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Abstract

Over the past 60 years a rich sample of experimental results concerning the inclusive
production of π− mesons has been obtained spanning a range from about 3 GeV to
13 TeV in interaction energy. This paper attempts a model-independent overview of
these results with the aim at obtaining an internally consistent data description on a
dense grid over the three inclusive variables transverse momentum, rapidity or Feynman
xF and interaction energy. The study concentrates on the non-perturbative sector of the
strong interaction by limiting the transverse momenta to pT < 1.3 GeV/c. The three-
dimensional interpolation which is mandatory and necessary for this aim is shown to
provide a controlled systematic precision of better than 5%. This accuracy allows for
a critical inspection of each of the 40 experiments concerned in turn. It also allows
precision tests of some of the physics concepts developed around inclusive processes
like energy scaling, ”thermal” production and the evolution of transverse momenta.
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1 Introduction

Ever since the discovery, in rapid succession, of π mesons, strange particles and hadron
resonances in the 1950’s and early 1960’s, elementary particle production in hadronic inter-
actions has been studied in an impressive series of experiments. These studies have closely
followed the fast progress of available interaction energies due to the evolution of accelerator
technology as well as particle detection and identification methods. The measurement of pro-
duction cross sections has in fact been and still is a standard part of experimental work at any
new accelerator facility coming into operation.

On a theoretical level, this evolution has been followed by an equally rapid development
leading to the Standard Model of particle physics which still holds uncontested to date.

Within the framework of this model, hadronic collisions constitute an important part
of the vast sector of the Strong Interaction described by Quantum Chromodynamics (QCD)
and characterized by the strong coupling constant αs(µ) where µ is an energy scale parameter.
The strong increase of αs with decreasing µ leads to a breakdown of perturbation theory and
a split of the description of the strong interaction into a perturbative and a non-perturbative or
”soft” sector. The transition between these sectors is rather ill-defined. It depends on several
parameters and the confidence in applying higher order perturbative calculations in αs(µ).

In view of the absence of a priory predictions in the soft sector a number of production
”models” have been promoted which either depend on the application of parton interaction and
fragmentation ideas – in turn depending on data obtained from leptonic interactions – or on
rather general assumptions concerning the presence of statistical or thermal processes.

This paper will concentrate on the inclusive production of negative pions in the non-
perturbative area by limiting the transverse momentum to less than 1.3 GeV/c which is well
outside the next-to-next-to-leading order perturbative calculations. In addition, the approach
will be exclusively based on experimental data in an effort to obtain an internally consistent
description covering nearly the full production phase space with a dense coverage in the relevant
kinematic variables and aiming at a level of about 5% absolute precision. For this aim, all
available experimental results will be scrutinized from interaction energy close to threshold up
to LHC energies.

The paper is arranged as follows:
In a first part the about 4500 existing double differential cross sections from 36 experi-

ments at interaction energies between 3 and 63 GeV are used to establish a three-dimensional
interpolation scheme in rapidity, transverse momentum and interaction energy. This covers the
complete production phase space (Sects. 3 to 9) with the exception of transverse momentum
which is limited to pT < 1.3 GeV/c in order to remain in the non-perturbative sector. 17 of the
36 experiments, mostly using bubble chambers, yield internally consistent results without addi-
tional corrections. Most of the remaining experiments, essentially using spectrometer detectors,
may be brought into agreement with these reference data by single overall normalization fac-
tors. A detailed statistical analysis of the point-by-point deviations of the complete data sets
from the global interpolation shows systematic offsets of less than 5%.

This unprecedented precision allows for the elimination of complete data sets (Sect. 10)
or parts of data (Sects. 9.4 and 9.6) which fall far outside the global interpolation.

Data produced at high-energy proton colliders from RHIC up to LHC energies are dis-
cussed in Sect. 11. Here the very limited phase space coverage allows for the extension of
the energy scale and the comparison to the lower energy data only at central or very forward
rapidities.

In a second part the high-precision global interpolation is used to establish final state
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pion distributions in various co-ordinates, first in longitudinal momentum (Sect. 12) and then in
transverse momentum (Sect. 13). Integration over pT yields single differential distributions in
different longitudinal momentum variables and finally the total π− yields (Sect. 14).

These distributions are used for a critical review of different attempts to bring the com-
plex phenomenology into simple form using certain hypotheses. This concerns, in the longitu-
dinal direction, the claims at energy scaling in forward direction as opposed to a central, non-
scaling production mechanism. In transverse direction it is the hypothesis of a global, uniform
and mass and energy-independent distribution in transverse mass as specified in the Statistical
Bootstrap or ”thermal” Model.

As none of these hypotheses, with the exception of Limiting Fragmentation in the ex-
treme forward and backward regions, stands up to the experimental reality once a certain preci-
sion over the full phase space has been reached, an approach beyond the purely inclusive level
is attempted by considering hadronic resonance decay as the source of the observed inclusive
phenomena.

This is discussed in a third section of the paper. In a first step a well-measured baryonic
resonance is used to establish the salient features of resonance decay as it feeds-down into final
state hadrons (Sects. 15 and 16). In a second step several additional resonances are considered
in their influence on measured quantities like hadronic ”temperatures” and mean transverse
momentum (Sects. 17 and 18). In a third step an ensemble of 13 measured baryonic and mesonic
resonances is invoked to show how all important features of the inclusive level emerge from their
decay (Sect. 19).

The paper closes with a detailed summary (Sect. 20) and an outlook concerning basic
experimental conditions to further the understanding of the non-perturbative sector of QCD
(Sect. 21).

2 Inclusive physics in the non-perturbative sector

2.1 Definition of inclusive cross sections

The Lorentz invariant production cross section is defined in the most general fashion as

dσ =
|M |2

F
dV (1)

where |M |2 is the invariant matrix element which is incalculable in the non-perturbative sector,
F is Møller’s invariant flux factor and dV the invariant phase space element.

For a general n-body final state with unpolarized beam and target (summing over helic-
ities) this can be written

dσ = H(~p1....~pn, s)
∏
n

d3pi
Ei

(2)

where H is a function of 3n-5 variables, i.e. 3n momentum components minus 4 constraints
from energy-momentum conservation minus one free angle of rotation around the beam axis.
The total centre of mass system (cms) energy squared,

s = 2m2
p + 2mp

√
m2
p + p2

beam (3)

with mp proton mass and pbeam beam momentum in fixed target mode, presents an important
additional parameter.
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Accordingly for a restricted m-body inclusive cross section looking at m particles of
type c only in the final state, one can define

dσc = G(~p1...~pm, s)
∏
m

d3pi
Ei

(4)

G is now a function of 3m-1 variables (no energy-momentum conservation for sub-group c).
This reduces, for one-body inclusive reactions of the type

a+ b→ c+ anything (5)

to

dσc = f(p, s)
d3p

E
(6)

with 2 variables and the energy parameter s. The function f(p, s) is also called ”structure func-
tion”.

This dramatic reduction to the simplest hyper-surface of the complex multidimensional
phase space poses of course the question whether any relevant physics results can be drawn
from the experimental study of single particle inclusive cross sections. Indeed this field seems
to have been abandoned at least in the non-perturbative sector by the theory community. On
the other hand there is active interest in the fields of neutrino and astroparticle physics where
experimental results are important and mandatory for the enumeration of background contribu-
tions to the research of otherwise unconnected phenomena. Nevertheless, this paper will show
that if an internally consistent data sample with a wide phase space coverage and tight system-
atic uncertainties can be provided, a number of important constraints concerning soft hadronic
interactions may be obtained.

2.2 The problem of inclusiveness

When regarding the available experimental data it becomes apparent that a problem is
posed by the presence of weak decays leading to negative pion production. In a first set of ex-
periments, hereafter called ”reference” experiments, which have access to the complete or at
least partial detection of decay vertices, the decay pions from Λ/Σ and K0 decays, the so-called
”feeddown” pions, are eliminated from the inclusive sample. In a second set of measurements,
mostly falling into the realm of ”spectrometer” experiments, this subtraction is not performed.
As it will be shown below this will lead, in certain regions of phase space, to up to 40% dif-
ferences in the differential cross sections and up to about 12–15% differences in the integrated
yields. The procedure of feeddown subtraction which touches exclusively the sector of strange
particle production, is in itself completely arbitrary as on-vertex, strong decays of strange res-
onances like Σ∗ and K∗ are kept by definition in the inclusive sample. In addition, for certain
applications in long-baseline or atmospheric neutrino physics, even the contribution of K0

L de-
cays should be included.

2.3 Variables

Given the simple structure of the phase space element d3p contained in (6), characterized
by two parameters only (the azimuthal angle being integrated over) it is surprising to see the
large variety of variables used in describing different experimental data. No agreement on a
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single set of coordinates has ever been achieved, not to speak about a common choice of binning
in order to facilitate the comparison of different results.

The most natural choice of longitudinal pL and transverse pT momentum,

d3p = 2πdpLdpT

= πdpLdp
2
T

(7)

as it was indicated early on by the evidence of ”longitudinal phase space” with a strong, almost
exponential cutoff in pT and a wide spread in longitudinal momentum characterized by a power-
law like behaviour depending on the particle type, has been mostly used in early work.

The choice of total momentum and polar angle,

d3p = 2πp2dpd(cos Θ)

= 2πp2 sin ΘdpdΘ
(8)

has been common to spectrometer experiments performed at fixed laboratory angle. Both the
above definitions depend of course on the choice of the overall laboratory and cm systems as
well as eventually target and projectile frames.

This problem is avoided by the choice of rapidity y and transverse momentum,

d3p = πEdydp2
T (9)

with rapidity

y =
1

2
ln
E + pL
E − pL

(10)

and consequently

d3p

E
= πdydp2

T (11)

Constant rapidity corresponds, for light particles even in the soft sector, approximately to
a constant polar angle and the invariant cross sections in different Lorentz frames are connected
by a shift in rapidity.

2.4 Dependence on interaction energy

The above definitions of different phase space coordinates are not related to the interac-
tion energy

√
s. In fact the available range of longitudinal momentum increases roughly with√

s whereas the y range grows logarithmically with s. The aim at comparing cross sections at
different

√
s has therefore lead to definitions of phase space variables renormalizing, if only

approximately, to the available energy scale. From a physics point of view this has been driven
by the concept of ”scaling” which would postulate the independence of invariant cross sections
on interaction energy over parts or all of the available phase space. Following a conjecture by
Feynman [1] one re-defines the longitudinal momentum pL by

xF =
2pL√
s

(12)

in the cm system and
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d3p = π

√
s

2
dxFdp

2
T (13)

This definition does not take into account energy-momentum conservation in the final
state and is sometimes replaced by

x′F =
pL
pmax
L

(14)

where pmax
L depends on the interaction energy and ensures basic constraints like charge and

baryon number conservation which become important at interaction energies below about
10 GeV, see Sect. 12.2.2 below.

Also in rapidity space a renormalization has been proposed in order to allow for a con-
venient way to compare the forward/backward part of the rapidity distributions by taking out
the growth of their width with

√
s. Here one defines as s-dependent beam rapidity in the cm

system

ybeam =
1

2
ln
Ebeam + pbeam

Ebeam − pbeam

=
1

2
ln

1 + βcm

1− βcm

≈ ln

√
s

mp

for
√
s ≥ 20 GeV

(15)

using the proton mass mp. The rapidity scale is here replaced by the shifted quantity

ylab = ybeam − y (16)

which suitably overlaps the forward part of the rapidity distributions for different interaction
energies, leaving however a logarithmic upwards shift of the ylab values at central rapidity with
s. In fact there is equivalence between the forward part of the xF scale and the ylab scale for
large rapidities as shown in Fig. 1.
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Figure 1: Correlation between the xF /x′F and ylab as a function of
√
s for different values of

xF /x′F and pT
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The area of equivalence at xF& 0.2 is usually called ”fragmentation region” in contrast
to a ”central production region” around xF = y = 0. This juxtaposition of two different par-
ticle production mechanisms has been suggested by the approximate s-independence of cross
sections in forward direction as opposed to the increase of yields in the central area as first
observed at the CERN ISR [2–4]. As will be shown below this assumption is arbitrary: in fact
particle production may be split into two independent contributions from target and projectile
(”factorization”) which are governed by resonance formation and decay, resulting in a well de-
fined overlap region which for pions has a width of about 0.05 units of xF [5]. The increase of
yields in the central region has its origin, at ISR energy and above, in the contributions from
strangeness (more generally, ”heavy flavour”) production. It depends in a rather complex way
on pT and y/xF as well as on the particle type.

Nevertheless, central production has been and still is regarded as being of special in-
terest, in particular also in heavy ion interactions (”hot” central as opposed to ”cool” forward
regions). This is especially true for the experimental situation at the high energy colliders where
by construction the ”fragmentation” regions are inaccessible to experiment. This is demon-
strated in Fig. 2 where the xF range is plotted as a function of the interaction energy

√
s for

different rapidities, for the upper limit of pT at 1.3 GeV/c used in this paper.
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Figure 2: Accessible xF range as a function of
√
s for different y values, at pT = 1.3 GeV/c

In fact the ISR has been and will be in the foreseeable future the only proton collider
allowing the experimental study of the full phase space in xF for soft interactions, whereas at
the LHC the xF range reduces, for the eventually accessible rapidity range of about 5 units,
to almost a delta function around xF = 0 with a coverage of less than 1% of the total phase
space which does not allow the separation of target and projectile contributions even for the
asymmetric p+A interactions.

2.5 Energy scaling

In soft hadronic production, the concept of ”scaling” has been proposed in the late
1960’s following the experimental finding that the invariant cross sections, (6), which should
a priori depend on the particle momentum and the interaction energy separately, seemed to
depend only on the renormalized ”scaling” variable xF , defined in (12).

9



This result was relying on a rather small range of beam momenta between about 12 and
30 GeV/c together with the fact that over this range the total inelastic cross section σinel only
varies by a few percent. Nevertheless a connection with scaling in deep inelastic e+p scattering
was immediately established leading to a number of predictions concerning the parton content
of the final state hadrons (”counting rules”) and the direct comparison with the partonic structure
functions (”recombination models”).

A scrutiny of all available data over a range of
√
s from ∼3 GeV up to LHC energies on

a level of precision of better than 10%, as it is attempted here, reveals, however, a very intricate
pattern of dependences on all three variables pL, pT and s which puts into doubt the very idea
of energy scaling, not to mention assumed cross connections into the leptonic sector.

A major problem is here posed by the fact that the total inelastic cross section increases,
over the s range indicated above, by almost a factor of three. Which quantity should be used
in comparison: the invariant cross section f or the renormalized quantity f/σinel? The latter
definition would assume that particle production happens by the same mechanism over the full
increasing surface of the colliding nucleons. Actual estimations assume, however, that there
should be a constant ”central core” and an increasing rim area [6, 7]. What is the role of in-
creasing heavy flavour production and where should it manifest itself? Would certain regions of
phase space show different s-dependences?

In this paper the renormalized cross sections f/σinel will be used for most s-dependent
quantities. As the upper s-limit of full phase space coverage is given by the highest ISR energy
at
√
s = 63 GeV, the according increase of σinel of 29% might allow for a test of the scaling

behaviour in different regions of phase space within the rather tight systematic error limits of
this study.

3 The experimental situation

A search for published results on double-differential π− cross sections in the region of
non-perturbative QCD discussed here yields 36 experiments using a large variety of detector
systems at virtually all accelerators coming into service after the late 1950’s, with a range of
interaction energies of 3 GeV <

√
s < 13 TeV. A time distribution of the published data results

in an interesting two-peak structure shown in Fig. 3.
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Figure 3: Time distribution of published results on π− production in the range of
pT < 1.3 GeV/c
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A first peak around the mid-1970’s is representative of a genuine interest in the general
features of hadron production in the early days of particle physics, irrespective of a reliable
theoretical background. The advent of QCD as part of the Standard Model in the 1970’s and
early 1980’s quickly lead to the realization that the non-perturbative sector was not amenable
to quantitative predictions which in turn reduced the experimental activity in this sector. This
caused a gap of about two decades where practically no new measurements were undertaken.

A second, very recent peak around the first decade of this century has several contri-
butions. The accessibility of high (RHIC) and very high (LHC) interaction energies revived
interest in the more general features of particle production where the low-pT region may be
seen as a by-product of the more general aim at ”discovery potential”. At the same time the
increased importance of neutrino and astro-particle physics necessitates reference data of suf-
ficient precision for the evaluation of hadronic background components, also and especially at
high energies. And, surprisingly enough, some new efforts (NA49, NA61) at the CERN SPS
have emerged with the aim at high precision measurements in the inclusive sector even at lower
interaction energy. None of these efforts are however aimed at a more precise understanding
of the soft sector of the strong interaction itself which after all represents the overwhelming
contribution to the total cross section.

This may be easily verified by looking at the list of references to the published data.
Here, three main interests in inclusive data may be identified:

(1) Reference data for Heavy Ion collisions and the connected claim of the discovery of the
Quark-Gluon Plasma (QGP) as a new state of matter.

(2) Reference data for studies in astro-particle and neutrino physics.
(3) Reference data for the development of so-called ”microscopic” models of particle pro-

duction which are multi-parameter descriptions of a non-predictable reality.
This paper is motivated by a different approach. It is felt that it would be about time

to try and overview the wealth of available data from the multitude of experiments mentioned
above with the aim at establishing a reliable data base, covering the available phase space with
an absolute precision of about 5%. It could be hoped that such a precision would allow for a new
assessment of the underlying production process as far as its principle features are concerned.
For this aim, and in view of the fact that every single experiment has its proper systematic uncer-
tainties, it is evident that each data set has to be examined separately with respect to the overall
ensemble. The systematic uncertainties, as will be shown below, being on the level of +-30%
and more, this seems to be an impossible task. Fortunately the situation is helped by the fact
that a sub-set of data with decisively smaller error margins may be identified. This subset, here-
after named ”reference experiments”, is formed by the early bubble chamber experiments which
span the region from 3.8 to 27 GeV in

√
s. Here the systematic errors, especially concerning the

overall normalization, are on a percent level and similar if not identical for the different data.
To this set may be added the data from the NA49 experiment [17] which has been shown, for
all identified types of charged particles, to comply with the bubble chamber data. These detec-
tors benefit from a wide phase space coverage allowing for a simultaneous data collection over
the full range of variables, thus further minimizing the systematic uncertainties. Due to the fact
that the CERN ISR is the only – and probably last – collider giving access to full phase space,
and also due to the fact that its extremely stable operation in unbunched (DC) mode allows for
precision determination of absolute normalization, the four existing ISR experiments have been
added to this list, see Tab. 1.

In contrast, the group of counter experiments, hereafter named ”spectrometer exper-
iments” feature a limited phase space coverage, typically with solid angles in the milli- to
microsteradian range, Tab. 2. Consequently, there arise sizeable systematic uncertainties, es-
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Experiment beam mom.
√
s detector det. size accelerator N events Nπ−

[GeV/c] [GeV]
Gellert [8] 6.6 3.78 HBC 72 in LBL 130 k 34 k
Blobel [9] 12 4.93 HBC 2 m CERN PS 175 k 75 k
Smith [10, 11] 12.9 5.10 HBC 80 in BNL 16.3 k 7.4 k
Smith [10, 11] 18 5.97 HBC 80 in BNL 22.7 k 13 k
Bøggild [11, 12] 19 6.12 HBC 2 m CERN PS 9.7 k 3 k
Smith [10, 11] 21 6.42 HBC 80 in BNL 22.4 k 14 k
Smith [10, 11] 24 6.84 HBC 80 in BNL 17.6 k 12 k
Blobel [9] 24 6.84 HBC 2 m CERN PS 100 k 65 k
Smith [10, 11] 28.4 7.42 HBC 80 in BNL 16.2 k 12 k
Sims [13] 28.5 7.43 HBC 80 in BNL 83 k 12 k
Zabrodin [14] 32 7.86 HBC Mirabelle Serpukhov 80 k 6.6 k
Ammosov [15] 69 11.5 HBC Mirabelle Serpukhov 7.85 k 9.6 k
Bromberg [16] 102 13.9 HBC 30 in FNAL 3 k 2.7 k
NA49 [17] 158 17.3 TPCs 13 m CERN SPS 4.8 M 2.5 M
ISR [18–21] 281 23 spectrometer CERN ISR
Bromberg [16] 400 27.4 HBC 30 in FNAL 2.2 k 3.1 k
ISR [18–21] 511 31 spectrometer CERN ISR
ISR [18–22] 1078 45 spectrometer CERN ISR
ISR [18–21, 23] 1496 53 spectrometer CERN ISR
ISR [18–21] 2114 63 spectrometer CERN ISR

Table 1: Reference experiments

pecially concerning the overall normalization. For each experiment there has to be introduced,
to first order, normalization factor in order to establish compatibility with the reference data, as
shown in Fig. 4.
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Figure 4: Normalization factors introduced for the spectrometer experiments
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In addition, in certain cases, additional deviations in certain phase space regions have
to be taken into account. A blind use of these data would jeopardize the overall precision of
any attempted general description. Moreover, as will be shown below, these experiments did
not subtract out the pions from weak decays, thus introducing another source of systematic
uncertainties of up to 40%.

Experiment beam mom.
√
s accelerator N points Nπ−

[GeV/c] [GeV]
Melissinos [26] 3.67 2.98 BNL Cosmotron 105 29 k
Akerlof [11, 27] 12.5 5.02 ANL ZGS 83 33 k
Dekkers [28] 18.8 6.12 CERN PS 15 3 k
Allaby [11, 29] 19.2 6.15 CERN PS 87 96 k
Allaby [11, 30] 24 6.84 CERN PS 96 107 k
Beier [31] 24 6.84 BNL AGS 21 51 k
Anderson [11, 32] 29.7 7.58 BNL AGS 50 20 k
Abramov [33] 70 11.5 Serpukhov 5 142 k
Brenner [34] 100 13.9 FNAL 25 7 k
Brenner [34] 175 18.2 FNAL 23 6 k
Johnson [35] 100 13.8 FNAL 32 19 k
Johnson [35] 200 19.4 FNAL 30 18 k
Johnson [35] 400 27.4 FNAL 31 19 k
Antreasyan [36] 200 19.4 FNAL 1 100
Antreasyan [36] 300 23.8 FNAL 1 100
Antreasyan [36] 400 27.4 FNAL 1 100

Table 2: Spectrometer experiments

In the lists of experiments given in Tabs. 1 and 2 above, one set of results, which is at
the same time the most recent one that has been published, is missing: the NA61 experiment,
Table 3. This collaboration uses basically the same TPC detector as NA49. It aims at providing
data over a range of beam momenta from 20 to 158 GeV/c thus covering a good fraction of
the energy region, from the CERN PS/AGS to the CERN SPS, given in Tabs. 1 and 2 above. A
detailed comparison with the preceding experiments reveals, however, very sizeable deviations
from these references which precludes the inclusion of these new results into the global data
interpolation. In addition, their first publication [37] does not use the particle identification
capabilities of the NA49 detector but gives cross sections for negative hadrons (h−) which have
to be corrected for K− and p contributions using external model assumptions. The second paper
[38] uses particle identification but suffers from a sizeably reduced phase space coverage.

As far as results from higher energy p+p colliders, basically RHIC at
√
s = 200 GeV

and LHC at
√
s from 900 GeV to 13 TeV, are concerned, there is a drastic reduction of phase

space coverage. As shown in Sect. 2.4 (Fig. 2) above, the accessible rapidity range for particle
detection and identification only allows for the study of very central production and does not
reach into the fragmentation region. This is apparent from Tab. 4 where the 5 experiments
providing data on π− production in the high energy region are listed.

All experimental results listed in the Tabs. 1-4 will be discussed one by one in Sect. 5
below with respect to a detailed three dimensional interpolation scheme introduced in Sect. 4.
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Experiment beam mom.
√
s detector N points Nh−/Nπ−

[GeV/c] [GeV]
Abgrail [37] 20.0 6.27 TPC 201 23 k
Abgrail [37] 31.0 7.74 TPC 216 122 k
Abgrail [37] 40.0 8.77 TPC 225 232 k
Abgrail [37] 80.0 12.32 TPC 243 325 k
Abgrail [37] 158.0 17.27 TPC 253 510 k
Aduszkiewicz [38] 20.0 6.27 TPC 54 19 k
Aduszkiewicz [38] 31.0 7.74 TPC 76 75 k
Aduszkiewicz [38] 40.0 8.77 TPC 90 184 k
Aduszkiewicz [38] 80.0 12.32 TPC 86 296 k
Aduszkiewicz [38] 158.0 17.27 TPC 113 359 k

Table 3: The NA61 experiment

Experiment
√
s [TeV] rapidity

0.063 0.20 0.90 2.76 5.02 7.00 13.00
STAR [40, 41] 0
PHENIX [42] [42] 0
BRAHMS [43, 44] 0, 1.0, 1.2, 2.95, 3.3, 3.5
ALICE [45] [46] [47] [48] [49] 0
CMS [50] [50] [50] [51] 0

Table 4: Collider experiments

There are however π0 data from the LHCf experiment covering the xF range from 0.2
to 0.9 for pT values between 0.025 and 0.6 GeV/c. These unique data will be included in the
comparison after extracting π0 cross sections from π+ and π− data at SPS and ISR energy.

4 Data treatment

4.1 Definition of a reference grid

The aim of this paper is the establishment of a consistent data base exclusively from the
measurements provided by the experiments introduced above. This data base should cover the
three independent variables involved with the structure function f(p, s) (6) with a grid which is
sufficiently fine-grained in order to allow for a precise interpolation into any choice of variables
connected with the momentum p and the cms energy squared s. Such a grid structure does not
exist for the measured data: a wide choice of momentum variables have in fact been used. In
addition, no common, well-defined binning scheme has been agreed on. Therefore in a first step,
a convention concerning the chosen momentum components including a binning scheme has to
be defined. In a second step, the available data have to be interpolated such that they fit into this
grid system.

The following conventions will be used in this paper.
The momentum components are:

– Transverse momentum pT in 26 steps of 0.05 GeV/c from pT = 0.05 to pT= 1.3 GeV/c.
– Reduced rapidity ylab = ybeam − y (16) over the range from -1.2 to +3.8 in 26 steps of
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0.2 units. As these components are not orthogonal, as an additional choice Feynman xF
(12) will be used with 21 steps from 0 to 0.7 with a variable step width.

– As each experiment is performed at a given cms energy
√
s which is defined by the

available accelerator rather than an agreed coverage at given s values, the cms energy
is represented as log10(s) in 27 steps of 0.1 from 1 to 3.6. This defines a range from√
s = 3.16 to 63 GeV corresponding to the highest ISR energy and covering the reference

data, Tab. 1. As the higher energy data from RHIC and LHC are confined to the central
rapidity plateau this range will be extended to 7.7 at y = 0.
This grid offers, for the reference data, about 18 k points out of which 13 k or about

70% are covered by the experimental data.

4.2 Data interpolation and selection

A general overview over the experiments introduced above and the totality of the more
than 4000 data points concerned, in addition with an unprecedented precision, has as yet never
been attempted. Several steps are mandatory in order to achieve a common and consistent data
base:

(a) A first, two-dimensional interpolation of the double-differential cross sections for each
data set at fixed s into the binning grid in pT /ylab or pT /xF defined above.

(b) Extension into a three-dimensional interpolation in momentum and log s in order to
connect the data at different interaction energies.

(c) Scrutiny of each data set in turn in order to check for individual deviations precluding
the establishment of a consistent ensemble. This concerns the detection of overall in-
consistencies for instance in absolute normalization, see Fig. 4, or eventually the partial
or complete exclusion of results.
In the following argumentation the chosen procedures will be described in some detail.

