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Rényi entropies, Sn, admit a natural generalization in the presence of global symmetries. These
“charged Rényi entropies” are functions of the chemical potential µ conjugate to the charge contained
in the entangling region and reduce to the usual notions as µ → 0. For n = 1, this provides a notion
of charged entanglement entropy. In this letter we prove that for a general d(≥ 3)-dimensional
CFT, the leading correction to the uncharged entanglement entropy across a spherical entangling
surface is quadratic in the chemical potential, positive definite, and universally controlled (up to
fixed d-dependent constants) by the coefficients CJ and a2. These fully characterize, for a given
theory, the current correlators 〈JJ〉 and 〈TJJ〉, as well as the energy flux measured at infinity
produced by the insertion of the current operator. Our result is motivated by analytic holographic
calculations for a special class of higher-curvature gravities coupled to a (d − 2)-form in general
dimensions as well as for free-fields in d = 4. A proof for general theories and dimensions follows from
previously known universal identities involving the magnetic response of twist operators introduced
in arXiv:1310.4180 and basic thermodynamic relations.

The Rényi and entanglement entropies (EE) of spa-
tial regions in the vacuum state of d-dimensional confor-
mal field theories (CFTs) capture interesting universal
information. This includes the Virasoro central charge
c for two-dimensional theories [1, 2], the Euclidean par-
tition function on the sphere in odd dimensions [3, 4],
the trace-anomaly coefficients in even dimensions [5–8],
the stress-tensor two-point function charge CT [9–12] and
the thermal entropy coefficient CS [13–15], among oth-
ers [16–18]. From a different perspective, it has been in
fact suggested that the full CFT data might be accessible
from a long-distance expansion of the mutual/N -partite
information [19–25]. In this letter we consider a natural
generalization of Rényi/entanglement entropies for theo-
ries with global symmetries [26] and add a new entry to
the list of general relations satisfied by these quantities
which connect them to various universal quantities.

Given a spatial bipartition, the (uncharged) Rényi en-
tropy for some region A is defined as Sn ≡ 1

(1−n) logTrρ
n
A

where ρA is the partial-trace density matrix associated to
that region. The entanglement entropy SEE is obtained
as the n → 1 limit of Sn. A charged notion of Rényi
entropy was introduced in [26] for theories with global
symmetries —see also [27–29]. This is given by

Sn(µ) =
1

1− n
logTr

[

ρA
eµQA

nA(µ)

]n

, (1)

where QA is the total charge contained in the entangling
region A, µ is the chemical potential conjugate to the
charge and nA(µ) a normalization factor. It is obvious
from its definition that Sn(µ) reduces to Sn as µ → 0. An
interesting feature of Sn(µ) is that, for spherical entan-
gling surfaces, it admits a generalization of the conformal

map of [3, 30] which allows to evaluate this quantity from
the —usually simpler— thermal entropy in the hyper-
bolic cylinder [26]. This enables one to perform explicit
holographic and free-field calculations, which we exploit
below. Additional studies of charged Rényi entropies and
closely related notions can be found e.g., in [31–39].
In the uncharged case, the EE universal term across

a spherical entangling surface in a d-dimensional CFT
reads —see e.g., [40, 41],

SEE

νd−1
= a⋆ , where νd−1 ≡

{

(−)
d−2
2 4 log(Rδ ) ,

(−)
d−1
2 2π ,

(2)

respectively for even and odd d. In this formula, R is
the radius of the spherical region and δ a UV regulator.
In even dimensions, the universal quantity a⋆ is nothing
but the A-type trace-anomaly coefficient [5–8]. In odd d,
a⋆ is proportional to the Euclidean partition function of
the theory on the round sphere [3, 4].
In this letter we show that the charged entanglement

entropy for a spherical region is given, for general d-
dimensional CFTs, by

SEE(µ)

νd−1
= a⋆ +

πdCJ

(d− 1)2Γ(d− 2)

[

1 +
(d− 2)a2
d(d− 1)

]

(µR)2

(3)

plus subleading corrections. Eq. (3) can be alternatively
formulated as a statement involving the first two deriva-
tives of Sn(µ) with respect to µ evaluated at n = 1, µ = 0
in an obvious way. In the above expression, CJ and a2
are two constants which characterize the corresponding
CFT. On the one hand, CJ is the only theory-dependent
information which is not fully determined by conformal
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symmetry in the correlator of the current associated to
the global symmetry, namely [42]

〈Ja(x)Jb(0)〉 =
CJ

|x|2(d−1)

[

δab −
2xaxb

|x|2
]

. (4)

As for a2, its meaning can be understood from two dif-
ferent, albeit related, perspectives. On the one hand, the
three-point function 〈TJJ〉 involves a complicated ten-
sorial structure —which can be found in the appendix—
shared by all CFTs up to two theory-dependent coeffi-
cients [42]. These coefficients can be chosen to be CJ and
a second one denoted a2. The latter can also be under-
stood from conformal collider physics. Consider a CFT
in flat space in its vacuum state and the insertion of a
(smeared) current operator ǫaJ

a for certain constant po-
larization tensor ǫa. The expectation value of the energy
flux measured at infinity in some direction ~n produced
by such insertion is universally given by [43]

〈E(~n)〉J =
E

Ω(d−2)

[

1 + a2

( |ǫ · n|2
|ǫ|2 − 1

d− 1

)]

, (5)

where Ω(d−2) is the volume of the unit radius S(d−2)

and E is the total energy. Again, the tensorial struc-
ture is fully fixed by symmetry, and all information
about the corresponding CFT is in this case encoded
in the coefficient a2. Demanding the energy flux to be
positive in all directions imposes the bounds [43, 44]
−(d − 1)/(d − 2) ≤ a2 ≤ (d − 1), which implies —given
the positivity of CJ [42]— that the leading correction in
Eq. (3) is positive for general theories.
Formula (3) then tells us that the charged entangle-

ment entropy across a sphere of a general CFT for small
values of the chemical potential has a leading correc-
tion to the uncharged result which is quadratic in the
chemical potential, positive, and universally controlled
by the charges CJ , a2, which characterize the theory as
explained above.
Electromagnetic Quasitopological gravities.

