated integrals on a torus. We review this correspondence

in section 4.2.
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begin by outlining what is known about the latter topic, before discussing the technology that

exists for evaluating Feynman integrals involving square roots that cannot be rationalized.

4.1 Rationalizing Square Roots

An important question that arises in the computation of Feynman integrals is when square

roots that appear in the course of integration can be rationalized by a change of variables. To

address this question, it is useful to reframe the problem geometrically. To this end, consider

a root
√

P (x1, . . . , xj)/Q(x1, . . . , xj), where P (x1, . . . , xj) and Q(x1, . . . , xj) are polynomials

in j integration parameters, whose coefficients can depend on external kinematics. If we

introduce an auxiliary variable y that satisfies the relation

h(x1, . . . , xj , y) = y2Q(x1, . . . , xj) − P (x1, . . . , xj) = 0 , (4.1)

we define an affine hypersurface in C
j+1. Rationalizing y amounts to finding a rational

parameterization of this hypersurface.

It is usually convenient to consider this problem in projective space, which can be done

by introducing a variable x0 and defining

h̃(x0, x1, . . . , xj , y) = xd0 h(x1/x0, . . . , xj/x0, y/x0) (4.2)

= y2Q̃(x0, x1, . . . , xj) − P̃ (x0, x1, . . . , xj) , (4.3)

where d is the overall power of the highest-degree monomial in h(x1, . . . , xj, y), and we have

implicitly defined a new pair of polynomials P̃ (x0, x1, . . . , xj) and Q̃(x0, x1, . . . , xj). The

homogeneous polynomial h̃(x0, x1, . . . , xj , y) defines a hypersurface V (h̃) in P
j+1, namely

V (h̃) =
{

[x0, x1, . . . , xj , y] ∈ P
j+1
∣∣∣ h̃(x0, x1, . . . , xj , y) = 0

}
, (4.4)

where [x0, x1, . . . , xj , y] denotes a point in homogeneous coordinates. Finding a rational pa-

rameterization of this surface then requires finding a rational map

φ : Pj → V (h̃), t 7→ [φ0(t), . . . , φj+1(t)] (4.5)

such that

h̃(φ0(t), . . . , φj+1(t)) = 0 for all t ∈ P
j . (4.6)

Given such a map, the ratio P̃ (φ0(t), . . . , φj(t))/Q̃(φ0(t), . . . , φj(t)) must evaluate to a perfect

square, since it is equal to φj+1(t)
2 and we have required φj+1(t) to be rational. The map φ

also rationalizes y in the original affine space, via the change of variables xi = φi(t)/φ0(t).

Let’s see how this works in a simple example. If we encounter a root taking the form√
ax21 + bx1 + c, we can go through the above steps to find that it encodes a projective

hypersurface in P
2 defined by

h̃(x0, x1, y) = y2 − ax21 − bx1x0 − cx20 = 0 . (4.7)
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The map φ can then be chosen to be

φ0([t0, t1]) = at20 − t21 , (4.8)

φ1([t0, t1]) = a
√
c t20 − t1(bt0 −

√
c t1) , (4.9)

φ2([t0, t1]) = −t0(bt0 − 2
√
c t1) , (4.10)

where [t0, t1] are homogeneous coordinates in P
1. It is not hard to check that setting x =

φ1([t0, t1])/φ0([t0, t1]) rationalizes the original root, as desired.

For most square roots, no rational parameterization exists. Consider for instance the

class of roots with j = 1, which define plane curves. In these cases, V (h̃) admits a rational

parameterization if and only if the genus of this curve is zero [259], where the genus of a curve

of degree d with only ordinary singularities can be computed as

g =
(d− 1)(d − 2)

2
−
∑ rp(rp − 1)

2
. (4.11)

The sum in this formula is over all singular points p in V (h̃), and rp denotes the multiplicity

of the point p (namely, the number of tangents to V (h̃) at p). It follows that a square root

encoding a curve with only ordinary points can be rationalized if and only if

∑
rp(rp − 1) = (d− 1)(d− 2) . (4.12)

Algorithms exist for finding rational parameterizations of curves that satisfy this criterion,

and are implemented in the Singular library paraplanecurves.lib [260, 261].

For j = 2, a rational parameterization of V (h̃) again exists if and only if certain invariants

of V (h̃) vanish [262] (see also [263]). An algorithm for computing these invariants and (when

it exists) a rational parameterization is given in [264]. For j > 2, fewer results are known.

However, when the hypersurface V (h̃) is of degree d and has a singularity of multiplicity

d−1, a rational parameterization can be computed using the algorithm presented in [265] and

implemented in the package RationalizeRoots [266]. Notably, while the computation of

Feynman integrals often requires rationalizing multiple roots (see for instance [267–270]), this

algorithm can be applied to these roots iteratively.

4.2 Iterated Integrals Involving Elliptic Curves

Of course, many of the algebraic roots that appear in the integration of Feynman integrals

cannot be rationalized. The first important class of square roots for which this is true are

those encoding non-degenerate elliptic curves. To evaluate Feynman integrals that involve

such roots, we are thus led to consider iterated integrals over these elliptic curves.

Before introducing the elliptic generalizations of multiple polylogarithms, let us define

some of the quantities that characterize elliptic curves, which correspond to the zero-locus of

a polynomial equation y2 = Pn(x) of degree n = 3 or 4. We focus on the n = 4 case, where

we have

y2 = (x− a1)(x− a2)(x− a3)(x− a4) (4.13)

– 17 –



with four distinct branch points ai.
10 The n = 3 case can be obtained by sending one of the

branch points, say a4, to infinity. We define the periods of this elliptic curve to be

ω1 = 2c4

∫ a3

a2

dx

y
= 2K(λ) , (4.14)

ω2 = 2c4

∫ a2

a1

dx

y
= 2iK(1 − λ) , (4.15)

where

λ =
a14a23
a13a24

, c4 =
1

2

√
a13a24 , aij = ai − aj , (4.16)

and

K(λ) =

∫ 1

0

dt√
(1 − t2)(1 − λt2)

(4.17)

denotes a complete elliptic integral of the first kind.