It has been, however, clear to the authors from the outset that human intervention and judgement
on several levels was needed in order to achieve the desired result, in peculiar concerning the
overall precision.

4.2.1 Interpolation by algebraic fits

The task of describing data distributions in any coordinate is not facilitated by the fact
that these are not predictable in the framework of non-perturbative QCD. Simple algebraic for-
mulations for pT and xF distributions were nevertheless widely used in the past, like exponential
pT and mT , or power-law xF fits. A look at the complexity of the corresponding data distribu-
tions, once a certain precision is reached, should be sufficient to refrain from such solutions.
Two examples may be mentioned here in this context.

A high statistics bubble chamber experiment [13] has published the original data at only
three pT values, Fig. 32 at pbeam = 28.5 GeV/c. The bulk of the data were fitted with double-
Gaussian rapidity distributions, Fig. 33. Whereas the original data are very well described by
the global interpolation, the fitted data show substantial deviations with mean residuals at 1.5
and an rms deviation of 1.7.

Another typical example is given in Fig. 84 [17] where complex structures as a func-
tion of pT are visible in a certain xF range. These structures which are different for π+ and
π− mesons, are due to the decay of baryonic resonances (Fig. 85) but difficult to describe by
generalized algebraic formulations.
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4.2.2 Errors

The data are not only subject to statistical errors, but most importantly to systematic
deviations (Fig. 4) which exceed in many cases the statistical uncertainties. Concerning the
reference data, even the bubble chamber experiments with the biggest statistical relevance [9]
reach barely up to pT values of 1 GeV/c, although with systematic errors on the few percent
level. Here the spectrometer experiments may give relatively high statistics data albeit only in
restricted phase space areas and, furthermore, afflicted with important systematic uncertainties.
The task to find an optimum compromise between these two types of experiments cannot be
left to an automatized, ”computer aided” approach. Suffice it to say that only the existence of
”reference” data with small systematic errors combined with the fact that most of the systematic
deviations in the ”spectrometer” data may be resolved by only one normalization constant per
experiment allows a consistent build-up of a global data set.

4.2.3 Data treatment: tasks and solutions

In a first step, each data set has to be scrutinized for internal consistency and the data
points have to be interpolated to comply with the reference grid, Sect. 4.1. Already at this stage,
internal inconsistencies become visible where ”visible” means inspection by eye. Some typical
examples are given by Figs. 36, 37, 45, 47, 48. As transverse momentum is the only common
variable which may be extracted from all data sets, this first step is conducted in pT .

In a second step, the interpolated pT distributions at a variety of longitudinal variables,
have to extended into ylab distributions on the reference grid, Sect. 4.1, again by interpolation.

In a third step, this two-dimensional interpolation has to be extended into a three-
dimensional one by studying the dependence on log s, again on the reference grid.

4.2.4 An all-out optical approach

The authors do not see any way to realize the tasks mentioned above by ”computer
aided” methods. Those methods are based on mathematical rather than physical constraints
and indeed no application of comparable complexity has ever been tried concerning inclusive
particle physics.

Instead an all-out visual approach to the problems has been opted for. Such an approach
is tedious and time consuming but offers safety in fulfilling all constraints combined with con-
trollable performance in terms of both statistical and systematical uncertainties.

This approach, often quoted under ”eye scanning” has nowadays an odour of ”impre-
cision” and ”unscientific behaviour”.There is no reason for this prejudice. There is no harm in
using millimeter or semi-logarithmic paper together with flexible rulers (in fact the ”spline”
methods have been developed with such rulers in mind) as long as some basic constraints are
fulfilled:

– in this paper one aims at an overall precision on the less than 5% level, in fact the
achieved interpolations are shown to be reliable with rms deviations of 2–3%.

– therefore the coordinate scales used must allow for the safe setting and reading of results
on the percent level.

– the rulers must be used in a minimum educated way so as to find the way through the
statistical error bars by using a maximum of available data points, at the same time
looking for systematic data irregularities relevant with respect to the statistical errors.

– the boundary conditions as well as continuity and smoothness imposed by physics are
readily fulfilled.
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– the interpolation needs to be recursive in the sense that several successive stages in all
three dimensions have to be passed before a final and optimized result may be claimed.
In the end the success of the global interpolation has to be controlled for each data set

by the distribution of normalized residuals where all data points contribute, and by the mean
deviations of all experiments from the interpolation. The residual distributions are given for
each data plot, Figs. 28–40 and Figs. 42–53 and the mean deviations are presented in Figs. 41
and 56 for the reference and spectrometer data respectively.

4.3 Reference data

The reference data, Tab. 1, have three components:
(a) 14 data sets obtained with Hydrogen Bubble Chambers (HBC).
(b) NA49 data using a large set of Time Projection Chambers (TPC).
(c) ISR data from basically 4 different spectrometer setups.

4.3.1 Bubble Chamber data

Bubble Chamber data feature by conception very small systematic errors. As all interac-
tions are directly visible inside a fiducial volume, they are self-normalizing which is a decisive
advantage over all other detection methods. In addition only small corrections, typically on a
few percent level, are necessary, for instance for non-identified Dalitz decays. Only cuts on the
dip angle (in direction of the optical axis of the camera system) and on non-resolved secondary
vertices are applied. On the other hand, the identification of secondary particles is difficult if
not completely absent. This is especially valid for π− as usually all negative particles are called
pions. This necessitates corrections for K− and p yields which are strongly variable with

√
s as

shown in Fig. 5.
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Figure 5: K−/π− and p/π− ratios as a function of
√
s. The full lines correspond to the new

determination of the energy dependences of K− [52] and p [53] cross sections by the NA49
collaboration.The measurement of the K−/π− ratio at 32 GeV/c and the k−/π− and p/π− ratios
at 158 GeV/c beam momentum as well as the correction deduced from the measured K0

S yields
at 69 GeV/c are given as data points
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It is apparent from Fig. 5 that in comparison to an overall systematic uncertainty of about
2% the K− and p contributions are of importance above

√
s 5 GeV and 15 GeV, respectively. In

view of a correction of double-differential cross sections the dependence of the particle ratios
on the kinematic variables has however to be taken into account. This is exemplified in Fig. 6
where the (K−+p)/π− ratio is given as a function of rapidity for different transverse momenta
as presented for the NA49 data at

√
s = 17.2 GeV.
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Figure 6: (K−+p)/π− ratio as a function of rapidity for different pT for the NA49 data at√
s = 17.2 GeV, compared to the mean ratio at 7.3%

It should be noted that here the use of the pion mass for the heavier particles in the
transformation from the lab to the cms frame has to be taken into account. Whereas these de-
pendencies may be neglected in the lower energy range, the cross sections at the highest beam
momenta at 102 and 400 GeV/c have to be properly corrected. In the absence of double differ-
ential measurements at these momenta, the data contained in Fig. 6 have been scaled down or
up, respectively, at 102 and 400 GeV/c according to the mean ratios.

4.3.2 NA49 data

The NA49 collaboration has obtained a sizeable data set of 4.8 million events from
p+p interactions at 158 GeV/c beam momentum, using a set of two superconducting magnets
and of 4 large Time Projection Chambers [39]. All charged particles have been identified via
energy loss (dE/dx) measurements in the TPC system [17,52–54]. The large data volume from
the TPC readout necessitated the introduction of an event trigger with an efficiency of 86%
of the total inelastic cross section. The corresponding normalization has been obtained with a
topology-dependent correction for this trigger bias which amounts to less than 8% for π−. The
data have been corrected for feed-down from K0

S , Λ0 and Σ− decay, especially necessitated by
the fact that only a fraction of these decays are reconstructed on vertex as opposed to the bubble
chamber data. Fiducial cuts in rapidity (y > 0) and azimuth (180±90 degrees) reduce the yield
to 2.5 million measured π− which makes this sample the by far biggest one obtained to date. The
systematic uncertainty is estimated to 2% [17]. This value has been verified by the comparison
of the total charged particle yield with precision data from bubble chamber experiments [52].
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4.3.3 ISR data

As stated above, the availability of double differential data from four independent ISR
experiments spanning most of the available phase space is unique for high energy proton collid-
ers. The trigger efficiency of typically 95 to 98% of the total inelastic cross section ensures high
precision in absolute normalization as opposed to both lower energy spectrometer experiments
(see Fig. 4) and higher energy colliders. The ISR data have an overlap with the bubble cham-
ber data at their lowest cms energy of 23 GeV and extend to 63 GeV with complete particle
identification.

A problem is given by the fact that the ISR data have not been corrected for feed-down
from V0 decays. As the resulting contribution to the π− yield is mostly concentrated at low
transverse momentum, the respective correction amounts to sizeable values of up to 40% and
has therefore to be carefully quantified. This is exemplified in Fig. 7 where the π− cross sections
from lower energies are compared to the ISR results at different rapidities as a function of cms
energy.
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Figure 7: π− cross sections f/σinel for the reference sample of HBC and NA49 results compared
to the ISR data (points) as a function of cms energy, at pT = 0.05 GeV/c. The full lines represent
the original, feed-down subtracted reference data and the ISR data without subtraction; the
broken lines show the reference data with feed-down added and the ISR data with feed-down
subtraction, respectively

This figure demonstrates several facts:
(a) Mutually consistent and continuous energy dependences may be obtained by properly

taking into account the feed-down contributions.
(b) These contributions are not confined to central rapidity but extend far into the forward

direction.
(c) The relative feed-down yield is not concentrated in the central region but increases –

depending on energy – with increasing rapidity.
The feed-down problem is of a more general importance as practically all of the spec-

trometer experiments, Tab. 2, are not feed-down corrected. In fact no high resolution vertex
detectors were available in the 1970’s and 1980’s and the first active elements were placed at
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sizeable distances from the target in the fixed-target experiments. In this paper, a general enu-
meration of this correction has therefore been worked out over the full energy scale. This is
presented in the following Section.

5 Feed-down correction for weak decays

Contributions to the π− yield come from the weak decays of K0 mesons and Λ and Σ−

baryons. A search for data on these strange particles reveals 18 experiments which cover the
complete energy range considered here, from

√
s = 3.6 to 63 GeV, see [55–72]. The results have

generally modest statistics and double differential cross sections are scarce with the exception of
the high statistics bubble chamber experiments [56,60] at 6, 12 and 24 GeV/c beam momentum.
Single differential xF and pT distributions are generally available in addition to the total yields
〈n〉 which are shown in Fig. 8a.
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Figure 8: a) Total yields 〈n〉 of K0
S , Λ and Σ− as a function of log s, in comparison to π− without

feed-down correction; b) percentage contribution of V 0 decays to the π− yield with and without
K0
L and from Λ and Σ−

The energy dependence of the total yields reflects several features of strange baryon
and meson production in p+p interactions: approaching the strangeness threshold at low energy,
associate Λ + K+ production will prevail by pion exchange while kaon pair production will
be suppressed, whereas with increasing energy meson pair production will increase faster than
the Λ+Λ yield. The scarce data on Σ−, [59–61, 68], permit an estimation of this contribution
which is less than 1% over the full energy range (Fig. 8b), also using the approximate ratios for
(Σ++Σ0+Σ−)/Λ ∼ 1.0, Σ+/Σ− ∼ 3.5 and Σ0/Λ ∼ 0.4.

Fig. 8b presents the percentage contributions of the different V 0 decays to the total π−

yield. The fact that this total contribution corresponds, above the SPS energy range, to 9%
and 13% without and with K0

L decay respectively, gives a first indication of the primordial
importance of particle decays to the final state hadron yields. This contribution will be shown
below to correspond to a complex structure in the double-differential cross sections.

20



5.1 Single differential cross sections

Single invariant differential cross sections for K0
S and Λ are presented in Figs. 9 and 10

as a function of xF where the invariant cross section is:

F (xF ) =

∫
f(xF , pT ) · dp2

T (17)

The full lines shown in Figs. 9 and 10 correspond to the interpolated yields used in the
Monte Carlo calculation of the π− contributions at the indicated beam momenta.

For K0
S , Fig. 9a, the data up to 24 GeV/c beam momentum define the interpolation

with sufficient precision [56], [60]. In the higher energy range, pbeam = 158 – 2100 GeV/c the
averaged charged kaon yields [52] provide a precise reference as shown in Fig. 9b.
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Figure 9: F (xF ) for K0
S as a function of xF for different beam momenta

For Λ, Fig. 10, sufficient precision is given in the lower pbeam range up to 24 GeV/c.
The measurements in the higher energy range are again characterized by sizeable statis-

tical uncertainties in the range of typically 10 to 20%. Nevertheless the results may be interpo-
lated with sufficient precision as shown by the full lines in Fig. 10a). As far as the p2

T distribu-
tions are concerned the data above 100 GeV/c beam momentum may be described within their
sizeable error margins by a common p2

T dependence. At lower beam momenta precise data are
available. They show a progressive steepening of the p2

T distributions, see Fig. 10b).

5.2 Double differential cross sections

For K0
S double differential cross sections are available at low energy from direct mea-

surements [56], [60] and at higher energy from averaged charged kaon data. An example is
shown in Fig. 11 at 158 GeV/c beam momentum [52].

For Λ the situation is experimentally less well defined. At low energy [56], [60] di-
rect measurements are available. At higher energies only xF integrated transverse momentum
distributions are given, see Fig. 12.

21



Fx

0 0.5 1

F
 [

m
b

]

-310

-210

-110

1

6.6

 12

 24
158

405

1500

beam
p

[GeV/c]

 = 6.6 GeV/c
b

p

 =  12 GeV/c
b

p

 =  24 GeV/c
b

p

 = 158 GeV/c
b

p

 = 405 GeV/c
b

p

 = 53 GeVs

Λ
a)

]2 [(GeV/c)2

T
p

0 0.5 1 1.5

]
2

 [
m

b
/(

G
e

V
/c

)
2 T

/d
p

σ
d

-210

-110

1

10

6.6

 12

 24

158

beam
p

[GeV/c]

 = 102 GeV/c
b

p
 = 147 GeV/c

b
p

 = 205 GeV/c
b

p
 = 300 GeV/c

b
p

 = 360 GeV/c
b

p

 = 400 GeV/c
b

p
 =  12 GeV/c

b
p

 =  24 GeV/c
b

p

 = 6.6 GeV/c
b

p

b)
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charged kaon yields [52]

These data may be approximated by exponential functions of the form Ae−BpT , with B
in the range between 3.5 and 4.5. They may be related to the double differential cross section
of protons by the fact that the ratio (dn/dpT )Λ/(dn/dpT )p turns out to be independent of xF
in the range 0 < xF < 0.35 [73]. This ratio is steadily increasing as a function of pT as it is
typical for cascading decays, Fig. 13 (Sect. 16.4.2 below) where the final state proton is diluted
in momentum with respect to the decaying resonance. This dilution depends on the Q-value of
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the decay as exemplified by the broken line in Fig. 13 for the decay Λ→ p+ π−.
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different pT values represent the measurements for 6 values of xF between xF = 0 and xF = 0.35.
For comparison the ratio for Λ→ p+ π− is given as the broken line

For Σ− only [60] gives single differential cross sections at pbeam = 12 and 24 GeV/c.
These data are shown in Fig. 14 as functions of xF and pT for pbeam = 24 GeV/c.

The Σ− distributions are rather conformal with the ones for Λ with the exception of the
large xF region. This suggests the same treatment of the double differential cross sections in pT
in reference to the proton data as shown above for the Λ.
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5.2.1 K0
S decay

K0
S decays into π+ + π− with a branching fraction of 69.2%. This decay results in a

rather involved relation between K0
S and the decay pions as functions of xF , p2

T and y as shown
in Fig. 15 for the integrated quantities dn/dxF , dσ/dp2

T and dn/dy.
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The decay particle yields exceed the K0
S cross section at low xF and low p2

T , whereas the
situation inverts to large rapidity for dn/dy. On the double differential level this corresponds
to a complex interplay between the K0

S and the decay pion in pT and rapidity as presented in
Fig. 16.
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S decay
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S

decay to the inclusive, feed-down subtracted π− yield

The data in Figs. 15 and 16 are given for beam momenta of 158 GeV/c and 24 GeV/c.
Fig. 16c) demonstrates that the decay pion contributions come up to 8% and 4% respec-

tively of the inclusive pion yield at low pT . It is not only concentrated at central rapidity but
decreases only slowly as a function of y. Integrated over pT this corresponds to 5.2 and 2.8%,
respectively.

5.2.2 K0
L decay

K0
L has three decay channels into negative pions:

K0
L → π− + e+ + νe (K0

e3) with 20.3%
K0
L → π− + µ+ + νµ (K0

µ3) with 13.5%

K0
L → π− + π+ + π0 with 12.5%

(18)

This yields a total branching fraction of 46.3% as compared to 69.2% for the K0
S decay.

Due to the different Q values involved with these 3-particle decays the double differential cross
sections have different pT distributions as shown in Fig. 17 for two rapidity values.
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The integrated quantities dn/dxF , dσ/dp2
T and dn/dy are presented in Fig. 18 for the

sum of the three decay channels.
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The similarity to the K0
S decays, Fig. 15, is apparent. The interplay between the K0

L yield
and the π− resulting from the sum of its decay channels is shown in Fig. 19.
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Subsequent pT values are multiplied by 1/3 for clarity. b) invariant π− cross section f/σinel

from K0
L decay as a function of rapidity for pT between 0.05 and 1.3 GeV/c given for the sum

of the three decay channels c) percentage ratio of the total π− from K0
L decay to the inclusive,

feed-down subtracted π− yield

The ratio of the decay pion contribution to the inclusive π− yield reaches a maximum of
10% and 6% at low pT respectively at 158 and 24 GeV/c beam momentum. This is higher than
that from K0

S decay but it decreases more rapidly with increasing pT such that the pT integrated
yield amounts to 3.4 and 1.8%, respectively.

5.2.3 Λ decay

Λ decays with a branching fraction of 63.9% into p + π− with a Q value of only
0.038 GeV/c. This together with the large mass difference of the decay particles proton and
π− leads to a rather sharp limitation of the π− in xF and p2

T , Fig. 20, as compared to the K0
S

decay, Fig. 15. On the double-differential level the relation between parent Lambda and decay
pion is presented in Fig. 21 as a function of rapidity and xF .

The sizeable contribution of up to 30% at low pT is followed by a rapid decrease with
increasing pT such that it vanishes at about pT =0.3 GeV/c. The maxima in y and xF are off
y = xF = 0 due to the wide longitudinal momentum distribution of the Λ. In fact the xF value of
the π− is approximately related to the Λ by the mass ratio: ratio xF (π−) ∼ mπ−/mΛ ∗ xF (Λ).
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Figure 21: a) invariant π− cross section
f/σinel from Λ decay as a function of y
for four values of pT at 158 and 24 GeV/c
beam momentum. Full lines for decay π−

and broken lines for the parent Λ. Subse-
quent pT values are multiplied by 1/5 for
clarity; b) invariant π− cross section f/σinel

from Λ decay as a function of rapidity for
pT between 0.05 and 1.3 GeV/c; c) per-
centage ratio of the total π− from Λ decay
to the inclusive, feed-down subtracted π−

yield; d) same as c) but as a function of xF

5.2.4 Σ− decay

Σ− decays with a branching fraction of 99.8% into n + π− with a Q value of
0.118 GeV/c. Compared to the Λ decay this extends the range of the decay pions in xF and
pT as shown in Fig. 22.

On the double-differential level the relation between parent Σ and decay pion is pre-
sented in Fig. 23 as a function of rapidity and xF .

The contribution at low pT is much smaller than for the Λ which is another consequence
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f/σinel from Σ− decay as a function of ra-
pidity for pT between 0.05 and 1.3 GeV/c;
c) Percentage ratio of the total π− from
Σ− decay to the inclusive, feed-down sub-
tracted π− yield; d) Same as c) but as a
function of xF

of the bigger Q value. It vanishes at about pT > 0.4 GeV/c. The maxima in xF are again in the
region of 0.15.

5.2.5 Total feed-down

As a conclusion of this section on feed-down the sum of the components from K0
S ,

(K0
S+K0

L), Λ and Σ− decays are given in Fig. 24 at 158 and 24 GeV/c beam momentum.
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Figure 24: Total feed-down contribution from a) K0
S , Λ and Σ− b) ( K0

S + K0
L ), Λ and Σ− as a

function of y and xF for beam momenta of 158 and 24 GeV/c

It is apparent that this correction spans a large region both in rapidity and in xF and,
being concentrated at low pT nevertheless covers the complete pT range at a non-negligible
level. It reaches more than 30% at 24 GeV/c and more than 40% at 158 GeV/c beam momentum
at pT below 0.2 GeV/c.

6 A comment on inverse mT slopes (”Temperature”)

In so called ”thermal” models it is claimed that final state hadrons are characterized by
a general, mass-independent transverse momentum spectrum if the invariant cross section is
plotted against

mT =
√
p2
T +m2 (19)

rather than pT , in the scale mT −m
The inverse slope of the mT distributions is assumed to be independent of m and mT

and is brought in connection with a thermal radiator of temperature T .
In [74] it is admitted that this universality does in general not hold for resonance decays.

In this sense it is interesting to regard the above study of weak decays of kaons and hyperons
into negative pions in terms of inverse mT slopes.

Some examples of mT − m distributions for K0
S , Λ and Σ− and their decay pions are

shown in Fig. 25.
Analyzing these distributions for their inverse slopes (”Temperature”) one obtains the

local inverse slopes presented in Fig. 26.
Several features are noteworthy here:
As far as the the mT − m distributions (Fig. 25) are concerned, already for the parent

particles including the inclusive π− production which is generally regarded as a prime example
of ”thermal” behaviour, the shapes are in general not exponential. There are marked differences
between 158 and 24 GeV/c beam momentum and between the particle species.These differ-
ences increase for the decay pions where the mT distributions are in general much steeper. This
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Figure 26: a) Local inverse mT slopes for in-
clusive π−, K0, Λ and Σ− as a function of
mT -m at 158 and 24 GeV/c beam momen-
tum; b) inverse slopes for the decay π− from
2 and 3 body decays

is borne out quantitatively by the inverse slopes as a function of mT −m (Fig. 26). For the par-
ent particles there is a wide range of ”Temperatures” both regarding the mT and particle type
dependences, superimposed to a strong variation with beam momentum. The deviations from
”thermal” behaviour are much more pronounced for the decay pions where it becomes apparent
that it is the Q-value of the respective 2 or 3 body decays that dominates the resulting inverse
slopes. It should be stressed that these results are valid for central rapidity. A more detailed
discussion of the y and xF dependences will be presented in Sect. 17 below, keeping in mind
that transverse momentum arguments are in general not valid in rapidity as y and pT are not
orthogonal for |y| > 0. Several facts emerge from this study:

1. The contribution from only three weekly decaying particles to the total π− yield
amounts, at

√
s > 10 GeV, to 13% and 10% with and without K0

L decay, respectively
(Fig 8)

2. As is well known [75, 76] most if not all final state hadrons emerge from resonance
decays, a fact established up to the highest ISR energy

3. The role of resonance decays in particle production has therefore to be scrutinized in
detail before taking reference to oversimplified ”models”

7 Global interpolation as a function of xF , ylab, pT and log(s) with and without
feed-down correction

The data interpolation scheme introduced in Sect. 4 above has been established in the
variables pT , ylab and log(s) and pT , xF and log(s) using the reference data (Sect. 4.3). As
the original data from bubble chambers and NA49 are feed-down subtracted, and the ISR data
are given without feed-down subtraction, a total of four sets of interpolated results had to be
produced in order to accomplish a complete and consistent picture with and without feed-down
correction. The corresponding four large sets of cross sections with about 104 bins each are
available on the web-site spshadrons of the NA49 pp/pA group [77]. A sub-sample is shown as
Table 5 for six values of log(s) as functions of ylab and pT .
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f/σinel(ylab, pT , log(s)) log(s) = 1.0
pT \ylab -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.05 0.03349 0.07367 0.11890 0.15890 0.19710 0.23420 0.26550 0.29560 0.32360 0.34560 0.36470 0.37980 0.38100
0.10 0.01242 0.04270 0.08365 0.12910 0.17960 0.21890 0.25080 0.27930 0.30420 0.32580 0.34330 0.35580 0.35680
0.20 0.01725 0.04508 0.07851 0.11330 0.14640 0.17760 0.19930 0.22280 0.24430 0.25980 0.25830
0.30 0.02093 0.04209 0.06197 0.08002 0.09579 0.11080 0.12800 0.14160 0.13940
0.40 0.01028 0.02200 0.03236 0.04242 0.05212 0.06182 0.06958 0.06907
0.50 0.00515 0.01102 0.01810 0.02453 0.03081 0.03505 0.03535
0.60 0.00247 0.00636 0.01042 0.01459 0.01715 0.01754
0.70 0.00118 0.00337 0.00611 0.00776 0.00797
0.80 0.00326 0.00333
0.90 0.00125 0.00125

f/σinel(ylab, pT , log(s)) log(s) = 1.5
pT \ylab -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0.05 0.02732 0.05975 0.10440 0.15040 0.20400 0.25810 0.31970 0.38890 0.46200 0.55500 0.65820 0.74760 0.83060 0.91280 0.97260 0.98160
0.10 0.01218 0.03302 0.06601 0.11010 0.16290 0.21830 0.27940 0.34990 0.42880 0.51380 0.60720 0.70320 0.79380 0.85860 0.89820 0.90650
0.20 0.00341 0.01433 0.03452 0.06270 0.10280 0.15750 0.21920 0.28920 0.36760 0.44220 0.52670 0.58600 0.63650 0.66490 0.66660
0.30 0.00089 0.00576 0.01726 0.03502 0.06059 0.09403 0.13700 0.18920 0.24310 0.29400 0.32980 0.35740 0.37160 0.37440
0.40 0.00302 0.00992 0.02108 0.03772 0.06062 0.08539 0.11500 0.14650 0.17440 0.19370 0.20190 0.20350
0.50 0.00184 0.00678 0.01529 0.02629 0.04024 0.05563 0.07214 0.08815 0.10130 0.10860 0.11010
0.60 0.00149 0.00502 0.01036 0.01785 0.02656 0.03610 0.04514 0.05322 0.05825 0.05882
0.70 0.00119 0.00379 0.00747 0.01228 0.01788 0.02285 0.02668 0.02950 0.02992
0.80 0.00100 0.00278 0.00554 0.00881 0.01140 0.01370 0.01511 0.01524
0.90 0.00098 0.00236 0.00407 0.00566 0.00690 0.00759 0.00764
1.00 0.00087 0.00179 0.00265 0.00330 0.00362 0.00366
1.10 0.00024 0.00070 0.00115 0.00154 0.00165 0.00166
1.20 0.00021 0.00044 0.00061
1.30 0.00005 0.00012 0.00021

f/σinel(ylab, pT , log(s)) log(s) = 2.0
pT \ylab -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.4

