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ABSTRACT

Circular particle accelerators at the energy frontier are based on superconducting magnets that are
extremely sensitive to beam losses as these might induce quenches, i.e. transitions to the normal-
conducting state. Furthermore, the energy stored in the circulating beam is so large that hardware
integrity is put in serious danger, and machine protection becomes essential for reaching the nominal
accelerator performance. In this challenging context, the beam halo becomes a potential source of
performance limitations and its dynamics needs to be understood in detail to assess whether it could
be an issue for the accelerator. In this paper, we discuss in detail a novel framework, based on a
diffusive approach, to model beam-halo dynamics. The functional form of the optimal estimate of
the perturbative series, as given by Nekhoroshev’s theorem, is used to provide the functional form
of the action diffusion coefficient. The goal is to propose an effective model for the beam-halo
dynamics and to devise an efficient experimental procedure to obtain an accurate measurement of
the diffusion coefficient.

1 Introduction

For the design and operation of modern circular particle accelerators, understanding the complex dynamics that char-
acterises the beam-halo formation and evolution is of paramount importance. Indeed, several phenomena leading to
particle loss and beam-quality degradation, crucial to determine the performance of a particle accelerator, are closely
linked to the evolution of the beam halo.

This is particularly true for present and future colliders based on superconducting magnets, such as LHC [1], its
upgrade HL–LHC [2], or the proposed FCC-hh [3]. Beam losses have a direct impact on the accelerator performance.

Beam-halo dynamics is governed by a multitude of effects, such as the unavoidable non-linear field errors of the
superconducting magnets, as well as ripples in the magnets’ power converters. In general, the beam dynamics of
hadron machines is accurately described in terms of a Hamiltonian from which the equations of motion can be derived.
If the system under consideration includes time-dependent effects, this turns into a radical change of the character of
the beam dynamics. For instance, the presence of modulation of the characteristic frequencies of the Hamiltonian
system implies the existence of extended weakly-chaotic layers in the phase space [4]. In these regions, it is possible
to model the orbit diffusion by a stochastic process. The situation worsens in case the periodic modulations themselves
resemble stochastic processes since the diffusive behaviour might involve the whole of the accessible phase space.
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Recently, a framework has been developed and proposed [5, 6], in which the long-term behaviour of the beam dy-
namics and particle losses in circular accelerators is described by means of a diffusive model. In this framework,
the evolution of the beam distribution can be described by a Fokker-Planck (FP) equation, in which the diffusion
coefficient represents the key quantity to describe the beam dynamics. The development of diffusive models of the
transverse dynamics of charged particles is not at all new for accelerator physics, and a rather broad literature exists
(see , e.g. Refs [7, 8, 9, 10, 11, 12, 13, 14] and references therein). However, the model that we developed has a
very peculiar feature, since we assume that the functional form of the diffusion coefficient is derived from the optimal
estimate of the perturbation series provided by the Nekhoroshev’s theorem [15, 16, 17].

The FP equation is suitable to study the evolution of a beam distribution in the presence of collimators, whose jaws
can be represented by the absorbing boundary conditions needed to solve the FP equation. Furthermore, so-called
collimators’ scans can be used to probe the beam-halo dynamics and, in particular, to reconstruct the behaviour of the
diffusion coefficient as a function of transverse amplitude [9, 13, 18, 19]. The method of collimator scans has been
intensively used at the LHC: it is based on small displacements of the jaws combined with the measurement of the
beam losses. The displacements can be either inward or outward, and depending on the direction, the local losses
feature different behaviour. The interpretation of the experimental data relies on a number of assumptions that are
closely linked to the form of the FP equation that is used to model the beam dynamics.

The special functional form of the diffusion coefficient that we have proposed requires the study of an appropriate
protocol to probe its properties by means of a beam test and hopefully, it shall bring a useful additional method to
describe the beam-halo dynamics. In this paper, the properties of the FP equation, in particular that of the outgoing
current at a boundary condition, are studied in detail by means of analytical models and even more by means of
numerical simulations. These analyses lead to the definition of an optimal protocol to extract the information about
the diffusion coefficient by performing a sequence of well-chosen variations of the position of the boundary condition.
An important part of our approach concentrates on the determination of the accuracy and robustness of the proposed
protocol.

The plan of the paper is the following. In Section 2, we present the theoretical framework that defines the Nekhoroshev-
like diffusive model, along with some considerations on the special form of the diffusion coefficient and its implications
on the dynamics. In Section 3, we analyse the main characteristics of a FP process, with focus on the outgoing current,
its behaviour in various conditions, such as in stationary or semi-stationary equilibrium. In Section 4, we discuss
how the outgoing currents obtained from outward or inward changes of the position of the boundary condition can be
described by our model, and how such currents can be split in two processes with distinct timescales. In Section 5, the
results presented in the previous sections are used to define a protocol to reconstruct the diffusion coefficient of the FP
process. The results of detailed numerical simulations are presented and discussed, quantifying the performance of the
proposed method. Finally, in Section 6 some conclusions are drawn, whereas detail about the numerical integration
of the FP process is discussed in Appendix A and some analytical computations are presented in the Appendixes B
and C.

2 The diffusion approach to non-linear dynamics

From Hamiltonian systems theory, we know that orbit diffusion in the phase space is related to the presence of extended
weakly-chaotic regions [20]. Otherwise, the presence of invariant Kolmogorov–Arnol’d–Moser tori ensures long-term
stability of the dynamics [21].

In circular particle accelerators, the transverse dynamics is affected by a multitude of unavoidable small random
perturbations [22], as well as slow modulation of magnet currents and transverse tune ripples that could lead to the
formation of these weakly-chaotic regions. Therefore, it is reasonable to assume that the particle motion is described
by models of the form

H(θ, I, t) = H0(I) + ξ(t)H1(θ, I) , (1)
where (I, θ) are action-angle variables and ξ(t) is a continuous stationary stochastic noise with zero mean that rep-
resents the effect of the chaotic dynamics. In the case of a small stochastic perturbation if the correlation time scale
of the noise ξ(t) is much shorter than the evolution time scale of the unperturbed system, it is possible to describe the
evolution of the action density function ρ(I, t) by the FP equation (see, e.g. Ref. [6] for the mathematical details and
Ref. [23] for an application to a stochastic symplectic map)

∂ρ(I, t)

∂t
=

1

2

∂

∂I
D(I)

∂

∂I
ρ(I, t) , (2)

where the diffusion coefficient reads

D(I) =

√〈
∂H1

∂θ

〉2

(3)
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and the operator 〈 〉 denotes the average value with respect to the angle variables. The stochastic perturbation in Eq. (1)
models the effect of a large weakly-chaotic region in the phase space and its amplitude should be related to the non-
integrability of the dynamics. We assume, therefore, that its amplitude is related to the functional form provided by the
optimal estimate of the perturbative series, according to the Nekhoroshev’s theorem [17, 16]. Therefore, the diffusion
coefficient has the form

D(I) ∝ exp

[
−2

(
I∗
I

) 1
2κ

]
, (4)

and the two parameters κ, I∗ in Eq. (4) have a physical meaning that stems from the Nekhoroshev’s theorem: the
exponent κ is related to the analytic structure of the perturbative series and the dimensionality of the system, and
is supposed to be independent from the intensity of the perturbation themselves [6]; I∗ is related to the asymptotic
character of the perturbative series.