The realization that Eq. (3) may be a universal relation
came to us from holographic calculations, so we present
those first. We consider the following bulk theory for
the metric field coupled to a (d − 2)-form B with field
strength H = dB,

IEQG =

∫

dd+1x
√

|g|
16πG

[

R+
d(d− 1)

L2
− 2H2

(d− 1)!
(6)

+
λL2X4

(d− 2)(d− 3)
+

2α1L
2

(d− 1)!
L(1)
RH2 +

2α2L
2

(d− 1)!
L(2)
RH2

]

,

where G is the Newton constant, L is a length scale,
λ, α1, α2 are dimensionless couplings, X4 is the Gauss-
Bonnet density, and[45]

L(1)
RH2 ≡ H2R− (d− 1)(2d− 1)Rµν

ρσ(H
2)ρσµν ,

L(2)
RH2 ≡ Rµ

ν(H
2)νµ − (d− 1)Rµν

ρσ(H
2)ρσµν ,

(7)

with
(

H2
)ρσ

µν ≡ Hρσα3α4...αd−1Hµνα3α4...αd−1
are two

Electromagnetic Quasitopological theories (EQGs) [44,
46]. These belong to a class of modifications of Einstein
gravity with distinct properties, including simple black
hole solutions and linearized spectrum, analytic thermo-
dynamics, as well as providing a basis for general-order
effective actions [47–57]. From an AdS/CFT perspec-
tive [58–60], Eq. (6) defines models of (d−1)-dimensional
CFTs parametrized by the bulk action couplings. Differ-
ent CFT magnitudes will involve different functions of
those couplings [15, 61–64], which can be used to eluci-
date universal patterns when some of those magnitudes
in fact display the same dependence. This approach has
been successfully used before, e.g., in [12, 40, 41, 65–69].
Eq. (6) can be mapped to a different theory with a

vector field by dualizing the B-field. The field strength
of the dual vector field F = dA, is then identified as F =
4πGℓ−1

∗ (d− 1)! ⋆ [∂L/∂H ] , where ℓ∗ is an undetermined
length scale that we introduce so that Aµ has units of
energy. The bulk gauge field Aµ is holographically dual
to the current Ja of a global U(1). The parameters CJ

and a2 associated to Ja were determined in [44], finding

CEQG
J =

Γ(d)

4πd/2+1Γ(d/2− 1)

ℓ2∗L̃
d−3

αeffG
, (8)

aEQG
2 = −2d(d− 1) [(2d− 1)α1 + α2] f∞

(d− 2)αeff
, (9)

where

αeff ≡ 1− f∞α1(3d
2 − 7d+ 2)− f∞α2(d− 2) , (10)

f∞ ≡ L2/L̃2 and L̃ is the AdS(d+1) radius.
Now, the (charged) Rényi entropy across a spherical

entangling surface of radius R in the vacuum state can be
obtained, on general grounds, from the thermal entropy
on S

1
2πR×H

d−1
R [3, 26, 30]. In the holographic context, the

calculation amounts to computing the thermal entropy
of an AdS(d+1) hyperbolic black hole charged under the
gauge field at a temperature T0 = 1/(2πR). For our
theory (6), this takes the form

ds2 =
−L2

f∞R2

[

r2

L2
f − 1

]

dt2 +
dr2

r2

L2 f − 1
+ r2dΞ2 ,

H = QωHd−1 ,

(11)

where dΞ2 is the metric of the unit hyperbolic spaceHd−1
1

and ωHd−1 its volume form. The factor L2

f∞R2 has been
introduced so that the boundary metric is conformal to
ds2

S1×Hd−1 = −dt2+R2dΞ2. The equations of motion for
f(r) and its explicit form can be found in the appendix.
The temperature of the black holes can be written as

T =
T0

2x
√
f∞ (1− 2p2α1 − 2λx−2)

[

x2d− (d− 2) (12)

+
(d− 4)λ

x2
− 2p2

(d− 1)

[

x2 − d(3(d− 1)α1 + α2)
]

]

,
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where we introduced x ≡ r+/L, p ≡ QLr−d+1
+ and r+

is the outer horizon position. We also need the value
of the chemical potential of the boundary theory. This
is nothing but the asymptotic value of the electrostatic
potential At at r → ∞, which is fixed by the condition
that At|r+ = 0. We find

µ =
Lp

ℓ∗
√
f∞R

[

x

(d− 2)

− α1

x

(

3(d− 1) +
T

T0
2x
√

f∞

)

− α2

x

]

.

(13)

Finally, we need the Wald entropy [70, 71] of the solu-

tions. We obtain

S =
xd−1Ld−1VHd−1

4G

[

1 + 2p2α1 −
2(d− 1)λ

(d− 3)x2

]

, (14)

where VHd−1 ≡ νd−1Ωd−1/(4π) is the regularized volume
of the unit hyperbolic space. As explained earlier, this
computes the holographic charged entanglement entropy
when T = T0. Observe that in the above expression,
the dependence on µ appears through x and p, so we
would need to obtain x(µ) and p(µ) from Eqs. (12) and
(13) evaluated for such temperature in order to obtain
an explicit formula for Suniv

EE (µ). This cannot be done
explicitly for arbitrary values of µ, but it is possible for
small values of µR. The result for the first two orders
reads

SEQG
EE (µ)

νd−1
= a⋆GB +

π(d−2)/2(d− 2)2[1− 3d(d− 1)α1f∞ − dα2f∞]