0.05 0.02507 0.05571 0.10000 0.14520 0.19950 0.25790 0.32930 0.40340 0.48950 0.59880 0.70070 0.82190 0.95470 1.06500 1.17100 1.27200 1.37300 1.42000
0.10 0.01089 0.03109 0.06214 0.10520 0.15740 0.21270 0.28040 0.36270 0.44580 0.54080 0.65390 0.75980 0.87540 0.98240 1.08800 1.16800 1.24500 1.29000
0.20 0.00340 0.01400 0.03200 0.05922 0.09811 0.15210 0.21290 0.28240 0.36380 0.45430 0.55460 0.64980 0.72680 0.80020 0.86730 0.91400 0.94680
0.30 0.00099 0.00560 0.01600 0.03312 0.05790 0.09193 0.13620 0.18940 0.24460 0.30700 0.37470 0.42940 0.47590 0.51450 0.54550 0.56970
0.40 0.00042 0.00278 0.00939 0.02039 0.03690 0.06102 0.09025 0.12150 0.15750 0.19450 0.22650 0.25860 0.28280 0.29970 0.31540
0.50 0.00185 0.00638 0.01462 0.02581 0.04194 0.05979 0.08095 0.10040 0.12000 0.13800 0.14940 0.15980 0.16650
0.60 0.00141 0.00502 0.01110 0.01974 0.03047 0.04102 0.05326 0.06376 0.07303 0.08017 0.08591 0.08973
0.70 0.00022 0.00131 0.00435 0.00897 0.01435 0.02049 0.02697 0.03287 0.03861 0.04259 0.04646 0.04941
0.80 0.00030 0.00143 0.00357 0.00670 0.00998 0.01377 0.01746 0.02074 0.02340 0.02537 0.02664
0.90 0.00042 0.00139 0.00288 0.00488 0.00708 0.00923 0.01095 0.01256 0.01394 0.01479
1.00 0.00049 0.00116 0.00221 0.00358 0.00478 0.00585 0.00684 0.00753 0.00795
1.10 0.00044 0.00097 0.00176 0.00252 0.00312 0.00357 0.00390 0.00416
1.20 0.00014 0.00038 0.00080 0.00125 0.00162 0.00190 0.00208 0.00222
1.30 0.00014 0.00037 0.00062 0.00084 0.00101 0.00110 0.00116

f/σinel(ylab, pT , log(s)) log(s) = 2.5
pT \ylab -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.8 2.2 2.6 3.0

0.05 0.02340 0.05356 0.09602 0.14954 0.20160 0.25475 0.32903 0.42095 0.52039 0.63047 0.76366 0.90364 1.05511 1.21235 1.49540 1.70965 1.84214 1.91000
0.10 0.01013 0.03012 0.06239 0.10743 0.15923 0.21339 0.27721 0.35730 0.45134 0.54595 0.67505 0.81159 0.95224 1.10103 1.37055 1.57251 1.70480 1.70200
0.20 0.00035 0.00326 0.01313 0.03049 0.05681 0.09321 0.14297 0.19888 0.27264 0.35791 0.44786 0.55074 0.65594 0.75658 0.93829 1.08048 1.18114 1.18700
0.30 0.00078 0.00521 0.01613 0.03125 0.05381 0.08929 0.13156 0.18262 0.24195 0.30393 0.37501 0.43505 0.53631 0.62194 0.68609 0.68090
0.40 0.00039 0.00262 0.00857 0.01995 0.03603 0.06013 0.08908 0.12196 0.16021 0.19710 0.23308 0.29351 0.33643 0.37352 0.37940
0.50 0.00022 0.00150 0.00599 0.01368 0.02549 0.04243 0.06202 0.08395 0.10292 0.12236 0.15561 0.18043 0.19839 0.20190
0.60 0.00131 0.00474 0.01078 0.02034 0.03175 0.04294 0.05498 0.06548 0.08341 0.09753 0.10805 0.10980
0.70 0.00019 0.00126 0.00404 0.00888 0.01510 0.02200 0.02850 0.03415 0.04500 0.05308 0.05952 0.06120
0.80 0.00031 0.00145 0.00363 0.00679 0.01074 0.01448 0.01799 0.02419 0.02958 0.03410 0.03407
0.90 0.00044 0.00137 0.00310 0.00531 0.00748 0.00930 0.01294 0.01616 0.01884 0.01941
1.00 0.00055 0.00135 0.00248 0.00379 0.00488 0.00704 0.00900 0.01055 0.01102
1.10 0.00055 0.00112 0.00180 0.00254 0.00399 0.00540 0.00634 0.00648
1.20 0.00021 0.00052 0.00090 0.00129 0.00219 0.00301 0.00360 0.00377
1.30 0.00022 0.00044 0.00069 0.00123 0.00171 0.00210 0.00216

f/σinel(ylab, pT , log(s)) log(s) = 3.0
pT \ylab -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 2.4 2.8 3.2 3.6

0.05 0.09517 0.13520 0.18520 0.24430 0.31840 0.42150 0.55970 0.73880 0.92600 1.16000 1.38300 1.58400 1.80100 2.11200 2.34000 2.47200 2.53000 2.55100
0.10 0.05915 0.09508 0.14220 0.19930 0.27140 0.35940 0.46860 0.61570 0.77780 0.97190 1.17200 1.35800 1.55900 1.82800 1.98000 2.05600 2.07500 2.07500
0.20 0.01306 0.02949 0.05473 0.08868 0.13720 0.19730 0.27140 0.36240 0.46250 0.59160 0.72360 0.85760 0.97050 1.17200 1.27000 1.30000 1.30400 1.30700
0.30 0.00085 0.00519 0.01485 0.02978 0.05262 0.08566 0.12720 0.18480 0.24630 0.31490 0.39030 0.46430 0.54030 0.65520 0.71010 0.73000 0.73000 0.73000
0.40 0.00037 0.00257 0.00829 0.01875 0.03419 0.05761 0.08574 0.12060 0.16020 0.20120 0.24360 0.28210 0.34150 0.37710 0.39700 0.39700 0.39890
0.50 0.00021 0.00156 0.00568 0.01314 0.02436 0.03957 0.05809 0.08031 0.10410 0.12790 0.14910 0.18000 0.20100 0.21050 0.21000 0.21050
0.60 0.00124 0.00450 0.01013 0.01864 0.02885 0.04066 0.05375 0.06505 0.07750 0.09664 0.10830 0.11230 0.11310 0.11310
0.70 0.00019 0.00124 0.00396 0.00820 0.01388 0.02043 0.02703 0.03363 0.04003 0.05102 0.05953 0.06340 0.06350 0.06350
0.80 0.00030 0.00140 0.00343 0.00636 0.00991 0.01372 0.01762 0.02101 0.02771 0.03256 0.03505 0.03550 0.03550
0.90 0.00042 0.00133 0.00289 0.00487 0.00689 0.00891 0.01088 0.01481 0.01798 0.01990 0.02060 0.02060
1.00 0.00050 0.00124 0.00231 0.00342 0.00456 0.00575 0.00810 0.01003 0.01138 0.01180 0.01180
1.10 0.00052 0.00104 0.00167 0.00231 0.00306 0.00450 0.00577 0.00670 0.00703 0.00710
1.20 0.00019 0.00048 0.00082 0.00118 0.00159 0.00244 0.00324 0.00381 0.00410 0.00417
1.30 0.00021 0.00040 0.00061 0.00084 0.00134 0.00187 0.00227 0.00246 0.00247

f/σinel(ylab, pT , log(s)) log(s) = 3.6
pT \ylab -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2

0.05 0.08903 0.11700 0.15600 0.21010 0.29410 0.42120 0.61020 0.85530 1.12500 1.41000 2.11000 2.70000 3.10000 3.30000 3.33000 3.33000 3.33000 3.33000
0.10 0.05403 0.08203 0.12010 0.17610 0.25410 0.35510 0.50020 0.69520 0.90230 1.17600 1.75000 2.19000 2.48100 2.61000 2.63000 2.63000 2.63000 2.63000
0.20 0.01241 0.02702 0.04983 0.08104 0.12210 0.18680 0.27010 0.37010 0.49420 0.64420 0.96020 1.25700 1.45000 1.52000 1.53000 1.53000 1.53000 1.53000
0.30 0.00081 0.00486 0.01421 0.02772 0.04703 0.07864 0.12010 0.18010 0.24610 0.32310 0.51110 0.67210 0.76800 0.82200 0.83000 0.83000 0.83000 0.83000
0.40 0.00034 0.00238 0.00775 0.01681 0.03152 0.05303 0.08224 0.11800 0.16000 0.25510 0.33900 0.39600 0.42400 0.43000 0.43000 0.43000 0.43000
0.50 0.00019 0.00144 0.00524 0.01191 0.02201 0.03602 0.05462 0.07703 0.13040 0.17600 0.20400 0.21470 0.21800 0.21700 0.21700 0.21700
0.60 0.00116 0.00404 0.00921 0.01661 0.02551 0.03802 0.06501 0.09151 0.10700 0.11450 0.11800 0.11800 0.11800 0.11800
0.70 0.00017 0.00114 0.00361 0.00730 0.01201 0.01821 0.03311 0.04671 0.05700 0.06300 0.06540 0.06550 0.06550 0.06550
0.80 0.00028 0.00130 0.00319 0.00570 0.00876 0.01600 0.02420 0.03030 0.03460 0.03710 0.03850 0.03850 0.03850
0.90 0.00038 0.00126 0.00258 0.00416 0.00803 0.01240 0.01650 0.01940 0.02130 0.02170 0.02170 0.02170
1.00 0.00046 0.00110 0.00196 0.00402 0.00650 0.00880 0.01080 0.01230 0.01270 0.01280 0.01280
1.10 0.00045 0.00089 0.00204 0.00336 0.00471 0.00607 0.00707 0.00767 0.00777 0.00777
1.20 0.00017 0.00040 0.00102 0.00176 0.00256 0.00340 0.00409 0.00445 0.00454 0.00454
1.30 0.00018 0.00052 0.00092 0.00139 0.00193 0.00235 0.00255 0.00260 0.00260

Table 5: Interpolated cross sections f/σinel as functions of pT and ylab for six values of log(s),
with feed-down subtraction. The uppermost ylab values at each energy correspond to y = 0. The
cut-off at lower ylab is given by the availability of data at high cms rapidity where the limit in
f/σinel varies, with increasing log(s), from 0.01 to 0.0001

32



Some corresponding plots are presented in Fig. 27 in the same variables.
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Figure 27: Interpolated cross sections f/σinel as functions of pT and ylab for six values of log(s),
from the lower limit corresponding to

√
s = 3 GeV to the highest ISR energy at

√
s = 63 GeV

8 Comparison of the global interpolation to the reference data

This section will compare the multitude of data points obtained by the 20 reference
experiments with the global interpolation in a quantitative way showing, at each energy, the
cross sections as functions of ylab and pT as well as the residual distributions of the respective
data points with respect to the interpolation. This includes the mean value and standard deviation
in units of ∆/σ where ∆ is the deviation from the interpolation and σ gives the statistical error
of each point. The following figures will, for clarity, show two experiments per page with,
whenever indicated, some remarks.

8.1 Bubble chamber and NA49 data
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8.2 ISR data

As the ISR data have not been corrected for feed-down, Sect. 4.3.3, the data comparison
has to be performed with respect to the general interpolation including feed-down contributions,
Sect. 7. The four independent experiments, [18–25], do not cover the phase space in a continu-
ous fashion but define a range of high ylab or central rapidity [19,21,24], intermediate ylab below
2 [20, 25] and the forward rapidity region down to ylab = -0.5 [18, 22, 23]. The corresponding
general interpolation has therefore to rely on the fact that the normalization of the cross sections
is precise to a percent level, Sect. 4.3.3, and that the data benefit from an overlap with the bub-
ble chamber and NA49 data. In this respect the lack of coverage in rapidity between y ∼ 0 and
y ∼ 2 needs special attention. While in fact [19] gives data up to rapidity 1.4 there is evidently
an experimental problem with these results as shown in Fig. 36.
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Figure 36: a) Ratio Ry = f(y)/f(0) of the forward cross sections [19] to the central ones as
a function of rapidity, averaged over pT , for three ISR energies between 31 and 53 GeV. The
full line is given to guide the eye; b) The y dependence of Ry for the general interpolation at
pT = 0.3 GeV/c for the same ISR energies including the NA49 result at

√
s = 17.2 GeV

There is a systematic, s-independent, drop of the measured cross sections which con-
tradicts the expected development of the rapidity plateau width, Fig. 36b), with cms energy.
Instead the results come close to the rapidity distribution at

√
s = 17.2 GeV.

A further problem is apparent in the data [19] at
√
s = 23 GeV. Here the cross sections

show a sharp drop in the range 0.4 < pT < 1 GeV/c with respect to the general interpolation
with deviations up to 30% as presented in Fig. 37.

Similar deviations are also observed for kaons [52] and protons. The seven data points
concerned have been eliminated from the interpolation.

The following Figs. 38 to 40 show the comparison of the ISR data with the global inter-
polation as mentioned above without feed-down correction.

Although the phase space coverage of the data might seem rather restricted it should
be remembered that the lower energies, Fig. 38 and 39a, bracket the reference data at 158 and
400 GeV/c beam momentum (Fig. 35) which strongly constrains the overall interpolation. The
data at 1078 and 1507 GeV/c beam momentum (Figs. 39b) and 40) on the other hand feature
a more extensive coverage especially in forward direction. In this context it should be stressed
again that the ISR data are unique both in phase space extent and in mutual consistency and
precision as compared to the more recent results from higher energy colliders discussed in
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Figure
40:
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Sect. 11 below.

8.3 Reliability and overall precision of the global interpolation scheme for the
reference data

Three main features of the comparison of the experimental results [8]– [20], Tab. 1, with
the global interpolation scheme discussed above are presented in Fig. 41 as a function of log(s).
The first two panels show that the data comply with the expectation as far as the normalized
residuals ∆/σ are concerned. Both the averages 〈∆/σ〉, Fig. 41a, and their variances, Fig. 41b,
comply within errors with the expectation values 0 and 1. The mean deviations proper, shown
in percent in Fig. 41c, are compatible with zero within an error margin of less than ±5%.
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Figure 41: a) mean deviation 〈∆/σ〉 from the global interpolation per experiment as a function
of log(s), b) variance of the ∆/σ distributions as a function of log(s), c) mean value of the
percent deviation between the experimental results and the global interpolation as a function of
log(s)

The fact that the percent deviations stay below ±5% is to be considered as an important
result of this study, keeping in mind that the data for none of the reference experiments had to
be re-normalized or modified.

9 Comparison of the global interpolation to the spectrometer data (Tab. 2)

As general remark concerns the absence of feed-down corrections for all the spectrome-
ter experiments. The comparison has therefore to be made to the global interpolation including
feed-down. A further remark concerns the normalization problem. As already shown in Fig. 4
there is, in sharp contrast to the reference data, a very wide range of normalization factors to be
applied to the measured cross sections in order to bring them into consistency with the reference
data. The fact that these factors have a mean value at 1 implies that indeed there is no systematic
trend eventually putting into doubt the normalization of the reference sample. In the following
some remarks concerning each experiment will be mandatory.

9.1 The data of Melissinos et al. [26] at 3.67 GeV/c beam momentum

This is at the same time the earliest (1962) and the lowest-energy experiment in the
present comparison. Data were obtained at four lab angles of 0, 17, 32 and 45 degrees. As
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the latter two angles correspond to cms rapidities of about ±0.17, the corresponding data have
been averaged. The data at 0 degrees are, together with [28], the only existing measurements at
pT = 0 GeV/c. Fig. 42 shows the resulting comparison to the global interpolation. The distri-
bution of the point-by-point deviations ∆, inset a), is offset from zero by +24% which is by a
factor of 1.5 above the the normalization error given by the authors.
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Figure 42: Cross sections f/σinel as functions of ylab and pT at
√
s = 2.98 GeV [26]

Correcting for this offset the residual distribution, inset b), is centred at zero, however
with a broad standard deviation of about 3 units. This indicates further systematic effects (target
length, nuclear absorption and multiple scattering in the detector material) as compared to the
typical statistical error of 5% per data point. The results are nevertheless important in order to
define the cross sections at the lower edge of the cms energy scale used in the present study,
albeit with a somewhat increased systematic error.
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9.2 The data of Akerlof et al. [27] at 12.5 GeV/c beam momentum

The experiment gives 70 data points at two values of constant pcm
L and three values of

constant pT which have to be interpolated to the binning scheme in pT used in this paper.The
result is shown in Fig. 43.
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Figure 43: Cross sections f/σinel as functions of ylab and pT at
√
s = 5.0 GeV [27]

The distribution of the differences to the global interpolation, insert a) in Fig. 43, shows a
mean relative factor of 1.1 corresponding to an offset of about +10% indicating a normalization
error which is a factor of two above the value given by the authors. After correcting for this
offset the residual distribution is centred at zero with a standard deviation of 1 indicating a
rather perfect agreement with the global interpolation.
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9.3 The data of Dekkers et al. [28] at 18.8 GeV/c beam momentum

The experiment gives 8 data points at lab angle 0 mrad and 7 data points at 100 mrad as a
function of plab. The latter data may be interpolated to the standard pT values between 0.05 and
0.95 GeV/c. Whereas the 0 mrad data comply well with the global interpolation, the 100 mrad
data show an important upward deviation with a broad distribution centred around a factor of
0.85, inset a) of Fig. 44. This factor depends strongly on pT in an approximately linear fashion,
inset b). Correcting for this dependence, the residual distribution is centred at 0 with variance
1, inset c) complying well with the global interpolation.
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Figure 44: Cross sections f/σinel as functions of pT and ylab at
√
s = 6.08 GeV [28]
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9.4 The data of Allaby et al. [29] at 19.2 GeV/c beam momentum

87 data points have been measured at 6 values of Θlab between 12.5 and 70 mrad as a
function of plab. After interpolation in pT the resulting ylab distributions are shown in Fig. 45.
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Figure 45: Cross sections f/σinel as functions of pT and ylab at
√
s = 6.14 GeV

A complicated pattern of deviations becomes visible. First of all a large mean posi-
tive offset of a factor of 1.3 is apparent, inset a). The standard deviation of this offset is with
15% five times larger than the statistical error. There are two additional effects to be taken
into account. Firstly there is a strong additional upward deviation for the measurements below
plab = 5.5 GeV/c, see the line in Fig. 45. The corresponding data are eliminated from the com-
parison. Secondly there is a strong dependence of the deviations on pT , inset b) where the factor
varies between 1.5 and 1.1 over the measured range. Correcting for this second-order effect
which is opposite to the one seen in Sect. 9.3, the residual distribution, inset c), is centred at
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zero but with a variance which is indicating, with a value of 1.77, further sizeable systematic
effects.

9.5 The data of Dekkers et al. [28] at 23.1 GeV/c beam momentum

The experiment presented under Sect. 9.3 gives also five data points at pT = 0 GeV/c as
a function of plab as shown in Fig. 46.

Again the data comply well with the global interpolation without a discernible offset in
view of the systematic errors of about 6–10%.
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Figure 46: Cross sections f/σinel at pT = 0 GeV/c as a function of ylab at
√
s = 6.72 GeV

9.6 The data of Amaldi et al. [30] at 24.0 GeV/c beam momentum

This is an extension of [29] to 24 GeV/c beam momentum and to lab angles up to
147 mrad. Again a complex scheme of normalization problems and further systematic devia-
tions becomes visible in Fig. 47.
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Figure 47: Cross sections f/σinel as functions of pT and ylab at
√
s = 6.84 GeV

Similar to [29] an offset factor of 1.20 is apparent, inset a). In addition there are large
downward deviations basically for the lab angles above 87 mrad (line in Fig.47) which lead to
unphysical local maxima in the rapidity region around 0.7. These deviations reach -40% at the
largest lab angle. Eliminating this critical region, a strong pT dependence similar to Sect. 9.4
is visible, inset b). Applying the corresponding correction the residual distribution, insert c), is
centred at zero. The standard deviation of 1.63 indicates however further sizeable systematic
effects. It should be mentioned here that similar inconsistencies have been demonstrated in the
study of the cms energy dependence of charged kaon production [52].

9.7 The data of Beier et al. [31] at 24.0 GeV/c beam momentum

16 cross sections at rapidity zero are given in the range from pT = 0.525 to 1.375 GeV/c,
Fig. 48. The factors with respect to the global interpolation, inset a), show two distinct groups.
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Up to 0.925 GeV/c there is good agreement, whereas the data above this value group around
a factor of 1.18. On the other hand the data of Blobel et al. [9] follow the interpolation well
in this region after being increased by the feed-down component. After correcting for this (un-
explained) break in the data the residual distribution, inset b), is well centred at 0 with an rms
corresponding to 1.
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Figure 48: Cross sections f/σinel as a function of pT at rapidity 0 and
√
s = 6.84 GeV

9.8 The data of Anderson et al. [11, 32] at 29.7 GeV/c beam momentum

Cross sections at three lab angles of 15, 96 and 160 mrad as well as a momentum dis-
tribution at pT = 0.2 GeV/c have been measured, Fig. 49. The relative factor to the global inter-
polation is centred at 1.09, inset a) to be compared to a statistical error of about 5%. Correcting
for this offset the residual distribution is well centred with an rms compatible with 1, inset b).
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This gives a good example of a precision spectrometer experiment to support and verify the ref-
erence data especially in the forward rapidity and larger pT regions. This is especially valuable
in comparison with the neighbouring experiment [30], Sect. 9.6 which has been performed at
about the same time.
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Figure 49: Cross sections f/σinel as functions of pT and ylab at
√
s = 7.58 GeV

9.9 The data of Abramov et al. [33] at 70 GeV/c beam momentum

These data cover, at rapidity zero, a large range of pT values up to 5 GeV/c of which five
points fall into the pT range of this study, Fig. 50.

In view of the large normalization uncertainty of 20% the data comply well with the
global interpolation, inset a), with a slight offset of 3.5%. After application of a small correction
of 0.965 the residual distribution is well centred and has an rms of 1.40 with respect to the
average statistical error of 3.5%, inset b).
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Figure 50: Cross sections f/σinel as a function of pT at rapidity 0 and
√
s = 11.5 GeV

9.10 The data of Brenner et al. [34] at 100 and 175 GeV/c beam momentum

This experiment provides 25 and 23 cross sections at 100 and 175 GeV/c beam momen-
tum, respectively with statistical errors of about 5% ranging up to 50% in some cases, Fig. 51.

These results are of particular interest as they bracket the NA49 data in cms energy,
albeit confined to the forward region at xF ≥ 0.3. In both cases the deviations from the global
interpolation are small with only -1% and -8.5% respectively (panels a) compared to the claimed
normalization error of 7%. After renormalization the residual distributions are well centred
(panels b) with rms values which comply with the statistical errors within one (175 GeV/c) and
two (100 GeV/c) standard deviations.
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9.11 The data of Johnson et al. [35] at 100, 200 and 400 GeV/c beam momentum

The experiment gives about 80 cross sections over a wide range of rapidities at the three
beam momenta of 100, 200 and 400 GeV/c for the pT values of 0.25, 0.5, 0.75 and 1 GeV/c.
With statistical errors in the range of typically 3% to 4% these data are of considerable interest
as they span the region from SPS to ISR data. The distribution of the difference factors with
the global interpolation shows however a broad distribution with a mean value of 14.7% and a
variance of 15.1%, Fig. 52, which is considerably above the given systematic error of 7%.

A detailed inspection of the differences reveals a systematic dependence on pT rather
than rapidity or beam momentum as shown in Fig. 52 with mean deviations which are in general
positive, ranging from -4 to 29%.
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Figure 52: Distributions of difference to the global interpolation for all data points and sepa-
rately for the four pT values and the three beam momenta

Correcting for the respective normalization factors the ylab distributions are shown in
Fig.53. The residual distributions are well centred but the sizeable standard deviations indicate
further systematic effects.
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The data corrections described above are an example of a complex pattern of systematic
effects which go beyond a simple overall normalization error. The connected manipulations
are nevertheless useful to show the agreement between spectrometer experiments and reference
data in the important transition from SPS/Fermilab energies to the ISR especially in the forward
and intermediate rapidity ranges.

9.12 The data of Antreasyan et al. [36] at 200, 300 and 400 GeV/c beam momentm

Only four data points of this celebrated experiment fall within the pT range of this pa-
per: at pT = 0.77 GeV/c for plab = 200, 300 and 400 GeV/c, and at pT = 1.16 GeV/c only
for 400 GeV/c beam momentum. As the measurements were done at a constant lab angle of
77 mrad, the corresponding rapidity values vary between 0.21 and -0.13. Fig. 54 shows the
three data points at pT = 0.77 GeV/c with respect to the reference data.
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Figure 54: Ratio of data from [36] and global interpolation at pT = 0.77 GeV/c at 200, 300 and
400 GeV/c beam momentum indicating the corresponding rapidity values
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An average downward shift by a factor 0.8 corresponding to -25% is apparent. This shift
complies with the one already found for protons [53] also indicated in Fig. 54.

9.13 Summary of the results from spectrometer experiments

The following features may be extracted from the discussion of the 12 experiments in
Sect. 9.1 to 9.12:

1. The main reason for the deviations from the global interpolation is given by the normal-
ization. In fact the mean factors between data and interpolation span a wide range from
0.75 to 1.30 with an average only slightly below 1, Fig. 55.
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Figure 55: Distribution of factors between data and global interpolation for the spectrometer
experiments Sect. 9.1 to 9.12

This means that there is no indication of an overall shift with respect to the reference
data which do not need re-normalization. It also means that there is a general tendency
to under-estimate the normalization errors.

2. For about half the experiments there are additional systematic aberrations [26, 28–31,
35]. This has to do with the fact that the experiments generally do not cover a major
fraction of phase space in one go but only see very limited areas one at a time with the
danger of varying corrections and time-dependent instability.

3. The detailed scrutiny of each experiment indicates that a precision evaluation of the
behaviour of inclusive cross sections is not possible without the presence of reliable
reference data allowing for the judgement and correction of systematic deviations.

4. After correction for the observed systematic effects the log(s) dependence of the char-
acteristic quantities 〈∆/σ〉 and σ(〈∆/σ〉) as well as the mean deviations in percent are
shown in Fig. 56 to be compared to Fig. 41 for the reference experiments.
Although the mean residuals are centred around the expectation value 0 (Fig. 56a)

the variances tend to be sizeably above the expected value 1 for about half the experiments
(Fig. 56b). These larger fluctuations indicate further systematic effects in the data which are not
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taken out completely by the applied re-scaling. The mean deviations in percent, Fig. 56c, are
nevertheless in most cases close to zero with some exceptions around up to ±6%.

10 Discussion of the NA61 results

10.1 Data without active particle identification [37] (Tab. 3)

NA61 has measured inclusive cross sections at 20, 31, 40, 80 and 158 GeV/c at the
CERN SPS, using basically the NA49 detector [39]. The results [37] were obtained without the
use of the available particle identification just reconstructing negative tracks (h−), and using
available microscopic models in order to subtract the K− and p yields .The results are binned
in the pT range from 0.026 to 0.575 GeV/c in steps of 0.05 GeV/c,from 0.65 to 0.95 GeV/c in
steps of 0.1 GeV/c and from 1.125 to 1.375 GeV/c in two steps of 0.25 GeV/c. The rapidity
range extends from 0.1 to 2.9 (3.5) units at 20 (158) GeV/c beam momentum, in steps of 0.2.
This yields about 200 to 250 data points per energy. The number of negative pions ranges from
23 k at 20 GeV/c to 500 k at 158 GeV/c beam momentum (Tab. 3).

As the rapidity bins and most of the pT bins do not coincide with the ones used for
the global interpolation (Sect. 4.1), the data have to be interpolated in both variables. This
interpolation is obtained by eye-ball fits (Sect. 4.2) simultaneously in transverse momentum,
rapidity and interaction energy thus obtaining a reduction of the statistical errors which reach
up to 30% in the high pT and high rapidity regions. The interpolation is presented in Fig. 57 for
the two beam energies 20 and 158 GeV/c including in the insets the distributions of the reduced
residuals ∆/σ.

