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(a) CERN, CH-1211 Geneva, Switzerland
(b) Instituto de F́ısica Corpuscular, Universitat de València - CSIC
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Abstract

We present a new numerical program, HTurbo, which provides fast and numerically
precise predictions for Higgs boson production cross sections. The present version of
the code implements the perturbative QCD expansion up to the next-to-next-to-leading
order also combined with the resummation of the large logarithmic corrections at small
transverse momenta up to next-to-next-to-leading logarithmic accuracy and it includes
the Higgs boson production through gluon fusion and decay in two photons with the
full dependence on the final-state kinematics. Arbitrary kinematical cuts can be applied
to the final states in order to obtain fiducial cross sections and associated kinematical
distributions. We present a benchmark comparison with the predictions obtained with
the numerical programs HRes and HNNLO programs for which HTurbo represents an
improved reimplementation.
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After the discovery of the Higgs boson [1, 2], a foremost goal of the physics program at the Large
Hadron Collider (LHC) has become the direct investigation of the electroweak symmetry breaking
mechanism. In particular, precision studies are a key tool for searches of possible deviations from
from Standard Model (SM) predictions in the Higgs sector.

In this paper we consider the production of the SM Higgs boson through gluon fusion and
its decay to γγ. The gluon fusion subprocess gg → H, through a heavy-quark loop, is the main
production mechanism of the SM Higgs boson at hadron colliders and its dynamics is driven by
strong interactions. It is thus essential to study the effect of QCD radiative corrections at higher
orders and to provide accurate theoretical predictions and for Higgs boson cross sections and
associated distributions.

The QCD radiative corrections to the total cross section have been computed up to next-to-
next-to-next-to-leading order (N3LO) in Refs. [3–7]. The NNLO parton-level calculations of H+jet
production have been computed in Refs. [8–10]. The combination of the resummation formalism of
logarithmically enhanced contribution at small qT in QCD with fixed-order perturbative results at
different levels of theoretical accuracy, have been obtained in [11–15] (see also references therein).

Theoretical predictions depend on several different parameters and on various inputs such as
parton density functions (PDFs), renormalization and factorization scales and SM parameters. In
order to obtain precise theoretical predictions with a reliable estimate of the associated uncertainties
it is thus extremely important to develop computing codes which allow for fast calculations with
small numerical uncertainties.

The HTurbo program, which is presented in this paper, aims at providing fast and numerically
precise predictions of the Higgs boson production cross sections for phenomenological applications
following the structure of the DYTurbo code [16] developed for Drell–Yan lepton pair production. The
enhancement in performance over previous numerical programs is mainly achieved by introducing
one- and multi-dimensional numerical integrations using quadrature rules based on interpolating
functions, by software profiling optimization and also by implementing the multi-threading option.

The HTurbo program provides higher-order QCD predictions for the cross section of Higgs boson
production and decay at fully differential level in the four momenta of the final states implementing
the qT resummation formalism developed in Refs. [17–20], and the qT subtraction method of
Ref. [21] in a completely independent way from the original numerical programs HqT [18, 22],
HNNLO [21] and HRes [13]. This novel implementation, other than an improvement in performances
and numerical precision, has the aim of facilitate the inclusion of N3LO corrections along the
lines of Ref. [23] and the fiducial perturbative power corrections within the qT subtraction method
exploiting the recoil procedure of Ref. [24] as performed in Ref. [25]. The present version of the
program includes the Higgs boson production through gluon fusion and its decay in a photon
pair, implementing the resummation of the logarithmically-enhanced QCD contributions in the
small-qT region of the Higgs boson at leading-logarithmic (LL), next-to-leading-logarithmic (NLL),
and NNLL accuracy, and including the corresponding finite-order contributions at next-to-leading
order (NLO) and NNLO both in the small- and large-qT region †. The fully-differential fixed-order
QCD calculation have been implemented up to next-to-next-to-leading order (NNLO). The H+jet
predictions at O(αS) and O(α2

S) have been reimplemented from the the MCFM program [26, 27],
as encoded in HRes and HNNLO. The HTurbo program is based on a modular C++ structure (with

†Sometimes in the literature this is referred respectively as NLL′ and NNLL′ accuracy.
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few Fortran functions interfaced) with multi-threading implemented with OpenMP and through
the Cuba library [28]. The parameters of the calculation can be set in a flexible way via input file
and/or command line options. The HTurbo program will be made publicly available.