(d− 1)8Γ(d/2)α2
eff

L̃d−3ℓ2∗
G

(µR)2 +O(µ4) , (15)

where αeff was defined in (10). Now, the constant term
is the a⋆ charge for our EQG theory, which reduces to
the Gauss-Bonnet gravity one, as terms involving the B
form do not contribute to it. Explicitly, this reads [40]

a⋆GB =
L̃d−1

8G

π(d−2)/2

Γ(d/2)

[

1− 2(d− 1)

d− 3
λf∞

]

. (16)

As mentioned earlier, this is the expected result for the
(uncharged) entanglement entropy across a spherical sur-
face in d dimensions. Now, the leading correction com-
ing from the chemical potential has a complicated non-
polynomial dependence on the gravitational couplings
α1, α2. However, this conspires to produce a linear com-
bination of the charges CEQG

J and CEQG
J · aEQG

2 . Indeed,
using Eqs. (8) it is easy to see that the above formula
reduces to Eq. (3). In the appendix we show that Eq. (3)
in fact holds for an infinite family of EQGs of general
orders.

The fact that Suniv
EE (µ) takes this simple form for such a

large family of holographic theories leads us to think that
this may actually be a relation which holds for completely
general CFTs. Before proving that this is indeed the
case, we can perform an additional check in a completely
different context.

Free fields. The result for the charged Rényi entropy
associated to global phase rotations for a Dirac fermion
and a scalar field in d = 4 has been computed in [26]
using heat-kernel techniques. We review these calcula-
tions in the appendix, where we also fix a typo in the
Dirac fermion result reported in that paper. The correct

results read, respectively,

Sf
n =

ν3
24

[

(1 + n)(7 + 37n2)

120n3
+

(1 + n)(µR)2

n

]

, (17)

Ss
n =

ν3
24

[

(1 + n)(1 + n2)

60n3
+

(1 + n)(µR)2

2n
+ |µR|3

]

.

Interestingly, the exact dependence on µ is much simpler
than for our holographic theories, for which, as we saw
earlier, a completely explicit formula cannot be obtained.
It is then straightforward to obtain the result of interest
for the entanglement entropy expansion. One finds

Sf
EE(µ)

ν3
= a⋆f +

(µR)2

12
,

Ss
EE
(µ)

ν3
= a⋆s +

(µR)2

24
+

|µR|3
24

,

(18)

where a⋆f = 11/360, a⋆s = 1/360 , are the trace-anomaly
coefficients corresponding to a Dirac fermion and a real
scalar field, respectively [72–74]. Now, the values of the
charges CJ and a2 for these two models are also well-
known and read [42, 43, 75, 76]

Cf
J =

1

π4
, Cs

J =
1

4π4
,

af2 = −3

2
, as2 = 3 .

(19)

It is then straightforward to verify that Eqs. (18) satisfy
the relation (3).
General CFTs. The previous results strongly sug-

gest that Eq. (3) holds for general CFTs. As it turns out,
a proof of such universality can be easily achieved using
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a combination of the results presented in Ref. [26] along
with some thermodynamic identities. In order to do this,
we need to depart momentarily from the vacuum temper-
ature T0 and consider a CFT on the hyperbolic cylinder
at an arbitrary temperature T . The thermal entropy of
a given CFT in such state can be used to compute the
Rényi entropy Sn(µ) across a spherical entangling region
[26, 30], the Rényi index being related to the temperature
by n = T0/T .
In order to proceed, we need to consider a set of related

quantities: the twist operators σn(µ). In the Replica
trick approach to the evaluation of Rényi/entanglement
entropy, the entangling region is cut from each of the
spacetime copies and consecutive copies are sewn to-
gether along the entangling surface. Such boundary con-
ditions can be understood as produced by the insertion of
(d − 2)-dimensional operators along the entangling sur-
face [1, 2, 10, 30]. In the charged Rényi/EE case, the
entangling surface carries a “magnetic flux” −inµ which
can be understood as attaching a Dirac sheet to the twist
operators [26].
The leading divergence in the correlator of σn(µ) with

the current operator defines the so called “magnetic re-
sponse” kn(µ) as [26]

〈Jaσn(µ)〉 =
ikn(µ)

2π

ǫabn
b

yd−1
, (20)

where y is the distance between the insertions, nb is a
unit vector normal to Ja from the twist operator inser-
tion and ǫab is the volume form of the two-dimensional
space orthogonal to the entangling surface. In the case
of a spherical entangling surface, the magnetic response
is given by [26]

kn(µ) = 2πnRd−1ρ(n, µ) , (21)

where ρ(n, µ) is the charge density of the CFT on the
hyperbolic cylinder at temperature T = T0/n. As it turns
out, this quantity has a universal expansion around n = 1
and µ = 0 whose leading terms can be expressed in terms
of the coefficients characterizing the 〈TJJ〉 correlator.
We have [26]

kn

∣

∣

∣

n=1,µ=0
= ∂nkn

∣

∣

∣

n=1,µ=0
= 0 ,

∂µkn

∣

∣

∣

n=1,µ=0
=

16Rπd+1

Γ(d+ 1)
[ĉ+ ê] ,

∂n∂µkn

∣

∣

∣

n=1,µ=0
=

16Rπd+1

dΓ(d+ 1)
[2ĉ− d(d− 3)ê] ,

(22)

where the charges ĉ, ê are related to CJ , a2 by [26, 76]

ĉ =
CJ(d− 2)Γ

(

d+2
2

)

2πd/2(d− 1)3
[d(d − 1)− a2] ,

ê =
CJΓ

(

d+2
2

)

2πd/2(d− 1)3
[d− 1 + (d− 2)a2] .

