

Scintillating sampling ECAL technology for the Upgrade II of LHCb

Marco Pizzichemi^{*}

on behalf of the LHCb ECAL Upgrade R&D Group

*University & INFN Milano-Bicocca, and CERN

Feb 23rd 2022 - 16th Vienna Conference on Instrumentation (VCI)

Current LHCb ECAL configuration

- Large **Shashlik** array (about 50 m²), with 3312 modules and 6016 channels:
 - **176** modules $4 \times 4 \text{ cm}^2$ cell size
 - **448** modules $6 \times 6 \text{ cm}^2$ cell size \succ
 - \succ
- **2688** modules $12 \times 12 \text{ cm}^2$ cell size
- Optimized for π^0 , e⁻ and y identification in the few GeV to 100 GeV region at 2 x 10³² cm⁻² s⁻¹
- Radiation hard up to 40 kGy
- Energy resolution: $\sigma(E)/E \approx 10\%/\sqrt{E \oplus 1\%}$

Requirements for ECAL Upgrade II

Upgrade II (to be installed at LS4): operation at 1-2 x 10³⁴ cm⁻² s⁻¹

Radiation doses up to 1 MGy and 1 MeV neq/cm² in the center for 300 fb⁻¹:

• New technologies required for the center

Increased occupancy and pile-up, requiring:

- Timing O(10ps)
- Increased granularity
- Longitudinal segmentation

Keep the current energy resolution of $\sigma(E)/E \approx 10\%/\sqrt{E} \oplus 1\%$

R&D strategy for the ECAL upgrade II

- Introduce new Spaghetti Calorimeter (SPACAL) technology in the LHCb ECAL
- Develop radiation hard scintillating crystals
- Need for radiation tolerant organic scintillators
- Add timing to Shashlik modules with new WLS fibres
- Add longitudinal segmentation
- R&D on possible timing layer, based on MCP-PMTs (LAPPD) -> See talk from S. Perazzini (https://indi.to/Y97mz)

marco.pizzichemi@cern.ch

Feb 23rd 2022 - 16th Vienna Conference on Instrumentation (VCI)

R&D on GAGG crystals

Gadolinium Gallium Aluminium Garnet (GAGG) has high light yield and relatively fast scintillation

Garnet crystals are **radiation hard**. GAGG irradiated with protons of 24 GeV/c:

- Fluence of 3.1x10¹⁵ cm⁻²
- > 910 kGy dose
- \succ Induced absorption below 4 m⁻¹ at the emission peak

See: V. Alenkov et al., NIM A 916 (2019) 226-229

Scintillation properties of GAGG **can be tuned** with different levels of dopants (Ce,Mg) and growth conditions:

- Sample tested over a factor 2 in light output and 3 in decay time
- High light yield -> slow decay time
- > Scintillation is sped up at the expense on light output with Mg codoping
- Further R&D ongoing to reduce decay time below 20 ns

See: L. Martinazzoli et al., NIM A 1000 (2021) 165231

L. Martinazzoli et al., submitted to Light: Science & Applications

SPACAL-W prototype with garnet crystal fibres

- **Pure tungsten** absorber with 19 g/cm³
- Crystal garnet scintillators
- 9 cells, each 1.5 x 1.5 cm² ($R_{M} \approx 1.45$ cm)
- 4 + 10 cm long split (7+18 X₀)
- Reflective mirror between sections

- Crystal garnets from several producers tested:
 - Crytur YAG
 - Fomos GAGG
 - ➢ ILM GAGG
 - > C&A GAGG

Different photo-detectors tested:

- > Hamamatsu R12421 for energy resolution (coupled with light guides)
- Hamamatsu R7600U-20 metal channel dynode (MCD) PMT for timing (direct coupling)

• Further tests performed (not discussed in this presentation):

- Optical coupling with 3M foil instead of air
- > 12 m long (instead of 3 m) analog cables between sensors and front-end electronics

SPACAL-W with crystals: test beam results

• Energy resolution **improves** at larger incidence angles

1.9%

- Energy resolution at 3°+3°:
 - sampling term: 10.6%
 - constant term:

Time resolution (DESY 2021, R7600-20)

- Timing resolution measured at 3°+3° incidence angle
- Time stamps from front and back sections obtained with constant fraction discrimination (CFD)
- Time resolution (C&A GAGG): **18 ps** @ 5 GeV

Analysis of SPS 2021 data (higher energy) ongoing

SPACAL-W with organic scintillating fibres

- Candidate for consolidation of inner region during LS3
- 3D printed pure tungsten absorber
- Polystyrene squared scintillating fibres
- 1 cell produced, 1.5 x 1.5 cm² (with $R_{M} \approx 1.8$ cm)
- Two configurations tested:
 - > 5+14 cm long split cell (7+18 X_0), double readout
 - > 19 cm long continuous cell, single readout at back
- Reflective mirror between sections, or continuous fibres with mirror at front