We briefly summarize the relevant formulae which have been implemented in the HTurbo

program ‡. The fully-differential Higgs boson cross section, completely inclusive over the final-state
QCD radiation, is described by six kinematic variables corresponding to the momenta of the two
photons. Therefore we can expressed the cross-section as a function of the transverse momentum
qT, the rapidity y and the invariant mass m of the Higgs boson (or photon pair), and three angular
variables corresponding to the polar angle θ and azimuth φ of the photon decay in a given boson
rest frame and to the azimuth φH of the Higgs boson in the laboratory frame. Given the spin-0
nature of the SM Higgs boson the fully-differential cross section factorizes in two independent
factors for the Higgs boson production and decay subprocesses. We treat the Higgs boson within
the narrow-width approximation, ΓH/mH → 0 (ΓH is the Higgs boson total decay width), and
therefore we have m = mH . Moreover in (unpolarised) hadron collisions the initial-state hadrons,
i.e. the incoming beams, are to very good approximation azimuthally symmetric and therefore
the cross section does not depend on the absolute value of φH . Therefore in the following we will
consider the cross section averaged over φH at fixed values of the additional kinematical variables
of the final-state system.

The qT-resummed cross section for Higgs boson production can be written as

dσH
NnLL+NnLO = dσres

NnLL − dσasy

Nn−1LO
+ dσf.o.

Nn−1LO , (1)

with n = 1, 2, 3, . . . (in the following we do not explicitly consider the lowest order predictions at
LL accuracy: dσH

LL = dσres
LL). The term dσres in Eq. (1) is the resummed component, dσasy is the

asymptotic contribution (that is the fixed-order expansion of dσres), and dσf.o. is the finite-order
cross section integrated over final-state QCD radiation (which can be obtained from the H+jet
cross section). The resummed term dσres dominates at small qT (qT � m) while the finite-order
component dσf.o. correctly describe the large-qT region (qT ∼ m). In order to obtain an accurate
description of the region of intermediate qT a consistent matching between resummed and finite
component is essential.

The resummation of the logarithmic contributions has been carried out in the impact-parameter
space b (which is the Fourier-conjugate variable to qT) [29] in order to fulfill the constraint of
transverse-momentum conservation for multi-parton radiation. Moreover convolution with PDFs is
more conveniently expressed by considering double Mellin moments of the corresponding partonic
functions [19]. The resummed and asymptotic terms in Eq. (1) can thus be written as §:

dσres
NnLL = dσ̂H

LO ×HH
NnLO × exp{GNnLL} (2)

dσasy

Nn−1LO
= dσ̂H

LO × ΣH(qT/Q)Nn−1LO , (3)

where Q ∼ m denotes the so-called resummation scale [18], an auxiliary scale that is introduced in
dσres and, consistently, in dσasy whose variations can be used to estimate the uncertainty from not
yet calculated higher-order logarithmic corrections. The factor dσ̂H

LO is the Born level cross section,

‡The reader interested on the details of the qT-resummation and qT-subtraction formalisms is referred to the
original literature [17–21].