The normalized residual distributions show the expected Gaussian distributions centred
at zero with an rms of one unit within errors. These distributions may now be interpolated in
pT at fixed rapidity to the standard pT binning and ultimately plotted as functions of ylab. At
this stage a comparison with the global interpolation becomes possible as shown in Figs. 58
to 62. This comparison is shown in steps of 0.1 GeV/c in transverse momentum as a function
of ylab with insets giving the distribution of the relative difference with respect to the global
interpolation.
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Figure 62: Interpolated cross sections f/σinel [37] as functions of pT and ylab at 158 GeV/c beam
momentum (broken lines) compared to the global interpolation (full lines) in steps of 0.1 GeV/c
in pT . The insets show the distribution of the factors relative to the general interpolation for all
pT values and for pT > 0.7 GeV/c separately

This comparison reveals a complex pattern of systematic deviations. The NA61 data
are systematically higher than the global interpolation with an important dependence on beam
momentum. The difference distributions show a strong increase with decreasing interaction
energy and develop long tails which reach up to more than 100% at the lower energies. This
increase is centred at higher transverse momenta as shown in the insets for pT > 0.7 GeV/c.
Only at pbeam = 158 GeV/c where the data are directly comparable to the NA49 results [17] the
differences stay below the ±20% level.

A detailed inspection of this inter-dependence is presented in Fig. 63 where the percent
deviations are shown as functions of ylab for fixed pT .

There is only one possible experimental effect that might explain the large deviations:
the momentum scale. The field map of the NA49 detector has been established for the highest
beam momentum available at the CERN SPS for Heavy Ion interactions which is 158 GeV/c.
If the central solenoidal fields are scaled down with decreasing beam momentum without re-
establishing detailed field maps, the change of the corresponding stray fields will decrease the
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field integral such that the momenta are over-estimated. As the yield distributions at fixed trans-
verse momentum are strongly non-linear in plab, a momentum error will lead to a yield deviation
which typically increases with increasing lab momentum. This is evident from the distributions
shown in Fig. 64a) at pbeam = 31 GeV/c for a few values of pT .

The application of a constant shift in lab momentum of +3% at pbeam = 31 GeV/c indeed
reproduces the main features of the observed deviations (Fig. 63) as presented in Fig. 64b).
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Figure 64: a) π− yields dn/dplab as a function of plab for beam momenta of 31 GeV/c and trans-
verse momenta of 0.3, 0.6 and 1 GeV/c; b) predicted changes in percent of the cross sections
for 3% upward modification of the momentum scale starting from the global interpolation, as a
function of ylab at fixed pT , for pbeam = 31 GeV/c

The systematic increase of the deviations with decreasing interaction energy is apparent
from Figs. 65–68 where the cross sections are compared to the global interpolation as functions
of log(s) and pT for four values of ylab.

The evidence presented in the preceding Figures leads to several conclusions:
1. The NA61 data show deviations from the general interpolation on a scale which goes

beyond anything that has been seen in the detailed data analysis of the 30 experiments
presented in Sect. 9 above.

2. The authors claim systematic uncertainties on the level of 5–6 percent.
3. Although these errors exceed the ones given by the reference experiments by factors

of two to three they are completely insufficient to explain deviations which reach more
than 100 percent.

4. Neither modifications of the applied corrections nor the uncertainties involved in the
necessary interpolations may reach the observed levels of aberrations.

5. The deviations have systematic and smooth dependencies on the three kinematical vari-
ables pT , ylab and log(s), in particular visible in the log(s) scale, Figs. 65–68.
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10.2 NA61 data with particle identification [38]

Reference [38] uses the same raw data as [37]. The bin size in pT is increased to
0.1 GeV/c centred at values corresponding to the global interpolation but limited, with the ex-
ception of pbeam = 158 GeV/c, to a range below 0.95 GeV/c strongly decreasing with increasing
rapidity. The total number of bins is thus reduced by factors between 2 and 4. As this pT bin-
ning corresponds to the one used for the reference data and for the interpolation of the h− data,
Figs. 58–62, a direct comparison between the two NA61 data sets becomes possible. This is
shown in Figs. 69a), 70–73. Note that the full lines in these figures describe the NA61 h− data.
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Figure 69: a) Cross sections f/σinel [38] with particle identification as functions of pT and ylab

compared to the interpolation of the NA61 h− data (full lines) for 20 GeV/c beam momentum;
b) coverage in the y/pT . The h- acceptance is shown in comparison as the light grey area

A first remark concerning the results of [38] is the very drastic reduction of the phase
space coverage compared to the h− data [37] as given by the full lines. This is obviously due to
the limited range of the identification methods (energy loss and energy loss plus time-of-flight
(TOF)). This leads at low beam momentum to a split between the low and high rapidity regions.
There is as well a general lack of data at low pT and low rapidity. Rather large statistical errors
in the dE/dx + TOF area indicate drastic fiducial cuts imposed in addition to the ones applying
to the h− tracking. This is borne out by the coverage in the y/pT plane shown in Fig. 69b).

A second remark concerns the sizeable deviations from the h− results [37] given as the
distribution of relative factors in the insets of Figs. 69–73. The possible result of particle iden-
tification beyond the subtraction of the K− and p contributions derived from model predictions
(Sect. 10.1) could at most make up a few percent at low and medium beam momenta. The ob-
served relative factors between the two data sets span a wide range from 0.7 to 1.6 that cannot
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possibly be explained by differences in particle identification.
A third remark concerns the deviations from the global interpolation of the reference

data. The differences shown in Figs. 69–73 apply to the internal comparison of the NA61 results.
It should be remembered that the h− results of NA61 are already way above the reference
data. The systematics of these deviations has therefore to be added to the results of the internal
comparison.

Although there is a direct overlap of measured bins in the pT range from 0.65 to
0.95 GeV/c no attempt has been made by the authors to compare the two data sets at least
in this restricted area.

10.3 Conclusion concerning the NA61 results

The NA61 experiment is using the NA49 detector [39]. This is a state-of-the-art detector
system deploying two large superconducting magnets and four large Time Projection Chambers
with a total drift volume of more than 40 m3. In the context of this paper the NA49 results [17]
at 158 GeV/c beam momentum make part of the reference experiments (Tab. 1) which form
the basis for a precise description of π− yields as functions of the three inclusive variables,
Sects. 2.3 and 2.4.

The NA61 experiment has aimed at extending the range of beam momenta from
158 GeV/c down to 20 GeV/c in four steps. This is in principle a welcome effort given the high
statistical and systematic precision achievable with this detector as demonstrated by NA49.

In the range of beam momenta mentioned above there are, however, available results
from no less than 25 preceding experiments, Tabs. 1 and 2, which date back by up to 50 years,
as shown in Fig. 3. These results have been analysed in the preceding Sections where it has been
demonstrated that a consistent global interpolation of all these results may be achieved with an
overall systematic precision of about 2%.

In contrast the NA61 results show large deviations from this reference as demonstrated
in Sects. 10.1 and 10.2 above. In fact the statistical errors are just comparable and the systematic
uncertainties larger by factors of 2 to 3 than those of the preceding work as far as the reference
experiments are concerned.

11 Data in the range of p+p colliders from RHIC to LHC energies

The extension of the interaction energy beyond the ISR region meets with two important
constraints:

– The event selection is generally based on double arm triggering in restricted phase space
areas. It therefore does not fulfill the criterion of inclusiveness over the full inelastic
cross section.

– The phase space coverage for identified hadrons is drastically reduced to a small area
around central rapidity thus excluding the complete forward regions from the inclusive
data sample, with only one exception [43, 44].
The data comparison described in the preceding sections has to rely on the fact that the

data are obtained with an event selection covering the complete inelastic interaction cross sec-
tion. Even small deviations from this condition lead to complex corrections as a function of the
inclusive variables. These corrections are non-calculable and have to be obtained experimen-
tally. An example is given by the NA49 experiment where the trigger cross section deviates
from the total inelastic one by 14%, Sect. 4.3.2. The corresponding corrections have to be ob-
tained by an extrapolation method yielding a pT and xF dependent pattern reaching up to 8% in
the forward hemisphere [17].
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Double-arm triggering as applied by the RHIC and LHC experiments is typically sen-
sitive to about 50–80% of the inelastic cross section. This trigger condition rejects most of the
single and double diffractive events. Strong deviations from the inclusive results described in
the preceding sections have therefore to be expected.

In addition, the phase space coverage is reduced to typically less than one unit of rapidity
which means that already at RHIC (200 GeV) the corresponding xF range is less that ±0.02 at
pT = 1.3 GeV/c. At this energy, the BRAHMS forward spectrometer offers data up to 3.5 units
of rapidity. As shown in Sect. 11.3 even this extended y range just covers the transition from
the central rapidity plateau to the fragmentation area.

Only the PHENIX experiment at RHIC obtained measurements at 62.4 GeV and central
rapidity thus providing a single pT distribution for direct comparison with the results at the
highest ISR energy presented in Sect. 9 above. Beyond this data the list of collider experiments
in Tab. 4 contains results from only 5 collaborations at cms energies between 200 GeV and
13 TeV.

11.1 The data of Adare et al. [42] at
√
s = 62.4 GeV

Double differential cross sections are given in a pseudorapidity range of ±0.35 around
central rapidity. The π− data are not feed-down corrected and are thus directly comparable to
the ISR data at the same energy. In a pT range from 0.35 to the upper limit of 1.35 GeV/c as
addressed in this paper 11 data points are provided as shown in Fig. 74.
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Figure 74: Cross sections f/σinel at
√
s = 64.2 GeV [42] as a function of pT at y = 0, full circles

for π−, open circles for K−. The global interpolation at this energy is given by the full line for
π−, the ISR data for K− [52] by the broken line

It is interesting to also compare the K− and p data [42] to the corresponding ISR data
[52]. For all particle species there are important deviations as a function of pT as shown in
Fig. 75.
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Figure 75: Cross section ratios between the RHIC data and the ISR results as a function of pT
for a) π− (full circles and full line), b) K− (open circles and broken line) and p (full triangles
and full line). The lines are given to guide the eye

The strong decrease of the ratios towards the lower pT limits at 0.35 GeV/c for π−

and 0.45 GeV/c for K− indicates apparative effects in the PHENIX data. The increase towards
higher pT for π− and K− together with a decrease for p might be related to the trigger bias effect
mentioned above. Indeed the trigger cross section – asking for a coincidence between upstream
and downstream counters – corresponds to only 13.7 mb compared to the total inelastic cross
section of 35.8 mb at this energy. This seems to exclude preferentially peripheral collisions in
favour of more central interactions enhancing both the pion and kaon yields. This comparison
alerts to the fact that not only the hadron yields but also particle ratios and integrated quantities
like 〈pT 〉 and dn/dy will be strongly affected compared to the reference data.

11.2 RHIC data at
√
s = 200 GeV and central rapidity

Three experiments give π− data at central rapidity: BRAHMS [44], PHENIX [42] and
STAR [41]. Since the STAR data are feed-down corrected the cross sections have been enhanced
by the feed-down percentage given in [40, 41]. The resulting differential cross sections are
presented in Fig. 76 as a function of pT .

Whereas the data from BRAHMS and PHENIX are equal to within about 10%, the
STAR data are higher by about a factor of 1.6. A similar large discrepancy has been observed for
kaons [52]. As both the STAR and the BRAHMS data are given as densities whereas PHENIX
gives invariant cross sections, the PHENIX data have been divided by the inelastic cross section
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Figure 76: Cross sections f/σinel at
√
s = 200 GeV as a function of pT at y = 0. Full circles

PHENIX [42], open circles BRAHMS [44] and full squares STAR [40,41]. The inset shows the
ratio between STAR and PHENIX data as a function of pT

of 41 mb.
The increase of the cross sections at central rapidity between

√
s = 200 and 63 GeV

shows a behaviour which is incompatible with the s-dependence as measured at the lower ener-
gies up to the ISR. This is presented in Fig. 77.

The evolution with pT shows a similarity with the ratio between the PHENIX and ISR
data at fixed s = 63 GeV, Fig. 75a. This indicates a problem with the RHIC data concerning the
definition of ”inclusive” physics probably connected with the trigger cross sections which are
far below the total inelastic one. This trend will be discussed further in the discussion of the
LHC data, Sect. 11.4.
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of pT . Full lines global interpolation of the reference data, dashed lines RHIC data. The inset
shows the ratio between the PHENIX data at 200 GeV and 63 GeV

11.3 BRAHMS data at forward rapidity [44, 78] for
√
s=200 GeV

BRAHMS is the only RHIC experiment offering results in the rapidity range up to 3.5
units. Fig. 78 shows the cross sections as a function of pT for six values of rapidity from 0 to
3.5.

The cross sections of Fig. 78 are re-plotted as a function of ylab in Fig. 79 (full lines) for
several pT values.

As will be shown in the discussion on scaling, Sect. 12, the lower energy data are nearly
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Figure 78: Cross sections f/σinel at
√
s = 200 GeV as a function of pT for rapidities 0, 1, 1.2,

3.0, 3.3 and 3.5 from BRAHMS [44, 78]

energy-independent in the fragmentation region (ylab < 2). These ylab distributions at ybeam = 3.6
are shown in Fig. 79 as broken lines after re-normalization to the BRAHMS data at y = 0.

Evidently the RHIC data deviate progressively downwards from the expected shape of
the ylab distributions with a suppression factor of about 0.69 at ylab = 1.86 or y = 3.5. It is unclear
whether this might be an apparative effect or the consequence of a change in the trigger bias
effect between central and forward rapidity.

11.4 Data from the LHC

Invariant yields of identified particles in the pT range studied here are provided by the
ALICE and LHC experiments at five cms energies between 0.9 and 13 TeV, Tab. 4. The data are
all obtained at central rapidity within a range of less than 1 unit. They are usually presented as
hadron densities per event
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1

Nev

d2N

dpTdy
(20)

This may be transformed into the invariant densities

1

Nev2πpT

d2N

dpTdy
(21)

which is comparable to the densities

f

σinel
(22)

used for the detailed data comparison in the preceding sections. A principal problem is how-
ever given by the limited efficiency of the double arm trigger systems of the LHC experiments
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described in the introduction to Sect. 11. Systematic deviations between any reasonable extrap-
olation of the lower-energy data and the LHC results have therefore to be expected.

11.4.1 Results from ALICE

The ALICE results [45–49] have been re-evaluated as invariant densities and interpo-
lated to the pT grid used in this paper, pT from 0.1 to 1.3 GeV/c in steps of 0.05 GeV/c. This is
possible as the lowest measured pT values are at 0.11 GeV/c. The results are shown in Fig. 80.
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Figure 80: Cross sections f/σinel from ALICE at
√
s = 0.9 TeV, 2.76 TeV, 7 TeV and 13 TeV as

a function of pT

The given statistical errors are generally below 1% whereas the systematic errors are
typically on the 5–6% level. The pT dependence continues down to pT = 0.1 GeV/c practically
exponentially without an indication of a flattening due to the physical constraint of approaching
pT = 0 GeV/c with tangent zero.

81



11.4.2 Results from CMS

The CMS results [50, 51] have been re-evaluated the same way as the ALICE values.
Here the smallest measured pT is 0.125 GeV/c. The invariant densities are presented in Fig. 81
as a function of pT .
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Figure 81: Cross sections f/σinel from CMS at
√
s = 0.9 TeV, 2.76 TeV, 7 TeV and 13 TeV as a

function of pT

A flattening in the approach to pT = 0 GeV/c is clearly visible below pT ∼ 0.25 GeV/c.
It is somewhat surprising to see the data at

√
s = 13 TeV below the ones at 7 TeV over the

full pT range. As in the case of ALICE the statistical errors are on the level below 1% with an
estimated systematic error of 5–6%.

11.4.3 Comparison of the LHC results

The ratio of the π− densities published by ALICE and CMS is given in Fig. 82.
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√
s = 0.9 TeV, 2.76 TeV, 7 TeV and

13 TeV as a function of pT

The ratio shows a strong increase of up to 1.2 at pT below 0.2 GeV/c and flattens out
to values between 0.7 and 0.8 at higher pT , with the exception of the data at 13 TeV where the
CMS data show a strong internal inconsistency. This situation is reminiscent of the discussion
of the spectrometer results in Sect. 9 above. There the main problem has been the absolute
normalization whereas the experiments definitely triggered on the total inelastic cross section.
At the LHC the large differences which are far outside the given systematic errors seem to be
rather due to the trigger schemes which see only some fraction of the inelastic cross section.

The discrepancy at low pT may be resolved by regarding the approach to pT = 0 GeV/c
in the global interpolation of the lower energy data. Here the yields have been measured down
to pT = 0.05 GeV/c by NA49 [17] and down to pT = 0.044 GeV/c at the ISR [21]. These data
show a marked s-dependence in the range below pT ∼ 0.3 GeV/c. Re-normalizing the data to
1.0 at pT = 0.3 GeV/c one obtains the trend from

√
s = 10 GeV to the highest ISR energy as
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presented in Fig. 83.
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Figure 83: a) Approach of the invariant π− density towards pT = 0 GeV/c from
√
s = 10 GeV

to 63 GeV/c. The data are normalized to 1 at pT = 0.3 GeV/c to clearly bring out the change of
the pT dependence with interaction energy. b) The same for the LHC data from ALICE [45–49]
and CMS [50, 51]

The flattening of the pT distributions at low pT and low log(s) has been explained [17]
by the prevalence of the decay of the ∆(1232) resonance in this region. If plotted at fixed xF the
invariant pT distributions exhibit a typical structure towards pT = 0 GeV/c, showing a secondary
maximum at pT ∼ 0.1 GeV/c and xF ∼ 0.05 as presented in Fig. 84 (NA49).

This structure has been quantitatively reproduced by a superposition of ∆(1232) and ρ
decay, see Fig. 85.

The strong isospin dependence of the effect is notable. It originates from the different
contributions to π+ (∆++ and ∆+) and π− (∆0 and ∆−) which have largely different cross
sections in p+p collisions. With increasing beam momentum this effect is progressively reduced
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Figure 84: Invariant cross section at low transverse momenta as a function of pT at fixed xF for
a) π+ and b) π− produced in p+p collisions at 158 GeV/c [17]
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by the governing decay of higher mass meson and baryon resonances.
The ALICE data follow the trend given at the lower energies quite closely whereas

the CMS data correspond in shape rather to the situation at
√
s = 10 GeV which is definitely

unphysical.

11.4.4 Dependence on interaction energy

Further evidence concerning systematic effects comes from the dependence of the π−

yields on interaction energy over a wide range of pT . The global interpolation of the low energy
data reaching up into ISR energies described in Sects. 7 and 8 shows an evolution of the invariant
densities f/σinel as a function of log(s) which is presented in Fig. 86 together with results from
RHIC and LHC.

The main difference between the lower energy data sets and the RHIC/LHC data is given
by the different trigger schemes. Whereas the reference data are referred to the full inelastic
cross section the higher energy results do not contain most of the diffractive cross section. As
some of the single and double diffraction (considered as ”background”) is still contained there,
the loss of inclusiveness may be estimated to 20–25%. This loss factor is not to be consid-
ered as a constant over the phase space variables, for instance over the pT dependence shown
in Fig. 86. There might be regions with only a small variation between diffractive and non-
diffractive events, whereas other regions might not contain diffractive components at all. This
seems to be borne out in the low-pT part of Fig. 86 where a smooth connection between the ref-
erence and higher energy data seems present for pT values below about 0.4 GeV/c. The RHIC
and LHC data are characterized by a linear yield dependence on log(s) of the form
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1

Nev2πpT

d2N

dpTdy
= A · eB log(s) = A · s0.434B (23)

with the parameter B shown in Fig. 87 as a function of pT .
With pT increasing beyond 0.3 GeV/c an inconsistency develops. It is interesting to

regard this inconsistency for a higher pT range as shown in Fig. 88 up to pT = 3 GeV/c.
In fact even at ISR energy the diffractive production of pions with pT up to 3 GeV/c is

strongly suppressed by the presence of a leading baryon which takes of order 80–90% of the
available energy. This is evidenced by the very strong suppression of the yields with increasing
pT . It could therefore be assumed that no diffractive component is present in this pT range. This
should entail a suppression of the reference data by about 20% with respect to the extrapolation
from the higher energy region as indicated by the dotted lines in Fig. 88.

It should be noted that the pT distribution at log(s) = 2.1 (pbeam = 70 GeV/c) is strictly
exponential with the form f = Ce−5.9pT up to pT = 4 GeV/c. This is not connected to a ther-
mal behaviour nor to an equivalence to transverse parton fragmentation. It is rather the evo-
lution of shape that evolves with plab from a steeper, non-exponential form to a flatter, again
non-exponential one such that incidentally an exponential behaviour results at pbeam around

87



 [GeV/c]
T

p

0 1 2 3

B
0

0.2

0.4

0.6

0.8

1

Figure 87: Exponential slope of the log(s) dependence of the RHIC and LHC data as a function
of pT

log(s)

2 4 6 8

]
-2

d
y
 [

(G
e

V
/c

)
T

N
/d

p
2

 d⋅
) 

T
p

π
2

e
v

1
/(

N

-710

-610

-510

-410

-310

-210
1.5

2.0

2.5

3.0

 [GeV/c]
T

p

PHENIX

ALICE

y = 0

Figure 88: Invariant π− densities f/σinel as a function of log(s) for pT values between 1.5 and
3 GeV/c showing the reference data as full lines and data from PHENIX and ALICE as broken
lines

88



70 GeV/c.

11.4.5 Forward π0 data from the LHCf experiment

LHC data for identified charged hadrons are only available in a very restricted central
rapidity range corresponding practically to a delta function in xF for the pT range up to 1.3
GeV/c, Fig. 2. There are, however, data from LHCf [79, 80] for π0 mesons covering the for-
ward region from about xF = 0.2 up to the kinematic limit in a pT range from 0.025 to about
0.6 GeV/c. It is therefore tempting to compare these data to the pion yields at the upper limit of
interaction energy available for charged hadrons at the ISR at

√
s = 63 GeV. This would span a

factor of about 100 in
√
s and thus provide a sensitive experimental cross-check of the energy

evolution of the hadronic cross sections, particularly also in view of scaling concepts.
Indeed, invoking Isospin Symmetry and the π+/π− ratio Rπ,

Rπ(xF , pT ) =
fπ+(xF , pT )

fπ−(xF , pT )
(24)

the π0 cross sections may be predicted from the measured π− yields as(
f

σinel

)
π0

(xF , pT ) =

(
1 +Rπ(xF , pT )

2

)(
f

σinel

)
π−

(xF , pT ) (25)

Rπ(xF , pT ) has been measured by NA49 [17] with a precision of a few percent. It has
also been shown [17] thatRπ is closely s-invariant up to ISR energy. The ratio at

√
s = 17.2 GeV

is shown in Fig. 89 as a function of xF for the xF and pT ranges covered by LHCf.
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Figure 89: Rπ ratio as a function of xF for pT between 0.05 and 0.6 GeV/c. Panel a) xF from
0.2 to 0.5 in linear scale, panel b) xF from 0.5 to 0.85 in logarithmic scale

It is interesting to compare this evolution with the ratio

Rparton =
(1− xF )3

(1− xF )4
(26)
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as it has been derived from the structure functions of the leading u and d quarks in the respective
π mesons as presented in Fig. 90.
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Figure 90:Rparton as a function of xF (dotted line).Rparton is adjusted to the mean pT at xF = 0.2.
The shaded area gives the limits of the experimental Rπ ratio presented in Fig. 89 between
pT = 0.05 and 0.6 GeV/c

Of course this integrated ratio, based on the standard invariant and exponential pT distri-
butions of parton hadronization, does not exhibit any detail of the pT dependence as it is visible
in the experimental results shown in Fig. 89.

The global interpolation (Sect. 7) reaches up to log(s) = 3.6 corresponding to the highest
ISR energy at

√
s = 63 GeV. The predicted f/σinel for π0 at this energy may now be compared

to the LHCf data. As the ylab range of the interpolation reaches down to -1, the 6 rapidity values
of 8.9, 9.1, 9.3, 9.5, 9.7 and 9.9 are amenable for comparison as presented in Figs. 91 to 93.
At
√
s = 2.76 TeV only the lowest rapidity value at y = 8.9 falls into the accessible range for

comparison as shown in Fig. 94.
In addition to the pT scales the corresponding xF scales are shown on the abscissa.

This demonstrates that it is rather the longitudinal momentum that covers a wide range than
the limited pT region due to the very small cms angle at these high rapidities. It is therefore
erroneous to think about pT distributions as the longitudinal component couples into the yield
dependence in a decisive fashion.

Several points are noteworthy in this comparison:
1. The shape of the pT distributions is rather well reproduced by the predicted π0 yields at

63 GeV.
2. All predicted cross sections lie above the LHCf data. This is in sharp contrast with the

central rapidity region where all LHC cross sections are above the ISR data with a strong
increase as a power of s (23).

3. The interesting transition region between xF ∼ 0 and 0.2 is not (and will not be) acces-
sible to experiment.
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Figure 91: Invariant π0 cross sections f/σinel as a function of pT for rapidities 8.9 and 9.1 at√
s = 7 TeV (data points from LHCf) compared to predicted yields at

√
s = 63 GeV (full lines)
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Figure 92: Invariant π0 cross sections f/σinel as a function of pT for rapidities 9.3 and 9.5 at√
s = 7 TeV (data points from LHCf) compared to predicted yields at

√
s = 63 GeV (full lines)
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Figure 93: Invariant π0 cross sections f/σinel as a function of pT for rapidities 9.7 and 9.9 at√
s = 7 TeV (data points from LHCf) compared to predicted yields at

√
s = 63 GeV (full lines)
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4. The combined statistical and systematic errors of the LHC data are sizeable and reach
values above 20% at the low and high end of the pT scale.
In view of the fact that this experimental comparison covers two orders of magnitude in√

s as opposed to the fact that the present study of π− yields reaches only over about one order
of magnitude from

√
s = 3 to 63 GeV, the relative closeness of the cross sections at the three

energies is rather impressive. The ratios of the cross sections between 63 GeV and 7 TeV and
2.76 TeV are presented in Fig. 95. The ratios

Rσ =
σinel(LHC)

σinel(63 GeV )
(27)

are added as broken lines in the Figure, Rσ = 1.75 and 2.05 for 2.76 and 7 TeV respectively.
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Figure 95: Ratio of invariant cross sections f/σinel between
√
s = 63 GeV and 7 TeV (panel a)

and 2.76 TeV (panel b) as a function of pT at constant rapidity. The ratios of the corresponding
total inelastic cross sections Rσ are indicated as broken lines

Notwithstanding the relatively large error margins, these ratios reveal two trends:
1. With increasing rapidity the ratios increase and approach the corresponding inelastic

cross section ratios at 2.06 at 7 TeV and 1.74 at 2.76 TeV.
2. A similar trend is visible with increasing pT .

If multiplied with the cross section ratios of 1.75 and 2.05 at
√
s = 2.76 and 7 TeV

respectively, the LHCf data approach the ISR prediction rather closely at the lowest ylab values
available for comparison at ylab = -0.91 and -0.98 respectively as shown in Fig. 96.

This seems to correspond to the questions raised in connection with energy scaling in
Sect. 2.5. Are there first indications that the scaling behaviour might be different in different
regions of phase space? Is it the cross section yield per inelastic collision f/σinel or rather the
invariant cross section f itself that should be compared? This question will again be invoked in
the following section on scaling.
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12 Scaling

The concept of ”scaling” or, better, ”scale invariance”, has attracted quite some attention
from the early days of particle physics. Indeed, if a quantity in the inclusive sector can be shown
to be independent of one of the inclusive variables, one may hope to obtain further, model-
independent information about the underlying production process.