(23)

Let us now consider the thermal entropy S of the CFT
on the hyperbolic cylinder. In the grand canonical en-
semble, the first law of thermodynamics reads

dΩ = −SdT −Ndµ , (24)

where Ω is the grand potential and N = VHd−1Rd−1ρ is
the total charge. From the first law the following ther-
modynamic relation can be obtained

∂µS = −∂µ∂TΩ = −∂T∂µΩ = ∂TN . (25)

Writing N in terms of the magnetic response kn(µ), and
using that ∂T = − T0

T 2 ∂n, we have

∂µS = −T0VHd−1

2πT 2
∂n

(

kn(µ)

n

)

. (26)

Expanding the derivatives, evaluating for n = 1 (T = T0)
and µ = 0 and using Eqs. (22), it immediately follows
that the first derivative term vanishes, i.e.,

∂µSEE

∣

∣

µ=0
= 0 . (27)

Taking a second derivative with respect to µ in Eq. (26),
we have

∂2
µS = −T0VHd−1

2πT 2
∂µ∂n

(

kn(µ)

n

)

. (28)

Evaluating again for n = 1 (T = T0) and µ = 0, we have

∂2
µSEE

∣

∣

µ=0
= RVHd−1 [∂µkn − ∂µ∂nkn]

∣

∣

∣

n=1,µ=0
. (29)

Using then Eq. (22), we can rewrite this as

∂2
µSEE

∣

∣

µ=0
= VHd−1

16(d− 2)R2πd+1

dΓ(d+ 1)
[ĉ+ dê] , (30)

which, via Eq. (23) reduces to Eq. (3). This therefore
completes the proof that such relation is universally valid
for arbitrary CFTs.
Final comments. Our formula (3) holds for general

CFTs in d ≥ 3. In d = 2, there are various reasons to
expect a different situation. On the one hand, observe
that the coefficient a2 is not even defined in that case.
Similarly, from Eq. (8) it is clear that CJ for our holo-
graphic calculations is divergent for d = 2 and therefore
meaningless. The free-field results reported in [26] also
suggest a different structure in that case, including pos-
sible linear terms in µ or jumps in Sn(µ) as n and µ
vary. It would be interesting to investigate these features
further —natural candidates would be three-dimensional
holographic EQGs [77].
On a different front, it would also be interesting to red-

erive Eq. (3) using the techniques developed in [78]. In
the case of a small perturbation by a relevant operator
O, the leading correction to the EE across a sphere was
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shown to be quadratic in the perturbation and propor-
tional to a double integral of 〈KOO〉 − 〈OO〉, where K
is the modular Hamiltonian of ρA —which for spheres
involves an integral of the stress tensor. In the present
context, it would be natural to relate O to the charge op-
erator, which would bring about integrals of 〈TJJ〉 and
〈JJ〉, precisely as expected from Eq. (3).

In [79], a somewhat similar universal relation for
charged Rényi entropies —involving the uncharged re-
sult plus an extra term— was obtained in the case of
discrete symmetry groups. It would be nice to study the
connection between Eq. (3) and the approach developed
in that paper and [80] in the case of continuous groups.

A particularly interesting application of our formula
is to the case of supersymmetric (S) CFTs, which come
with a global R-symmetry group. For instance, for d = 4,
N = 1 SCFTs one has a U(1)R current with [43, 81, 82]

C
N=1,U(1)R
J =

4c

π4
, a

N=1,U(1)R
2 = 3

(

1− a

c

)

, (31)

and therefore, our formula (3) yields the prediction

S
N=1,U(1)R
EE = ν3

[

a+
2

3

(

c− a

3

)

(µR)2 + . . .

]

, (32)

where we used a⋆ = a and c is the other trace-anomaly
coefficient. Similarly, for N = 2 SCFTs, the R-symmetry
group is U(1)R× SU(2)R. Using the corresponding values

of CJ and a2 [83, 84], one finds[85]

S
N=2,U(1)R
EE = ν3

[

a+ 2
(

c− a

3

)

(µR)2 + . . .
]

,

S
N=2, SU(2)R
EE = ν3

[

a+
1

6
(2c− a) (µR)2 + . . .

]

.
(33)

It would be interesting to verify these predictions using
alternative methods.
Finally, it is natural to wonder what additional rela-

tions connecting quantum information measures and uni-
versal CFT quantities may still remain to be discovered.
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Appendices

Formulas and conventions for the 〈TJJ〉 three-point function

The flat-space three-point function 〈TJJ〉 for a general CFT is given by [42, 86]

〈Tab(x1)Jc(x2)Jd(x3)〉 =
tabef (X23)I

e
c (x21)I

f
d (x31)

|x12|d|x13|d|x23|d−2
. (34)

Here, Iab(x) is the same tensorial structure that appears in the definition of the current correlator, i.e.,

Iab ≡ δab − 2
xaxb

|x|2 , (35)

while tabcd(X23) is given by

tabcd(X
a) ≡ âh

(1)
ab (X̂

a)δcd + b̂h
(1)
ab (X̂

a)h
(1)
cd (X̂

a) + ĉh
(2)
abcd(X̂

a) + êh
(3)
abcd(X̂

a) ,

h
(1)
ab (X̂

a) ≡ X̂aX̂b −
1

d
δab ,

h
(2)
abcd(X̂

a) ≡ 4X̂(aδb)(dX̂c) −
4

d
X̂aX̂bδcd −

4

d
X̂cX̂dδab +

4

d2
δabδcd ,

h
(3)
abcd ≡ δacδbd + δadδbc −

2

d
δabδcd .