In the following, we consider 1DoF Hamiltonian systems and we introduce an absorbing boundary condition at Ia,
i.e. the phase-space limit beyond which an initial condition is considered lost. Note that D(I) and ρ have dimensions
[I2t−1] and [I−1], respectively.

In Fig. 1 (top and centre), we consider the behaviour of D(I) from Eq. (4) for some values of κ. We can distinguish
three regions for this type of function: (i) a stable-core region for I � I∗, for which D(I) has values decreasing to
zero exponentially fast; (ii) a ramp-up region for I . I∗, whereD(I) starts to have non-negligible values and changes
from an exponential growth to an almost linear one; (iii) a region for I > I∗, where D(I) features an almost linear
growth (in logarithmic scale a saturation appears).

These three regions are more or less distinguishable depending on the value of κ. In Ref. [6], a value of κ around 0.33
was found as the best fit to the data measured during experimental studies at the LHC, and for this reason this value is
used in the numerical simulations presented in this study.

In Fig. 1 (bottom) we also display the result of the numerical integration of Eq. (2) for some values of κ, performed on
an initial distribution ρ0(I) = 1 with a Crank-Nicolson scheme [24] (see Appendix A for some detail on the integration
scheme used in our studies). It is also possible to observe in the shape of the distribution function a stable-core region,
corresponding to I/I∗ � 1, where D(I) starts having values very close to zero, a fast decrease region and, finally, a
saturation region, for I/I∗ = 1 and beyond, where ρ(I, t) assumes small values.

We treat our problem by using the 1D action variable I , representing the non-linear invariant of the system. We
consider the rescaled action variable I → I/σ2, and express the action in units of beam emittance, and this action will
therefore be a dimensionless quantity.

As for the initial condition for the beam distribution, we use the exponential distribution

ρ0(I) = exp(−I) , (5)

obtained by the transformation of the standard Gaussian distribution in physical variables. We also note that for future
analysis, it might be interesting to consider beam distributions made of combinations of exponential distributions, as
this could be used to simulate the behaviour of a beam with overpopulated tails.

3 Some considerations on FP processes

3.1 Outgoing current

In a generic diffusive process, the outgoing current at the absorbing boundary condition at Ia is defined as

Ja(t) = D(Ia)
∂ρ(I, t)

∂I

∣∣∣
(Ia,t)

. (6)

Equation (2) provides a means to obtain an analytical estimate of the current lost at the absorbing barrier (see Ap-
pendix B for the mathematical details). We first consider the change of variable

x(I) = −
∫ Ia

I

1

D1/2(I ′)
dI ′ , ρx(x, t) = ρ(I, t)

√
D(I) , xa = x(Ia) = 0 , (7)

we can consider the FP problem in the Smoluchowsky form

∂ρx
∂t

=
1

2

∂

∂x

dV (x)

dx
ρx +

1

2

∂2ρx
∂x2

where V (x) = − ln
(
D1/2(x)

)
. (8)
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Figure 1: Top and centre: plot of D(I) both in linear and logarithmic scale for three values of κ as a function of I/I∗.
Bottom: evolution of an uniform distribution (in grey) over the same time interval corresponding to (t = 10.0 [a. u.])
for three values of κ. (Simulations parameter: (I∗ = 1.0 [σ2])).

If we then consider the linearisation of the potential V (x) at x0 in the form −ν x, the following expression for the
outgoing current at xa = 0 for an initial distribution δ(x− x0) is obtained

Ja(x0, t) =
|x0|
t
√

2πt
exp

(
− (x0 + ν

2 t)
2

2t

)
, (9)

where ν, the linearisation of the potential (8) at x0 withD(I) given by Eq. (4) in the new coordinates, has the following
expression

ν =
1

2κ

1

I(x0)

(
I∗

I(x0)

) 1
2κ

exp

[
−
(

I∗
I(x0)

) 1
2κ

]
. (10)

We remark that Eq. (9) can be applied to a generic distribution ρ0 via a convolution

Ja(t) =

∫
Ja(x, t)ρx(x) dx . (11)

We also note that Eqs (9) and (10) provide inevitably an underestimate of the actual current lost [25], as the actual drift
term is a positive increasing function for I � I∗. However, we expect a good description of the local behaviour close
to the absorbing boundary condition, i.e. we obtain a good estimate of the current lost for initial distributions that are
close enough to the absorbing barrier at I = Ia.

3.2 Stationary system with a constant source

Let us consider a diffusive process within the region [I0, Ia], with an absorbing boundary condition ρ(Ia, t) = 0,
and ρ(I0, t) = 1 as a constant source over time. Regardless of the shape of the initial distribution ρ0, the system
will eventually relax to its equilibrium distribution ρeq(I), characterised by a constant outgoing current at Ia. Such a
distribution satisfies the following equation

∂

∂I
D(I)

∂

∂I
ρeq(I) = 0 , (12)

4
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whose solution is given by

ρeq(I) = α

∫ Ia

I

1

D(x)
dx , α =

1∫ Ia

I0

1

D(x)
dx

. (13)

The relaxed system features a constant outgoing current given by

Ja(t) = D(Ia)
∂ρeq

∂I

∣∣∣
(Ia,t)

= α , (14)

which is directly linked to the integral of the diffusion coefficient. For a Nekhoroshev-like diffusion coefficient, we
have the analytical expression

ρeq(I) = α

∫ Ia

I

exp

[
2

(
I∗
x

) 1
2κ

]
dx = 2α κx

[
−2

(
I∗
x

) 1
2κ

]2κ
Γ

(
−2κ,−2

(
I∗
x

) 1
2κ

)∣∣∣∣∣
Ia

I

, (15)

where Γ is the upper incomplete gamma function

Γ(s, x) =

∫ ∞
x

ts−1 e−t dt . (16)

When the system is out of equilibrium, one can obtain an analytical description of the outgoing current by using the
formula in Eq. (9), where, instead of performing a convolution between Eq. (9) and ρ0, we perform a convolution with
ρ0 − ρeq. The resulting outgoing current is added to the constant value α (the mathematical details of such procedures
are illustrated in Appendix C).

3.3 Semi-stationary regime for a real system

When working with a Nekhoroshev-like diffusion coefficient, its exponentially small values for I � I∗ generate a
stable-core region with extremely low diffusion rates (see Fig. 1). This observation can be shown by computing the
time of the maximum of the outgoing current for an initial distribution δ(I − I0). We consider the time derivative of
Eq. (9)

∂Ja(x0, t)

∂t
=

√
2x0 [12t+ (νt− 2x0) (νt+ 2x0)]

16
√
πt7

exp

(
− (x0 + ν

2 t)
2

2t

)
, (17)

which is zero for two values of t of opposite sign, and the positive one is

tmax(x0) =
2
(√

ν2x20 + 9− 3
)

ν2
. (18)

Considering the diffusion coefficient of Eq. (4) in the change of variable Eq. (7), we have that

x0(I0) =

∫ Ia

I0

exp

[(
I∗
I

) 1
2κ

]
dI . (19)

We observe that the modulus of the integral of Eq. (19) increases exponentially for I0 � I∗. Likewise, the value of ν,
given in Eq. (10), decreases exponentially in the same range of values of I0, which characterise a strong exponential
variation for tmax as a function of I0. This fact suggests that the contribution to the outgoing current at an absorbing
barrier at time t is mainly determined by the initial conditions near I0, with tmax(I0) ≈ t. Hence, given a generic initial
distribution ρ0(I) and an absorbing boundary condition at Ia, after a transient time t, the system relaxes to a condition
where the current Ja(t) is mainly determined by ρ0(I0), where I0 satisfies tmax(I0) ≈ t. Considering the exponential
increase of tmax(I), we have a core region that is slowly eroded by the diffusive process. Outside of this core region,
the system behaves as in a semi-stationary regime, characterised by a very slowly varying source at I0.