§For the sake of simplicity we use a symbolic notation where convolution with PDFs, the sum over different
initial-state partonic channels and the inverse Mellin and Fourier transformations are understood.
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the coefficient HH [30] is the (process dependent) hard-collinear function and the term exp(G) is
the gluon Sudakov form factor [31–33] which resums in an exponential form the large logarithmic
corrections in the impact-parameter space b. The function ΣH(qT/Q) can be obtained from the
fixed-order expansion of the term HH × exp{G}, and it embodies the singular behaviour of dσf.o.

in the limit qT → 0.

The Mellin moments of the hard-collinear function HH have been computed with the FORM [34]
packages summer [35] and harmpol [36], using the method of Ref. [37]. The Mellin space evolution
of PDFs and the Mellin moments of the splitting functions have been calculated with the package
QCD-PEGASUS [38].

The HTurbo program includes also fixed-order predictions (without the resummation of loga-
rithmically-enhanced contributions). Beyond the LO, the fixed-order cross section is computed
through the qT subtraction formalism [21] and is expressed as the sum of three terms as follows:

dσH
NnLO = HH

NnLO × dσH
LO +

[
dσH+jet

Nn−1LO
− dσCT

Nn−1LO

]
, (4)

where the term dσH+jet is the H+jet cross section, and the counter-term dσCT
Nn−1LO

is given by

dσCT
Nn−1LO = dσH

LO ×
∫ ∞
0

d2q′T ΣH(q′T/m)Nn−1LO . (5)

The singular behaviour of dσH+jet in the limit qT → 0, known from the qT resummation formalism,
is the same of the subtraction counter-term dσCT. Being the terms dσH+jet and dσCT in Eq. (4)
separately divergent at qT = 0 a technical parameter qcutT > 0 has to be introduced. For qT ≥ qTcut

the sum of the terms in the square bracket of Eq. (4) is IR finite (or, more precisely, integrable over
qT ) and the “exact” value of the cross section can be obtained evaluating the square bracket term in
Eq. (4) in the limit qTcut → 0. However for finite value of qcutT the cross section in Eq. (4) contains
perturbative power corrections ambiguities O((qcutT /M)p) [39–42], with p > 0 which are particularly
severe in the case of fiducial selection cuts which yield an acceptance that has a residual linear
dependence on qcutT [40, 43, 44]. A method to remove such linear fiducial power corrections (FPC)
within the qT subtraction formalism has been proposed in Refs. [25, 45].

An important feature of the resummation formalism of Ref. [18] is the so called unitarity
constraint which leads to the following relation:∫ ∞

0

dq2T dσres
NnLL+NnLO = HH

NnLO × dσ̂H
LO , (6)

which ensures that fixed-order results are exactly recovered upon integration over qT of the matched
cross section. A consequence of the unitarity constraint is the reduction of resummation effects
in the region of small impact parameter where it is clear that resummation cannot gives an
improvement over the accuracy of the fixed-order calculation. The contribution of unjustified
resummed contributions in the large-qT region can be further reduced or eliminated by introducing
a switching function w(qT,m) which multiplies the terms dσres

NnLL and dσasy

Nn−1LO
in Eq. (1) above

a given qT value suppressing the resummation effects in the large-qT region. However because
such switching violates the unitarity constraint of Eq. (6) it has to be included with some care.
Within HTurbo the effect of a Gaussian switching function w(qT,m) chosen following Ref. [24] can
be included.
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The perturbative form factor exp(G) is formally singular for transverse-momenta of the order of
the scale of the Landau pole of the QCD coupling (b−1 ∼ ΛQCD) is approached. This is the indication
of the breakdown of perturbation theory and of the onset of truly non-perturbative (NP) effects.
In this region a model for NP QCD effects, which has to include a regularization of the Landau
singularity is necessary. In the HTurbo program it has been explicitly implemented the so-called
Minimal Prescription [46–48] which regularizes the Landau singularity in resummed calculations
without introducing higher-twist power-suppressed contributions of the type O(ΛQCD/Q). As
alternative it can be chosen the freezing procedure [49, 50] known as the ‘b∗ prescription’, which is
implemented in HRes, consisting in the replacement