(36)
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Notice that indices are raised and lowered with the flat metric gab = δab. Also, we have defined

xa
12 ≡ xa

1 − xa
2 , Xa

12 ≡ xa
13

|x13|2
− xa

23

|x23|2
, X̂a

23 ≡ Xa
23

|X23|
, (37)

and similarly for the different permutations of the indices. The expression for tabcd(X
a) in (36) depends on four

parameters, â, b̂, ĉ and ê. However, imposing conservation of the currents it is found that they are related as [42]

dâ− 2b̂+ 2(d− 2)ĉ = 0 , b̂− d(d − 2)ê = 0 , (38)

so only two of them are independent, which we choose to be ĉ and ê. Studying Ward identities that relate three- and
two-point functions, it was found in Ref. [42] that these two constants are related to the central charge CJ defined in
Eq. (4) as

CJ =
2πd/2

Γ(d/2 + 1)
(ĉ+ ê) . (39)

Finally, these parameters can also be related to the coefficient a2 appearing in the energy flux Eq. (5), since this
quantity is proportional to a component of the correlator 〈TJJ〉. This has been done explicitly in [76], finding

a2 =
(d− 1)(d(d− 2)ê− ĉ)

(d− 2)(ĉ+ ê)
. (40)

Therefore, these relations allow us to express the three-point function 〈TJJ〉, which depends on two parameters,
entirely in terms of CJ and a2.

Free field calculations

In this appendix we summarize the calculation of the charged Rényi entropies for free scalars and fermions in d = 4
using heat-kernel techniques [87–90]. Our results here closely follow the derivation in [26], but we use the opportunity
to correct a few typos that appear in that paper, which include the final expression for Sn(µ) in the case of the free
fermion.
We will compute the charged Rényi entropy from the free energy on S

1 × H
3. In order to do that, we will use the

heat-kernel on such space. For product spaces this factorizes, so one has

KS1×H3 = KS1(θ1, θ2, t)KH3(~y1, ~y2, t) . (41)

Following [26], we consider a purely imaginary chemical potential for a global U(1) charge associated to phase rotations
of the fields. This is related to the real chemical potential we use throughout the rest of the paper by µE = 2πiRµ.
Incorporating the chemical potential in the heat-kernel amounts to requiring this to satisfy an appropriate boundary
condition. This reads

KS1(θ1 + 2πn, θ2, t) = (−)fe−inµEKS1(θ1, θ2, t) , (42)

where f = 1 for Dirac fermions and f = 0 for scalars. This is achieved by a modified disk heat-kernel of the form[91]

KS1(θ1, θ2, t) =
1√
4πt

∑

m∈Z

e−
(θ2−θ1+2πnm)2

4t e−im(nµE+πf) . (43)

Indeed, upon substitution of θ1 → θ1 + 2πn, the numerator of the exponent of the first term becomes (θ2 − θ1 +
2πn(m− 1))2. Since the sum is over all integers, one can shift the index m = m′ + 1 leaving the first term as it was
originally and producing an overall (−)fe−inµE from the second term. The equal-point heat kernel then reads

KS1(0, 0, t) =
1√
4πt

∑

m∈Z

e−
π
2
n
2
m

2

t e−im(nµE+πf) . (44)

On the other hand, the equal-point heat kernel for the hyperbolic space reads [26]

KH3(0, 0, t) =
(1 + 3f)

(4πt)3/2

[

1 +
tf

2

]

. (45)
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From these, the free energy on S
1
(2πn) ×H

3 can be computed as

Fn(µE) =
(−)f+1

2
VH3(2πn)

∫ ∞

0

dt

t
KS1(0, 0, t)KH3(0, 0, t) , (46)

= (−)f+1n(1 + 3f)

16π
VH3

∑

m∈Z

e−im(nµE+πf)

∫ ∞

0

dt

t3

[

1 +
tf

2

]

e−
π
2
n
2
m

2

t . (47)

The zero mode in the disk heat kernel gives rise to a divergence in the free energy [26], so we can ignore it and get
for the regulated free energy

Fn = (−)f+1 (1 + 3f)VH3

16π5n3

∑

m∈Z+

(−)mf cos[mnµE]
(2 + fm2n2π2)

m4
, (48)

= (−)f+1 (1 + 3f)VH3

16π5n3

[

fn2π2

2

(

Li2[(−)fe−inµE ] + Li2[(−)feinµE ]
)

+ Li4[(−)fe−inµE ] + Li4[(−)feinµE ]

]

. (49)

From this, the charged Rényi entropy can be obtained as

Sn(µE) =
1

n− 1
[Fn(µE)− nF1(µE)] . (50)

We find, respectively, for the Dirac fermion and the free scalar,

Sf
n(µE) =

VH3

48π

[

(1 + n)(7 + 37n2)

30n3
− (1 + n)µ2

E

nπ2

]

, Ss
n(µE) =

VH3

48π

[

(1 + n)(1 + n2)

15n3
− (1 + n)µ2

E

2nπ2
+

|µE|3
2π3

]

. (51)

The scalar formula agrees with the one presented in [26], but the fermion one is different. There seems to be a missing
1/(4π2) multiplying µ2

E in their Eq. (A.25). Finally, writing these in terms of ν3 and µ, we find the formulas presented
in the main text in Eq. (17), and from those the entanglement entropy expansions appearing in Eq. (18), which agree
with our general formula (3).

Charged Entanglement Entropy in EQGs

In this appendix we verify the universal relation Eq. (3) for an infinite set of higher-derivative theories of gravity
coupled to a (d−2) form, which are of arbitrary order in the curvature and in the gauge field strength. These theories
generalize those presented in Eq. (6) and were discovered and studied in [44]. Their action reads

IgenEQG =
1

16πG

∫

dd+1x
√

|g|
[

R+
d(d− 1)

L2
− 2H2

(d− 1)!
+

λL2X4

(d− 2)(d− 3)

+
2

(d− 1)!