The evolution of this semi-stationary process can be approximated by modifying the α term in Eq. (13) as

ρeq(I, t) = α(t)

∫ Ia

I

1

D(x)
dx , (20)

5
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where here α(t) depends on the value of the initial distribution ρ0(I0), and can be estimated by

α(t) =
ρ0 (I0(t))∫ Ia

I0(t)

1

D(x)
dx

, (21)

in which I0(t) is obtained by inverting Eq. (19) to determine I0(x0), and Eq. (18) to obtain x0(tmax). By composing
the two functions, I0(t) is determined.

This behaviour can be observed in Fig. 2, where a Nekhoroshev-like diffusive process is simulated for a time long
enough to reach the semi-stationary regime. Here, we consider the distribution obtained after prolonging the simulation
of the system presented in Fig. 1 with κ = 0.33, and we compare it to ρeq from Eq. (13), using α obtained from
Eq. (21). A global offset between the two curves is observed, which clearly highlights the limits of the approximation.
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100
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ρ
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−0.75

−0.50
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0.00

0.25

0.50

0.75

1.00

ρ
e
q
−
ρ

ρ

Figure 2: Initial uniform distribution for the simulation shown in Fig. 1 after numerical integration at t = 1000 [a. u.],
compared to the estimate of ρeq from Eq. (13), with α(t) computed with Eq. (21). (Simulations parameters: (I∗ =
1.0 [σ2], κ = 0.33)).

4 Reconstruction of the diffusion coefficient of a FP process

We consider now the problem of modelling the variation of the outgoing current after a change of the position Ia of the
absorbing boundary condition, under the hypothesis that the movement is fast enough to be considered instantaneous
and the movement is performed over a short distance while the system is in the semi-stationary regime described in
the previous section. The ultimate goal consists in defining a method for probing the information about the shape
of the diffusion coefficient D(I) contained in the outgoing current measured after the instantaneous movement of
the boundary condition. This, in view of reconstructing the characteristics of the FP process under analysis, which
corresponds to evaluating the values of the two parameters I∗ and κ defining D(I).

We define two types of outgoing current, namely global current, i.e. the outgoing current observed from a slow core
erosion process while keeping the absorbing boundary condition fixed, and recovery current, i.e. the current observed
after the absorbing boundary condition is instantaneously moved and the system relaxes to a new semi-stationary
regime.

We start by modelling the shape of the recovery current for a stationary system with a fixed source, both for inward
and outward movements of the absorbing boundary. We recall that this mimics what is done experimentally when
attempting to measure the diffusion equation by performing scans of the position of some collimators jaws [18, 19].
Afterwards, we try to adapt the models to a system in semi-stationary regime, characterised by a source evolving with
time.

6
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4.1 Moving the absorbing boundary condition inwards

Let us consider a system in equilibrium with a constant source ρ(I0, t) = 1, and an absorbing boundary condition
ρ(Ia, t) = 0, and assume that the boundary condition is instantaneously moved inwards to ρ(I ′a, t) = 0, with I0 <
I ′a < Ia. After this change, the equilibrium distribution varies and the new equilibrium distribution is given by

ρ′eq(I) = β

∫ I′a

I

1

D(x)
dx , (22)

where β is a constant such that ρ′eq(I0) = 1, and when compared with the constant α from Eq. (13), we have that
α < β. The graphs of ρeq and ρ′eq are shown in Fig. 3 (top).

To apply the analytical formulae presented in the previous section, we need to compute the difference distribution
ρ∗(I). Assuming that the original system starts from the equilibrium distribution in Eq. (13), we obtain

ρ∗(I) = ρeq(I)− ρ′eq(I) = α

∫ Ia

I

1

D(x)
dx− β

∫ I′a

I

1

D(x)
dx

= α

(∫ I′a

I

1

D(x)
dx+

∫ Ia

I′a

1

D(x)
dx

)
− β

∫ I′a

I

1

D(x)
dx

= α

∫ Ia

I′a

1

D(x)
dx − (β − α)

∫ I′a

I

1

D(x)
dx

= ρ∗app − (β − α)

∫ I′a

I

1

D(x)
dx . (23)

The shape of ρ∗(I) is shown in Fig. 3 (bottom). This function, restricted to the interval I ∈ [I0, I
′
a], is monotonously

increasing, with the maximum in I ′a. Given the Nekhoroshev-like form of the diffusion coefficient, the decrease to
zero when I → I0 is exponentially fast, while in the region close to I ′a, the function remains almost constant to the
value ρ∗app that can be used as the lowest-order approximation of ρ∗(I).
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I/I∗

0.000

0.001

0.002

0.003

ρ
(I

)

ρ∗ ρ∗app

ρ∗app − ρ∗
ρ∗ −0.4

−0.2
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ρ
∗ a
p
p
−
ρ
∗

ρ
∗

Figure 3: Top: Equilibrium distribution for Ia/I∗ = 1.0 compared with the equilibrium distribution for I ′a/I∗ =
0.95. Bottom: Difference between the two equilibrium distributions. (Simulations parameters: I∗ = 1.0 [σ2], κ =
0.33, I0/I∗ = 0.4).
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In Fig. 4, we compare the simulated current with its analytical estimate, obtained by computing the convolution with
the distribution ρ∗(I) of Eq. (23), which are in very good agreement. In the same figure, the analytical approximation
based on the convolution with ρ∗app is shown, and even in this case the agreement is very good.
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Figure 4: Comparison between the current generated by the inward displacement of the absorbing boundary condition
shown in Fig. 3, its analytical estimate based on ρ∗(I), and the analytical estimate based on ρ∗app.

4.2 Moving the absorbing boundary condition outwards

Let us now consider a system in equilibrium with a constant source ρ(I0, t) = 1, and an absorbing boundary condition
ρ(Ia, t) = 0, and assume that this boundary condition is instantaneously moved outwards to ρ(I ′′a , t) = 0, with
I0 < Ia < I ′′a . The new equilibrium distribution is given by

ρ′′eq(I) = γ

∫ I′′a

I

1

D(x)
dx , (24)

where γ is a constant such that ρ′′eq(I0) = 1, and when compared with the constant α from Eq. (13), we have that
γ < α. The graphs of ρeq(I) and ρ′′eq(I) are shown in Fig. 5 (top).

To define properly the difference distribution in the new interval [I0, I
′′
a ], we need to extend the definition of the

equilibrium distribution ρeq(I), namely

ρeq(I) =


α

∫ Ia

I

1

D(x)
dx if I ≤ Ia

0 if I > Ia ,

(25)

which leads to the following expression for the difference distribution

ρ∗(I) =


−γ
∫ I′′a

Ia

1

D(x)
dx+ (α− γ)

∫ Ia

I

1

D(x)
dx if I ≤ Ia

−γ
∫ I′′a

I

1

D(x)
dx if I > Ia ,

(26)

which is a negative distribution, with a minimum at Ia and with ρ∗(I0) = ρ∗(I ′′a ) = 0.