Historically it has been the independence of particle yields on the interaction energy
parameter s (6) that has been invoked. As early as 1969 when the first inclusive measurements
of hadron yields became available, two conjectures in this sense have been published [1], [81].
Both conjectures concern the longitudinal momentum components and both are based on results
from lepton-nucleon scattering but come to rather different conclusions.

Reference [81] evokes ”limiting fragmentation” of the target or projectile nucleons in
their respective Lorentz frames as a function of longitudinal momentum in the high energy limit.

Reference [1] deals with the high energy limit of particle production as a function of
the cms longitudinal momentum if referred to the maximum available momentum (12) and
has obtained the name tag of ”Feynman x” in analogy to ”Bjorken x” in deep-inelastic lepton-
nucleon scattering.

Both conjectures make statements concerning the forward/backward regions of phase
space and rely on the notion of ”longitudinal phase space” (7) where the transverse momentum
distributions are sharply (exponentially) limited in contrast to the longitudinal ones which are,
for xF & 0.3, approximately of the form 1

xF
(1−xF )n where the exponent n depends on particle

type, n ∼ 4 for π−.
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Both hypothesis are rather vague as far as numerical predictions of hadronic yields are
concerned. They will be confronted in the following sub-sections with the complete set of π−

data treated in the preceding sections.

12.1 The Hypothesis of Limiting Fragmentation

The approach starts from the excitation of the target and projectile nucleons into (un-
specified) masses M > mp and their subsequent decay

M → n+ 1 (28)

where n concerns secondaries and ”1” specifies a final state nucleon thus ensuring baryon num-
ber conservation. More specifically the following decays of M are considered:

M → p+ π, p+ 2π, p+ 3π, ..., p+ nπ (29)

In this sense the hypothesis is similar to preceding ideas like the ”fireball” [82], ”isobar”
[83] or ”diffraction dissociation” [84] models. It is specific in the sense that it makes a precise
prediction as to the behaviour of particle densities in the target and projectile laboratory systems
in the high energy limit. For this purpose a connection to the scaling limit of inelastic electron-
proton scattering is established where it is shown that the excitation of target or projectile into a
massM approaches a limit at high energy. This connection assumes of course the independence
of target nucleon excitation on the type of projectile particle (”factorization”), one of the many
conjectures contained in [81].

In the target rest frame with the coordinates pT and plab
L , the kinematic limit is de-

scribed by elastic scattering defining a parabola in pT and plab
L centred at plab

L = 0 GeV/c for
protons and negative plab

L for lighter secondaries. For pions the region of interest is defined by
plab
L < 0 GeV/c [81]. At the time of publication, only very scarce experimental data in this area

(which corresponds to the very forward region in the experiments) were available, essentially
for the two beam momenta of 19 and 30 GeV/c. This led to the statement that the expected
limit was already reached at the higher beam momentum, a rather bold claim also in view of the
normalization problems of the data (see Sect. 9).

Given the global data interpolation elaborated above over the wide range of interaction
energies from 3 <

√
s < 63 GeV or 1 < log s < 3.6, a new sensible test of the hypothesis

of limiting fragmentation may be performed. As at the time of publication [81] the interac-
tion cross sections were assumed to be constant, the known energy dependence of the inelastic
cross section represents an additional challenge to any scaling approach, see Sect. 2.5. In the
following Figs. 97–101 therefore both the quantities f/σinel and d2σ/(dplab

L dpT ) are presented
although the variation of σinel over the given s range is only about 20%.

The closeness of the d2σ/(dplab
L dpT ) distributions over the full available range of interac-

tion energies is striking (panels a). This provides strong evidence for the hypothesis of Limiting
Fragmentation. The normalized cross sections f/σinel (panels b) on the other hand spread con-
siderably more with log(s). This indicates a preference for constant invariant cross sections
in this specific area of phase space rather than constant hadronization over the full increasing
interaction area.

A further, more stringent test may be provided by the π0 data of LHCf (Sect. 11.4.5).
Here the predicted π0 cross sections (24), (25) at the NA49 and ISR energies can be compared
to the LHCf data. This corresponds to a range of more than 2 orders of magnitude in

√
s. The

results are presented in Figs. 102–106.
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Figure
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As expected from the discussion of the pT distributions for different large rapidi-
ties in Sect. 11.4.5, the d2σ/(dplab

L dpT ) distributions are surprisingly s-independent for
pT & 0.2 GeV/c up to 7 TeV and for all pT at 2.76 TeV. The convergence with increasing

√
s

improves with decreasing plab
L and pT , see Fig. 95. On the other hand, the f/σinel distributions

split very considerably in these regions.
At this point some general remarks are in place. Pions are in fact rather special items to

be regarded at negative plab
L as it is rather difficult to transport them there. Their yields are orders

of magnitude below the proton ones at low plab
L . Indeed a widespread belief would have it that

pions from resonance decay ((28) and (29)) are all centred at low xF and low pT . This is true
for Λ decay, Figs. 20 and 21 where the pion yields are effectively cut off at pT ∼ 0.3 GeV/c and
xF ∼ 0.3. The Λ is a low-Q resonance in its p+π decay with a mass distribution of zero width.
In contrast, already the K0

S decay with its modest Q of 200 MeV and its symmetric 2π decay
yields pions at large xF and considerable pT , see Fig. 15. For strong decays, the wide mass
distributions with the very long Breit-Wigner tails deconfine the decay pions to cover the full
phase space. This is demonstrated in the Sect. 16 dealing with resonance decay contributions.
Another point is the decay chain p+nπ (29). In a two body decay the center of the pion decay
ellipse is placed with respect to the protons at

〈xπF 〉 ∼
mπ

mp

xF (p) (30)

such that a diffractively produced baryon resonance yields pions with an average xF ∼ 0.15
only. This value moves to smaller xF for multi-pion decays.

As a consequence several general remarks may be made as to the production of pions at
negative plab

L concerning:
(i) Two body decays of high-Q resonances.

(ii) In the decay p+π backward decay of the proton in the overall cms.
(iii) Strong resonance decays with important relativistic Breit-Wigner tails.
(iv) Decays which are symmetric in the decay particle masses.
(v) Contribution of both baryonic and mesonic resonances.

(vi) With increasing interaction energy the rate of low multiplicity decays – especially two-
body decays – is strongly reduced thus de-populating the region of negative plab

L .
The authors of [81] have clearly pointed out points (i) and (ii) claiming that at higher n

(29) the pions will move towards the central rapidity area. As far as resonance mass distributions
are concerned they see only a modest ”widening of the mesa-like structures” in phase space
corresponding to the decay process. Mesonic resonances are not foreseen, nor are decays with
symmetric decay particle masses.

12.2 The hypothesis of Feynman scaling

In his original suggestion [1] Feynman took as well as [81] reference to deep inelastic
lepton-proton scattering, however in a completely different context. In fact the existence of
scaling longitudinal ”structure functions” of proton constituents in this process had just been
established [85] with xBj (Bjorken x) as characteristic variable giving the momentum fraction
of a parton relative to the proton momentum.

The conjecture of Feynman suggested a similar behaviour of secondary hadrons in p+p
interactions if plotted in the fractional longitudinal momentum variable xF = 2pL/

√
s (12)

thus creating an analogy with the partonic structure of the proton. In 1972 Berman, Bjorken and
Kogut [86] predicted in fact partonic scattering in large momentum transfer hadronic interac-
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tions, first with electromagnetic coupling but already foreseeing strong coupling by ”gluons”
with correspondingly much higher cross sections.

The rapid evolution of these ideas into a full-blown theory of the strong interaction
(Quantum Chromodynamics, QCD) cannot be followed here. Unfortunately the application of
QCD is limited, due to the variable strong coupling constant αs, to the perturbative sector of
QCD. This was followed up by Field and Feynman in 1977 [87] for e+e collisions and by
Feynman, Field and Fox in 1978 [88] for the production of hadrons at high pT in hadronic
interactions. A crucial problem in all applications of parton dynamics is the fact that for the
prediction of final state hadronic yields one is invariably confronted with non-perturbative QCD
in the final stage of parton hadronization.

For soft hadronic interactions as they are studied in this paper there are basically two
approaches. Either higher-order QCD is pushed to the limit (”next-to-next-to leading order”)
in order to make predictions at lower and lower pT . Today it is believed that this is possible
down to about 1 GeV/c. Or one assumes colour exchange as the source of hadronic interactions
which leads to the breakup of both participating hadrons into quarks and, in the case of baryons,
diquarks thus connecting the target and projectile systems by ”strings” fragmenting into the final
state secondaries.

This paper does not attempt to refer to any of the practically unlimited number of
”string” models which are today available. These are rather characterized by a large number of
adjustable parameters and very limited predictive power. If for the quark end of the strings ex-
perimental data from leptonic interactions may be invoked, the fictitious diquark systems which
have by the way to ensure baryon number conservation have no referable analogue in different
sectors of particle physics. It is a question why the baryon number should be contained in a
partonic subsystem of the nucleon.

In addition, the point-like interactions assumed to describe the hadronic collisions do not
carry any connection to the fact that hadrons are extended objects where the impact parameter is
a decisive variable for any collision. This is apparent in the sector of peripheral interactions [6]
(”diffraction”) which is not really describable by string models.

In the following the energy dependence of longitudinal π− distributions will be shown.

12.2.1 ylab distributions

It should be remembered that ylab is equivalent to xF (Fig. 1) in the fragmentation zone
for
√
s & 10 GeV and xF & 0.2. The corresponding cross sections are readily available from

the global interpolation, Sect. 7. Both the invariant cross sections f(ylab, pT ) and the yields per
inelastic event, f(ylab, pT )/σinel will be shown.

There is rather precise scaling over a wide range of ylab and pT values. In the higher pT
range there are of course deviations which are just reflecting energy-momentum conservation
at the lower interaction energies. And it is again plotting the invariant cross sections f(ylab, pT )
rather than the yield per inelastic event which gives narrower s-dependences. Extending the s
range up to LHC energies the π0 distributions (Sect. 11.4.5) show corresponding performance
for the invariant cross sections as presented in Figs. 107 – 109 as a function of ylab both for
f(ylab, pT ) and for f(ylab, pT )/σinel. The lowest log(s) value in each plot is given on the lowest-
lying curve. Several points are noteworthy in this context:

(i) Again as in Sect. 12 the invariant cross sections f(ylab, pT ) show a more precise scaling
behaviour than the yields per inelastic event f(ylab, pT )/σinel.

(ii) For medium pT values the spread is only on the few percent level.
(iii) The distributions split up, depending on pT , at different ylab values in the approach to
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Figure 107: π− cross sections as a function of ylab for pT = 0.05, 0.1, 0.2 GeV/c and different
log(s) values in the range 1 < log s < 3.6; a) f(ylab, pT ), b) f(ylab, pT )/σinel. The distributions
for different pT values are successively scaled down by factor of 1/3 for better separation
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Figure 108: π− cross sections as a function of ylab for pT = 0.4, 0.6, 0.8 GeV/c and different
log(s) values in the range 1 < log s < 3.6; a) f(ylab, pT ), b) f(ylab, pT )/σinel. The distributions
for different pT values are successively scaled down by factor of 1/3 for better separation
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Figure 109: π− cross sections as a function of ylab for pT = 1.0, 1.2 GeV/c and different log(s)
values in the range 1 < log s < 3.6; a) f(ylab, pT ), b) f(ylab, pT )/σinel. The distributions for
different pT values are successively scaled down by factor of 1/3 for better separation
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Figure 110: π0 cross sections as a function of plab
L for pT = 0.1, 0.2, 0.3, 0.4, 0.5 GeV/c for NA49

and ISR (predictions) and LHC energies; a) f(ylab, pT ), b) f(ylab, pT )/σinel. The distributions for
different pT values are successively scaled down by factor of 1/3 for better separation
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the non-scaling central region (Sect. 12.3).
(iv) With increasing pT the distributions at the lowest logs values indicated in the Figures

move down. This is an effect of energy-momentum conservation.
The corresponding distributions for the π0 data from LHCf [80] are shown in compar-

ison with the π0 predictions from NA49 and ISR(63 GeV) in Fig. 110 for the invariant cross
sections f(ylab, pT ) and f(ylab, pT )/σinel. The approach to scaling over this very extended

√
s

range with increasing pT and decreasing ylab (Figs. 95 and 96) is clearly evident.

12.2.2 xF and x′F distributions

The global interpolation in (ylab, pT ) (Sect. 4.2) has been interpolated to constant xF
values for a grid of 24 xF and the standard 26 pT values. As the distributions f(xF , pT )/σinel

are rather steep at low xF the following bins have been used:

xF = 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.25,
0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85

An overall impression of the xF distributions is given by Fig. 111 for four log(s) values
where the xF definition, see (12):

xF =
2pL√
s

(31)

is used. As xF is defined in the region 0 < xF < 1, this allows a unified overview over the
complete phase space at each energy.

Three distinct zones are distinguishable:
(i) The central area at xF = 0 where an increase of the cross section by one order of magni-

tude over the range 3.6 <
√
s < 50 GeV is visible.

(ii) The forward or ”fragmentation” area at xF & 0.2 where the cross section is about s-
invariant.

(iii) An intermediate area at 0.05 < xF < 0.2.
The central and intermediate zones will be treated in the subsequent Sect. 12.3. Several

features of the distributions shown in Fig. 111 are noteworthy:
(a) The cross sections at pT < 0.2 GeV/c are hardly distinguishable in the intermediate and

forward regions.
(b) At the lowest value at log(s) = 1.0 there are no data for pT > 0.75 GeV/c.
(c) At this energy the distributions are shrinking in their xF range with increasing pT .
(d) For pT & 1 GeV/c there is a clear change in the shape of the pT distributions.

A more detailed view of this situation is presented in Figs. 112 to 114 where the invariant
cross sections f(xF , pT ) and f(xF , pT )/σinel are shown as a function of xF for seven values
of log(s) between 1 and 3.4. For the higher range of log(s) there is again a smaller spread
of the yields for f(xF , pT ) than for f(xF , pT )/σinel. However, for

√
s below about 12 GeV

(log(s) . 1.8) there is an explicit non-scaling effect that reduces the yields especially at higher
pT values. In addition, the xF range in the low-s range is confined to successively smaller xF
ranges with increasing pT .

This has to do with the definition of xF (31) being in principle only valid in an infinite
momentum frame – as is the definition of xBj for partons. For finite energies, the maximum final
state momentum pLmax is s-dependent and unequal to

√
s/2 as energy-momentum, charge and

baryon number conservation have to be taken into account. This leads, for final state protons, to
the value
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Figure 111: f(xF , pT ) as a function of xF for the four interaction energies log s) = 1, 1.8, 2.6,
3.4 or

√
s = 3.2, 7.9, 20.0 and 50.1 GeV. The full lines give the global interpolation for pT values

between 0.05 and 1.3 GeV/c
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Figure 112: a) f(xF , pT ) as a function of xF for pT = 0.05, 0.1 and 0.2 GeV/c for the global
interpolation at log(s) values from 1.0 to 3.6. The lines at subsequent pT values are scaled down
by 1/3 for better separation. b) f(xF , pT )/σinel
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Figure 113: a) f(xF , pT ) as a function of xF for pT = 0.4, 0.6 and 0.8 GeV/c for the global
interpolation at log(s) values from 1.0 to 3.6. The lines at subsequent pT values are scaled
down by 1/3 for better separation. b) f(xF , pT )/σinel
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Figure 114: a) f(xF , pT ) as a function of xF for pT = 1.0 and 1.2 GeV/c for the global interpo-
lation at log(s) values from 1.0 to 3.6. The lines at subsequent pT values are scaled down by 1/3
for better separation. b) f(xF , pT )/σinel
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pmax
L (pT = 0) =

1

2

√
s− 4m2

p 6=
1

2

√
s (32)

For π− production, there have to be, in addition to the π− mass, 2 nucleons for baryon
number conservation and at least one π+ for charge conservation in the final state,

pmax
L (pT = 0) =

1

2
√
s

√
s− (2mπ + 2mp)2

√
s− 4m2

p (33)

see [30] for further explanations. The definition of xF should therefore be replaced by

x′F =
pL
pmax
L

(34)

see also (14). This leads to sizeable deviations from definition (31) at log(s) < 3 and subse-
quently to a dependence on pT as shown in Fig. 115.
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Figure 115: The ratio x′F /xF as a function of log(s) for different pT values

This traces the corresponding deviations from the correlation between xF and ylab

shown in Fig. 1. A tolerable correctable deviation is only reached for the SPS energy range√
s & 15 GeV. In fact the values pmax

L (s, pT ) are corresponding to a scale ymin
lab (s, pT ),
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ymin
lab = ybeam −

1

2
ln
E + pmax

L

E − pmax
L

(35)

with

E =
√

(pmax
L )2 + p2

T +m2
π (36)

This is quantified in Fig. 116 where the invariant cross section f(ylab, pT ) is presented
as a function of ylab for the relatively low interaction energy

√
s = 4.0 GeV or log(s) = 1.2. For

each pT the corresponding ymin
lab value is indicated as a vertical line on the abscissa.
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Figure 116: f(ylab, pT ) as a function of ylab for pT values between 0.1 and 1.1 GeV/c in steps of
0.1 GeV/c and log(s) = 1.2. For each pT the corresponding ymin

lab is indicated as a vertical line

The approach of the measured cross sections to the limiting ylab values as imposed by
the conservation laws is clearly visible.
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Figure 117: f(x′F , pT ) as a function of x′F for pT = 0.05, 0.1 and 0.2 GeV/c for the global
interpolation at log s values from 1.0 to 3.6. The plots at subsequent pT values are scaled down
by 1/20 for better separation. The NA49 interpolation at log(s) = 2.48 is shown as a green line
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Figure 118: f(x′F , pT ) as a function of x′F for pT = 0.4, 0.6 and 0.8 GeV/c for the global inter-
polation at log(s) values from 1.0 to 3.6. The plots at subsequent pT values are scaled down by
1/5 for better separation. The NA49 interpolation at log(s) = 2.48 is shown as a green line
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The invariant cross sections f(x′F , pT ) are shown in Figs. 117 to 119 as a function of x′F
for 8 values of pT .

The π0 data of LHCf [80] are presented in Fig. 120 as a function of x′F for different pT
values. As already evident from the ylab distributions (Fig. 110), scaling in x′F is approached for
the higher x′F and pT regions if plotting the invariant cross sections f(x′F , pT ).
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Figure 120: Invariant π0 cross sections f(x′F , pT ) as a function of x′F for pT values between 0.1
and 0.5 GeV/c

For the lower x′F and pT regions the data exceed the NA49 and ISR results by factors of
up to 1.7 corresponding to about 73% of the ratio of the inelastic cross sections. This indicates
that the scaling data come from a constant ”core” area of the increasing proton size with a
transition region approaching a major fraction of the total interaction zone at lower x′F and pT .
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12.3 The non-scaling central region

The x′F distributions of Figs. 117 to 119 which are extended to the complete kinematical
range clearly demonstrate a non-scaling region at low x′F with a sharply defined transition to
approximate scaling located between xF ∼ 0.16 at low pT approaching x′F ∼ 0.3 in the higher
pT range (always with the exception of the lowest log(s) values). This corresponds to a ”rising
rapidity plateau” [2–4] and has led to the assumption of a special source of central particle pro-
duction (”pionization”) and in consequence to an undue concentration of interest in the central
rapidity area in contrast to the forward/backward production regions. This is specially flagrant
for Heavy Ion collisions where a central ”hot” zone is postulated as a ”Quark-Gluon Plasma”.

A detailed inspection of the low-x′F region allows however for a more differentiated
picture especially if the pT dependence is taken into account. This is demonstrated in Figs. 121
and 122 where the evolution of the s-dependence with respect to the NA49 data is shown using
the cross section ratio at y = 0:

R(y = 0, s, pT ) =

(
f

σinel

)
(s, pT )

/(
f

σinel

)
(NA49, pT ) (37)

R(y = 0, s, pT ) is plotted as a function of pT for the log(s) range of the reference data
in Fig. 121.
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Figure 121: R(y = 0, s, pT ) as a function of pT for the reference data, log(s) from 1.0 to 3.6
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Two main contributions to the evolution with increasing s are clearly evident;
(a) An enhancement at low pT in the range pT < 0.3 GeV/c.
(b) A steady increase of yields up to the limit of pT at 1.3 GeV/c.

These trends continue up to LHC energies, Fig. 122, with a strong evolution of the higher
pT region which exceeds the low pT enhancement above RHIC energies (notice the log scale).
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Figure 122: R(y = 0, s, pT ) as a function of pT for
√
s values from 3 GeV to 7 TeV

The approximately exponential increase of the cross section ratio above pT ∼ 0.6 GeV/c
may be used to separate the two components by extrapolating to low pT as shown in Figs. 123
to 125.

The subtraction of the fit to higher pT yields exponential distributions with inverse slope
parameters as shown in Fig. 126
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Figure 123: R(y = 0, s, pT ) as a function of pT for log(s) = 7.7 with exponential fit to
pT > 0.6 GeV/c, extrapolation to low pT (broken line) and subtracted ratio (dotted line)
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pT > 0.6 GeV/c, extrapolation to low pT (broken line) and subtracted ratio (dotted line)
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Figure 126: Exponential fits to the cross section ratio (37) as given in Figs. 123 to 125 a)
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The extracted exponential behaviour ofR(y = 0) in the low-pT region may be converted
into invariant cross sections using the pT distribution from NA49 at y = 0 with its inverse slope
of 0.17 GeV/c, Fig. 127a, and finally into the mT −m distribution of Fig. 127b.
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Figure 127: a) f/σinel(y = 0, s, pT ) as a function of pT for different values of log(s) compared
to the invariant cross section of NA49; b) corresponding distribution as a function of mT −m

The inverse slope or ”temperature” of the mT distribution in the low-pT region is with
0.08 GeV/c about half the value of the inclusive data. In fact it is located about half-way between
the ”temperature” of the feed-down pions from K0

S and Λ decay, Fig. 26. This gives a strong
indication concerning the origin of pions in this part of the central rapidity region. In fact it is
the decay of excited baryons [81] which gives preferentially low-xF pions due to the small mass
ratio mπ/mp (30). There are many channels open with small Q-values to pions like

Σ(1385)→ Λ + π

→ Σ + π
(38)

(in a consistent picture these strange resonances ought to be subtracted from the inclu-
sive pion sample like Λ, Σ and K0 decays. They are, however, as strong decays on-vertex).

Ξ(1320)→ Λ + π (39)

as well as heavy flavour baryons in the RHIC/LHC energy region. Concerning ”normal” bary-
onic resonances there are many channels open with small Q-values like

N∗(1440)→ ∆ + π

N∗(1520)→ p+ π + π

→ ∆ + π

→ p+ ρ

(40)
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and of course higher resonances.
In this context it is interesting to look at comparable results for charged kaons [52] as

shown in Fig. 128 for the ratio R(y = 0, s, pT ) which are directly comparable to the π− data
(Fig. 121).
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Figure 128: R(y = 0, s, pT ) for charged kaons [52] as a function of pT for
√
s values between

6.8 and 63 GeV

Also in this case the low-pT enhancement has been connected to low-Q resonance decay,
namely

Φ(1020)→ K+ +K−

Λ(1520)→ p+K−
(41)

The quantitative results depend on the kaon charge due to the relatively large difference
between the inclusive K+ and K− yields in face of the charge symmetric Φ decay and the fact
that Λ(1520) exclusively feeds into K−.

The energy dependence of the invariant cross section at low pT is shown in Fig. 129 for
pT = 0.1 GeV/c as a function of log(s).

The yield rises sharply from the threshold at log(s) = 0.67 or
√
s = 2.2 GeV. It reaches

an almost linear log(s) dependence above log(s) = 1.3 of the form

f/σinel(log s) ∼ −0.307 + 0.802 log s (42)

with small ondulating deviations between log s ∼ 1.25 and 3.2. The yields at RHIC and LHC
energy have negligible statistical errors but sizeable systematic uncertainties on the level of 5%.
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Figure 129: f/σinel at pT = 0.1 GeV/c as a function of log(s)

For the higher pT region a more complex energy dependence is evident. This is presented
for pT = 1.3 GeV/c in Fig. 130.

The invariant cross section again rises sharply from the threshold at log(s) = 1.2 or√
s = 4.0 GeV to a first plateau at

√
s ∼ 40 GeV with a following non-linear increase up to√

s = 13 TeV. It will be shown in Sect. 19.6 that resonance decay governs the π− yields up
to a transverse momentum of at least 3 GeV/c. In fact the total yields of hadronic resonances
show a strongly non-linear energy dependence (see for instance Fig. 8) with a fast increase from
threshold followed by a flattening off towards higher energies.
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12.4 Pionization and factorization

The increase of central particle density in the ISR energy range came as a surprise [2–4],
as cosmic ray data had indicated, on the contrary, a depletion. In consequence, a specific central
production process (”pionization”) was postulated as opposed to the independent hadronization
of the target and projectile hemispheres with a central overlap. This independent fragmentation
could also be described as ”factorization” [81] in the sense that target (or projectile) particle
densities would be independent of the type of projectile (or target) present in the collision. This
would mean that experimentally for the inclusive reactions

p+ p→ π− +X (43)
〈π〉+ p→ π− +X (44)
γ + p→ π− +X (45)

the cross sections would be equal in the target hemisphere. The shape and extent of the central
overlap region would be accessible via different experimental signatures such as long-range
two-particle and multiplicity correlations, charge ratios or the extent of net baryon production.
Also hadron-nucleus interactions may be used,

p+ A→ π− +X (46)

for the same purpose although the hadronization itself is of course different for both the target
and projectile in this case.
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A very detailed study of factorisation and overlap functions has been conducted in [5,
89]. Some examples are shown in Figs. 131 to 133 concerning the feedover-distributions for
pions and for net protons. extracted from p+p, 〈π〉 + p and p + C collisions.
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Figure 131: a) π+/π− ratio in p+p and 〈π〉+p collisions; b) target and projectile components of
charge-averaged pion production and c) target component with respect to the total yield of π+

and π− in p+p interactions
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The fact that the π+/π− ratio has to be unity for the projectile contribution in 〈π〉 +
p interactions is experimentally verified in Fig. 131a such that only the target component will
contribute to the measured π+/π− ratio. The symmetric target and projectile distributions in p
+ p reactions, Fig. 131b, allow for the direct extraction of the target feed-over, Fig. 131c both in
shape and range in xF . A similar argument may be used in p + C interactions where the isoscalar
Carbon nucleus has a π+/π− ratio equal to unity (now in the target hemisphere) as presented
in Fig. 132. Note that this argument holds since there is no pion exchange at SPS energies as
demonstrated in [90].

Concerning protons, 〈π〉 + p interactions should not have any net protons in the projectile
hemisphere. In p + p collisions, a complementary method consists of fixing net baryon number
by selecting protons either forward or backward at xF values outside the range of pair produced
protons [91]. These methods allow for a completely model-independent way of measuring the
feed-over distributions for net protons as shown in Fig. 133.
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Figure 133: a) Target component for net protons measured with different methods and b) target
components of 〈π〉 and net protons

This study shows that there is an important difference between the feed-over distribu-
tions of pions and net protons, Fig. 133b. In both cases the xF range of feed-over is well outside
the accessible xF range of high energy colliders.

Note that also a test of factorization becomes possible between π + p and p + p reactions
as shown in Fig. 133 in backward direction below xF ∼ -0.5 where proton identification is
possible in bubble chambers (pp

lab < 1.3 GeV/c). In addition, [53] has shown factorization for
baryon production between p + p and leptoproduction at HERA [92, 93].