Through the periods ω1 and ω2, the elliptic curve (4.13) is naturally related to the torus

one gets by quotienting the complex plane by the lattice Λ = Zω1 + Zω2. In practice, it is

often convenient to normalize one of the periods to one, which leaves us with just a single

nontrivial parameter, the modular parameter τ = ω2/ω1. Then, the function

z =
c4
ω1

∫ x

a1

dx′

y
(4.18)

defines an isomorphism from points (x, y) on the elliptic curve to points z on the normalized

torus C/(Z + Zτ). As the lattice Λ is invariant under modular transformations, the same

elliptic curve will also be described by any pair of periods ω′
1 and ω′

2 that can be written as

(
ω′
2

ω′
1

)
=

(
a b

c d

)(
ω2

ω1

)
(4.19)

for integer a, b, c, and d such that ad − bc = 1. For a more detailed introduction to the

properties of elliptic curves in the context of Feynman integrals, see [164].

Various classes of special functions have been defined in order to evaluate the integrals

over elliptic curves that arise in Feynman integrals. One natural way of doing this is to

generalize the definition of multiple polylogarithms in (2.6) to iterated integrals that also

depend on y [130, 140, 141, 143, 226, 249, 271, 272]. One such class of elliptic multiple

polylogarithms was introduced in [143], using the notation

E4
( n1 ... nk

b1 ... bk ;x,~a
)

=

∫ x

0
dtΨn1(b1, t,~a) E4

( n2 ... nk

b2 ... bk ; t,~a
)
, (4.20)

10Note that, for y2 to be real, these branch points must be in one of a few configurations in the complex

plane. For more details, see [138].
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where E4( ;x,~a) = 1, the argument ~a represents the dependence on the four roots ai in (4.13),

the indices ni are integers, and the arguments x and bi are complex numbers that can depend

on external kinematics. The allowed set of integration kernels Ψn(b1, t,~a) include those seen

in the space of multiple polylogarithms,

Ψ1(b, t,~a) =
1

t− b
, (4.21)

but also functions that depend on the elliptic curve y, such as

Ψ0(b, t,~a) =
c4
ω1y

. (4.22)

For more details on the set of kernels that are allowed to appear, see [143].

Individual E4 functions can be characterized by their length, which corresponds to the

number of integrations k in (4.20), and their transcendental weight
∑|ni|. Similar to multiple

polylogarithms, they form a shuffle algebra, which allows one to write products of functions

that share the same arguments x and ~a as a sum of functions of higher length. They addi-

tionally obey identities such as the rescaling relation

E4
( n1 ... nk

pb1 ... pbk ; px, p~a
)

= E4
( n1 ... nk

b1 ... bk
;x,~a

)
, (4.23)

which holds for any nonzero p as long as bk 6= 0. Finally, they have a symbol and coaction

structure [142], which reduces to the normal coaction on multiple polylogarithms when one

restricts to integration kernels such as (4.21) that don’t depend on y.

There are various benefits to defining elliptic multiple polylogarithms in the above way.

The first is that integrals over kernels such as (4.22) appear naturally in the integration

of Feynman integrals, as seen for instance in the example of the two-loop banana in equa-

tion (2.10). It is also possible to assign a notion of elliptic ‘purity’ to the E4 functions [143],

which extends the traditional notion of pure integrals as those whose (non-vanishing) maximal

residues are all equal in magnitude [273]. For instance, expressed in terms of E4 functions,

one finds that the two-loop banana integral is a pure function of weight two, the kite integral

is a pure function of weight three, and the two-loop integrals in Figure 8 are pure functions

of weight four [143]. Finally, the E4 functions make manifest the Galois symmetry associated

with the exchange of y and −y, as these functions are either even or odd with respect to this

exchange.

Elliptic multiple polylogarithms can also be defined as iterated integrals on a complex

torus, due to the map (4.18) [140, 141, 226, 249, 271, 272]. The variant of these iterated

integrals that is used most extensively in the evaluation of Feynman integrals is defined by11

Γ̃( n1 ... nk
w1 ... wk

; z, τ) =

∫ z

0
dz1 g

(n1)(z1−w1, τ)Γ̃( n2 ... nk
w2 ... wk

; z1, τ) , (4.24)

11Another variant is defined by using a set of doubly periodic (but not meromorphic) function f (n) as the

integration kernels, which is often used to evaluate string amplitudes [226].
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where the ni are integers, and the arguments z and zi can be complex numbers. The integra-

tion kernel g(n)(z) are meromorphic quasi-doubly-periodic functions that can be generated

by the Eisenstein-Kronecker series,

θ′1(0|τ)θ1(z + α|τ)

θ1(z|τ)θ1(α|τ)
=
∑

n≥0

αn−1g(n)(z, τ) . (4.25)

Here θ1 is the odd Jacobi theta function, and θ′1 is its derivative with respect to its first

argument. One can easily translate between the E4 and Γ̃ functions, as the Ψn kernels that

appear in the former can be written as a linear combination of the kernels g(|n|) that appear

in the latter [143].