A plot of ρ∗(I) is shown in Fig. 5 (bottom), and we remark that this distribution leads to a negative outgoing current
that needs to be combined with the stationary current from the equilibrium process for obtaining the actual outgoing
current.

8
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While in the interval [I0, Ia] a constant approximated distribution function can be a reasonable assumption, in the
interval [Ia, I

′′
a ] a different approximation is needed. Under the assumption that the outward step I ′′a − Ia is small, a

linear approximation from ρ∗(Ia) to ρ∗(I ′′a ) can be considered, namely

ρ∗app(I) =


−γ
∫ I′′a

Ia

1

D(x)
dx if I ≤ Ia

−γ
(
I ′′a − I
I ′′a − Ia

)∫ I′′a

Ia

1

D(x)
dx if I > Ia .

(27)
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Figure 5: Top: Equilibrium distribution for Ia/I∗ = 1.0 compared with the equilibrium distribution for I ′′a /I∗ = 1.05.
Bottom: Difference between the two distributions. (Simulations parameters: I∗ = 1.0 [σ2], κ = 0.33, I0/I∗ = 0.4).

In Fig. 6, we compare the simulated current with its analytical estimate, obtained by computing the convolution with
the distribution ρ∗(I) of Eq. (26), which are in very good agreement. In the same figure, the analytical approximation
based on the convolution with ρ∗app is shown, and even in this case the agreement is very good.

4.3 Moving the absorbing boundary condition in a semi-stationary system

In Section 3.3 we have seen how it is possible to describe a diffusive process, after a transient time, as a semi-stationary
process in which a stable-core is being slowly eroded over an exponentially-long time, with an approximated timescale
given by Eq. (19). If the position of the absorbing boundary condition is changed when the system is in this semi-
stationary state, and the new position is close to the original one, so that it is characterised by a timescale of the same
order of magnitude, the stationary part of the system, i.e. the relaxed part outside of the stable-core, will relax to a new
configuration in a time that is short compared to the time scale of the stable-core erosion.

Being the timescale of the recovery-current process orders of magnitude shorter than the evolution of the global current,
the variation of the shape of the core is so slow that it can be neglected. Hence, one can treat this situation as a source
at a fixed position with a slow-varying intensity α(t).

4.3.1 Normalising a recovery current

Thanks to the previous assumptions, one can define a normalisation procedure to be applied to the recovery current to
make it independent of the characteristics of the global current. We are interested in reducing the problem to the ideal
case of a constant source at I0 and a constant unitary outgoing current at the absorbing boundary condition Ia, instead
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Figure 6: Comparison between the current generated by the outward displacement of the absorbing boundary condition
shown in Fig. 5, its analytical estimate based on ρ∗(I), and the analytical estimate based on the approximation ρ∗app.

of a system with a slow-varying global current α(t). This approach is tested by simulating the same Nekhoroshev-
like FP system twice: firstly, by keeping the absorbing boundary fixed; secondly, by executing some instantaneous
changes of the absorbing boundary position. With this approach, we gather information on the value of the semi-
stationary current α(t), thus enabling the transformation of the process with a moving boundary to a system with a
fixed source.

We define the normalised recovery current as the current obtained in the measurement with the moving absorbing
barrier divided by the current α(t), obtained in the measurement with fixed boundary. The normalised recovery
current has a unitary value when the absorbing boundary condition is not changed, and has normalised maximum and
minimum, respectively, for the inward and outward movements of the absorbing boundary condition. The behaviour
of the normalised recovery current can be related to the ideal stationary systems described above, for which analytical
approximations are known.

In Fig. 7, an example of such a procedure is displayed (centre) together with the evolution of the outgoing current
(top) and the corresponding variation of the position of the boundary condition (bottom). It is worth mentioning that
for every change of Ia the value of α(t) changes according to Eq. (21), although for small variations of the absorbing
boundary condition, a Taylor expansion can be applied.

4.3.2 Normalising a recovery current without knowledge of the global current

Whenever it is not possible to repeat two complete measurements on the same process, i.e. one with and one without
changes of the boundary condition position, the normalisation procedure defined previously needs to be adapted.

Ideally, the best strategy consists in waiting long enough after each change of the position of the absorbing boundary
to reach an equilibrium and to accomplish the recovery process so that the outgoing current measured before the
change of boundary position and after the long wait is a pure global current. This would approximately correspond
to a complete relaxation of the difference distribution resulting from the boundary movement. Hence, in this way, the
outgoing current can be used for reconstructing the shape of the global current and for the normalisation procedure.

However, some extra hurdles should be considered: since we do not have a prior knowledge of the value of D(I), we
do not know the timescales of the recovery currents or those of the core-eroding process. Moreover, even though a
good fraction of the recover process is achieved very quickly, a full recover, corresponding to a full relaxation of the
difference distribution ρ∗, might take an exponentially-long amount of time, possibly beyond computing capabilities.
Hence, it might not be possible to perform such a long measurement in a particle accelerator. Therefore, it is necessary
to define a protocol that enables quantitative criteria to establish whether or not an assumed recovery time is long
enough to ensure a meaningful reconstruction of the behaviour of the FP process, possibly including an estimate of
the uncertainty in the reconstruction of the global current.
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Figure 7: Top: Evolution of the outgoing current for three diffusive processes with different boundary conditions.
Middle: Evolution of the normalised outgoing current. Bottom: Changes to the absorbing boundary condition in the
three scenarios. (Simulations parameters: I∗ = 1.0 [σ2], κ = 0.33).

A possible solution, compatible with these constraints, consists in the combination of three movements of the boundary
condition, where, for each value of the action to be probed, an outward-inward-outward sequence of movements is
performed. These three steps must be performed with a fixed movement size ∆I and with a fixed relaxation time ∆t
between a boundary condition movement and the next one. The optimal values for ∆I and ∆t are discussed in the
next section. A visualisation of this protocol is provided in Fig. 8 (bottom), where the three-step boundary condition
change is highlighted and repeated three times, and the corresponding evolution of the outgoing current is given (top),
as computed from numerical simulations. As a comparison, the situation corresponding to the constant position of the
boundary condition is also shown.

We remark that variants of the proposed three-step movement are indeed possible, and that this proposal is also
motivated by the wish not to introduce unnecessary complications. It is also important stressing that the assumption
of performing small and equal movements of the absorbing barrier position for the three steps implies that also ∆t
should be the same for the steps, as the relaxation time should be approximately the same for all steps.

This three-step sequence of absorbing-barrier changes is performed at different values of the global current, and this
basic sequence can be repeated by performing it at different action values. The resulting sequence of alternating
recovery currents provides an approximation of the evolution of the global current with a sequence of upper- and
lower-bound values at different times, which can be interpolated and used for the construction of a global current
estimate. These bounds provide a degree of uncertainty directly linked to the chosen value ∆t, as the longer is ∆t the
lower is the degree of uncertainty in the reconstruction of the global current. A more detailed discussion on a possible
quantitative definition of the optimal choice of the relaxation timescale ∆t, together with the effects of using shorter
relaxation times, is discussed in the next section.