b2 → b2∗ = b2 b2lim/(b
2 + b2lim) (7)

in the form factor exp(G). The value of the parameter blim has to be set to be slightly smaller than
the Landau singularity b−1 ∼ ΛQCD. Power-suppressed contributions are expected to dominate
at very small transverse-momentum (qT ∼ ΛQCD) and have to be (properly) included taking
into account the delicate interplay with the leading-twist term in order to correctly describe
the experimental data in that region. We parametrize the NP QCD effects at low qT through
a non-perturbative form factor with different functional forms (the simplest one is a Gaussian
smearing factor exp{−gNP b2} which depends on the non perturbative parameter gNP ).

In the following we show some benchmark numerical results obtained with HTurbo compared
with corresponding results from HRes (up to NNLL+NNLO accuracy) and HNNLO (up to NNLO).
In particular we consider the cross section differential in the Higgs boson qT in both the full final
state diphoton phase space and in a given selected fiducial region. We also compare the time
performance of the codes in order to assess the performance improvement of HTurbo.

We consider Higgs boson cross sections in proton–proton collisions at
√
s = 13 TeV using the

NNPDF3.1 NNLO [51] set of parton density functions with αS(mZ) = 0.118. The computation
is performed by considering gg → H production, through a top-quark loop, in the large-Mtop

approximation. We use the same settings and input parameters in both the HTurbo and HRes

codes. In particular the value of the renormalization (µR), factorization (µF ) and resummation
(Q) scales have been chosen to be equal to the Higgs boson mass mH . We start to present our
benchmark results at inclusive level (i.e. integrating over the diphoton final state kinematics). In
Fig. 1 we consider the resummed part of the qT distribution (see Eq.( 2)) at NLL accuracy (left
panel) and at NNLL accuracy (right panel). The HTurbo results using quadrature integration (blue
dots) have been compared with the HRes results (green histograms). The lower panels show the
ratio between the results which are in agreement, within the numerical uncertainties of the codes,
at better than 1% level. In Fig. 2 we consider the asymptotic term of the cross section (see Eq.( 2))
at LO (left panel) and NLO (right panel). The asymptotic term diverges in the qT → 0 limit and it
becomes negative at large qT (we thus show the absolute value of the results in logarithmic scale).
The qT distribution of the asymptotic term has been computed in the range 1 GeV < qT < mH and
we obtained a sub-percent agreement between HTurbo (blue dots) using quadrature integration and
HRes (green histograms) results. Finally, in Fig. 3, we show the fixed-order term of the cross section
at LO (left panel) and NLO (right panel) as obtained with HTurbo and HNNLO. Since for this term
both HTurbo and HNNLO program implements the Vegas algorithm for numerical integration we
expect to observe similar results as is confirmed by the sub-percent agreement between HTurbo

(blue dots) and HNNLO (green histograms) results.

We then consider the case of fiducial cross sections. The fiducial phase space is defined by
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Figure 1: Comparison of full-photon phase space differential cross sections computed with HRes

and HTurbo at
√
s = 13 TeV. Resummed component of the transverse momentum distribution at

NLL (a) and NNLL (b) accuracy. The top panels show absolute cross sections, and the bottom
panels show ratios of HTurbo to HRes results.
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Figure 2: Comparison of full-photon phase space differential cross sections computed with HRes and
HTurbo at

√
s = 13 TeV. Absolute value of the asymptotic component of the transverse momentum

distribution at LO (a) and NLO (b) accuracy. The top panels show absolute cross sections, and
the bottom panels show ratios of HTurbo to HRes results.
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Figure 3: Comparison of full-photon phase space differential cross sections computed with HRes

and HTurbo at
√
s = 13 TeV. Fixed-order component of the transverse momentum distribution

at LO (a) and NLO (b) accuracy. The top panels show absolute cross sections, and the bottom
panels show ratios of HTurbo to HRes results.
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Figure 4: Comparison of full-photon phase space differential cross sections computed with HRes

and HTurbo at
√
s = 13 TeV. Resummed component of the transverse momentum distribution at