∞
∑

s=0

∞
∑

m=1

L2(s+m−1)
(

α1,s,mL(a)
d,s,m + α2,s,mL(b)

d,s,m

)

]

,

(52)

where

X4 ≡+R2 − 4RµνR
µν +RµνρσR

µνρσ ,

L(a)
d,s,m ≡

(

sR
(

Rs−1
)µν

ρσ
+ κd,s,m (Rs)

µν
ρσ + 2s(s− 1)R µ

γ Rβ
ρ

(

Rs−2
)γν

βσ

)

(H2)µν
ρσ(H2)m−1 ,

L(b)
d,s,m ≡1

2

(

2sR α
µ δ β

ν + gd,s,mRαβ
µν

) (

Rs−1
)µν

ρσ
(H2)ρσαβ(H

2)m−1 ,

(53)

and where we used the notation

(

H2
)ρσ

µν ≡ Hρσα3α4...αd−1Hµνα3α4...αd−1
,
(

Rk
)µν

ρσ
≡ Rµν

α1β1R
α1β1

α2β2 . . . R
αk−1βk−1

ρσ , (54)

gd,s,m ≡ −d(s− 1)− 2(d− 1)m and κd,s,m ≡ (1− gd,s,m)gd,s,m/2.
Any members of the infinite family of theories captured by Eq. (52) are examples of Electromagnetic Quasitopological

Gravities [46]. By taking the only non-vanishing couplings to be α1,1,1 ≡ α1 and α2,1,1 ≡ α2 we recover the theories
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discussed in the main text, defined in Eq. (6). The theories (52) admit charged black-hole solutions with spherical,
planar or hyperbolic sections. Their computational treatment is fairly similar and, since here we are interested only
in solutions with hyperbolic sections, we restrict ourselves to this case. Such solutions are of the form

ds2 =
−L2

f∞R2

[

r2

L2
f − 1

]

dt2 +
dr2

[

r2

L2 f − 1
] + r2dΞ2 , H = QωHd−1 , (55)

where dΞ2 is the metric of the unit hyperbolic space H
d−1
1 , ωHd−1 the associated volume form and f∞ ≡ L2/L̃2

—where L̃ is the AdS(d+1) radius— can be written in terms of the Gauss-Bonnet coupling as 2λf∞ = 1 −
√
1− 4λ.

Remarkably, the above solutions are characterized by a single metric function f(r). The full non-linear equations of
(52) collapse to a single first-order differential equation for f(r) which can be integrated once, yielding the following
algebraic equation

0 = +
r2

L2
(1− f)− 16πR

√
f∞GM

(d− 1)LVHd−1rd−2
+

2Q2

(d− 2)(d− 1)r2(d−2)
+

λr2

L2
f2

+
∑

s,m

Q2mL2m(−2)sΓ(d)m−1

r2m(d−1)
f s−1

[

− 2s

d− 1
((1− 2m)(d− 1) + 1− ds)α1,s,m +

sα2,s,m

d− 1

−
((

1− 2m− 4s+ 4ms+
2s(ds− 1)

d− 1

)

α1,s,m +
(s− 1)α2,s,m

d− 1

)

r2

L2
f

]

.

(56)

Here M is an integration constant to be identified with the mass of the solution and
∑

s,m ≡ ∑∞
s=0

∑∞
m=1. In the

special case of the four-derivative theory (6), the equation of motion for f(r) is simplified to

0 =
r2

L2
(1 − f)− 16πR

√
f∞GM

(d− 1)LVHd−1rd−2
+

2Q2

(d− 2)(d− 1)r2(d−2)
+

λr2

L2
f2 − 2

Q2L2

r2(d−1)

[

4α1 +
α2

d− 1
− α1

r2

L2
f

]

. (57)

This is a quadratic equation for f which can be easily solved. Choosing the solution that reduces to the Einstein
gravity result in the limit λ → 0, we find

f(r) =
B(r)−

√

B2(r) − 4λC(r)
2λ

,

B(r) ≡ 1− 2L2Q2α1

r2(d−1)
, C(r) ≡ 1 +

2Q2L4

r2d

[

r2

L2(d− 1)(d− 2)
− 4α1 −

α2

(d− 1)

]

− 16πGMLR
√
f∞

(d− 1)V
H

d−1
1

rd
.

(58)

Let us now go back to the generic case of theories with any number of derivatives. Assume that gtt has some zero

along the positive real axis and let r+ = max
{

r ∈ R
+|f(r) = L2

r2

}

. Defining x ≡ r+/L and p ≡ QL2−dx1−d, and

evaluating (56) at r = r+, the mass M of the subsequent black hole solution can be seen to to be

[

16πR
√
f∞G

Ld−1VHd−1

]

M =+ (d− 1)xd−2
(

x2 − 1
)

+
2p2xd

(d− 2)
+ (d− 1)λxd−4

+
∑

s,m

(−2)sΓ(d)m−1p2m

x2s−d
(−(d− 1)(1− 2m− 2s)α1,s,m + α2,s,m) .

(59)

Similarly, taking into account that the temperature T is given by 4πR
√
f∞T =

r2+
L

f ′(r+)+
2L

r+
, we find the following

expression,

4πR
√

f∞T =
(d− 1)(2 + d(x2 − 1) + (d− 4)λx−2)− 2p2x2

(d− 1)(x− 2λx−1) +
∑

s,m(−2)sΓ(d)m−1p2ms(2s+ d(2m− 1)− 2m− 1)x3−2sα1,s,m

−
∑

s,m(−2)sΓ(d)m−1p2mx−2(s−1)(2s− 2m+ d(2m− 1))((2m+ 2s− 1)α1,s,m + (d− 1)−1α2,s,m)

x− 2λx−1 +
∑

s,m(−2)sΓ(d)m−1(d− 1)−1p2ms(2s+ d(2m− 1)− 2m− 1)x3−2sα1,s,m
.