To reconstruct the global current, an upper- and lower-bound estimate are derived by considering the last values of
the inward and outward recovery currents, respectively. Two extra points are added to the upper- and lower-bound
estimate, with the goal of covering the maximum time span for reconstructing the global current: the last measured
global current value before the first boundary movement is added to both estimates; the last value of the last recovery
current measured, which, being an outward recovery current, was already part of the lower-bound estimate, is added

11
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Figure 8: Example of the proposed three-step protocol with a direct comparison between the condition with and
without the variations in the position of the absorbing boundary condition. In this figure, the protocol is executed
three times. The top plot shows the evolution of the outgoing current, while the bottom one shows the corresponding
evolution of the position of the absorbing boundary condition. Note how the repetition of the three-step protocol
moves progressively the absorbing boundary outwards. (Simulations parameters: I∗ = 1.0 [σ2], κ = 0.33).

also to the upper-bound estimate. This explains why in Fig. 9 (centre) the estimates coincide at the beginning and
end of the interpolation interval. The two sets of upper-bound and lower-bound points are each interpolated with an
univariate cubic spline and the average function of these two interpolating functions is taken as the estimate of the
global current.

We remark that the univariate cubic spline is taken with a number of knots so that the second derivative does not
change in sign. This ensures that the resulting global current estimate fulfils the expected features of the actual global
current. In particular, it avoids local oscillations that might be generated by a simple interpolation of the upper-bound
and lower-bound points. The result of such an approach is shown in Fig. 9 where a fraction of the data presented
in Fig. 8 is used for reconstructing the global current, and a good overall agreement with the actual global current is
clearly visible.

4.4 Reconstructing D(I) from the normalised recovery currents

After performing the proposed reconstruction protocol, a series of normalised recovery currents, obtained for different
positions of the boundary condition, are available. All these curves are then used to reconstruct the shape of D(I) via
a fit procedure.

Thanks to the normalisation procedure, every normalised recovery current can be considered as an individual and
independent relaxation process, as in a system in equilibrium with a fixed source. Therefore, we can consider as
expected current the convolution of the analytical current, presented in Eq. (9), with one of our approximated difference
distribution ρ∗. From a normalised recovery current obtained from an inward movement, we expect a relaxation
curve characterised by an equivalent process with an initial distribution given by Eq. (23), where the value of ρ∗app is
computed considering α = 1, due to the normalisation performed, the integral being computed over the appropriate
action interval. Likewise, for a recovery current from an outward movement, we expect a curve characterised by an
equivalent process with an initial distribution given by Eq. (27), where we consider γ = 1, due to the normalisation
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Figure 9: Example of the reconstruction process of the global current applied to a fraction of the data shown in Fig. 8.
Top: Outgoing current from the process with constant boundary (dark blue) and with varying boundary conditions
(light blue), along with the three components of the interpolation process. Middle: Relative difference, between the
lower, average, or upper estimate of the global current and the true global current, of the interpolation procedure.
Bottom: Comparison between the actual recovery current and the reconstructed one.

performed, the integral being computed over the appropriate action interval. Assuming a Nekhoroshev-like form for
D(I), the goal is to determine the values of the two parameters I∗ and κ, which is obtained by a standard non-linear
least squares algorithm applied to the currents obtained during the execution of the proposed protocol.

5 Numerical results

To test the validity of the proposed procedure and to obtain a complete overview of its performance and limitations
in the reconstruction of D(I), several numerical simulations of diffusive processes with a Nekhoroshev-like diffusion
coefficient have been performed by using the protocol described in Section 4. Particular emphasis is given to establish-
ing the reliability of the proposed procedure as a function of the values of ∆I and ∆t used in the protocol of variation
of the position of the boundary conditions.

5.1 Simulation parameters

As an initial condition, we consider the distribution in Eq (5), and we remark that all action variables are taken in units
of sigma. We then consider a Nekhoroshev-like diffusive system characterised by the parameters obtained from the
studies reported in Ref. [6], namely I∗ = 20.0 [σ2], κ = 0.33. Such a system, as it can be seen from Figs. 1 and 2, is
compatible with the semi-stationary regime and hence to the application of the proposed procedure.

Different values of the starting position Ia/I∗ of the absorbing boundary condition have been considered. Even though
most of our assumptions are valid for the Ia/I∗ < 1 regime, we consider also starting positions near I∗ and beyond
I∗, i.e. in the saturation region of D(I), to evaluate how robust the method is in non-ideal conditions.

For each configuration, after an initial time delay when a semi-stationary regime is reached, ten repetitions of the
three-step protocol (outward-inward-outward), displayed in Fig. 8, have been performed. Several values of ∆I , i.e.
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the action change of the boundary condition position, have been used to assess the presence of an optimal value for the
reconstruction procedure. We remark that at the end of a simulation, the position of the absorbing boundary condition
has moved from Ia/I∗ to (Ia + 10∆I)/I∗.

Several values of the relaxation time ∆t have been considered to assess the reconstruction performance under different
levels of equilibrium. We remark that an empirical relaxation time has been defined as the time for which a normalised
recovery current is expected to recover the 99.9% of the value of the original global current. Such an ideal time is
computed using the full knowledge of D(I), using our analytic current estimate Eq. (9), and considering an outward
movement of the absorbing boundary condition of size ∆I from the initial position of the absorbing boundary. It is
stressed that, in general, we should assume that such relaxation time is not known when reconstructing the value of
the diffusion coefficient. It is also worth mentioning that a criterion based on a complete 100% recover of the global
current cannot be used in practice, as this would require exponentially-long simulation times, needed to reach the
relaxation of the inner part of the distribution, with negligible differences with respect to the 99.9% case. Different
fractions of this ideal time have been used when performing our procedure, and we evaluate how times shorter than
the ideal relaxation time impact the quality of our final fit, as the system is still in a non-equilibrium regime when the
next absorbing boundary movement occurs.

When working with the datasets generated by the various numerical simulations, a post-processing step on the norm-
alised recovery currents is performed before executing the final fit procedure for reconstructing D(I). It consists in
selecting a fraction of the data representing the normalised recovery currents, i.e. only the normalised recovery current
data up to a given percentage of the full recovery. For example, if we decide to filter out the normalised data beyond
the 90% recovery, it means that we discard values that are lower than 1.1 for inward normalised recovery currents
and values that are higher than 0.9 for outward normalised recovering currents. We recall that, in the context of a
normalised recovery current, a full recovery implies a value of 1.0 as normalised recovery current.