A recursive formula exists for the total derivative of the Γ̃ functions, which makes them

convenient for computing the symbol of an elliptic polylogarithm [133]. As with multiple

polylogarithms, the symbol can be used to derive identities between the Γ̃ functions. The

total differential can also be used to express elliptic multiple polylogarithms that are evaluated

at rational points z = r/N +sτ/N in terms of iterated Eisenstein integrals of level N , where r

and s are integers [133, 252, 274]. This can be useful for evaluating these functions numerically,

as the modular forms that appear as the kernels of these iterated Eisenstein integrals admit a

Fourier expansion in the variable q = eiπτ , referred to as q-expansions. These expansions are

guaranteed to converge since τ is always chosen to have a positive imaginary part. While this

convergence can in general be slow, it can be sped up by finding a modular transformation that

maximizes the imaginary part of τ [275, 276]. Algorithms for numerically evaluating elliptic

multiple polylogarithms (including in terms of q-expansions) have already been implemented

in GiNaC [98, 146] (we will comment on them further in section 4.4).

While elliptic multiple polylogarithms are sufficiently general for evaluating many of the

integrals discussed in section 3, they can only be used in cases involving a single elliptic

curve. In examples that involve multiple distinct elliptic curves, such as the double box in

Figure 9, more general classes of iterated integrals are required [277]. However, this is not a

fundamental limitation; in [134, 135], this double box integral was evaluated to all orders in

ǫ in terms of a space of iterated integrals involving 107 integration kernels and three separate

elliptic curves (see also [47]). It will be interesting to see whether a general class of functions

for expressing Feynman integrals that involve multiple elliptic curves naturally suggests itself

as more examples of this type are explored.

Certain Feynman integrals have also been found to be expressible in terms of more spe-

cialized spaces of functions. For instance, diagrams depending on just a single kinematic

variable, such as the two- and three-loop banana diagrams with all equal internal masses and

the three-loop contributions to the ρ parameter, can be expressed in terms of iterated inte-

grals of modular forms [126, 225, 278, 279]. The finite part of the two-loop banana integral

with distinct masses has also been expressed in terms of functions that generalize the infinite
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sum representation of classical polylogarithms, namely

ELin;m(x; y; q) =

∞∑

j=1

∞∑

k=1

xj

jn
yk

km
qjk , (4.26)

where the argument q is understood to be the nome q = eiπτ of an elliptic curve [120, 121].12

Higher-depth versions of the ELi function were also defined in [122, 123], where they were

used to evaluate the two-loop banana and the kite integral to all orders in the dimensional

regularization parameter ǫ.

Finally, the two-loop banana graph with equal internal masses has also been evaluated

in terms of the elliptic dilogarithm studied in [280], which can be defined by

Dτ (ξ) =

∞∑

n=−∞

D
(
e2πiξ+2πiτn

)
, (4.27)

where D(z) = ℑ(Li2(z)) + arg(1 − z) log |z| is the Bloch-Wigner function. Dτ (ξ) is a partic-

ularly interesting function, as its study led to the discovery of the first non-trivial functional

relations among elliptic polylogarithms [280–283]. Such relations can be viewed as elliptic

generalizations of the five-term identity for dilogarithms,

D(x) + D(y) + D

(
1 − x

1 − xy

)
+ D(1 − xy) + D

(
1 − y

1 − xy

)
= 0 , (4.28)

which conjecturally generates all functional relations between dilogarithms. Conversely, it

remains unclear whether other mechanism of generating functional relations between elliptic

dilogarithms exist (although see [128, 282] for work on this topic). Techniques for reduc-

ing elliptic multiple polylogarithms to multiple polylogarithms (when possible) also remain

relatively unexplored, although there exist examples in which Feynman integrals containing

multiple non-rationalizable square roots have been found to be expressible in terms of multiple

polylogarithms [269, 284–286].

Importantly, methods for directly constructing the integrands of amplitudes using gen-

eralized unitarity [287–289] have also recently been extended to the elliptic sector. Much of

this work has been done in the context of ‘prescriptive’ unitarity [215, 216, 290–296], in which

one’s basis of integrands is chosen so that each element directly matches a specific field theory

cut. The coefficients of amplitudes in an appropriate prescriptive basis are then computable

as ‘on-shell functions’ as defined in [297]. In [298], it was shown that the same approach

can be extended to amplitudes involving elliptic curves, by generalizing the notion of leading

singularities (traditionally used to refer to maximal-codimension residues) to any compact

contour integral of maximal dimension. In particular, it was shown that on-shell functions

defined for contours involving elliptic cycles enjoyed Yangian invariance in the case of planar

12The negative of the nome, −q, also often appears as the third argument of the ELi function; however,

ELin;m(x; y;−q) can always be rewritten as a linear combination of ELi functions that instead depend on q.
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maximally supersymmetric Yang-Mills theory. The role of elliptic leading singularities in

prescriptive unitarity for the representation of these amplitudes was outlined in [293].

The concepts of non-polylogarithmic leading singularities and prescriptive integrand bases

allow us to probe the analytic structure of specific amplitudes in a surgical manner. For

instance, to determine whether a particular amplitude is polylogarithmic or not, one can

simply compute any non-polylogarithmic leading singularity of the amplitude; if it is non-

vanishing, then the amplitude is non-polylogarithmic. Note that this follows from the mere

possibility of constructing a prescriptive basis in which no other integrand has support on

that integration contour, and does not require finding a prescriptive basis and using it to

represent the amplitude. Moreover, these ideas are not limited to the elliptic case, but should

generalize to arbitrary cases of higher rigidity if one considers integration cycles for instance

over Calabi-Yau manifolds.13

4.3 Integrals over Calabi-Yau Varieties

The types of integrals over Calabi-Yau varieties that appear in Feynman integrals have been

subject to much less study, both in the mathematics and the physics literature. In this section

we briefly summarise what is known about them, mostly from the study of L-loop banana

integrals.