In the context of the present argumentation it is important to realize that it has been
experimentally verified that no central ”pionization” region is present in addition to the (factor-
izing) target and projectile contributions as already hypothesized in [81]. This is also true for p
+ C interactions.
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12.5 Summary on scaling

The critical comparison of the complete set of existing data and the resulting establish-
ment of a global interpolation scheme with a systematic uncertainty below the 5% level allow
for a confrontation of certain physics hypotheses with the experimental reality over the full
energy range available today. This has been attempted here with special emphasis on energy
dependence or, rather, the absence thereof which is usually labelled as ”scaling”.

Several aspects are of importance here:
(a) The complete coverage of not only the energy range but also of a maximum of the

available phase space is absolutely mandatory.
(b) Even on the single-particle inclusive level the complexity of the experimental results

precludes any simplistic description of a physics situation which is not amenable to
theoretical predictions.

(c) The increase of the total inelastic cross section by a factor of three over the available
energy range imposes a very careful scrutiny of the geometrical aspects in terms of
dependencies on the impact parameter and its consequences on different sectors of phase
space, especially at LHC energies.

(d) In view of this fact any description in terms of point-like interactions as they are for
instance imposed by parton dynamics is problematic.
Two hypotheses which were phrased rather early on in the development of particle

physics (1969) have been confronted with the data in detail.
The first hypothesis concerns ”limiting fragmentation” [81].

(e) This hypothesis was for the first time tested over the full energy range (Sect. 12.1).
(f) The predicted energy invariance is verified within tight limits if plotting the invariant

cross section as a function of plab
L .

(g) On the other hand if using the cross section per inelastic event (f/σinel) sizeable devia-
tions from plab

L scaling are observed.
(h) This is a first indication of a yield dependence on the production point in the overlapping

hadronic disks.
Ref. [81] is an astounding document as it contains a number of conjectures that were

not testable at the time of publication. To be mentioned here is hadronic factorization and the
absence of central pionization (Sect. 12.5). The inclusion of baryon number conservation as a
basic ingredient as well as resonance production and decay are further assets.

(i) The study of ylab distributions (Sect. 12.2.1) is complementary to plab
L scaling and shows

similar results, again in preference of invariant cross sections as compared to yields per
inelastic event.
The second hypothesis, ”Feynman scaling”, is inspired by the partonic structure of the

colliding hadrons as it is measured in deep inelastic lepton scattering.
(j) In consequence the conjecture postulates scaling in longitudinal momentum if referred

to the maximum available momentum (Sect. 12.2.2).
(k) In the very definition of this relative variable it is necessary to take full account of energy

and baryon number conservation.
(l) Nevertheless there are strong deviations from scaling at all energies below the ISR range.

(m) An inherent weakness of this hypothesis is the baryonic sector. In fact there are no in-
formations to be gained on baryon distributions and baryon number conservation from
deep inelastic lepton scattering. Hypothetical ”di-quark” states have therefore to be in-
troduced which carry unknown fragmentation functions.

133



(n) The sector of diffraction which is characterized by large impact parameters [6] is in no
way describable in this approach.
In this context of impact-parameter dependencies it is worth while looking as a side

remark at diffractive proton production which would stem [6, 7] from the expanding rim of the
interaction region. One would therefore, contrary to the π− production, expect cross sections to
scale in the yield per inelastic collision rather than the invariant cross section itself which should
increase with the interaction area. This has been shown in [94] reproduced here as Fig. 134.

R

 [GeV]s

10 210 310

 = 0.95Fx

b)
ISR

NAL

UA4

 [GeV]s

10 210 310

0.6

0.8

1

1.2

1.4

 = 0.92Fx

a)

Figure 134: Ratio of proton cross sections R relative to NA49 data as a function of
√
s in the

diffractive sector at xF = 0.92 and 0.95 including data from UA4 [94]. The full lines correspond
to the invariant cross sections, the broken lines to the cross sections per inelastic collision

The UA4 experiment at the CERN pp collider published data [94] only at
√
s = 530 GeV.

It would be of considerable interest to have data also up to the highest LHC energies.

13 Transverse momentum

The available data concerning double differential inclusive π− cross sections present
– given sufficient precision on the experimental level – an overall phenomenology of great
complexity defying attempts at simple interpretations or algebraic approximations. It is however
the largely asymmetric occupation of the phase space in longitudinal and transverse direction,
the ”longitudinal phase space” (7), which seems to offer a natural approach to some underlying
physics. The longitudinal part has been analysed in the preceding Sect. 12 in terms of energy
dependence and ”scaling” with only marginal success. The transverse part shows a steep pT
dependence that has been from early on tentatively approximated by an exponential form

f

σ(x′F , pT , s)
= A(x′F , s)e

−B(x′F ,s)pT (47)

Of course this simplistic form is only defendable as a zero-order approximation to the
rather complex overall pT dependence that follows from the global interpolation (Sect. 7). This
is shown in Fig. 135 where the invariant cross section is presented as a function of pT and
several values of x′F and log(s).
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Figure 135: Invariant π− cross section f/σinel as a function of pT for several x′F and log(s)
values

In fact there is only a very small region at
√
s ∼ 11 GeV where an exponential shape is
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realized at x′F ∼ 0, in this area even up to large pT values of ∼ 4 GeV/c [33]. Always of course
exception made for small pT where the invariant cross section has to approach pT = 0 GeV/c
with tangent zero. Towards higher interaction energies, where only data at central rapidity are
available, the again very complex pT and log(s) dependence has already been shown in Fig. 122.

Notwithstanding this complex experimental situation, rather general attempts at under-
standing the transverse phenomenology by way of statistical or thermal ”models” have been
and still are enjoying widespread interest. These attempts are characterized by only one or a
few parameters besides the particle mass. They will be confronted with the results of resonance
decay in the following Sections.

13.1 General considerations concerning the choice of co-ordinates

The in-depth analysis of transverse momentum phenomena needs first of all some clar-
ification, in particular concerning the coordinate systems to be used. Unlike the longitudinal
momentum distributions discussed in the preceding Section in different reference systems, the
use of orthogonal coordinates is mandatory. This is evident in Fig. 136 where the mean trans-
verse momentum distributions are shown as functions of xF and rapidity for the NA49 data at√
s = 17.2 GeV.
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Figure 136: Mean transverse momentum 〈pT 〉 as a function of a) xF and b) rapidity integrated
in the limit 0 < pT < 1.3 GeV/c

The completely different functional behaviour is explained by the fact that the rapid-
ity variable is not orthogonal in pL and pT but links both variables such that, for pions, the
cross sections are closely following, for constant rapidity, fixed cms angles thus folding the pT
distributions with the strongly decreasing longitudinal yields as presented in Fig. 137.

For the NA49 energy the kinematical limit is reached for the limiting pT value of this
study of 1.3 GeV/c at y = 2.56 at which point the pion yield has to vanish. Nothing could be
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more erroneous than to interpret the decreasing 〈pT 〉 as a function of y (Fig. 136b) as a reduction
of ”hadronic temperature” in forward direction. On the contrary, there is a strong increase of
〈pT 〉 with increasing pL or, as shown in Fig. 136a), with xF – an effect known since decades as
”seagull effect” [95, 96].

In connection with the determination of the mean transverse momentum the pion densi-
ties as functions of xF and rapidity are used:

d2n

dxFdpT
=
pT
E
f(xF , pT ) (48)

d2n

dydpT
= pTf(y, pT ) (49)

These two pion densities have a different shape as shown in Fig. 138.
This results in 〈pT 〉 values as
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of pT at

√
s = 17.2 GeV/c

〈pT 〉xF =

∫
pT

dn

dxFdpT
dpT∫

dn

dxFdpT
dpT

=

∫
p2
T

E
f dpT∫

pT
E
f dpT

(50)

〈pT 〉y =

∫
pT

dn

dydpT
dpT∫

dn

dydpT
dpT

=

∫
p2
T f dpT∫
pT f dpT

(51)

The resulting 〈pT 〉 values differ appreciably by 0.1 GeV/c for π, 0.06 GeV/c for K and
0.03 GeV/c for p(p). This difference depends on the particle mass as presented in Tab. 6.

〈pT 〉xF [GeV/c] 〈pT 〉y [GeV/c]
π+ 0.258 0.352
π− 0.256 0.351
K+ 0.406 0.466
K− 0.395 0.451
K0
S 0.402 0.460

p 0.495 0.528
p 0.477 0.507

Table 6: 〈pT 〉xF for xF = 0 and 〈pT 〉y for y = 0 at
√
s = 17.2 GeV of feed-down subtracted data

for different particle species

A last general remark concerns the influence of the feed-down correction on the deter-
mination of mean pT . As shown in Fig. 139 at xF = y = 0 the pT distributions are different with
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and without feed-down correction, see Sect. 5.
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Figure 139: f/σinel for π− as a function of pT at xF = y = 0 with and without feed-down
subtraction

The corresponding 〈pT 〉xF and 〈pT 〉y values are different as given in Tab. 7.

〈pT 〉xF [GeV/c] 〈pT 〉y [GeV/c]

feed-down subtracted 0.256 0.351

feed-down included 0.249 0.343

Table 7: 〈pT 〉xF for xF = 0 and 〈pT 〉y for y = 0 at
√
s = 17.2 GeV of feed-down subtracted and

feed-down included data

13.2 Statistical and thermodynamical models

Transverse momentum distributions, if plotted for constant s and different ylab (Fig. 27)
or different x′F (Fig. 135) or at central rapidity for different s (Fig. 122), exhibit an extraordinary
variety of shapes that seems to defy any attempt at a simple algebraic description covering the
full phase space. In the preceding Sections, mostly concentrated on longitudinal momentum de-
pendencies, the transverse component was rather characterized by its rapid, quasi-exponential
and quasi invariant, decrease (”longitudinal phase space”) without attempts to describe the de-
tailed shape which is, of course, not calculable in non-perturbative QCD.

On the other hand, early on in the 1950’s, rather general statistical models [97,98] based
on thermodynamical analogous were developed and applied to hadronic interactions and particle
production.
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This approach has been extended to predictions concerning momentum distributions,
principally also the transverse component, in the mid-1960’s [99] and quantified in subsequent
publications [100], [74].

The evolution of interaction energies through the ISR and RHIC regions up to the LHC
necessitated, however, important modifications and extensions concerning the shapes of the
transverse distributions. This was attempted by adding at least one further parameter to the
original thermodynamic fits, or taking reference to another statistical mechanical formulation
[101, 102].

To date the original claim of thermodynamical behaviour of hadronic production, in
particular concerning the notion of ”hadronic temperature” and, in connection with a ”limiting
temperature”, the purported existence of a hadronic phase transition, is still widely proclaimed.
In the following sections, a critical view at this problematics will be attempted for the sector of
elementary hadronic interactions.

13.2.1 Hagedorn’s Statistical Bootstrap Model (SBM)

The ”bootstrap” yields an exponentially increasing mass spectrum of ”fireballs” or ”res-
onances” whose inverse slope defines a limiting ”temperature” – hence the inherent possibility
of a hadronic phase transition should this limiting temperature ever be exceeded. The momen-
tum distributions of fireballs, resonances and their decay products are postulated to obey the
characteristics of an ideal gas in equilibrium with only longitudinal motion. This leads, taking
account of the different particle masses via the transverse mass mT (19) to the prediction of
exponential mT distributions with a unique inverse slope defined by the hadronic temperature
T . This means that the SBM model should describe the transverse momentum distributions by
a single parameter, independent of interaction energy and particle type.

A first confrontation with the experimental reality is given in Fig. 140 where mT −m
distributions for pions, kaons and protons are shown for the NA49 data at

√
s = 17.2 GeV and

central rapidity.
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Figure 140: Inverse slopes of the transverse mass distributions as a function of mT −m for a)
pions [17], b) kaons [52] and c) protons and anti-protons [53] at

√
s = 17.2 GeV
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Although these distributions have comparable shapes they are far from showing a con-
stant inverse slope. In fact minima are reached at 160 MeV for mT −m between about 150 and
350 MeV (pions), at 150 MeV for 50 MeV (kaons), at 140 MeV for 150 MeV (protons) and at
130 MeV for 100 MeV (anti-protons). The strong increase below these minima is due to the flat
approach to pT = 0 GeV/c (Fig. 84). All plots increase to temperatures of about 200 MeV above
the minima at the pT limit of this study. This value is far above the ”limiting temperature” given
by Hagedorn [103] as 160±10 MeV.

The situation gets more involved when using the global interpolation and LHC results
over the complete energy region as shown in Fig. 141.
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Figure 141: Inverse slopes of the transverse mass distributions as a function of mT −m for π−

from log(s) = 1.0 to 8.0

Only the region of
√
s ∼ 10 GeV (Serpukhov) exhibits a rather constant inverse slope

which corresponds to the exponential pT distribution in this energy range (Figs. 50 and 135).
Further information is given in Fig. 142 where T is presented for constant values of mT −m as
a function of log(s).

Here again only at log(s) = 2 there is a reasonably small range of inverse slopes around
160 MeV. Below and above this energy there is a wide spread of temperatures from 100 to
300 MeV. A similar result has been obtained for kaons [52] as shown in Fig. 143.
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The increase of inverse slopes at low mT − m (Fig. 140) may be attributed to the fact
that a purely exponential approach becomes unphysical at mT −m = pT = 0 since the invariant
cross sections have to flatten out such that the axis at pT = 0 GeV/c is crossed horizontally.
The increase beyond mT − m ∼ 0.4 GeV/c2 poses a more principle problem as it continues
to pT values much beyond the limit imposed in this paper. Originally this was attributed to
occasional thermodynamic turbulence, to local temperature fluctuations or even to the ”escape”
of hadrons from a plasma state. An explanation seemed to be offered by QCD in the perturbative
sector which allowed the description of the ”high pT ” results at ISR and the SPS pp collider as
basically a power-law behaviour. Hence a second parameter beyond the limiting temperature
was introduced [100] in this sense. A problem is however posed by the fact that perturbative
QCD is certainly not applicable in a pT range of 0.4 to 1.3 GeV/c. In addition it will be shown
in Sect. 15 that particle yields are saturated at least up to pT = 3 GeV/c by resonance decay.
For a practical application of statistical thermodynamics in an adapted two-parameter form see
Sect. 13.2.2.

There are other inconsistencies inherent to the SBM approach. The ”fireballs” are sup-
posed to have a sequence cascading from higher to lower mass states. In the thermodynamic
sense each fireball should follow a Boltzmann-type thermal transverse distribution such that al-
ready in a second generation chain m∗→m∗∗→ final state hadrons these hadrons would have a
non-thermalmT distribution. This has lead to the introduction of an ”effective temperature” that
is far above the thermal one up to cascading masses m∗ of 5 GeV and more [100]. Finally, only
the very last step to final hadrons is taken into account with m∗ having no transverse momen-
tum. Furthermore, even in this approximation, two-body decays pose a grave problem as they
would yield specific lines in pT . In order to describe these cases which are common in hadron
spectroscopy, m∗ has to have at least a thermal mT distribution. Even then the resulting final
state hadron distributions are non-thermal. It is supposed that two-body decays only happen at
the very end of the cascading chain and would not have incidence on the overall mT distri-
butions. However for most of the heavier hadronic decays the multibody final states regroup
into effective two-body decays. This is apparent both for baryonic and mesonic resonances, for
instance

N∗(2050)→N + 3π

→ N + η

→ N + ω

→N + 2π

→ N + ρ

→ ∆ + π

→ N + 2π

or
f2(2300)→φ+ φ

→ K +K +K +K

(52)

which contain effective two-body decays with large branching fractions.
It is also claimed [100] that already for three-body decays the secondary distributions

would be thermal which is not the case, see Sects. 5.2.2 and 6.
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13.2.2 Application of Tsallis statistics

The use of the Tsallis form of statistical thermodynamics [101] to hadronic production
[102] is not uncontested [104].

Nevertheless it offers a two-parameter fit similar to extension of the purely thermal fits
given in [100] of the form

f = CmT

(
1 + (q − 1)

mT

T

)− 1
q−1

(53)

Fits of this type are widely used in the energy region from RHIC to LHC. In the lower
energy range, log(s) = 1.0–3.5, using the general interpolation of π− results, the resulting fits
with the parameters T and q are given in Fig. 144.
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Figure 144: Tsallis fit parameters T and q (53) for log(s) from 1 to 3.5 as a function of rapidity

A wide spread of the fit parameters is obtained which are not described by a common
behaviour. In particular at the lower interaction energies the approach to the kinematic limit has
to be taken into account leading to a progressive shrinking of the pT range (see also Fig. 137).
A line corresponding to a pT range of 0.2 GeV/c is indicated in Fig. 144.

Further indications of the quality of the fits are given in Fig. 145 for log(s) = 2.5 (NA49
energy range). The cross sections d2n/pTdpTdy are given for rapitities from 0 to 3.6 together
with the residual distributions as a function of both mT ∗ cosh(y) and pT indicating the strong
decrease of the pT range at forward rapidities.
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Figure 145: Tsallis fits of π− cross sections for rapidities between 0 and 3.6 at log s) = 2.5. The
abscissa shows both the quantity mT ∗ cosh(y) and pT . For each rapidity the fit parameters T
and q as well as the residual distributions of the fits are shown

14 pT integrated distributions and total π− yields

Following the discussion of the double differential results in the preceding chapters
integrated distributions up to the determination of the resulting total π− yields will be presented
here. There are several constraints and boundary conditions to be considered:

(i) The global interpolation is limited in pT to an upper limit of 1.3 GeV/c. The influence
of this limit on the integration will be quantified by extending the range to 1.9 GeV/c
using an exponential extrapolation.

(ii) There is an upper limit also in xF which depends on
√
s and is imposed by the limit of

published cross sections at about 1 µb. Also here an extrapolation to higher xF will be
used to quantify the influence on the integral.

(iii) Results both with and without feed-down subtraction will be presented in order to quan-
tify this important contribution.

(iv) Due to the limited phase space coverage of the high-energy colliders the results only
reach up to ISR energy at log(s) = 3.6.
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14.1 dn/dxF distributions

dn/dxF distributions are shown in Fig. 146 as a function of xF for several values of
log(s) from the lowest available value to the highest ISR energy for feed-down subtracted data.
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Figure 146: a) dn/dxF distributions as function of xF for several log(s) values from 1 to 3.6
using the pT integration up to 1.3 GeV/c, b) percent increase of dn/dxF extending the pT range
from 1.3 to 1.9 GeV/c, c) percent increase of dn/dxF by adding the feed-down contribution, d)
variation of dn/dxF in the high-xF region relative to log(s) = 2.5 normalizing all distributions
to unity at xF = 0.4
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The distributions span five orders of magnitude in dn/dxF and feature a strong log(s)
dependence for xF . 0.2 followed by a region of shape similarity up to the highest xF at
around 0.75. The pT integration is performed up to the limit of the global interpolation at
pT = 1.3 GeV/c. The increase of dn/dxF when extending the upper pT limit to 1.9 GeV/c is
shown in panel b). The increase is limited to 2% in the upper range of log(s). Panel c) presents
the % increase of dn/dxF when adding the feed-down contribution. The percentage increases
steadily with log(s) up to a maximum of about 10% at low xF followed by a strong decrease
towards high xF . Panel d) addresses the shape similarity of the dn/dxF distributions in the high-
xF region. The distributions are normalized to unity at xF = 0.4 and their ratio to a reference at
log(s) = 2.5 is plotted.

This last panel allows a rather precise check of longitudinal scaling. This concept has
been treated in Sect. 12 on the double differential level of cross sections. With respect to the
reference line at log(s) = 2.5 or

√
s = 17.8 GeV a steady evolution of the π− density is evident.

The line is approached from below with increasing energy and a short plateau between 0.5 and
0.7 in xF and between 2.4 and 2.8 in log(s) is followed by a further increase at ISR energy. This
phenomenology does not correspond to a manifestation of the down-quark structure function as
postulated by some models [105,106]. In this context it is regrettable that the far forward region
is not attainable at the high energy colliders above the ISR energy range.

14.2 y and ylab distributions

pT integrated rapidity distributions are shown in Figs. 147 and 148 for a subset of in-
teraction energies ranging from

√
s = 3 GeV to the highest ISR energy at 63 GeV. The linear

plot of Fig. 147 brings out the well-known features of such distributions: a strong increase of
the central π− density with interaction energy developing into a ”rapidity plateau” followed by
a steep decrease into the forward direction.

The presence of an increasing rapidity plateau fostered ideas of a ”central” production
mechanism as opposed to a ”fragmentation region” in forward direction with little if any energy
dependence.

The study of the central rapidity region using double differential cross sections in
Sect. 12.3 shows however a more complex situation. In fact there are two components con-
tributing to the increasing particle yield: a first part at low pT typical of low-Q resonance decay
as it is also seen in the feed-down from weak decays, Sect. 5, followed by a steady increase
towards higher pT again due to the decay of resonances with increasing mass hence high Q
decay.

The steady broadening of the y distributions with log(s) is a trivial consequence of the
logarithmic increase of the extent of the longitudinal phase space with energy (15). The decrease
of the cross section towards higher rapidity is closely conformal as shown in Fig. 147b) for a
dense sequence of log(s) values. Hence the ideas of ”energy scaling” in this region.

The scaling hypothesis is further detailed by replacing the rapidity variable by ylab =
ybeam − y (16) thus taking account of the increasing phase space and eliminating one trivial
component. This is shown in Fig. 148 which in addition presents two normalizations of the
yield: In panel a) the density per inelastic event,

dn

dy
=

π

σinel

∫
fdp2

T (54)

and panel b) the integrated invariant cross section
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Figure 147: dn/dy distributions as functions of y for several log(s) values from 1 to 3.6 using
the pT integration up to 1.3 GeV/c a) with a linear scale on the ordinate b) with a logarithmic
scale for a dense coverage in log(s) from 1 to 3.6 in steps of 0.1

dσ

dy
= π

∫
fdp2

T (55)

As already evident in the double differential case, Sect. 12.2, the integrated invariant
cross section shows less s-dependence than the rapidity density. This is another evidence for
the necessity to properly address the variation of the inelastic cross section as a function of
interaction energy and, connected to this, the question of the impact parameter dependence of a
given inclusive phenomenology.
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Figure 148: ylab distributions of a) the rapidity density per inelastic event and b) the integrated
invariant cross section as a function of ylab for seven values of log(s)

14.3 Total π− yields

The pT integrated distributions discussed above may now be integrated over xF or y in
order to determine the total π− yield as a function of log(s). The resulting numerical values
are given in Table 8 both with and without feed-down contribution. The extrapolation from the
pT limit at 1.3 GeV/c to 1.9 GeV/c as well as the extrapolation from xF = 0.75 to xF = 0.95
contribute each less than 0.4% to the yield.
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log(s) 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
with FD 0.2649 0.3574 0.4736 0.6077 0.7473 0.8844 1.0214 1.1659 1.3229 1.4920
without FD 0.2581 0.3446 0.4527 0.5767 0.7049 0.8305 0.9557 1.0874 1.2306 1.3847

log(s) 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
with FD 1.6710 1.8572 2.0479 2.2422 2.4395 2.6417 2.8496 3.0685 3.2986 3.5403
without FD 1.5474 1.7161 1.8883 2.0631 2.2406 2.4238 2.6125 2.8113 3.0209 3.2419

log(s) 3.0 3.1 3.2 3.3 3.4 3.5 3.6
with FD 3.7895 4.0504 4.3200 4.5963 4.8778 5.1648 5.4547
without FD 3.4700 3.7094 3.9578 4.2137 4.4757 4.7440 5.0158

Table 8: Total π− yield as a function of log(s) with and without feed-down contribution

These values are shown in Fig. 149 as a function of log(s) together with the contribution
of the feed-down component in percent.

log(s)

1 2 3 4

〉 -
π 〈

0

2

4

6

 with feed-down

 without feed-down

fe
e

d
-d

o
w

n
 [

%
]

0

5

10

Figure 149: Total π− yields as a function of log(s) with and without feed-down contribution
(left scale) together with the feed-down component in percent (right scale)

15 Resonances and their decay

It has been known since decades that final state hadrons are decay products of reso-
nances [75, 76, 107] to a fraction which ranged, at the time, from 80 to 90%. To date one may
assume that all of these hadrons stem from resonances, in other words there is no ”direct” pro-
duction. Resonances form a cloud of states above the ground state of stable hadrons which
is of extraordinary diversity and extent concerning their masses, quantum numbers and decay
branching fractions. Their study is thus indispensable for any progress of understanding that
goes beyond the realm of purely inclusive single particle physics.

In order to determine the contribution of a given resonance to the final state inclusive
particle cross section several quantities have to be known:

1. Central mass and width
The resonance width may change from zero for weak decays (Sect. 5) to several hundred
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MeV for high-mass, strongly decaying states.
2. Mass distribution

Resonances are in general characterized by asymmetric Breit-Wigner type mass distri-
butions which may extend up to masses far above the nominal value. Their important
influence on tail effects in the inclusive cross sections will be evoked below.

3. Decay branching fractions
For non-exotic decays as they are treated in this paper, branching fractions span a range
from a few to almost 100%. They are generally well measured for mesonic and heavy
flavour resonances as they are readily accessible in e+e colliders. For baryon resonances
the situation is less favourable. Here in general only a few channels have been isolated
with rather large error margins.

4. Resonance production cross sections over full phase space
Here the production yields have in principle to be known, on a double-differential level,
over the full phase space. Given the problems of coverage for the final state hadrons
evoked in this paper, it is not surprising that this condition is hardly fulfilled for most
resonances. Here single-differential distributions integrated over pT or xF will have to
do in most cases.
In the following sections, a particular resonance, namely the ∆++(1232), will be used to

clarify some details concerning the problems mentioned above. This resonance has been studied
by about 30 experiments over a wide range of interaction energies and for different projectiles
on proton targets. The ∆++ has an almost 100% branching fraction into the two-body channel
p + π+. The asymmetry in the decay particle masses allows, in addition, to elaborate the mass
effect on the final state particle distributions.

Some references for p+p interactions are given in [108–117].
These earlier publications concern mostly bubble chamber work and are concentrated in

the 1970’s, see the discussion in Sect. 3, and Fig. 3. Refs. [114, 115] come from spectrometer
experiments at the ISR and SPS.

Experimental information on the ∆(1232) quadruplet at
√
s = 17.2 GeV is available

from two Theses [116, 117] in the context of the NA49 experiment.

15.1 ∆++ decay: General considerations

The phase space distribution of hadrons from resonance decay is characterized by a
two-step process.

The first step is given by the disintegration process in the resonance cms which is defined
by the resonance and the decay particle masses. For a two body decay, the secondary particles
have equal momentum independent of their respective masses. This disintegration is modulated
by a spin dependent decay angular distribution which is in general not uniform.

In a second step a Lorentz transformation from the resonance cms to the overall cms as
defined by the colliding initial state hadrons has to be performed. As the resonance has both
longitudinal and transverse momentum in this system the transformation is three-dimensional.