This post-processing step is displayed in Fig. 10, where two different values of the fraction of the relaxation time
between boundary movements are used in the numerical simulations. In both simulations, the boundary movement
starts after an equal waiting time. In the left plot, the normalised recovery currents, reported already in Fig. 9, are
shown together with two different filtering levels. In the right plot, the same system is simulated using a shorter
fraction of the relaxation time, and the recovery currents are shown together with the same filtering levels presented
in the left plot. The much shorter time leads to only a partial recovery of the currents between boundary condition
changes. For these sets of normalised recovery currents, the filtering levels displayed lead to almost no data reduction.
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Figure 10: Left: normalised recovery current, shown already in Fig. 9, together with two filtering levels. The boundary
movements are performed after an initial evolution time t = 0.4 [a. u.], and the relaxation time ∆t between one
boundary movement and the next one is equal to ∆t = 0.58 [a. u.]. Right: the same system is simulated with the same
initial evolution time t = 0.4 [a. u.] and one order of magnitude shorter relaxation time ∆t = 0.058 [a. u.], the resulting
normalised recovery currents have not relaxed long enough to reach the 95% filtering level. When the selected filtering
level is not reached by the normalised recovery currents, the whole dataset is used for the fit reconstruction and no
parts are discarded.
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By selecting different levels of filtering data, it is possible to evaluate how this choice affects the accuracy of the D(I)
reconstruction. It should be noted that our analytical approximation of Eq. (9) performs best when describing the
evolution of a distribution near the absorbing boundary condition [25]. Furthermore, the recovery current features an
exponential-like decay that makes the analytical approximation less accurate over long time scales. For this reason,
probing the dependence of the reconstruction performance on the fraction of data selected is very relevant.

5.2 Analysis of the reconstruction performance

The numerical exploration of the FP process entails a scan over several simulation parameters, leading to a large
hyperspace of possible configurations. For this reason, we focus on the most ideal configurations, i.e. those that provide
the best reconstruction performance, and then show how the other parameters affect the reconstruction accuracy of I∗
and κ.

After each execution of the proposed three-step protocol described in Section 4 and shown in Fig. 8, we end up with
two outward and one inward recovery currents. In every configuration explored, we observe better reconstruction
results when considering only the recovery currents from the outward step. On the other hand, considering only the
inward recovery currents or all currents simultaneously, poorer performance and numerical instabilities are observed.
This is explained by the fact that when the position of the absorbing boundary is moved inwards, we are cutting
in a distribution that is not necessarily in the perfect equilibrium configuration defined in our approximations. On
the other hand, when we move the boundary condition outwards, we obtain a much more reliable observable of the
distribution that populates the new available action interval, when evolving towards the new equilibrium state. It is
possible to observe this behaviour in Fig. 11, where the relative error in the reconstruction of κ and I∗ is shown for
the three types of fit as a function of the fraction of the ideal relaxation time ∆t for two values of Ia/I∗, representing
the inner part of the stable-core region (left) and close to the change of regime of D(I) (right). In the inner region,
even small fractions of the relaxation time provide a good reconstruction of the fit parameters. Furthermore, the three
types of analysis, based on outward only, inward only, and inward and outward recovery currents provide results with
comparable accuracy, at least for longer fractions of the relaxation time.
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Figure 11: Fit results for I∗ and κ as a function of the relaxation time ∆t for two values of Ia/I∗, using different
subsets of the numerical data. Left: for Ia/I∗ = 0.4, a good reconstruction performance is observed even for short
fractions of the ideal relaxation time. A rather similar performance is observed for the three types of analysis, the one
based on the outward currents having the best performance. Right: for Ia/I∗ = 0.8, only the cases corresponding to
longer fractions of the relaxation time feature a good performance. Moreover, only the analysis based on the outward
currents is displayed, as the other two feature either failures or large errors in the fit. (Simulation parameters: initial
Ia/I∗ = 0.4, boundary step ∆I = 0.1σ2, 10 repetitions of the three-step procedure, data up to a maximum current
recovery of 90%).

15



A PREPRINT - 22ND FEBRUARY 2022

In the transition region, however, only longer fractions of the relaxation time provide a good reconstruction of the fit
parameters and the only applicable type of analysis is the one based on the outward recovery currents. The other two
analyses feature either failures or larger errors in the fit. Based on the observed behaviour, in the next plots we will
only display results from the reconstruction based on the outward recovery currents.

In Fig 12, the reconstruction error for the two fit parameters as a function of the starting position of the absorbing
boundary Ia/I∗ is shown. The performance is excellent for Ia/I∗ ≤ 1, whereas outside this region the reconstruction

0.34

0.36

0.38

0.40

k

True value

Outward currents only

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Ia / I∗

18

19

20

I ∗

0.0

0.1

0.2

R
el

at
iv

e
d

iff
er

en
ce

−0.10

−0.05

0.00

R
el

at
iv

e
d

iff
er

en
ce

Figure 12: Fit results for I∗ and κ as a function of the initial value of Ia/I∗. The reconstruction performance is
excellent for Ia/I∗ ≤ 1, while for larger values the relative error increases. (Simulation parameters: boundary step
∆I = 0.1σ2, relaxation time ∆t = 0.5, 10 repetitions of the three-step procedure, data up to a maximum current
recovery of 90%).

error increases. This behaviour is to be expected, as a recovery current carries mainly local information about D(I).
Hence, if only the region Ia/I∗ > 1 is sampled, the information about D(I) reflects only its quasi-linear regime (see
Fig. 1). Such incomplete information inevitably affects the performance of the final fit, as it prevents an accurate
reconstruction of the strongly non-linear part of the diffusion coefficient. However, this result suggests also that, after
having determined the fit parameters, one can verify whether the action interval explored was suitable for an accurate
reconstruction of the functional form of the diffusion coefficient.

The plots in Fig. 12 provide some insight on the dependence of the reconstruction performance as a function of a single
parameter while the others are kept fixed. In the following figures, however, the relative error of the reconstruction
procedure is shown as a function of two parameters. The colour code represents the relative difference between the
reconstructed (from the proposed protocol) and the true (used in the numerical simulations of the FP processes) values
of I∗ and κ that describe D(I). The scale is limited to a 20% relative difference, which is assumed as a threshold to
identify a poor performance. Note that white cells represent cases in which the reconstruction procedure failed.

Figure 13 shows the relative error as a function of the cut of the recovery current performed during the post-processing
and Ia/I∗. The performance of the reconstruction approach improves when the recovery currents are cut. This depends
on the fact that our approach is local, i.e. accurate to describe the system’s behaviour close to the boundary condition.
The longer the recovery time, the less local is the information gathered from the current. For this reason, the plots
concerning the reconstruction performance are based on recovery currents cut at 90%.
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Figure 13: 2D view of the reconstruction performance as a function of the cut in the recovery current, as applied
in Fig. 10, and of the initial value of Ia/I∗. It is clearly seen how certain values of the cut provide a consistent
increase in reconstruction performance. White regions indicate a failure in convergence in the final fit procedure.
(Simulation parameters: relaxation time ∆t = 1, boundary step ∆I = 0.1σ2, 10 repetitions of the three-step, data up
to a maximum current recovery of 90%).

As for the reconstruction performance as a function of the relaxation time ∆t, Fig. 14 shows the behaviour including
the dependence on Ia/I∗. In this case, the longer the relaxation time, the better is the performance of the reconstruc-
tion. In particular, longer relaxation times allow a better reconstruction even for large values of Ia/I∗. It is worth
highlighting that in the case of short relaxation times, a good overall performance can be achieved only by working
at I/I∗ � 1. Combining the results of the last two analyses, one concludes that the best approach for an accurate
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Figure 14: 2D view of the reconstruction performance as a function of the relaxation time ∆t and the initial value
of Ia/I∗. It is clearly seen how the reconstruction performance improves for longer relaxation times. However, the
method proves to be rather robust for fractions of ideal time up to 5% provided Ia/I∗ < 0.6. White regions indicate a
failure in convergence in the final fit procedure. (Simulation parameters: boundary step ∆I = 0.1σ2, 10 repetitions of
the three-step procedure, data up to a maximum current recovery of 90%, if smaller values of ∆t lead to a normalised
recovery below 90%, all the normalised recovery current data are used for the reconstruction).

determination of I∗ and κ consists in increasing the relaxation time between successive changes of the position of the
boundary condition and cutting the data from the recovery currents.