Calabi-Yau varieties can be thought of as generalizations of elliptic curves to higher

dimensions. More precisely, a Calabi-Yau n-fold is an n-dimensional complex variety Mn

with a unique nowhere-vanishing holomorphic n-form Ωn (in other words, every holomorphic

n-fold is a multiple of Ωn). Equivalently, one may say that the middle cohomology Hn,0(Mn)

of every Calabi-Yau manifold is one-dimensional. An elliptic curve is nothing but a Calabi-

Yau one-fold, where the distinguished holomorphic one-form is the holomorphic differential

Ω1 = dx/y on the elliptic curve.

Typically, Feynman integrals give rise to families of Calabi-Yau n-folds parameterized

by external kinematics. A basis of periods for these families of Calabi-Yau manifolds is

obtained by integrating the holomorphic top-form Ωn over a basis of the middle-dimensional

homology group Hn(Mn,Z). These periods, which are functions of the external kinematics,

are the generalization of the periods of an elliptic curve from equations (4.14) and (4.15) to

higher-dimensional Calabi-Yau varieties. Unlike in the elliptic case, the periods of Calabi-Yau

n-folds for n > 1 are in general not expressible in terms of known transcendental functions.

However, several techniques have been developed in the context of geometry and string theory

to find integral representations and/or locally converging power series for such periods; see

for example [299], and references therein. These periods (and their derivatives with respect to

kinematic variables) also satisfy a set of quadratic relations, which are a direct consequence

of the Hodge structure carried by the middle cohomology Hn(Mn).

A special situation occurs for one-parameter families of Calabi-Yau varieties. In that case,

the periods form a basis of solutions for the Picard-Fuchs differential operator attached to the

13The rigidity of a Feynman integral is defined to be the smallest dimension over which it is non-

polylogarithmic; see [156].
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Calabi-Yau variety, and these so-called Calabi-Yau operators and their solutions are expected

to have particularly nice properties [300–302]. In some instances, it is even possible to express

the periods in terms of known hypergeometric functions. In particular, all periods of one-

parameter families of Calabi-Yau two-folds can be written as products of elliptic integrals of

the first kind [301–303].

Although periods of Calabi-Yau varieties have been studied in depth in the context of

geometry and string theory, these periods are not the only integrals that arise in the context

of Feynman integrals. Just like in the elliptic case, one also needs to consider integrals that

involve (products of) periods in the integrand. For example, the L-loop equal-mass banana

integral, considered in two space-time dimensions and with unit powers of the propagators,

can be written as a one-fold integral of a period multiplied by a rational function. To the best

of our knowledge, these types of integrals have never been considered in the literature, even

in the one-parameter case. Developing a thorough understanding of this class of integrals

would be interesting not only from a physics perspective, but also from the mathematics

side, because they are the natural generalization of (iterated) integrals of modular forms to

higher dimensional Calabi-Yau varieties. Currently, however, it is unclear what properties

these integrals have.

4.4 Numerical Evaluation

While expressing amplitudes in terms of well-studied classes of special functions is generally

useful, being able to evaluate amplitudes numerically is sufficient for most phenomenological

applications. As such, a variety of methods have been developed for numerically evaluating

Feynman integrals, some of which can be applied to any process, and others of which are

specialized to specific classes of integrals. We here review the most common methods, focusing

on those that can be used to evaluate Feynman integrals that cannot be expressed in terms

of multiple polylogarithms.

One of the more traditional approaches to numerically evaluating Feynman integrals is to

use Monte Carlo (or quasi-Monte Carlo) integration techniques. Typically, these methods are

applied to the Feynman-parameter representation given in (2.3). Since many Feynman inte-

grals are divergent and need to be regulated, the method of ‘sector decomposition’ [304, 305] is

often applied to extract these singularities at the boundary of the integration region. Various

programs have been developed over the years that implement sector decomposition [305–310],

with FIESTA5 [310], and pySecDec [309] being the most recent and popular.

One of the chief advantages of sector decomposition is its broad applicability, which is not

limited to any specific class of Feynman integrals. Unfortunately, this approach suffers from

a few significant bottlenecks. First, a large number of points generally need to be evaluated

to reach acceptable precision. Second, the computation of points in the physical region can

require contour deformations that negatively affect the convergence of these methods. Finally,

sector decomposition sometimes introduces a large number of terms in the integrand in order
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to resolve singularities.14 As a result, although many impressive optimizations have been

made in the latest implementations of these methods, they are typically less efficient and less

precise than other methods, when others can be applied.

More tailored techniques exist for specific use cases. For instance, a numerical integra-

tion strategy based on tropical geometry was introduced in [313], which can be employed

to evaluate Feynman integrals in the Euclidean region. In the framework of loop-tree dual-

ity [314–317], numerical integration methods have been developed that are suitable for the

evaluation of finite Feynman integrals in integer numbers of dimensions. And algorithms

and public codes [308, 318–321] exist for evaluating Feynman integrals using Mellin-Barnes

integral representations [322, 323], which take the form of contour integrals that can be nu-

merically integrated, or that can be computed as infinite sums over residues.

Another approach that has been pursued in recent years is to directly solve Feynman

integrals numerically from the differential equations they satisfy, without making reference

to an intermediate class of functions (see for example [324]). In particular, in [325] it was

shown that off-the-shelf numerical solvers can be used to solve differential equations of multi-

loop Feynman integrals with good precision. A difficulty in this approach is that standard

numerical solvers perform poorly near thresholds, where boundary conditions are easier to

compute. Furthermore, non-trivial contour deformations are necessary to numerically cross

thresholds singularities.