There are two complications involved with this straight-forward decay process. Firstly,
the resonance has in general not a fixed mass but features a complex asymmetric mass distri-
bution with a long tail towards high masses. Secondly, a three dimensional boost is not eas-
ily amenable to simple algebraic formulations. Here it is specifically the resonance transverse
momentum which creates uncomfortable complications. It is therefore rather customary to ne-
glect the one or the other complication (or both) in hadron production models. Although it has
generally to be admitted that a hadronic collision results in a spectrum of massive objects (of-
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ten named ”fireballs”) their decay into the final state hadrons is rarely specified in detail. As
an example the ”NOVA” model [118] specifies a rather narrow Gaussian-type ”fireball” mass
spectrum centred at relatively low masses, but it does not allow these objects to have transverse
momentum. On the other hand Hagedorn’s ”Thermal” model [99] allows for a fireball spectrum
but again neglects their transverse momentum. In addition final state particle production is as-
sumed to be described by Boltzmann radiation from an equilibrium thermodynamic state where
mass dependence is introduced at this level only.

In view of this situation ∆++ decay will be treated in the following Sections in some
detail by starting with the fixed nominal mass 1.232 GeV/c2 and an xF distribution without
allowing for transverse momentum. The transverse momentum and the Breit-Wigner mass dis-
tributions will then be successively introduced.

15.2 ∆++ resonance: xF and p2T distributions

From the rich sample of experimental results mentioned above the phase space distribu-
tion of the Delta resonance may be extracted, in the present argumentation at the NA49 energy
of 17.2 GeV. These distributions are shown in Fig. 150.
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Figure 150: Single differential ∆++ distributions at
√
s = 17.2 GeV: a) dn/dxF as a function of

xF , b) dn/dp2
T as a function of p2

T

The dn/dxF distribution integrates to 0.22 ∆++ per inelastic event at
√
s = 17.2 GeV.

This contributes, given the 100% branching fraction, about 7% to the total π+ yield and 20% to
the total p yield at this energy [17, 53].

15.3 ∆++ decay: Mass as a delta function at 1.232 GeV and no pT allowed

The Lorentz transformation between the resonance cms and the p+p cms is defined
by the momentum vector of the resonance and decay particle masses via the energy and mo-
mentum values in the resonance cms. For the nominal ∆++ mass the decay momentum is
q = 0.227 GeV/c independent of the particle mass mdec which enters only via the energy factor

Edec =
√
q2 +m2

dec (56)
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Excluding the resonance transverse momentum, the pT of the decay particles is limited
by the decay momentum q to 0.227 GeV/c, independent on particle mass. This results in the
mean pT as a function of xF as shown in Fig. 151 for the decay protons and pions.
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Figure 151: Mean pT for decay protons and pions as a function of xF

The Lorentz boost is purely longitudinal and yields, for a given resonance momentum
pl,res, the Lorentz factors

β =
pl,res√

p2
l,res +m2

∆

(57)

and

γ =
1√

1− β2
(58)

and hence the decay particle longitudinal momenta between

pl,min = γ(−q + βEdec) (59)
and

pl,max = γ(+q + βEdec) (60)

This leads to an explicit mass dependence in the xF dependence as shown in Fig. 152
for the pT integrated quantity dn/dxF .

The neglecting of the resonance transverse momentum and mass distribution is rather
common in model calculations, albeit for practical considerations concerning the possibility of
algebraic solutions [99, 118]. It leads to the wide-spread belief that low-mass secondaries are
all centred at low xF and low pT [107].
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Figure 152: dn/dxF for decay protons and pions as a function of xF

15.4 ∆++ decay: adding resonance transverse momentum

In taking account of the measured pT distribution of the ∆++ the Lorentz transformation
gets a transverse component. At xF = 0. this transverse boost replaces pL with pT in Eqs. 57 to
60 thereby creating a mass dependence also in transverse direction. This is shown in Figs. 153
and 154 for the mean pT and dn/dxF as a function of xF both for the decay pion and proton.
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Figure 153: Mean pT for decay protons and pions as a function of xF
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Figure 154: dn/dxF for decay protons and pions as a function of xF

It is to be noted that the increase of 〈pT 〉 for pions varies from 16% at xF = 0 to 300%
at xF = 0.4 whereas for protons it is much larger at xF = 0 with 300% decreasing slightly to
250% at xF = 0.7. This originates from the mass dependence of the energy factor also in the
transverse Lorentz boost (56) and explains the observation that heavy particles have in general
considerably higher 〈pT 〉 than lighter ones at low xF .

For dn/dxF there is no noticeable variation both for protons and for pions as compared
to Fig. 152 without resonance pT .

15.5 Delta decay: adding the resonance mass distribution

The Breit-Wigner (BW) mass distribution of resonances has a decisive influence both on
mean pT and dn/dxF for pions whereas for protons there are only relatively small modifications.
This is again due to the fact that tails in theQ value of the Lorentz boosts (56) are most effective
for small decay mass values mdec.

Limitations to the shape and mass range of the BW distribution will be discussed in
the following Sect. 16. In the present explanatory section a BW distribution with linear mass
damping up to 3 GeV for the ∆++ will be used.

The most important effect of the resonance mass distribution consists in the fact that the
decay pions now cover the complete xF range and also reach the 〈pT 〉 values of the protons in
the higher xF region. This is demonstrated in Fig. 155 for dn/dxF and in Fig. 156 for 〈pT 〉.

The dn/dxF distribution for protons increases by 20% at xF = 0 and decreases by about
the same amount at xF = 0.55 with respect to Fig. 154. For pions there is a decrease of about
10% up to xF ∼ 0.3. Beyond this limit there is a dramatic increase of the yield such that the
cross section of the decay pions reaches a level of about 20% of the total inclusive π+ yield
(also shown in Fig.155 up to the highest xF range.

For the mean pT a similar picture emerges. There is a strong increase of 30% already
at xF = 0 compared to Fig. 153 which continues rising until it crosses and exceeds the proton
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Figure 155: dn/dxF for decay protons and pions as a function of xF
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Figure 156: Mean pT for decay protons and pions as a function of xF

value at xF above 0.45. The relative factor between 〈pT 〉 for protons and pions,

R〈pT 〉(xF ) =
〈pT 〉prot(xF )

〈pT 〉pion(xF )
(61)

is shown in Fig. 157.
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Figure 157: R〈pT 〉 as a function of xF for the different decay configurations Sect. 15.3–15.5

An overview of the double-differential pion cross section f(xF , pT ) is presented in
Fig. 158 showing the total inclusive π+ yield, the decay pion distribution at fixed resonance
mass and its evolution allowing for a Breit-Wigner mass distribution.

From the above discussion it should be clear that a detailed treatment of resonances and
of their decay is absolutely mandatory in order to come to an understanding of their contribution
to the measured inclusive data. In this sense resonances offer a model-independent step towards
a better understanding of non-perturbative hadronic phenomena.

16 The resonance mass spectrum

The discussion of ∆++ decay in the preceding Sections has demonstrated the neces-
sity of properly taking into account both the transverse momentum and the mass dependencies.
Whereas the transverse momentum distribution is experimentally accessible this is in general
not true for the mass distribution due to problems in extracting its tails from an important back-
ground. Here experimental constraints as well as energy-momentum conservation and cascading
decays play a role. This will be discussed in the following Sections.

16.1 The unconstrained mass distribution

Performing an energy scan over the mass range of a resonance in a ”formation experi-
ment” combined with a partial wave analysis the unbiased Breit-Wigner mass distribution may
be obtained:

BW (m) =
mm0Γ(m)

(m2
0 −m2)2 +m2

0Γ2(m)
(62)

where m0 is the resonance mass and Γ(m) is the mass and spin dependent width

Γ(m) = Γ0

(
Q

Q0

)2L+1
2Q2

0

Q2 +Q2
0

(63)
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Figure 158: Invariant pion cross section as a function of pT and xF for data [17] and decay of
the baryon resonance ∆(1232)→ N + π with zero width and Breit-Wigner mass distribution

Γ0 is the central width value, Q and Q0 the momenta of the decay products in the resonance rest
frame and L the spin of the resonance. This mass distribution is shown in Fig. 159 for the decay

∆(1232)→ p+ π (64)

It is limited at low mass by the threshold mthr = mp + mπ and features a long, un-
constrained tail. This tail is subject, for production experiments as they are discussed here, to
several constraints presented in the following sections.
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16.2 Mass limitations due to the available interaction energy

As production experiments are performed at fixed interaction energy there is, by energy-
momentum conservation a cut-off mass smoothly approached from below according to the xF
distribution of the resonance. This is demonstrated in the original Jackson paper [119] for the
interaction K+ + p → K0 + π + p at 1.14 and 3 Gev/c incident K+ momentum. As shown in
Fig. 160 both the resonance shape and the position of the central mass are depending on the
interaction energy.
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Figure 160: Relativistic Breit-Wigner mass distributions of the final state ∆++ in the reaction
K+ + p→ K0 + π + p at

√
s = 1.86 and 2.61 GeV, [119]
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At higher interaction energy the central mass distribution stays largely unchanged but
the high mass tails are curtailed by energy-momentum conservation as as shown in Fig. 161
for p+p interactions in the range of beam momenta between 5 and 158 GeV/c. At the lowest
beam momentum the mass distribution is conformal up to about 1.4 GeV and vanishes at about
1.7 GeV whereas at 158 GeV/c the change is smaller than 20% even at a mass of 5 GeV.
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Figure 161: Relativistic Breit-Wigner mass distributions for final state Delta baryons in p+p
interactions at beam momenta between 5 and 158 GeV/c

Correspondingly the x′F distributions (Sect 12.2.2) are progressively suppressed above
x′F ∼ 0.4 as shown in Fig. 162.
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Figure 162: Suppression of x′F distributions with respect to the unconstrained case for beam
momenta between 5 and 158 GeV/c
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16.3 Constraints due to proton momentum cuts

In bubble chamber experiments the positive identification of protons via bubble density
is only feasible for lab momenta below 1.0–1.3 GeV/c. In consequence both the high mass tails
of the relativistic Breit-Wigner distribution are curtailed and the decay angular distributions
become suppressed in the backward direction. This is demonstrated in Figs. 163 for the mass
distributions and Fig. 164 for the Gottfried-Jackson angle ΘGJ .
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Figure 163: Measured relativistic Breit-Wigner mass distributions of a ∆(1232) resonance im-
posing a lab momentum cut on the decay protons at plab = 1.0 GeV/c for beam momenta between
10 and 158 GeV/c
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Figure 164: Suppression factors of the Gottfried-Jackson decay angular distribution in backward
direction as a consequence of a proton plab cut at 1.0 GeV/c as a function of cos(ΘGJ ) and beam
momenta between 10 and 158 GeV/c
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The resulting modification of the relativistic Breit-Wigner shape has an opposite energy
dependence as the one imposed by energy-momentum conservation, Fig. 161.

The lab momentum cut also influences the acceptance of the decay angle distribution by
suppressing backwards decays. This is shown in Fig. 164 where the resulting suppression factor
is plotted as a function of the Gottfried-Jackson angle.

Evidently the resulting distortions have to be corrected for in the analysis of the experi-
mental data.

16.4 Cascading

An important aspect of resonance production and decay is cascading. Given sufficient
cms energy, the lower-mass resonances are decay products of higher mass states. This means
that they are not directly produced but rather cascade down from heavier objects. It is interesting
to estimate the amount of cascading steps prior to the appearance of the final state particles. In
the baryonic sector this may be done for final state ”net” baryons invoking baryon number con-
servation. Given the total sum of net baryonic resonance cross sections

∑
σ(res), the number

of cascading steps ncasc is given by

ncasc =

∑
σ(res)

2σinel
(65)

At SPS energy this may be estimated to ncasc > 2 [120] where this value is to be regarded
as a lower limit because the number of measured resonances gets rather limited towards high
masses.

16.4.1 Cascading: Production mechanism of resonances - charge exchange versus Pomeron
exchange

The interplay of charge and Pomeron exchange has been studied for baryons and pions
in connection to Regge theory [90]. For baryons the s-dependence of the diffractive production
of two-body final states of the type

p+ p→ n+ (p+ π+) (66)
or

p+ p→ (p+ π−) + (p+ π+) (67)

approaches a slope compatible with Pomeron exchange at SPS energy [6] whereas at lower
energies Reggeon exchange prevails as shown in Fig. 165.

For pions the π+/π− ratio in the target hemisphere of the isoscalar Carbon nucleus in
the reaction

p+ C → π+, π− (68)

may be used for a similar separation of charge and Pomeron exchange [90]. As shown in
Fig. 166 the π+/π− ratio approaches unity again in the SPS energy region whereas at lower
energy it increases to values typical of charge exchange.

It may therefore be concluded that Pomeron exchange prevails over quantum number
exchange both for diffractive and central interactions at SPS energies and above. This has the
important consequence that N∗ production dominates there over ∆ production, see also [6]. It
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Figure 165: Invariant cross sections of charge exchange and single and double dissociation in
nucleon-nucleon interactions as a function of s at a momentum transfer t = 0.032 GeV2. The
full line represents an interpolation of the data points. The insert gives the local slope β in the
parametrization f ∼ s−β as a function of s

is in sharp contrast to most ”microscopic” production models where N∗ production tends to be
neglected with respect to ∆ by isospin counting arguments. In fact ∆ resonances turn up in
the final state as decay products of higher mass N∗ states with their mass distributions being
inscribed in the respective N∗ decay distributions. Indeed three body decays of the type

N∗ → N + π + π (69)

are characterized by

N + π + π → ∆ + π (70)

with large branching fractions [121].
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Figure 166: 〈π+/π−〉 as a function of 1/
√
s for five values of plab between 0.2 and 1.0 GeV/c.

The full lines are hand interpolations through the data points for p+C interactions in the target
frame [90]

16.4.2 Cascading: Consequences for the Breit-Wigner mass distribution

In a situation where resonances proper are decay products of higher mass states, a
modification of their mass distributions with respect to the unconstrained Breit-Wigner shape,
Sect. 16.1, must be expected. Due to the absence of theoretical predictivity in the soft sector of
QCD it is difficult to estimate the effect of cascading in the Breit-Wigner mass tails. A look at
particle production with different assumptions concerning the extent of the mass tails may help
to at least establish some limits. Taking up the example of ∆++ decay into p and π+ the yield
of the decay products may be studied for different upper limits of the Breit-Wigner tails using a
simple, linear tail suppression of the form

fsupp(m) = 1− m−m0

mup −m0
(71)

where fsupp(m) is the suppression factor applied to the form (62) and mup an upper mass limit
at which the Breit-Wigner distribution vanishes.

The resulting dn/dxF distributions for the decay pion and protons are shown in Fig. 167
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for different values of the upper mass limitmup at SPS energy (
√
s = 17.2 GeV). For comparison

the total inclusive yields are also indicated.
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Figure 167: dn/dxF distributions from ∆++ decay as a function of xF for different damping
factors fsupp(m) at

√
s = 17.2 GeV, a) for decay pions, b) for decay protons. The respective

measured inclusive cross sections are indicated as full lines

The effect of the resonance mass tail on the decay particle yields is strong for π+ above
xF = 0.3 whereas for protons there is a smaller dependence spread over the complete xF range.
This is quantified in Fig. 168 where the yield ratios relative to the total inclusive cross section
are given.
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Figure 168: Decay particle yields relative to the total inclusive cross sections as a function of
xF a) for the decay pions and b) for the decay protons at

√
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It is interesting to note that the yield ratios reach more than 20% for the decay protons
over most of the xF range. For π+ the ratios increase from a few percent at low xF to about
20% at xF = 0.3 and then fan out for higher xF up to unphysical values at high mup.

Further constraints on the mass cut-off may be obtained by inspecting the double-
differential invariant cross sections as functions of pT for different xF values shown in Fig. 169
for the decay pions.
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Figure 169: Invariant decay pion cross sections as a function of pT for different xF values and
mass cuts at

√
s = 17.2 GeV. The measured total inclusive cross sections are shown as full lines
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The corresponding yield ratios relative to the measured inclusive cross section are pre-
sented in Fig. 170 as a function of pT for different mass cuts
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Figure 170: Yield ratio Rπ+ = fπ+(∆++)/fincl(π
+) as a function of pT for xF between 0.0 and

0.7 and different mass cuts

The yield ratio exceeds the total inclusive level at xF > 0.4 for mup = 5.0 GeV/c2 and
reaches 1.0 for mup = 4.0 GeV/c2 at xF > 0.6. At low pT the ratio stays consistently on a 10–
20% level, decreases to a flat minimum at pT ∼ 0.5 GeV/c and stabilizes again at 10–20% for

167



higher xF and mup = 2.5–3 GeV.
For the decay protons the influence of the mass cut-off is less important as shown in

Fig. 171 which gives directly the yield ratio Rp = fp(∆
++)/fincl(p) as a function of pT for

different values of xF and three different mass cuts.
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Figure 171: Yield ratio Rp = fp(∆
++)/fincl(p) as a function of pT for xF from 0.1 to 0.9, a)

mass delta function, b) mup = 3.0 GeV/c2 and c) mup = 5.0 GeV/c2

The ratioRp is in general on the level of 20–30% of the inclusive proton yield increasing
in the higher pT range from 30 to 50% at high xF andmup up to 3.0 GeV/c2. Atmup = 5.0 GeV/c2

this increase exceeds the limit of 100% in the medium xF range. There is a general decrease
of Rp with values below 10% towards xF = 0.9 which is due to the transition to single proton
production for highly peripheral collisions.

16.4.3 Mean pT and inversemT slopes

The influence of the resonance mass distribution pervades, in addition to the examples
discussed above, all secondary particle distributions. As two further examples the mean pT and
the inverse slopes of the transverse mass distributions (”hadronic temperature”) are presented
below for ∆++ decay.

The mean transverse momentum of the decay pions and protons is shown in Fig. 172 as
a function of xF for different mass cuts mup, a) for the decay pions and b) for the decay protons.

While there is a strong dependence of 〈pT 〉 on mup for pions in particular for xF > 0.3,
the mean pT of protons is less affected over the full xF range. As already discussed in Sect. 15.5
(Fig. 156) the sizeable difference of the 〈pT 〉 values for pions and protons at small xF vanishes
with increasing xF for mup between 2.0 and 3.0 GeV/c2, while again the extreme assumptions
of a delta function in mass or ofmup > 3 GeV/c2 allow for the limitation of the range of possible
resonance mass distributions.

A similar conclusion may be drawn from the inverse mT slopes shown in Fig. 173.
While the T values of the decay protons tend to level out formT−m > 0.3 GeV/c2 after

a strong increase for all mup, the inverse slopes of the decay pions show, in contrast, a strong
mup dependence in the same mT −m region contradicting any ”thermal” behaviour.
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Figure 172: Mean transverse momentum as a function of xF , a) for the decay pions and b) for
the decay protons from the ∆++(1232) resonance
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Figure 173: Inverse slopes T of the mT distributions a) for decay pions and b) for decay protons
from the ∆++ resonance as a function of xF for different values of mup

16.5 Summary of Sects. 15 and 16 concerning the decay of the ∆++ resonance

The in-depth discussion of several features of ∆++ decay as presented in Sects. 15 and
16 points out the importance of several resonance parameters beyond the mass, half width and
branching fraction. This concerns in particular two important ingredients:

1. In order to predict the inclusive distribution of the decay particles the knowledge of the
resonance cross section over the full phase space is mandatory

2. In strong decays a long upper mass tail (Breit-Wigner distribution) exists which depends
on several parameters like energy-momentum conservation, experimental cuts and in
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particular cascading decay from higher mass resonances. The effect of cascading on the
mass distribution is as yet not calculable as it makes part of non-perturbative QCD. It
may at least be approximated by a detailed study of the phase space distribution of the
decay particles with different assumptions on the extent of the upper mass tail. This way
a range of possible decay parameters may be established
In the present study of ∆++ decay a damping of the unconstrained Breit-Wigner distri-

bution up to mass values between 2 and 3 GeV/c2 has been shown to be compatible with a wide
range of secondary particle distributions.

17 Inverse slopes from the decay of different resonances (”Temperature”)

Following the preceding discussion of the influence of the resonance parameters on a
number of inclusive quantities of the final state hadrons, the inverse slope parameters of decay
pions from a set of different baryonic and mesonic resonances will be discussed. In addition to
the ∆ baryon decay (Sect. 15 and 16) the inverse slopes of π− from the weak decays of K0,
Λ and Σ− (Sect. 6) and from ρ0(770) and f0

2(1270) are presented in Fig. 174. Here the weakly
decaying strange hadrons have zero width whereas for the strong decays a linear damping of
the respective Breit-Wigner distributions up to 3 GeV/c2 mass is introduced. The inverse slopes
T are given at 158 GeV/c beam momentum and central rapidity.
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Figure 174: Inverse slopes T (GeV) as a function of transverse mass at central rapidity and
pbeam =158 GeV/c for decay pions from different baryonic and mesonic resonances. The mea-
sured inclusive value for pions is indicated by a thick dashed line
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Several conclusions may be drawn from Fig. 174:
(i) Each resonance decay creates its proper inverse slope distribution.

(ii) These distributions are far from flat at a given ”temperature” as it would be imposed by
a Boltzman-type emission from an equilibrium thermal ensemble.

(iii) The corresponding inverse slope values are imposed by a set of resonance parameters
like the Q value, the central width and the mass extent of the Breit-Wigner distribution
as discussed in Sect. 15 and 16 above.

(iv) The actual T values show a very large spread from a few tens of MeV up to several
hundred MeV.

(v) The inclusively measured T distributions of a particle must be seen as an incidental
result of the overlap of many distinct individual contributions.
Given the fact that most if not all final state hadrons stem from resonance decay the very

notion of a thermodynamic origin is not tenable.

18 Mean transverse momentum

18.1 〈pT 〉 for pions, kaons and baryons from NA49

The NA49 experiment has provided precision data of mean transverse momenta for π+,
π−, K+, K−, protons and anti-protons at

√
s = 17.2 GeV [17, 52, 53]. These data are presented

in Fig. 175 as a function of xF .
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Figure 175: Mean pT as a function of xF a) π+, K+, protons and b) π−, K−, anti-protons
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Several features are noteworthy:
(1) Opposite charges give very similar 〈pT 〉 to within about 20 MeV/c.
(2) At low xF there are substantial differences in 〈pT 〉 between particle species of about

150 MeV/c between pions and kaons and about 250 MeV/c between pions and baryons.
(3) These differences tend to vanish with increasing xF such that at xF ∼ 0.4 all particle

types yield 〈pT 〉 values which are equal to within about 50 MeV/c.
(4) There are two exceptions to this effect: 〈pT 〉 for anti-protons continues to increase with

xF whereas for protons there is a pronounced decrease for xF > 0.4.
In the framework of resonance decays treated in Sects. 15 and 16 above, the effects (2)

and (3) are explained by the resonance transverse momentum and the resonance mass distribu-
tion, respectively, as shown in Figs. 153 and 156. In this sense the data of Fig. 175 represent a
model independent check of the importance of resonance decay for the final state inclusive data.
The deviations (4) are a consequence of the detailed production mechanism. For protons, there
is the approach to diffraction at large xF with sharper pT distributions [53] whereas anti-proton
production is characteristic of high-mass isospin triplets of mesonic origin [122] with a steeply
declining xF distribution. In this case it is the high mass tail of the respective resonances which
is exploited.

In this context it should be stressed that many salient features of inclusive final state
hadron distributions follow naturally from resonance decay in contrast to statistical and ther-
mal models which have to take reference to an initial equilibrium state and neither predict the
experimental inverse slopes (Sect. 17) nor the dependence of mean pT on xF .

18.2 〈pT 〉 for π− as a result of the global interpolation for different values of log(s)

The interpolation scheme presented in Sect. 7 allows for the calculation of mean trans-
verse momentum in a range of log(s) from 1 to 3.6 or

√
s from 3 to 63 GeV over the full phase

space. The result is shown in Fig. 176 as a function of xF for log(s) = 1 to 3.6 in steps of 0.4
for feed-down corrected data.

Fx
0 0.2 0.4 0.6 0.8

 [
G

e
V

/c
]

〉 
T

 p〈

0.2

0.3

0.4

0.5

 1.0

 1.4

 1.8

 2.2

 2.6

 3.0

 3.6

log(s)

Figure 176: 〈pT 〉 of π− as a function of xF for 7 values of log(s) from 1 to 3.6

Fig. 176 shows a definite progression of the mean pT by factors which vary from 10%
at xF = 0 to 70% at xF = 0.4 over the range of

√
s from 3 to 63 GeV.
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Several remarks are to be made concerning the strong dependence of 〈pT 〉 on both the
longitudinal momentum and the interaction energy as is evident from Fig. 176:

1. 〈pT 〉 increases with xF from xF = 0 to xF ∼ 0.4 where the increase reaches a plateau at
all energies.

2. There is a strong dependence on
√
s which saturates at log s > 3.0.

3. There is as well a strong increase with xF which ranges from about 20% at log(s) = 1
to 90% at log(s) = 3.6.
This situation is visualized in Fig. 177 which shows the mean pT as a function of log(s)

for several values of xF .
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Figure 177: 〈pT 〉 of π− as a function of log(s) for several values of xF

The saturation in log(s) is due to two underlying effects. Firstly the invariant cross
sections show only a small s-dependence above log(s) = 2.5, see Fig. 130 for pT = 1.3 GeV/c.
Secondly the limit at pT < 1.3 GeV/c leaves the tail of the pT distributions unaccounted for.
The effect of this pT cut is shown in Fig. 178 where the percentage increase of 〈pT 〉 from an
upper limit at 1.3 GeV/c to an upper limit at 1.9 GeV/c is presented.

There is a steady increase of 〈pT 〉 between the two integration limits as a function of
log(s) which reaches more than 3.5% or about 0.017 GeV/c at log(s) = 3.6.

As far as the xF dependence is concerned (”seagull effect”) two underlying components
may be isolated using the detailed pT dependence of the cross section ratios (37) shown in
Figs. 123–127 at various xF values, Fig. 179.

At central rapidity, a first component at low pT exhibits an exponential shape with in-
verse pT slopes of about 0.18 GeV/c which is independent of the interaction energy, Figs. 123–
126. This corresponds, if converted into invariant cross sections and plotted against mT

(Fig. 127), to inverse mT slopes of about 0.08 GeV/c. The (non-thermal) value is similar to
the results for feed-down pions from weakly decaying strange hadrons (Fig. 26) and indicates
the presence of further resonant states with low Q values and small width.

A second component corresponds to the higher pT range and is clearly visible at
pT > 0.5 GeV/c. It features an exponential increase with pT whose inverse slope increases with
the interaction energy as shown in Fig. 126b. This slope becomes negative below

√
s ∼ 10 GeV.

At the base of this behaviour is of course energy-momentum conservation at low interaction en-
ergy together with the production of resonances with increasing mass towards higher energies.
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pT for different values of log(s) for a) xF = 0, b) xF = 0.05, c) xF =0.1 and d) xF = 0.3
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In the central region both the exponential decrease at low pT and the exponential increase
at higher pT tend to compensate such that the mean pT remains small with little dependence on
log(s).

In forward direction both components vanish as shown in Fig. 179b) to d) for xF = 0.3
up to

√
s = 63 GeV, see also Figs. 15, 18 and 20. The behaviour towards higher

√
swill probably

never be accessible at present-day colliders.
Here the prevailing effect of resonance decay (Sect. 19 and the discussion in Sect. 15,

Figs. 156 and 172) leads to the strong increase of 〈pT 〉 with xF which is mostly driven by the
resonance mass distribution via the Lorentz transformation from the resonance cms to the lab
system.