(60)

The computation of the black hole entropy S is carried out using the Iyer-Wald formula [70, 71],

S = −2π

∫

Σ

dd−1x
√
h

∂L
∂Rµνρσ

ǫµνǫρσ , (61)
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where Σ is a cross section of the black hole horizon and ǫµν is its binormal. This can be straightforwardly applied to
the theories (52) and further evaluated for the black hole metric (55), yielding

S =
xd−1Ld−1VHd−1

4G

[

1− 2(d− 1)λ

(d− 3)x2
−
∑

s,m

(−2)sΓ(d)m−1sp2m

x2(s−1)
α1,s,m

]

. (62)

Interestingly, the entropy does not receive any corrections from the density L(b)
d,s,m but only from X4 and L(a)

d,s,m.
As explained in the main text, the chemical potential µ is defined as the asymptotic value of the electrostatic

potential At after demanding that At|r+ = 0. Such electrostatic potential is the only active component of the dual
vector field A in the case of magnetic configurations and is given by

F = 4πGℓ−1
∗ (d− 1)! ⋆

∂L
∂H

, F = dA , A = Atdt . (63)

It is illustrative to show the expression for At in the particular case of the four-derivative theory (6). We find

ℓ∗At(r) = − QL

R
√
f∞rd−2

[

1

d− 2
+ α1((−3d+ 1)f − rf ′)− α2f

]

+ ℓ∗At,∞ , (64)

where At,∞ represents the asymptotic value for At chosen so that At|r+ = 0, and hence µ = At,∞.
In the general case of theories with an arbitrary number of derivatives, it can be checked that the chemical potential

µ reads

[

Ld−2xd−1VHd−1ℓ∗
4πG

]

µ =
∂M

∂p
− T

∂S

∂p
. (65)

Taking into account this expression and the previous presented thermodynamic magnitudes, it is possible to show
that the first law of black hole thermodynamics holds, namely,

dM = TdS + µ dN , where N ≡ Q ·
[

VHd−1ℓ∗
4πG

]

(66)

is the total charge in the boundary theory.
Now, our goal is to compute the vacuum charged EE for the boundary theory across a spherical entangling surface

of radius R. Such entanglement entropy can be obtained from the thermal entropy of the same theory placed on the
hyperbolic cylinder S1 ×H

d−1
R at temperature T0 = 1/(2πR) [3, 26, 30]. Then, using the holographic dictionary, such

thermal entropy turns out to be just the Wald entropy of a black hole with hyperbolic horizon, i.e.,

SEE(µ) = S(T0, µ) . (67)

Consequently, for the derivation of the charged entanglement entropy, we need to evaluate the Wald entropy (62) at
temperature T = T0 and in terms of the chemical potential µ. Above, in Eq. (62) we wrote S = S(x, p), so we need to
find the inverse functions x = x(T0, µ) and p = p(T0, µ). We will carry out this procedure in a perturbative fashion in
µ and we will restrict ourselves to the leading-order corrections (so that it suffices to keep only the terms quadratic
in H). We find

x = x̂+ δx2(l∗µ)
2 +O(µ4) , p = δp1(l∗µ) +O(µ3) , x̂ =

1√
f∞

,

δp1 =
2f∞R

L
(

2
d−2 +

∑∞
s=0(−2f∞)s((d+ 2ds− 1)α1,s + α2,s

) ,

δx2 = − (δp1)
2(2 +

∑∞
s=0(−2)sf s

∞(2− 4s+ d(d− 3 + 2(d− 1)s+ 4s2)α1,s + (d− 2 + 2s)α2,s))

2(d− 1)2(f∞ − 2)
√
f∞

.

(68)

Plugging the (perturbative) expressions found above into Eq. (62), we find that the entanglement entropy to quadratic
order in µ reads

SEE =
L̃d−1VHd−1

4G

[

1− 2(d− 1)

d− 3
λf∞ +

(√
f∞R

L

)2
(l∗µ)

2

αeff

(

(d− 2)2

d− 1
+

(d− 2)2βeff

(d− 1)2αeff

)]

+O(µ4) , (69)
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where we have defined the parameters

αeff ≡ 1 +

∞
∑

s=0

(−2)s−1f s
∞(2 − d) ((d− 1 + 2ds)α1,s + α2,s) ,

βeff ≡
∞
∑

s=0

(−2f∞)s(d− 1)s ((2ds− 1)α1,s + α2,s) .

(70)

Our next goal will be trying to express the charged entanglement entropy (up to quadratic order in µ2) in terms
of the charges CJ and a2 of the CFT dual to the theories (52). On the one hand, if F denotes the dual field strength
of H , CJ is obtained by working out the effective gauge coupling of F 2 when we evaluate the action on a pure AdS
background [26]. Owing the fact that we will restrict ourselves to quadratic terms in µ, it is enough to keep in the

action (52) those terms up to quadratic order in H . If IF
2

dual denotes the dual theory to any theory containing terms

of up to second-order in H , then according to [44, 92, 93] IF
2

dual can be shown to be

IF
2

dual =

∫

dd+1x
√

|g|
16πG

[

R+
d(d− 1)

L2
+

λL2X4

(d− 2)(d− 3)
− (Q̃−1)µν

ρσFµνFρσ

]

, (71)

where

Q̃µν
ρσ ≡ 12

(d− 1)(d− 2)
Q[αβ

αβδ
µν]

ρσ ,

Qαβ
ρσ ≡ δαβρσ −

∞
∑

s=0

[

1

2

(

Rs−1
)µν

ρσ

(

2sR [α
µ δ β]

ν + gd,s,1R
αβ

µν

)

α2,s

+
(

sR
(

Rs−1
)αβ

ρσ
+ κd,s,1 (R

s)
αβ

ρσ + 2s(s− 1)
(

Rs−2
)µ[α

ν[ρ|
R β]

µ Rν
|σ]

)

α1,s

]

,

(72)

and where

(Q̃−1)µν
ρσQ̃ρσ

αβ = δµν
αβ , (73)

so that Q̃−1 is the inverse tensor of Q̃, as described in the previous equation, and δµν
ρσ = δ[µ