Alternatively, differential equations may be numerically solved in terms of one-dimensional

generalized power series expansions along a line in the space of external momenta and internal

masses (see for example [63, 147, 326–350]). These power series expansions are ‘generalized’

insofar as they may contain logarithms and algebraic roots that depend on the variable that

parameterizes this line. By concatenating series solutions along multiple line segments, nu-

merical solutions can be obtained in any region of phase-space. Contour deformations can

be avoided by centering expansions at threshold singularities, and analytic continuation is

only required for logarithms and algebraic roots that appear in the series solutions. A fully

automated strategy was described in [339], and a public implementation was provided in the

Mathematica package DiffExp [147]. The performance of series expansion methods greatly

outperforms sector decomposition in most cases [339], and the method has a wide applicability

(see for example [26, 41, 45, 54, 55, 286, 326, 344–347, 351–353]).

A remaining obstacle when solving Feynman integrals through differential equations,

either numerically or analytically, is the determination of boundary conditions. Often this

has been done analytically using expansion by regions [354–356], or numerically using sector

decomposition [325]. The first approach is not completely automated, as it requires manual

integration over various parametric integrals, whereas sector decomposition is automated but

limited in precision. More recently, a Mathematica package AMFlow was released [350], which

fully automates the determination of boundary conditions, and the subsequent numerical

14We note, however, that this issue can be remediated by choosing a (quasi-)finite basis of Feynman inte-

grals [311, 312].
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integration. More specifically, the package uses the auxiliary mass flow method [332, 343, 348–

350, 357] to determine boundary conditions in a special limit of infinite complex mass. An

internal solver based on series expansions, and optimized with a numerical fitting strategy,

is then used to transport results to any region in phase-space. This allows the package to

compute multi-loop integral families in a highly efficient manner, at high precision, and in a

fully automated way.

Finally, in cases where a Feynman integral or amplitude is known in terms of certain

classes of special functions, efficient numerical algorithms specific to these types of functions

can be used. This has proven particularly useful for amplitudes that have been evaluated

in terms of multiple polylogarithms, as these functions can be efficiently evaluated to high

precision using algorithms implemented in GiNaC [98, 101]. More recently, algorithms for nu-

merically evaluating iterated integrals on M1,n have also been implemented in GiNaC [146].

This class of functions includes elliptic multiple polylogarithms and iterated integrals of mod-

ular forms, and can thus be used to evaluate many of the integrals cataloged in section 3.

However, the code for evaluating iterated integrals on M1,n still has some limitations. In

particular, the analytic continuation of this class of functions is not yet automated, nor are

identities for changing their arguments to speed up numerical convergence [275, 276]. In part,

this is because arbitrary modular transformations do not map these functions back to the

same space of iterated integrals; however, it has been shown that this problem can be over-

come by combining modular transformations with a change of basis of master integrals [276].

At the moment, this combined transformation must be carried out by hand.

While the classes of special functions required for evaluating scattering amplitudes that

involve integrals over Calabi-Yau manifolds are still under study, numerical results for the

equal-mass banana integrals have recently been computed through four loops [203]. This was

done by constructing a set of generalized power series solutions to the Picard-Fuchs operator

that describes the Calabi-Yau geometry of these integrals (derived using the Bessel function

representation of these integrals [110–113, 358]), using the Frobenius method as described

in [202] and implemented there in PARI/GP [359]. These generalized power series can be

efficiently evaluated to get the numerical values of these integrals. The same methods can

in principle also be used to numerically evaluate the banana integral with generic masses,

but this requires constructing a generalized power series in many variables at once, which is

significantly more onerous in practice.

5 Open Questions and Directions for Future Research

Despite the substantial progress covered in the last two sections, there remain many open

questions about Feynman integrals that involve integrals over elliptic curves and Calabi-Yau

manifolds. Below, we highlight some of the research directions that constitute important

avenues for future work.

Phenomenological Calculations Involving Many Kinematic Variables – A number of new

multi-loop calculations will be required in the coming years to achieve the theoretical pre-
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cision demanded by future collider programs. In general, the Feynman integrals entering

these calculations will depend on increasing numbers of kinematic variables, as well as large

numbers of massive propagators. Correspondingly, the analytic structure of these integrals is

also expected to increase in complexity. This makes semi-numerical approaches to evaluating

these integrals (for instance, using generalized series expansions [147, 325, 339, 349]) espe-

cially attractive. Nevertheless, in order to make use of these numerical techniques, it will be

important to construct bases of master integrals that satisfy differential equations that are

linear in the dimensional regularization parameter. As this generally becomes more difficult

as the number of kinematic variables increases (due to the appearance of more square roots,

or integrals over multiple algebraic varieties), a great deal of future work will be devoted to

the construction of such bases for phenomenological applications, for example in five-point

processes such as tt̄+jet production and tt̄H production [26, 360, 361].

Epsilon Factorization and Generalized Canonical Forms – For Feynman integrals in dimen-

sional regularization, the method of differential equations combined with the idea of canonical

forms has been invaluable. How much of this approach can be generalized beyond the polylog-

arithmic case? There are several examples in which epsilon-factorized differential equations

have been obtained for elliptic Feynman integrals [132, 137], and it is known how to generate

such forms algorithmically [188]. Yet integrating these systems in terms of special functions

such as elliptic multiple polylogarithms is not nearly as easy as in the case of multiple poly-

logarithms. For multiple polylogarithms, the key property that made integration simple was

the fact that everything was already expressed in terms of d log forms. Finding a suitable

generalization of this property to the elliptic case (and beyond) that similarly allows for

straightforward integration would greatly benefit future calculations.