17



A PREPRINT - 22ND FEBRUARY 2022

Figure 15 shows the 2D plot of the reconstruction performance as a function of the number of repetitions of the three-
step procedure and Ia/I∗. It can be seen with the higher number of repetitions, how the performance improves. This
is naturally linked to the fact that repeating the three-step procedure implies sampling a larger extent of phase space,
thus probing more accurately the behaviour of the diffusion coefficient as a function of the action. It is also clearly
visible that starting from six repetitions of the three-step procedure, a good reconstruction is obtained for Ia/I∗ < 1.
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Figure 15: 2D view of the reconstruction performance as a function of the number of three-step movements and of
Ia/I∗ starting positions. It is clearly seen how the performance increases with the number of three-step movements,
as larger regions of the phase space are explored (as in Fig. 8). White regions indicate a failure in convergence in the
final fit procedure. (Simulation parameters: relaxation time ∆t = 0.5 [a. u.], boundary step ∆I = 0.1σ2, which is
∆I/I∗ = 0.005, data up to a maximum current recovery of 90% is considered).

Finally, the impact of ∆I is shown in Fig. 16, where the performance as a function of ∆I and Ia/I∗ is depicted. We
see how the performance is not strongly affected by the choice of ∆I , i.e. relative error fluctuations are less than 10%
for differences of an order of magnitude in ∆I . However, it is important to highlight two facts that might suggest
a choice in the size of the change of position of the absorbing boundary condition: (1) the ideal relaxation time is
directly proportional to the size of the absorbing boundary movement; (2) a too small ∆I might lead to a too local
sampling in action space, thus negatively affecting the final reconstruction of D(I).
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Figure 16: 2D view of the reconstruction performance as a function of ∆I and Ia/I∗. The best performance is achieved
for ∆I = 0.005σ2, but the dependence on ∆I is very weak (Simulation parameters: relaxation time ∆t = 0.5 [a. u.],
10 repetitions of the three-step procedure, data up to a maximum current recovery of 90%).
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6 Conclusions

Beam-halo scans, performed with movable collimators jaws, have been used intensively for probing the diffusive
behaviour of the beam halo in circular accelerators and seems a very useful tool for probing this special regime of
beam dynamics in the absence of beam instrumentation capable of providing diagnostic tools to study beam-halo
dynamics.

In this paper, we have presented that, starting from a general framework to describe the dynamics of stochastic
Hamiltonians, it is possible to derive a Fokker-Planck equation with a diffusion coefficient whose functional form
is based on the time stability estimate from Nekhoroshev theorem. The main result is the identification of an efficient
protocol for probing the shape of such a diffusion coefficient. The protocol has been scrutinised by means of detailed
numerical simulations, and it is clear that eventually it should be tested with beam measurement data. Two aspects
should be highlighted: although the framework presented in this article is one-dimensional, i.e. considering non-linear
beam dynamics in one degree of freedom, we believe that it can be applied to cases representing systems with two
degrees of freedom (as shown in Ref. [6]). Furthermore, the proposed approach does not rely on a previous knowledge
of the beam distribution, which is a clear advantage for applications.

The proposed protocol relies on the idea that it is possible to separate the measured outgoing current into a global
current, i.e. the general outgoing current loss that is measured from the exponentially slow erosion of the stable core of
the beam, and a recovery current, i.e. the current following a change of the position of the boundary condition, which
corresponds to a non-equilibrium state. By performing an alternating three-step sequence of outward-inward-outward
boundary-condition changes, which can easily be done by means of collimator scans, it is possible to reconstruct the
global current of the erosion process and use that to normalise the recovery currents. Each normalised recovery current
ultimately contains local information on the diffusion coefficient without the need of prior knowledge on the form of
the initial distribution in action space, and can be used for estimating its global shape.

The performance of this protocol has been tested by means of a large number of simulated Fokker-Planck processes
performed in various configurations, to evaluate the reliability and limits of our approach. The protocol proved to
be capable of reconstructing with precision and good accuracy the parameters of the diffusion coefficient when it is
performed in a phase-space region where the diffusion coefficient has an exponential evolution, i.e. for I/I∗ < 1, the
relaxation time between boundary condition changes is long enough so that the system reaches an equilibrium state,
and multiple amplitudes have been probed. For this last condition, the optimal number of amplitudes to be sampled
is highly dependent on the detail of the diffusion process, however, from the simulations it appears that about six
sequences of three-step absorbing boundary changes covering the I/I∗ < 1 region is a good choice.

The analysis also highlighted how a good reconstruction performance can be achieved by considering only the outgoing
recovery currents in the final fitting reconstruction, and by discarding part of the recovery current data beyond a certain
level, as it is more prone to reconstruction errors and more difficult to characterise with our analytical formulas. It
is worth stressing that the reconstruction performance proves to be good even if the optimal conditions are not fully
met. Most importantly, the procedure provides useful information about possible shortcomings present in the dataset
under consideration, such as a high uncertainty band in the global current reconstruction, or a reconstructed value of
I∗ that indicates that the probed phase-space region is outside of the optimal interval I/I∗ < 1. In these cases, the
protocol should be reapplied in better conditions, e.g. by adjusting the range of actions probed to satisfy the condition
I/I∗ < 1.

Thanks to the positive and encouraging results of the analysis presented here, we are confident that the measurement
protocol is a powerful tool for probing the non-linear diffusive behaviour in an accelerator like the LHC. As a future
step, the protocol will be applied to the available beam-halo collimator-scan data collected at the LHC, to attempt an
improved reconstruction of the diffusion coefficient with respect to previous analyses. Further to this, a proposal of a
dedicated measurement at the LHC, performed in the optimal conditions considered in this paper, will complete these
investigations.

A Numerical integration of the Fokker-Planck equation using the Crank-Nicolson method

For executing the numerical integration of a FP equation in the form of Eq. (2), we used the Crank-Nicolson integration
scheme [24], which is a finite difference method, second-order and implicit in time. It can be shown that this scheme
is unconditionally stable for many differential equations [26].

To obtain valid numerical results of the integration of the FP equation with Nekhoroshev-like diffusion coefficient like
in Eq. (4), and obtain a consistent evaluation of the outgoing current in different scenarios, we have to properly evaluate
the stiffness of the problem and adapt consequently the fineness in both time and space discretisations. Moreover,
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concerning the simulation of an instantaneous change in position of the absorbing boundary condition, a rigorous
protocol must be established, especially when considering the inward displacements of the boundary condition, for
which some additional precautions must be taken.

The outgoing current, defined in Eq. (6), is obtained by computing directly, in between each integration step, the
numerical derivative of ρ at the absorbing boundary position.