NLL (a) and NNLL (b) accuracy. The top panels show absolute cross sections, and the bottom
panels show ratios of HTurbo to HRes results.
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Figure 5: Comparison of fiducial differential cross sections computed with HRes and HTurbo at√
s = 13 TeV. The fiducial phase space is defined in the text. Absolute value of the asymptotic

component of the transverse momentum distribution at LO (a) and NLO (b) accuracy. The top
panels show absolute cross sections, and the bottom panels show ratios of HTurbo to HRes results.
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Figure 6: Comparison of fiducial differential cross sections computed with HRes and HTurbo at√
s = 13 TeV. The fiducial phase space is defined in the text. Fixed-order component of the

transverse momentum distribution at LO (a) and NLO (b) accuracy. The top panels show absolute
cross sections, and the bottom panels show ratios of HTurbo to HRes results.
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the photon transverse momenta pγT > 0.35mH and the photon pseudorapidities |ηγ| < 2.37. In
Figs. 4,5,6 we show the comparison between the resummed, asymptotic and fixed-order term as
presented above for the inclusive phase space. Also in this case we observe a sub-percent agreement
between HTurbo (blue dots), HRes and HNNLO (green histograms) results in the entire range of qT
considered.

We now briefly comment on various tests of time performance which has been performed
on a machine with 3.50 GHz Intel Xeon CPUs. The computation time requested to calculate
cross-section predictions for HTurbo and HRes is compared and used to assess the performance
improvement of HTurbo. The HRes calculation of the resummed term of the inclusive cross-section
at NLL accuracy with an uncertainty of 1% took around 0.5 hour, while the analogous HTurbo

calculation (without the multi-threading option) took around 20 seconds with an uncertainty of
0.001%, yielding an improvement of around two orders of magnitude in the time performance
together three orders of magnitude in numerical precision. Similar results were obtained including
fiducial cuts or considering the resummed term at NNLL accuracy. The LO or NLO calculation of
the asymptotic term took around 10 minutes with an uncertainty of 0.5-1% within HRes both at
inclusive level and with fiducial cuts, while the analogous HTurbo single-thread calculation with a
similar accuracy took from 3 seconds (inclusive case) up to 30 seconds, yielding an improvement of
one or two orders of magnitudes in the time performance. Finally, the fixed-order term of the cross
section represents the most time-consuming part of the calculation; the computation at NLO (LO)
with 1% (0.05%) accuracy required 30 min (1 min) both within HNNLO and HTurbo single-thread.
However we observe that the fixed-order part of the calculation could be computed by using fast
interpolation techniques [52, 53].

In conclusion, we have presented the HTurbo numerical program which provides fast and
numerical precise predictions for Higgs boson production through a new implementation of the
HqT, HRes and HNNLO codes following the improvements of the DYTurbo program [16] for Drell–Yan
lepton pair production. HTurbo implements the fully-differential fixed-order QCD calculation for
Higgs boson production (via gluon fusion) and decay also combined with the resummation of
the large logarithmic corrections at small transverse momenta. The present version of the code
reaches the next-to-next-to-leading order and next-to-next-to-leading logarithmic accuracy, and it
includes the decay of the Higgs boson in two photons. The enhancement in performance of HTurbo
with respect to the previous programs (which reaches two orders of magnitude for the resummed
term) is achieved by code optimization, by factorizing the cross section into production and decay
variables, and with the usage of numerical integration quadrature rules based on interpolating
functions. The resulting cross-section predictions are in agreement with the results of the original
programs. The great reduction of computing time for performing cross-sections calculation opens
new possibilities for Higgs boson physics and facilitate an efficient inclusion of N3LO corrections
along the lines of [23] .
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