Development of Future Numerical Tools – A number of algorithmic and implementational

improvements can be made in the numerical solvers currently being used to evaluate Feyn-

man integrals. For example, recent progress was made in [349], where a fast and parallelizable

solver was developed by numerically fitting the dimensional regulator. Speedups may also be

attainable by porting current codes written in Mathematica to lower-level languages such as

C++. Lastly, the construction of differential equations requires solving complicated systems

of IBP relations, which in many cases form a computational bottleneck; for this reason, fur-

ther optimizations on the side of IBP codes are likely to be important in the future.

Symbolic Computational Tools for Elliptic Multiple Polylogarithms – Although public codes

for integrating and manipulating multiple polylogarithms have been available for a number

of years [102–105], there is currently no public code for working with elliptic multiple poly-

logarithms. The development of publicly-available software for directly integrating elliptic

multiple polylogarithms, computing their symbol, and converting between the different for-

mulations of these functions on elliptic curves and complex tori would be of great benefit to

the community.

Identities Between Iterated Integrals – Iterated integrals beyond elliptic multiple polylog-
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arithms are expected to be required in the evaluation of many phenomenologically-relevant

scattering amplitudes. In such cases, it will prove useful (or even essential) to be able to re-

duce to a basis of functions by finding algebraic relations between these iterated integrals. For

instance, a space of iterated integrals involving three distinct elliptic curves naturally arises in

the calculation of tt̄ production via gluon fusion, due to the contribution from the double box

integral in Figure 9 [134, 135]. It was found that nontrivial identities between these iterated

integrals were required to make the cancellation of ultraviolet and infrared poles manifest in

the two-loop QCD amplitudes for this process [47, 362]. Such relations also tend to lead to

massive simplifications in the functional form of scattering amplitudes, making them easier to

work with and evaluate numerically. It will correspondingly be important to develop general

methods for finding such identities in phenomenological applications in the future. Notably,

one approach for doing so was developed in [124, 128], where it was shown that functional

relations between iterated integrals can be derived using higher-order differential operators

that annihilate the integration kernels appearing in these functions.

Cataloging Integration Geometries – Due to the existence of integrand-level basis reduction

techniques (such as generalized unitarity and its variants [287–292, 363–367]) and IBP iden-

tities [158, 159], a comparatively small number of independent Feynman integrals contribute

to scattering amplitudes at low loop orders. This should make it possible to catalog all the

algebraic varieties that appear in these integrals at a given loop order, especially in theories

of interest. Such a catalog would provide valuable information about the class of special

functions required for expressing amplitudes in different theories and different loop orders.

Moreover, it will help determine whether there exist any universal features of the geometries

that arise in Feynman integrals, and whether these features can be tied to basic physical

principles.

Uniqueness of Geometries – An important open question is whether the geometries associ-

ated with a Feynman integral are unique. In the elliptic case, the two-loop sunrise integral

can be described in terms of two distinct, but isogenous, elliptic curves [126, 137]. While

both curves can be useful for representing the integral in different contexts, it was found

in [200] that only one of the curves corresponds directly to the geometry of the initial inte-

grand, while the other curve was introduced by changes of variables involving a double-cover.

Beyond the elliptic case, some of the authors at one point speculated that every Feynman

integral may be associated with a Calabi-Yau geometry. This cannot be true at face value,

as there are Feynman integrals associated with higher-genus Riemann surfaces, which are not

Calabi-Yau [148, 149]. However, the approach taken in [203] suggests that these integrals

may still be associated with Calabi-Yau motives, in which distinct geometries are identified

when they share a particular subspace of their cohomology. This opens up the possibility

that each Feynman integral could be associated to a unique Calabi-Yau motive, which would

be a powerful tool in investigating and classifying these integrals. In particular, if true, this

might suggest an approach to evaluating diagrams involving multiple elliptic curves [134, 135]

in which these curves were combined into a single Calabi-Yau motive.
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Non-Polylogarithmic Leading Singularities Beyond Elliptic Curves – Although the defini-

tion of leading singularities introduced in [298] naturally extends to cases involving an arbi-

trary compact contour integral, those involving geometries that go beyond elliptic curves are

stymied by a lack of clear computational methods for parameterizing such contours, or the

existence of standard functions in terms of which these integrals can be expressed. It will be

important to develop the technology for computing these higher-rigidity leading singularities

over the coming years.

Special Functions for Integrals over Calabi-Yau Manifolds – One of the most important

open research directions concerns the development of special functions for expressing scat-

tering amplitudes that involve Calabi-Yau manifolds. The first step towards understanding

this space of functions would involve classifying the independent integration kernels that can

appear in Feynman integrals of this type, and how these kernels depend on the details of the

Calabi-Yau geometry. Since there is always some freedom in the choice of an independent

set of integration kernels, an important consideration will be whether these kernels can be

chosen such that physical principles such as locality can be made manifest. Another basic

requirement should be that the kernels only involve logarithmic singularities. Once a basis of

kernels has been selected, one would then have to work out the basic technology for working

with this space of iterated integrals, including techniques for analytically continuing them

and for generating sum representations that can be efficiently evaluated numerically. For an

example of how such technology can be developed, see recent work on iterated Eisenstein

integrals [126, 133, 139, 252, 274, 275].

Hyperelliptic Integrals – In addition to elliptic curves and Calabi-Yau manifolds, integrals

over hyperelliptic curves—or, curves of genus greater than one—have been observed in Feyn-

man integrals [148, 149]. These types of integrals also appear in open-string amplitudes

starting at two loops, and thus can be studied in the clean laboratory provided by string

theory. For each surface that appears in the genus expansion of open-string amplitudes, one

should be able to find a set of holomorphic differentials that respect the symmetries of the

surface (by being at least quasi-periodic with respect to all its cycles), and a canonical connec-

tion form analogous to the Eisenstein-Kronecker series (4.25) that appears at genus one. For

these higher-genus surfaces, the modular parameter τ will be replaced by a Riemann period

matrix in the Siegel upper half plane, Jacobi ϑ-functions will be replaced by ϑ-functions with

character, and SL(2,Z) invariance will become Sp(2n,Z) invariance. One can also consider

the function spaces that one encounters by integrating along surfaces with boundary, which

should allow one to find relations between higher polylogarithmic functions and their single-

valued counterparts.