[ρδν]
σ]. We are also

defining α1,s,1 ≡ α1,s and α2,s,1 ≡ α2,s. Finding such inverse tensor is generically a rather challenging task, but it is
a more manageable one when we restrict ourselves to backgrounds with enough symmetry. In the case at hand, since
we are considering a pure AdS space with Rµν

ρσ = −2/L̃2δµνρσ, L̃ = L/
√
f∞, we have

Qµν
ρσ = Q̃µν

ρσ = αeffδ
µν

ρσ , (Q̃−1)µν
ρσ =

1

αeff
δµνρσ . (74)

Consequently, the coefficient of F 2 in (71) turns out to be 1/αeff . This implies that the net effect of the higher-order
terms is the renormalization of the gauge coupling constant, producing in turn the central charge

CEQG
J =

CEM
J

αeff
, CEM

J =
Γ(d)

Γ(d/2− 1)

ℓ2∗L̃
d−3

4πd/2+1G
, (75)

being CEM
J the Einstein-Maxwell central charge. On the other hand, the computation of a2 requires the knowledge

of the inverse tensor Q̃−1 on a shock-wave background —see [43, 44] for more details in this computation— given by
the metric

ds2 =
L̃2

u2

[

δ(y+)W(yi, u)
(

dy+
)2 − dy+dy− +

d−2
∑

j=1

(

dyj
)2

+ du2

]

, (76)

W(yi, u) =
W0u

d

(

u2 +
∑d−2

j=1 (y
j − yj0)

2
)d−1

, yj0 ∈ R . (77)

This shock-wave background satisfies that Rµν = −d/L̃2gµν and, being a Brinkmann spacetime, the square of its
Weyl tensor vanishes, i.e. WµνρσW

ρσαβ = 0. Taking into account this properties, it can be seen that

Q̃µν
ρσ = αeffδµν

ρσ − βeff

f∞(d− 1)(d− 2)
Wµν

ρσ , (Q̃−1)µν
ρσ =

1

αeff
δµν

ρσ +
βeff

f∞(d− 1)(d− 2)α2
eff

Wµν
ρσ , (78)
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where βeff is the parameter introduced in (70). We identify this result as formally equivalent to that of Eq. (4.46) of [44],
obtained in the context of the four-derivative theory (6), upon exchange of −(2(2d−1)(d−1)α1+2(d−1)α2) 7→ βeff/f∞.
Hence the coefficient a2 associated to (52) will be that of Eq. (9), after making the aforementioned substitution, namely,

aEQG
2 =

dβeff

(d− 2)αeff
. (79)

Therefore, taking into account Eqs. (75) and (79), we notice that the entanglement entropy can be rewritten as

SEE =
L̃d−1VHd−1

4G

[

1− 2(d− 1)

d− 3
λf∞

]

+
Γ(d/2− 1)πd/2+1VHd−1

Γ(d)
CEQG

J

(

(d− 2)2

d− 1
+

(d− 2)3aEQG
2

d(d− 1)2

)

(µR)2 +O(µ4) .

(80)
The regularized volume of the unit hyperbolic space is given by [3] VHd−1 = νd−1/(4π)Ω

d−1, where Ωd−1 is the volume
of the unit sphere S

d−1 and νd−1 is defined as in (2). We then arrive at our final result

SEE(µ)

νd−1
= a⋆GB +

πd

(d− 1)2Γ(d− 2)
CEQG

J

[

1 +
(d− 2)aEQG

2

d(d− 1)

]

(µR)2 +O(µ4) , (81)

where we have introduce the a⋆ charge of Gauss-Bonnet theory, presented in Eq. (16). Eq. (81) is then a realization
of Eq. (3) for our infinite family of theories and we fulfil the goal of the appendix.
As a final comment, one may wonder about the effect of including arbitrary pure-gravity quasitopological higher-

order terms [47–51, 57] into the action (52). Given the structure and derivation of Eq. (81), we expect such pure-gravity
terms to simply produce a renormalization of the constant f∞, while leaving Eq. (81) invariant.
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[56] P. Bueno, P. A. Cano, J. Moreno, and Á. Murcia, JHEP 11, 062 (2019), arXiv:1906.00987 [hep-th].
[57] P. Bueno, P. A. Cano, and R. A. Hennigar, Class. Quant. Grav. 37, 015002 (2020), arXiv:1909.07983 [hep-th].
[58] J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999), [Adv. Theor. Math. Phys.2,231(1998)],

arXiv:hep-th/9711200 [hep-th].
[59] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998), arXiv:hep-th/9802150 [hep-th].
[60] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B428, 105 (1998), arXiv:hep-th/9802109 [hep-th].
[61] A. Buchel, J. Escobedo, R. C. Myers, M. F. Paulos, A. Sinha, and M. Smolkin, JHEP 03, 111 (2010),

arXiv:0911.4257 [hep-th].
[62] R. C. Myers, M. F. Paulos, and A. Sinha, JHEP 08, 035 (2010), arXiv:1004.2055 [hep-th].
[63] M. Mir, R. A. Hennigar, J. Ahmed, and R. B. Mann, JHEP 08, 068 (2019), arXiv:1902.02005 [hep-th].
[64] X. O. Camanho and J. D. Edelstein, JHEP 06, 099 (2010), arXiv:0912.1944 [hep-th].
[65] P. Bueno and R. C. Myers, JHEP 08, 068 (2015), arXiv:1505.07842 [hep-th].
[66] P. Bueno, P. A. Cano, R. A. Hennigar, and R. B. Mann, Phys. Rev. Lett. 122, 071602 (2019), arXiv:1808.02052 [hep-th].
[67] M. Mezei, Phys. Rev. D91, 045038 (2015), arXiv:1411.7011 [hep-th].
[68] C.-S. Chu and R.-X. Miao, JHEP 12, 036 (2016), arXiv:1608.00328 [hep-th].
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