Continuous cell: 24 ps @ 5 GeV

SPACAL-Pb with organic scintillator fibres

Fibres bundle, 1 cell

- Lead absorber with polystyrene fibres
- 9 cells, each 3 x 3 cm² ($R_M \approx 3$ cm)
- 8 + 21 cm long (7+18 X₀)
- Reflective mirror between sections
- Hamamatsu R7899 for energy resolution
- Hamamatsu R7600U-20 metal channel dynode (MCD) PMT for timing
- Different readout configurations:
 - Direct contact
 - > 10 cm long PMMA light guide
 - Bundle of fibres coupled directly to MCD PMT

SPACAL-Pb: test beam results

Energy resolution (SPS 2021, R12421)

- At 3°+3° incidence angle
- Best fit to data adding noise term
- Sampling term: 10.0%
- Constant term: 1.16%

Time resolution (DESY 2021, R7600-20)

- Timing resolution measured at 3°+3° incidence angle
- Time stamps from front/back sections with CFD
- Only part of cell readout in direct contact due to smaller active area of the PMT (1.8 x 1.8 cm²)
- Analysis of higher energy SPS 2021 data ongoing
- Time resolution: 26 ps @5 GeV

Shashlik: towards Upgrade II

- 4 mm thick scintillating tiles and 2 mm thick lead tiles with wavelength shifting (WLS) fibres
- Radiation hardness limit at 40-50 kGy -> suitable for non-central part of ECAL
- R&D to improve intrinsic time resolution

- Main focus on **double-sided readout** to mitigate the effect of longitudinal shower fluctuations
 - With continuous WLS fibers
 - > With split fibres at shower maximum ($\approx 7X_0$)
- **PMTs** allowing better timing performance (R7600U-20)
- WLS (from KURARAY^{*}) with **shorter decay time**
 - > Y11 (current LHCb) = 7 ns decay time
 - > YS2 = 3 ns decay time
 - > YS4 = 1.1 ns decay time

^{*}Many thanks to KURARAY for providing pre-production YS2 and YS4 samples

Shashlik: test beam results

Time resolution (DESY & SPS 2021)

SHASHLIK Time Resolution (σ) vs Energy

- Time resolution improved with faster WLS fibres
- Double-sided readout shows improved timing performance over single side readout
- Similar time resolution with **continuous and split** WLS fibers and double-sided readout
- Time resolution better than 40 ps > 5 GeV

Detailed Monte Carlo simulations

- Geant4 simulation of energy deposit and parametrized transport of scintillation photons
- Allows a gain in computation time by a factor x100
- Particle flux from full LHCb simulation can be included
- Different module types (SPACAL-W, SPACAL-Pb, Shashlik)
- Parametrised response of photo-detectors
- Good agreement with test beam data over the 1-100 GeV range

Energy resolution and longitudinal separation

- In SPACAL prototypes produced for Test Beam the longitudinal separation (front/back sections) is not optimized
- This is due to the need for flexibility to perform several tests
- Material budget between SPACAL sections is not negligible -> energy resolution is degraded

Energy resolution and longitudinal separation

Energy resolution WGAGG @ 3°+3°

- The MC framework reproduces well the Test Beam measurements, when the material between front and back sections is
 properly taken into account
- In SPACAL modules designed for usage in the LHCb ECAL the front/back separation will be optimized (e.g. thin reflector foil)
- The MC framework allows to predict the energy resolution expected in these optimized modules

marco.pizzichemi@cern.ch

SPACAL front-back separation

		Measurements on TB modules [%]	MC simulations on TB modules [%]	MC simulations on optimized modules [%]
SPACAL-W	Sampling term	10.6 ± 0.1	10.4 ± 0.1	9.1 ± 0.1
	Constant term	1.9 ± 0.5	2.27 ± 0.04	1.09 ± 0.04
SPACAL-Pb	Sampling term	10.0 ± 0.6	10.4 ± 0.1	10.4 ± 0.1
	Constant term	1.16 ± 0.06	1.09 ± 0.04	0.62 ± 0.06

Energy resolution expected in optimized modules in line with requirements

Summary and Outlook

- SPACAL and Shashlik technologies provide an attractive option for the Upgrade II of LHCb ECAL
- Several prototypes produced and tested at DESY and SPS-CERN
- Time resolution above 5 GeV

\succ	SPACAL W+GAGG	< 20 ps
\succ	SPACAL W+Polystyrene	< 20 ps
\succ	SPACAL Pb+Polystyrene	< 25 ps

- > SHASHLIK < 40 ps
- **Energy resolution** in line with requirements when final, optimized configuration is considered

• Comprehensive **R&D studies ongoing**:

- Production and Test Beam measurements of new prototypes
- Detailed Monte Carlo simulations
- > Investigation on new radiation-hard and fast scintillators
- > Study of more realistic PMTs and electronics readout
- > Study of new absorber production techniques