Bootstrapping Elliptic Amplitudes – Efficient methods for bootstrapping certain polyloga-

rithmic amplitudes, form factors, and anomalous dimensions have been developed in recent

years (see for instance [25, 213, 368, 369]). These methods usually make use of the coprod-
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uct in order to iteratively construct the space of functions within which these quantities are

expected to exist, after which physical constraints are imposed until a unique function is

found. The same type of coproduct structure exists for elliptic polylogarithms [133, 142],

and it would be interesting to use this structure to bootstrap elliptic amplitudes or Feynman

integrals in the same way. Key ingredients for such a program would be a good understanding

of the space of elliptic (and non-elliptic) symbol letters that appear in the quantity under

study, as well as a set of symmetries and adequate boundary data with which to constrain an

ansatz within this space.

Elliptic Coaction Principles – A number of amplitudes and Feynman integrals have been ob-

served to exhibit interesting number-theoretic symmetries associated with the so-called cosmic

Galois group [370–373]. Namely, these quantities exhibit a certain type of stability under the

coaction, insofar as the functions that appear in the first entry of their coaction correspond

to functions that appear in the same quantity at lower loop orders. This type of ‘coaction

principle’ was first studied in massless φ4 theory [373–375], and has since been observed in

the polylogarithmic part of the anomalous magnetic moment of the electron [376, 377], in

amplitudes and form factors in maximally supersymmetric gauge theory [25, 378], and in

integrable fishnet models [379]. Similar structures have also been observed in string pertur-

bation theory, where different orders in the α′ expansion of tree-level string amplitudes are

stable under the coaction rather than different loop orders [233]. It will be interesting to see

if such coaction principles also exist beyond the multiple polylogarithmic sector.

Isolating Integral Contributions over Specific Manifolds – In [215, 216, 294, 296], a set of

Feynman integral numerators was found that made the cancellation of all non-polylogarithmic

contributions to the two-loop MHV amplitudes in maximally supersymmetric gauge theory

manifest at the level of the integrand, even though elliptic and K3 contributions show up in

individual integrals. It would be interesting to know to what extent the contribution from

specific integration contours can be isolated in more general bases of Feynman integrals using

similar techniques.

Stratifications of Rigidity – In [293] it was shown that most dual-conformal integrands at

two loops must involve both polylogarithmic and non-polylogarithmic parts. Moreover, many

such integrals involve multiple elliptic curves. It is thus natural to wonder whether these fea-

tures can be avoided. There is now considerable evidence that the answer is yes, at least

for the case of planar amplitudes at two loops. Specifically, by abandoning dual-conformal

invariance (by increasing the power-counting of the basis), it is possible to construct a basis

which is fully divided into polylogarithmic and non-polylogarithmic sub-strata, and in which

no Feynman integral involves more than one elliptic curve [380]. It remains unclear the extent

to which these features may be generalized to higher-loop orders, or to non-planar integrand

bases at two loops (as either case would involve integrals with higher rigidity).

Degenerations of Integral Geometries and Landau Singularities – As mentioned in section 2,

the varieties that appear in Feynman integrals often degenerate in special kinematic lim-
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its. For the two-loop banana integral discussed in section 3.1 this happens at thresholds and

pseudo-thresholds corresponding to solutions of the Landau equations (see for example [200]).

Making this connection more precise for more complicated integrals with more kinematic pa-

rameters could provide interesting insight into the role played by the moduli spaces of the

geometries that appear in these integrals. A natural starting point are the traintrack inte-

grals in section 3.2, whose geometry has been described in momentum twistor space [205, 214].

Landau Analysis and the Coaction – Important work on how the Landau equations [381]

and cut integrals [382] can be used to constrain the analytic structure of Feynman integrals

(and in some cases even reconstruct the full motivic coaction of these integrals) has been

carried out in the context of multiple polylogarithms [383–394]. Moreover, it has been shown

that Feynman integrals at low loop orders are endowed with a diagrammatic coaction that

agrees with the motivic coaction on multiple polylogarithms at all orders in the ǫ expansion

in dimensional regularization [395–402]. It would be interesting to see how these analyses

generalize to cases involving iterated integrals over elliptic curves and the periods of higher-

dimensional manifolds.

Singularities and Cluster Algebras – A number of surprising connections have been observed

between the singularity structure of scattering amplitudes (or even individual Feynman in-

tegrals) and cluster algebras (or algebraic and geometric structures closely related to cluster

algebras, including tropical fans and polytopes) [16, 297, 403–422]. However, all of these con-

nections currently remain restricted to amplitudes that can be expressed in terms of multiple

polylogarithms. It would be interesting to explore whether the elliptic and Calabi-Yau vari-

eties that appear at higher loop order and particle multiplicity are also encoded in suitable

generalizations of these algebraic or geometric structures.

Cycle of Calculation and Discovery – It should not be overlooked that progress is made

towards the research goals suggested above every time new results for previously-unknown

integrals become available. Indeed, the history of progress in the amplitudes field suggests

that this field is largely data-driven. Great effort is often expended to evaluate some new

integral that is barely possible with existing technology. Over time, as a critical mass of

data accumulates in the literature, it becomes possible to observe, extrapolate, or merely

guess properties that enable the next round of previously-impossible calculations. Therefore,

in addition to the lofty goals elaborated above, no effort should be spared on attacking all

varieties of new integrals, if for no other purpose than to fuel this virtuous feedback loop.