A Nekhoroshev-like diffusion coefficient has the main characteristic of varying by various orders of magnitude over the
accessible range of the the action variable, meaning that if we want to simulate the entirety of a diffusive phenomenon,
we must take into consideration such a wide range of values in the integration process. This becomes mostly critical
when the process to be simulated is the recovery current that occurs after a variation of the position of the boundary
condition, like the ones described in Section 4.

The recovery current is mainly dependent on variations in the equilibrium distribution that are various orders of mag-
nitude lower, in absolute value, than the core part of the distribution (refer to Fig. 2 and 4). It is therefore necessary
to choose a time and space discretisation fine enough to obtain numerical estimates that are not seriously affected by
the integration error. To do that, we performed a convergence test for a single recovery current in every scenario we
wanted to analyse. In such a convergence test, we increased gradually the fineness of the discretisations, until we
measured a relative difference between numerical results not higher than 1%.

When it comes instead to reproduce the instantaneous change of the position of the absorbing boundary condition in the
integration scheme, we perform a re-sampling of the distribution ρ at the time of the boundary change, while keeping
the same fineness for the spatial discretisation. In an outward movement, however, this process is straightforward, as
there is no artificial change to the existing distribution ρ to be taken into account, and we just add an empty region with
no singular points. Instead, for the case of an inward movement, we do have to perform a cut inside the ρ distribution,
corresponding to the movement performed by the absorbing boundary. Such a cut generates an inconsistency between
the non-zero value of ρ at the new position of the boundary condition and the zero condition imposed by the absorbing
boundary condition. This inconsistency leads to a divergence in the analytical definition of the outgoing current and
undefined behaviours in the numerical integration. Therefore, we apply to the cut distribution a sharp damping, right
next to the newly positioned absorbing boundary condition, generated by a logistic function f(I) defined as

f(I) =
1

1 + e
I−Ia+`

`

, (28)

where ` is the extent of the range of action values where the damping occurs, and is taken equal to two twice the
fineness of the spatial discretisation, and Ia is the position of the absorbing boundary condition after the inward
movement. In this way, ρd(I) = ρ(I)f(I) represents a distribution that is smooth enough to avoid instabilities in the
numerical integration. The sharpness of this damping is directly proportional to the fineness of the spatial sampling,
and its effects are included in the convergence tests.

B Analytical estimate of the outgoing current for a FP process

We are interested in finding a good analytical approximation for the outgoing current of a FP process like Eq. (2). We
start by applying the following change of variables

x = −
∫ Ia

I

1

D1/2(I ′)
dI ′ , ρx(x, t) = ρ(I, t)

dI

dx
= ρ(I, t)

√
D(I) , (29)

which leads to
∂ρx
∂t

=
1

2

∂

∂x

[
1

D1/2

dD1/2

dx
ρx

]
+

1

2

∂2ρx
∂x2

, (30)

where D = D (I(x)). By introducing the effective potential V (x) = − ln
(
D1/2(x)

)
, we obtain the Smoluchowsky

form [27]
∂ρx
∂t

=
1

2

∂

∂x

dV (x)

dx
ρx +

1

2

∂2ρx
∂x2

. (31)

Equation (31) can be made self-adjoint by means of the following change of variables

ρx(x, t) = exp

[
−V (x)

2

]
p(x, t) , (32)

and Eq. (31) is cast into the following form

∂p

∂t
=

1

4

[
d2V

dx2
− 1

2

(
dV

dx

)2
]
p+

1

2

∂2p

∂x2
. (33)
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The general solution of Eq. (33) can be written as

p(x, t) =
∑
λ

cλ(t)φλ(x) , (34)

where an expansion using the eigenfunctions φλ(x) of the operator on the r.h.s. of Eq. (33) has been used, namely

2

{
−1

4

[
d2V

dx2
− 1

2

(
dV

dx

)2
]
− λ
}
φλ(x) =

d2φλ
dx2

, (35)

and cλ(t) = cλ(0)e−λt. This choice of eigenfunctions is motivated by the working hypothesis that p(x, t→ +∞) = 0,
i.e. the system will eventually relax to a zero distribution.

By using the orthogonality and completeness properties of φλ(x),∫
φλ(x)φλ(x′) dx = δ(λ− λ′) (36)∑
λ

φλ(x)φλ(x′) = δ(x− x′) , (37)

and considering the initial condition

ρx(x, 0) = exp

[
−V (x)

2

]
p(x, 0) (38)

p(x, 0) =
∑
λ

cλ(0)φλ(x) , (39)

we have that

cλ(0) =

∫
exp

[
V (x)

2

]
ρx(x, 0)φλ(x) dx , (40)

and the solution for an initial Dirac delta distribution ρx(x, 0) = δ(x− x0) can be written as

ρx(x, t) = exp

[
V (x0)− V (x)

2

]∑
λ

e−λtφλ(x0)φλ(x) , (41)

and the outgoing current at an absorbing boundary in x = 0, which in the original variables corresponds to I = Ia,
reads

J(t) =
1

2

∂ρx
∂x

∣∣∣
(0,t)

. (42)

If the potential is linearised, i.e. V (x) ' −ν x, then there is an analytic solution to the eigenvalue problem in Eq. (35)

− 2

[
λ− ν2

2

]
φλ(x) =

d2φλ
dx2

, (43)

and if we replace this solution in Eq. (42), we obtain the expression for the outgoing current

J(x0, t) =
|x0|
t
√

2πt
exp

(
− (x0 + ν

2 t)
2

2t

)
, (44)

which has dimension t−1. Furthermore, the linearisation ν of the potential V (x) near x = x0 reads

ν =
1
2κ

I(x0)

(
I∗

I(x0)

) 1
2κ

exp

[
−
(

I∗
I(x0)

) 1
2κ

]
, (45)

which can be inserted into Eq. (9), for obtaining an analytical estimate of the outgoing current.
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C Outgoing current for a system with infinite source

To make use of the analytical estimate of the outgoing current presented in Appendix B, we need to slightly modify
certain steps to adapt to the different non-zero equilibrium distribution ρeq, as the original calculations are carried out
under the assumption that ρ(I, t→ +∞) = 0, and modifications to Eq. (39) need to be made and then propagated.

Under these new conditions, the expansion of the solution of the diffusive problem in Eq. (34) can be modified accord-
ing to

p(x, t) =
∑
λ

cλ(t)φλ(x) + exp

[
V (x)

2

]
ρ′eq(x) , (46)

where ρ′eq(x) = ρeq(I(x)) dI
dx is the equilibrium distribution of our system, while considering the change of variables

necessary to work with the self-adjoint diffusive problem in the Smoluchowsky form. The various considerations
about cλ(t) and φλ(x) are unchanged. The values cλ(0) should be recomputed and from the expansion in Eq. (46),
we obtain

ρ′(x, 0) = exp

[
−V (x)

2

]
p(x, 0) (47)

p(x, 0) =
∑
λ

cλ(t)φλ(x) + exp

[
V (x)

2

]
ρ′eq(x) , (48)

which then leads to

cλ(0) =

∫
exp

[
V (x)

2

] {
ρ′(x, 0)− ρ′eq(x)

}
φλ(x) dx =

∫
exp

[
V (x)

2

]
ρ∗(x, 0)φλ(x) dx , (49)

where, ρ∗(x, t) stands for the difference between the actual and the equilibrium distribution, still to be reached, and in
this framework, the rest of the analytic current estimate, i.e. Eq. (44), still applies.
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