A further remark concerns the approach to the plateau in 〈pT 〉 up from xF = 0, Fig. 176.
With increasing interaction energy this approach becomes successively steeper indicating that
the relative longitudinal momentum xF is not the correct variable to describe this phenomenon.
In fact there is a factor of 20 in longitudinal momentum for constant xF between the lowest and
the highest interaction energy. The mean transverse momentum is therefore plotted in Fig. 180
as a function of cms energy E∗ rather than xF in order to cover the increase of 〈pT 〉 from the
lowest longitudinal momentum, E∗ = mπ up to E∗ = 3 GeV.
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Figure 180: 〈pT 〉 of π− as a function of cms energy E∗ for seven interaction energies
√
s from

3.2 to 63 GeV

The E∗ dependence shows a common, s-independent increase from E∗min = mπ up to√
s = 12.6 GeV. The deviations at 3.2, 5, 7.9 and 12.6 GeV above E∗ =0.4, 0.8, 1.4 and 2.4 GeV

are imposed by energy-momentum conservation which cuts in at about 35% of the available
cms energy E∗max =

√
s/2. The saturation at log(s) above 2.6, Fig. 179, transforms into a

subsequent lowering of the mean pT in the E∗ scale such that similar 〈pT 〉 values are reached
multiplying E∗ by the

√
s ratio (xF scaling).

19 Physics beyond the inclusive level: contribution from known resonances to the π−
yield

In the preceding sections some aspects of resonance decay and its influence on different
inclusive quantities of the final state particles have been discussed. If a complete set of hadronic
resonances decaying into given final state hadrons would be known including detailed yields
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and phase space distributions, quantum numbers, branching fractions, decay widths and mass
distributions, a new level of inclusive physics beyond the single particle inclusive state might
be defined. This could ultimately yield a deeper understanding of non-perturbative QCD on a
purely experimental level.

Unfortunately the present state of knowledge concerning resonance production and de-
cay does not allow such a complete study. There are however quite a number of experimental
results available which may be used to obtain at least a preliminary picture of the salient features
of the resulting inclusive quantities.

The following argumentation is based on a set of eight mesonic and five hadronic reso-
nances which has been discussed some years ago [123] concerning final state π− production in
connection with the NA49 experiment at

√
s = 17.2 GeV. Although the corresponding results

are necessarily incomplete some important conclusions may nevertheless be drawn.

19.1 The resonance sample

The following resonances decaying into π− have been included in the present study:

mesonic baryonic

η(548) ∆0(1232)

ρ0(770) ∆−(1232)

ρ−(770) N∗(1440)

ω(782) N∗(1520)

f2(1270) N∗(1680)

ρ0
3(1690)

ρ−3 (1690)

f4(2050)

In order to avoid double counting, only two-body decays into final state hadrons have
been included (three-body decays for η and ω). This excludes cascading decays like

ρ3 → ω + π (72)
N∗ → ∆ + π (73)

The resulting π− yields present therefore a lower limit, where cascading is expected to
contribute preferentially to the low pT and xF regions.

19.2 Resonance yields as functions of xF and pT

As there are practically no double-differential resonance cross sections available the
measured pT integrated yields dn/dxF and dn/dp2

T are used for the generation of complete
resonance spectra [114, 115, 124–128]. dn/dxF distributions are presented in Fig. 181 as a
function of xF for the mesons and baryons defined above, inter- or extrapolated to the NA49
energy,

√
s = 17.2 GeV.

The dn/dxF distributions give, when integrated over xF , the total resonance yields that
serve as normalization for the generated particle yields.
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Figure 181: dn/dxF distributions as a function of xF , a) for a set of 8 mesonic resonances b)
for five baryonic resonances

dn/dp2
T distributions are given in Fig. 182 as a function of p2

T , here normalized at
p2
T = 0.025 GeV/c2.
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Figure 182: Normalized dn/dp2
T distributions as a function of p2

T , a) for mesonic b) for baryonic
states

For the mesonic states there is an important evolution of the p2
T slopes with resonance

mass. This evolution is smaller for the baryonic states as the baryonic mass differences are
smaller. The distribution for protons is also given in Fig. 182. Here the yield difference is a
function of p2

T similar to the same effect between Λ and proton as indicated in Fig. 13 above.
The integration of the dn/dxF distributions results in total resonance yields and, given

the two-body branching fractions, in the π− cross sections given in Table 9. All yields are given
per inelastic event.
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Resonance Total yield Branching fraction π− yield
∆0(1232) 0.123 0.333 0.041
∆−(1232) 0.0584 1.0 0.0584
N∗(1440) 0.157 0.43 0.0675
N∗(1520) 0.0848 0.40 0.0339
N∗(1680) 0.0716 0.43 0.0308
η(548) 0.316 0.273 0.0862
ρ0(770) 0.837 1.0 0.837
ρ−(770) 0.286 1.0 0.286
ω(782) 0.333 0.907 0.302
f2(1270) 0.0709 0.62 0.0440
ρ0

3(1690) 0.0566 0.236 0.0134
ρ−3 (1690) 0.0397 0.236 0.0094
f4(2050) 0.0159 0.113 0.00180
total baryons 0.495 π− from baryons 0.232
total mesons 1.955 π− from mesons 1.579
total π− from 2-body decays (3-body from η and ω) 1.811
total inclusive π− [17] 2.36
fraction from 2-body decays (3-body from η and ω) 76.7%

Table 9: Resonance yields

Several consequences follow from the results of Table 9:
1. About three quarters of all inclusive π− are coming from 2-body decays of measured

baryonic and mesonic resonances.
2. As stated above this result has to be regarded as a lower limit since higher multiplicity

decays are disregarded and clearly not all possible resonant states have been included.
This is especially true for strange particle decays which are not included here.

3. As decay particles from two-body resonance decays are non-thermal in the sense of
Hagedorn’s statistical bootstrap model [100] their overwhelming contribution to the
final-state inclusive yields puts grave doubts on the applicability of statistical or ther-
mal models to hadronic interactions.

4. The biggest contributions in Table 9 come from the low-mass mesonic resonances η,
ρ and ω. It is clear from the available branching fractions of higher mass states that
these mesons are cascading down from both baryonic and mesonic resonances. Hence
the necessity to restrict their contribution to their direct decays into final state hadrons.
On the other hand decays of the type ∆→ N∗(1440) + π or b1(1235)→ ω + π yield –
again via two-body decays – pion contributions which have to be counted into the total
inclusive cross sections.

5. The resonance cross sections given in Table 9 span three orders of magnitude and their
decay pions another 4 to 5 orders of magnitude. It has therefore to be realized that the
relative contribution of different resonances are strongly depending on their Q values,
mass and phase space distributions such that the tails of the inclusive cross sections both
in xF and in pT have a different resonance heritage than their mean values.
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19.3 Predictions for double-differential cross sections from resonance decay

Invariant cross sections of π− from the decay of the resonances given in Table 9 are
given in Figs. 183 to 185 as a function of pT for fixed xF . They are directly comparable to the
NA49 data [17].

Note that the plots are continued to pT values above the limit of 1.3 GeV/c imposed in
this paper as the NA49 data extend partially up to 2 GeV/c. The simulation of the resonance
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Figure 183: Predicted invariant π− cross sections from resonance decay as a function of pT for
fixed xF = 0, 0.05, 0.1 and 0.15. The predictions are given as full lines, the NA49 data as dots
and the corresponding interpolations as red lines
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Figure 184: Predicted invariant π− cross sections from resonance decay as a function of pT for
fixed xF = 0.2, 0.25, 0.3 and 0.35. The predictions are given as full lines, the NA49 data as dots
and the corresponding interpolations as red lines

decay results in π− cross sections which are rather exponential at low xF and pT > 1 GeV/c.
The prediction has hence been extended to pT beyond 2 GeV/C.

Several features are apparent from these figures:
1. On first sight there is a surprising reproduction of the main features of the inclusive

distributions as far as the dependencies on pT and xF are concerned.
2. At xF > 0.4 the data and their interpolation coincide with the prediction to a precision
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Figure 185: Predicted invariant π− cross sections from resonance decay as a function of pT for
fixed xF = 0.45, 0.55, 0.65 and 0.75. The predictions are given as full lines, the NA49 data as
dots and the corresponding interpolations as red lines

of a few percent for pT > 0.5 GeV/c.
3. There is an offset centred around pT ∼ 1.2±0.3 GeV/c which is xF dependent. Such

offset would be expected if the resonance sum of Table 9 would lack contributions from
further resonances which are of course to be expected.

4. There is an enhancement below pT ∼ 0.8 GeV/c which is strongly xF dependent.
5. There is another enhancement at pT & 1.3 GeV/c and xF < 0.6.
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In order to quantify these effects the offset shown in Fig. 186 as a function of xF has
been subtracted from the data interpolation.
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Figure 186: Offset between data and π− from resonance decay at pT = 1.2±0.3 GeV/c in percent
as a function of xF

After this subtraction the percent difference between data and resonance prediction is
presented in Figs. 187–189.
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Figure 187: Percent deviation between data and resonance sum as a function of pT for xF = 0,
0.05, 0.1 and 0.15
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It is also useful to show the xF dependence for fixed pT , Figs. 190 and 191.

Fx

0 0.2 0.4 0.6

 [
%

]
∆

0

20

40

60

 = 0.1 GeV/c
T

 p

 = 0.5 GeV/c
T

 p

 = 0.7 GeV/c
T

 p

 = 0.9 GeV/c
T

 p

 = 1.1 GeV/c
T

 p

Figure 190: Percent difference ∆ between data and resonance prediction as a function of xF for
pT = 0.1, 0.5, 0.7, 0.9 and 1.1 GeV/c
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Some remarks are in place with respect to Figs. 187–191.
1. Both in pT and in xF a strong decrease of the excess yield is apparent up to about

1 GeV/c in pT and 0.2 in xF .
2. This is followed by a systematic increase towards higher pT and xF .
3. The increase with pT is continuing well beyond the actual pT limit at 2.0 GeV/c.
4. The increase with xF shows a maximum at xF ∼ 0.3 – 0.4 and decreases strongly

towards higher xF .
The low pT /low xF enhancements are reminiscent of the decay of low-Q resonances

without Breit-Wigner tails, see Fig. 158. In this context the resonance decays into final-state
hadrons

R→ h1 + h2 (R - resonance, h1 and h2 - final state hadrons) (74)

as discussed above have to be confronted with the cascading decay

R→ R′ + h (R and R′ - resonances, h - final state hadron) (75)

Some examples for (75) have been evoked in Sect. 19.1, (72) and (73). Whereas in (74)
the Breit-Wigner tail of the decaying resonance comes fully into play, Sect. 16, the cascading
decays like (75) have been shown to damp the extent of the mass tail, Sect. 16.4. By energy-
momentum conservation, the second resonance in (75) has to be strongly correlated in its mass
distribution with the first one: indeed the mass of the second resonance cannot be too different
from the first one. This would explain the mass cut-offs necessitated by unitarity arguments
shown in Sect. 16.4.2. The final state hadron will therefore be emitted at lowQwith a correlation
that keeps the masses of both resonances close together with a result corresponding to Fig. 154.
It would of course be highly desirable to look with high-statistics at cascading reactions like
(75) directly assessing mass correlations between R and R′

The increase towards high pT and medium xF is, on the other hand, rather suggestive of
higher mass resonances not contained in the list of Table 9, see for instance Fig. 172.

19.4 Integrated quantities: mean pT

The first moments of the pT distributions of π− from resonance decay, Table 9, are
shown in Figs. 192 for mesonic and Fig. 193 for baryonic initial states.

The 〈pT 〉 values show important differences for the individual parent resonances depend-
ing on resonance mass and two- or three-body decays. There is no trace of a common behaviour
neither for the shape of the 〈pT 〉 distributions nor for their absolute values: this corresponds of
course to the problems encountered with the Statistical Bootstrap Model, Sect. 13.2.

The superposition of 〈pT 〉 as a function of xF for the complete resonance sample is
presented in Fig. 194 and compared to the π− data from NA49 [17]. The rather precise repro-
duction of the main features of the experimental result proves once more the necessity to go
beyond the most general inclusive level in order to develop an understanding of the underlying
physics.

19.5 Integrated quantities: dn/dxF distributions

The integration over pT at fixed xF yields the dn/dxF distributions of the decay pions
shown in Fig. 195 for the individual resonances used in Table 9:

dn/dxF = π/σinel ·
√
s/2 ·

∫
f/E · dp2

T (76)
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Figure 192: Mean pT for π− from the decay of mesonic resonances as a function of xF
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Figure 193: Mean pT for π− from the decay of baryonic resonances as a function of xF
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Figure 195: dn/dxF distributions for π− from the decay of the resonances used in Table 9 as a
function of xF
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The dn/dxF distributions show the expected steepening when compared to the parent
particles, Fig. 181. And again, as for 〈pT 〉, there are marked differences between the different
mesonic and baryonic decays. The sum over all individual contributions is shown in Fig. 196,
and compared to the NA49 data.
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Figure 196: dn/dxF of π− as a function of xF for the inclusive NA49 data and for the decay
of the resonances contained in Table 9. A fit to the data suggesting the down-quark structure
function is superimposed

Several remarks should be made in this context:
1. The distribution from resonance decay tracks the π− data rather precisely for xF > 0.4

with a constant difference of about 25%.
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2. Towards lower xF this difference increases to about 60% at xF = 0. This is to be expected
since the difference between data and resonance decay increases strongly for xF < 0.2,
Fig. 190.

3. Both distributions reproduce the shape of the down-quark structure function where it is
thought to apply at xF > 0.35 as given by the function fitted to the data in Fig. 196.

4. The π+ data of NA49 [17] are presented in Fig. 197 including a fit corresponding to
the up-quark structure function. Again a rather precise correspondence is visible beyond
xF = 0.35.

5. The interpretation of this shape similarity invoking parton dynamics is rather daring
when realizing that the final state pions come – after several cascading steps – from
parent resonances where each parent creates a proper pionic dn/dxF distribution of
different shape, Fig. 195.
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Figure 197: dn/dxF of π+ as a function of xF for the inclusive NA49 data. A fit to the data
suggesting the up-quark structure function is superimposed
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These examples illustrate the necessity to follow inclusive phenomena beyond the lowest
level of simplification thus opening up a new way towards the understanding of the underlying
physics processes. Instead, the shape similarities have given rise to ”recombination” models
[105, 106] and to ”quark counting rules” which were widely proposed and used in the 1970´s.

19.6 The approach to ”high” pT

Another example for the use of inclusive data for the introduction of parton dynamics
in order to explain an observed phenomenology is the so-called high-pT sector. About 50 years
ago it was observed at the CERN ISR collider that the pT distributions at central rapidity de-
veloped non-exponential tails above about 1 GeV/c which were in contradiction to the scaling
hypotheses of the time. This has been discussed in Sect. 12, see for instance Fig. 121.

At the same time results from deep-inelastic lepton-proton scattering were used to pre-
dict the appearance of just this phenomenon at high transverse momentum by hard parton-parton
scattering inside the colliding hadrons [86]. Partonic scattering amplitudes were established us-
ing the strong coupling constant to first order and the partonic structure functions available from
lepton-proton experiment.

The term ”high pT ” is rather ill-defined. As the early data were very limited in their
pT range the tendency was to push the application of parton-parton scattering down to the very
limit of momentum transfer compatible with perturbative QCD. This led to some problems with
the reproduction of the observed yields at pT . 2 GeV/c which were partially solved by the
introduction of a parton transverse momentum kT [88, 129]. Transverse momentum is however
not a priory contained in the definition of partonic structure functions.

In a later stage higher-order QCD graphs including gluon radiation were introduced thus
opening up a source of transverse momentum. This approach was used to compare to the data
even down to pT ∼ 1.5 GeV/c.

In connection with the present discussion it is however absolutely mandatory to regard
resonance decay as an eventual source of ”high pT ” hadrons. The predicted π− yields from the
two-body decay of the resonance sample given in Table 9 have therefore been extended up to
pT values of 3 GeV/c which should be safely contained in the regime of perturbative QCD.
The corresponding cross sections (at

√
s = 17.2 GeV) are visible in Figs. 183 to 185. As the

data from NA49 at this energy are limited to pT < 2 GeV/c, available data from the ISR and
Serpukhov up to pT = 3 GeV/c have been combined in Fig. 198.

It is apparent from Fig. 198 that the predicted cross sections are well within an error
margin of ±15% from the measured yields for pT = 2 and 2.5 GeV/c and fall below by about
40% at pT = 3 GeV/c. Here it should be remembered that the resonance sample of Table 9 is not
complete and is lacking high-mass baryons and mesons as well as heavy flavours which would
contribute substantially, notwithstanding their low cross sections and small branching fractions,
see the study of K− from D mesons in [52].

In general the application of perturbative QCD for the prediction of inclusive processes
has to be seen very critically. This concerns also one of the generally undoubted ”successes” of
QCD, the production of high mass lepton pairs via the Drell-Yan effect. It has been shown 30
years ago [130] that the production of dilepton states may be well described by semi-leptonic
decays of charm-anticharm and beauty-antibeauty mesons, including characteristic inclusive
quantities like mass and s-dependence, xF and helicity angle distributions as well as average
transverse momentum.
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20 Conclusions

The conclusions will follow the three main sections of this paper as specified in the
introduction:

1. Critical review of all available data and establishment of a general interpolation scheme
including results from the high-energy proton colliders.

2. Confronting the interpolation with various physics hypotheses both in longitudinal and
transverse direction concerned with energy dependences and eventual manifestations of
partonic effects.

3. Extension of the study beyond the purely inclusive level by regarding resonance produc-
tion and decay in its decisive influence on virtually all inclusive phenomena.

20.1 Data evaluation

In a first step the inclusiveness of the existing data sets with respect to the treatment of
π− feed-down from weak decays is established by isolating two classes of experiments with and
without feed-down correction. Corresponding corrections over the full phase space are worked
out. In a second step a subgroup of experiments yielding internally consistent cross sections is
defined as ”reference data”. In a third step a three-dimensional interpolation scheme in the co-
ordinates interaction energy, longitudinal and transverse momentum is developed using these
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data. In a forth step this interpolation is confronted with the remaining ”spectrometer” data
which are shown to essentially necessitate corrections connected to normalization problems. In
this context data sets which fall far out of all other results in terms of systematical deviations
are eliminated. A detailed statistical analysis shows that the interpolation has an unprecedented
systematic precision on the 5% level from

√
s ∼ 3 GeV up to the highest ISR energy. The

interpolation is made available both with and without feed-down correction in the coordinate
triplets ylab, pT , log(s) and xF , pT and log(s).

The situation at the high-energy colliders RHIC and LHC is less favourable as the phase-
space coverage of the data is reduced to the very central or very forward directions and char-
acterized by rather substantial discrepancies between experiments. Nevertheless an attempt is
made to use these data up to

√
s = 13 TeV at the LHC.

20.2 Confronting the data with different physics hypotheses

Considering the wide range in interaction energy a first rather fundamental question is
concerned with the data re-normalization. The inelastic cross section grows by about a factor of
three from the lowest to the highest

√
s available. Recent conjectures seem to indicate that this

increase involves mostly the peripheral regions of the hadrons as opposed to a constant, central
component. Therefore both the invariant cross section proper and the cross section divided by
the inelastic cross sections are shown: due to the high precision of the interpolation, differences
between the two normalizations become visible already at ISR energy. Some interesting effects
up to the LHC range are exploited for π0 production.

As far as longitudinal momentum dependencies are concerned the rather vague connec-
tion to parton dynamics by introducing the ”scaling” variable xF does not yield satisfactory
results when regarded over the complete

√
s range and confronted with data of sufficient preci-

sion.
On the other hand the hypothesis of ”limiting fragmentation” proposed at a time where

very few and uncertain data at low energy were available, shows surprising predictivity even up
to LHC energy. This approach has the advantage to contain built-in baryon number conservation
and the definition of a cascading chain of high-mass excited states including proper treatment
of the involved Lorentz-transformations.

On the level of transverse momentum there used to be a general idea of exponential
damping corresponding to the early establishment of the ”longitudinal phase space”. A strong
predictivity has been introduced via the notion of ”statistical thermodynamics”. This model
postulates unified exponential distributions in ”transverse mass” where the inverse slope defines
a ”temperature” that should be independent of interaction energy and particle mass and smaller
than a limiting value. In connection with this a hadronic phase transition makes part of the
thermodynamic treatment.

The in-depth study of the available data over the full energy range shows that this sim-
plistic picture is not tenable. Being applicable essentially at central rapidity, the model misses
as an essential part the strong increase of the mean transverse momentum as a function of xF
known as ”seagull effect” which is followed here with precision over the full range of interaction
energies.

20.3 Resonance decay as a first step beyond the single-particle inclusive level

Whoever looks at inclusive data is met with clear indications of resonance decay con-
tributing to the measured observables. This is put in this paper to a quantitative test by introduc-
ing a group of eight mesonic and five baryonic resonances whose production characteristics are
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sufficiently well known in order to study the impact of their decay on the establishment of the
single-inclusive quantities studied in the first parts of this paper. The resonance masses range
from η0(550) to f4(2050) for the mesons and from ∆(1232) to N∗(1680) for the baryons. In
order to avoid double counting only two-body decays are included. As resonance production
is relatively well measured in the energy range of the CERN SPS the study is carried out at√
s = 17.2 GeV corresponding to the NA49 experiment.

As a first result it turns out that 77% of all inclusive π− are accounted for by resonance
two or three-body (η and ω) decays – which is a lower limit as the list of resonances is incom-
plete. This result is not new as the importance of resonance decay has been claimed decades
ago. It is new to the point that both mesonic and baryonic resonances are involved and their
decays traced in parallel.

In a first step the basic kinematic features of resonance decay are pointed out in partic-
ular concerning the resonance transverse momentum and – for strong decays – the resonance
mass distribution. For this aim the well-measured ∆++(1232) is used to also bring out the effect
of asymmetric masses.

In a second step the decay contribution to most of the inclusive distributions presented
in this paper are quantified.

On the level of double-differential cross sections a surprisingly exact reproduction of the
essential features of the pT and xF distributions is achieved. The deviations of up to 20% from
the data are studied in their pT and xF dependence and brought into relation to further expected
decay features like cascading decays.

Concerning single-differential, integrated quantities it may be stated that their features
are reproduced with surprising precision.This is true both for mean pT and its xF dependence
and for dn/dxF as a function of xF .

The study is extended to pT values up to 3 GeV/c at central rapidity. It is shown that
resonance decay reproduces the measured cross sections also in this sector which has been
ascribed to hard parton scattering as an agreed consensus invoking perturbative QCD over the
past decades.

As a general consequence it becomes clear that the term of ”soft hadronic physics” must
be redefined as far as the application of parton dynamics and ”perturbative QCD” is concerned.

21 Future studies: experimental and accelerator constraints

In this paper a considerable effort has been made to bring into perspective the exper-
imental and phenomenological information concerning one single final state particle in soft
proton-proton interactions and this by covering the full available range of collision energy, the
complete production phase space and, of course, particle identification.

Looking back at this effort, the authors have to confess to a feeling of frustration. Not
only would this study have to be repeated for the full range of secondary particles and types of
collision concerning different hadron beams on both protons and neutron targets. In addition the
nuclear sector should not be disregarded as it presents a vast laboratory for the study of multiple
hadronic collisions. The actual status of the field gives rise to a number of questions:

– How is it possible that non-perturbative QCD, as the by far biggest sector of the standard
model, has been more or less completely abandoned by experiment as well as theory?

– How is it possible that in spite of the non-deniable progress made both in detector and in
accelerator technology there are still experimental results produced which do not come
up in quality and precision to work done five or six decades ago?

– How is it possible that the problem of parton dynamics and its purported contribution
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to final state inclusive results is still treated as a non-touchable certainty where exper-
imental results, when obtained with proper precision and reliability, point just to the
opposite?

– How is it possible that – extending the range of hadronic interactions to the nuclear
sector – a possible phase transition to a QCD plasma state is considered as existing
when no indisputable experimental proof has ever been put forward?

– Why no real attempts have been made to have a look beyond the purely inclusive level in
order to open up another source of quantitative understanding underlying the observed
phenomena on the single inclusive level?
For the time being it is apparent that it is on the experimental level that further progress

is relying as the actual ideas based on statistical thermodynamics on the one hand and parton
dynamics on the other hand seem to be so deep rooted that no real movement towards putting
the one or the other to a decisive test are visible. This in a situation where progress on the
experimental side should allow a decisive improvement if certain constraints both concerning
detector design and construction as well as accelerator systems are properly taken into account.
Part of these constraints have hopefully become apparent in the present paper.

1. Phase space coverage
New detector systems should be designed such that the full production phase space is
covered uniformly from the far backward to the far forward direction with precision
tracking. It has been a mistake to concentrate since decades more or less exclusively on
the very central part of the collision.

2. Particle identification
Particle identification should cover the full phase space including calorimetry for pho-
ton/electron and neutral hadron detection.

3. Systematic uncertainties
The systematic uncertainties should be on the percent level. This is the real problem
– as has become apparent in the above comparison of the ”classic” experiments using
bubble chambers with more or less all ”modern” approaches using different kinds of
spectrometer layouts or so-called ”detector facilities”.

4. Versatility of the strong interaction
The tremendous versatility of the strong interaction in terms of initial state conditions
defining the collision itself as well as the choice of secondary particles should be fully
exploited.

5. Order of approach
Research should start with the so-called ”elementary” collisions using the full spectrum
of possible beam particles on proton targets. This should also contain lepton beams
which are sometimes called ”noble probes” as compared to ”dirty hadrons”. A definite
high precision comparison is still lacking.

6. The nuclear sector
This sector should be worked up successively from light to heavy nuclei. Here the
deuteron offers a (non-trivial) ”neutron” target. Again all kinds of projectile hadrons
should be used.

7. Impact parameter
Hadron-nucleus collision should be studied with a precise impact parameter measure-
ment defining the number of intranuclear projectile collisions which gives access to a
new sector of hadronic physics.

8. For all the above points, full attention should be given to the precision measurement of
hadronic resonances.
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9. Nucleus-nucleus collisions
The interest here should not be exclusively concentrated on ”Heavy Ion” collisions. Full
attention should also be paid to peripheral interactions.
This list is not aimed at ”discovery”. In the past too much attention has been paid to the

perturbative sector concentrating the attention upon more and more remote sectors hence neces-
sitating extreme accelerator luminosities whereas the soft regime is accessible with convenient
interaction rates.

From the above (non-complete) list of experimental constraints and tasks several conse-
quences follow immediately:

(i) Proton colliders cannot fulfil the wide spectrum of possibilities, neither the homoge-
neous coverage of production phase space nor the versatility of projectile/target combi-
nations.

(ii) Fixed-target operation is on the contrary well suited to cover the complete range of tasks.
For a first generation of experiments, the interaction energy may be kept conveniently
low in order to cope with high precision tracking and the necessities of complete particle
identification.

In view of this the CERN SPS complex offers an available, at present under-exploited,
environment.

A Availability of numerical information

The NA49 working group on proton-proton and proton-nucleus interactions has created
a web-page https://spshadrons.web.cern.ch, where salient numerical results as well as docu-
ments may be addressed. For the present paper a number of quantitative results may be found
under the header π− in p+p . Here the following quantities are listed:

– Invariant cross sections normalized to the inelastic cross section concerning the global
interpolation in the three dimensions pT , log s) and ylab with and without feed-down
in both csv and text files, pT , log s and xF with and without feed-down, pT , log s and
cms rapidity with and without feed-down. Each data set covers the binning scheme with
about 104 entries.

– pT integrated yields as functions of log s and xF with and without feed-down, pT inte-
grated yields as functions of log s and cms rapidity

– Total π− yields as a function of log s with and without feed-down.
Similar detailed information may be found on this web-page for the preceding papers as

well:
p+p → [17, 52, 53] p+p data
p+C → [5, 54, 89] p+C data
p+p → [52] kaon in p+p – s-dependence
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