6 Outlook

Scattering amplitudes often involve integrals over complicated algebraic varieties such as

elliptic curves and Calabi-Yau manifolds. These types of integrals start to appear in precision

QCD calculations at NNLO and in supersymmetric gauge theory at two loops, making them

of high experimental and theoretical interest. Thus, while substantial progress has been made
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in the development of technology for evaluating Feynman integrals that involve elliptic curves,

it will be important to continue to expand our analytic and numerical control over these types

of integrals, and to develop similar technology for evaluating integrals over higher-dimensional

varieties. In this white paper, we have highlighted a number of specific research directions

in which impactful progress can be made towards these goals. Given the important role that

precision standard model predictions will play in the search for new physics in future colliders,

and the insight this work will give us into the mathematical structure of perturbative quantum

field theory, these topics deserve to be a focal point of research in the coming years.

Acknowledgments

JLB is supported by a grant from the US Department of Energy (DE-SC00019066), and JLB,

RM, CV, MvH, MW, and CZ are supported by a Starting Grant (No. 757978) from the

European Research Council. EC receives funding from the European Union’s Horizon 2020

research and innovation programmes, New level of theoretical precision for LHC Run 2 and

beyond (grant agreement No. 683211), and High precision multi-jet dynamics at the LHC

(grant agreement No. 772009). HF has received funding from the European Union’s Horizon

2020 research and innovation program under the Marie Sk lodowska-Curie grant agreement

No. 847523 ‘INTERACTIONS’, as well as a Carlsberg Foundation Reintegration Fellowship.

MH is supported by the European Research Council under ERC-STG-804286 UNISCAMP.

RM, MW, and CZ are additionally supported by the research grant 00025445 from Villum

Fonden. MS and AV are supported by the US Department of Energy under contract DE-

SC0010010 Task A, and AV is additionally supported by Simons Investigator Award #376208.

LT was supported by the Excellence Cluster ORIGINS funded by the Deutsche Forschungs-

gemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy -

EXC-2094 - 390783311 and by the ERC Starting Grant 949279 HighPHun.

References

[1] V. Del Duca, C. Duhr and V. A. Smirnov, An Analytic Result for the Two-Loop Hexagon

Wilson Loop in N = 4 SYM, JHEP 03 (2010) 099 [0911.5332].

[2] S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar N = 4 super

Yang-Mills, JHEP 12 (2011) 066 [1105.5606].

[3] L. J. Dixon, J. M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the

three-loop remainder function, JHEP 1312 (2013) 049 [1308.2276].

[4] L. J. Dixon, J. M. Drummond, C. Duhr and J. Pennington, The four-loop remainder function

and multi-Regge behavior at NNLLA in planar N = 4 super-Yang-Mills theory,

JHEP 1406 (2014) 116 [1402.3300].

[5] J. Golden and M. Spradlin, An analytic result for the two-loop seven-point MHV amplitude in

N = 4 SYM, JHEP 1408 (2014) 154 [1406.2055].

– 31 –

https://doi.org/10.1007/JHEP03(2010)099
https://arxiv.org/abs/0911.5332
https://doi.org/10.1007/JHEP12(2011)066
https://arxiv.org/abs/1105.5606
https://doi.org/10.1007/JHEP12(2013)049
https://arxiv.org/abs/1308.2276
https://doi.org/10.1007/JHEP06(2014)116
https://arxiv.org/abs/1402.3300
https://doi.org/10.1007/JHEP08(2014)154
https://arxiv.org/abs/1406.2055


[6] L. J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops,

JHEP 1410 (2014) 65 [1408.1505].

[7] L. J. Dixon, M. von Hippel and A. J. McLeod, The four-loop six-gluon NMHV ratio function,

JHEP 01 (2016) 053 [1509.08127].

[8] J. M. Henn and B. Mistlberger, Four-Gluon Scattering at Three Loops, Infrared Structure, and

the Regge Limit, Phys. Rev. Lett. 117 (2016) 171601 [1608.00850].

[9] S. Caron-Huot, L. J. Dixon, A. McLeod and M. von Hippel, Bootstrapping a Five-Loop

Amplitude Using Steinmann Relations, Phys. Rev. Lett. 117 (2016) 241601 [1609.00669].

[10] L. J. Dixon, M. von Hippel, A. J. McLeod and J. Trnka, Multi-loop positivity of the planar N
= 4 SYM six-point amplitude, JHEP 02 (2017) 112 [1611.08325].

[11] L. J. Dixon, J. Drummond, T. Harrington, A. J. McLeod, G. Papathanasiou and M. Spradlin,

Heptagons from the Steinmann Cluster Bootstrap, JHEP 02 (2017) 137 [1612.08976].

[12] J. L. Bourjaily, A. J. McLeod, M. von Hippel and M. Wilhelm, Rationalizing Loop Integration,

JHEP 08 (2018) 184 [1805.10281].

[13] J. L. Bourjaily, F. Dulat and E. Panzer, Manifestly Dual-Conformal Loop Integration,

Nucl. Phys. B 942 (2019) 251 [1901.02887].

[14] J. L. Bourjaily, M. Volk and M. Von Hippel, Conformally Regulated Direct Integration of the

Two-Loop Heptagon Remainder, JHEP 02 (2020) 095 [1912.05690].

[15] S. Caron-Huot, L. J. Dixon, M. von Hippel, A. J. McLeod and G. Papathanasiou, The Double

Pentaladder Integral to All Orders, JHEP 07 (2018) 170 [1806.01361].
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