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1 Introduction

Machine Learning (ML) methods are widely used in experimental particle physics [1] data
manipulation. One of the most successful applications is the classification of hadronic
jets at the Large Hadron Collider (LHC) experiments [2]. Jets are streams of particles
produced via fragmentation and hadronisation of quarks and gluons that emerge from
particle collisions, e.g. proton-proton collisions at LHC. They are complex objects formed
by many detectable particles, and it is possible to identify their properties by exploiting
particle content and correlations, commonly referred to as jet substructure. Typical jet
classification problems are the identification of the heavy-flavour hadron produced in the
jet hadronisation (e.g. b hadron vs c hadron) or the identification of the charge of the heavy-
flavour quark that constitutes this hadron (e.g. b vs b̄). State-of-the-art ML methods, such
as Deep Neural Networks (DNN) [3], Convolutional Neural Networks (CNNs) [4], Recurrent
Neural Networks (RNNs) [5], Tensor Networks [6] and Graph Neural Networks [7, 8], have
been applied to jets data collected by the LHC experiments, with a clear improvement of
the classification performance with respect to classical non-ML methods [9–11].
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Recently, Quantum Computing (QC) has set the scene for a revolution in ML. The
new approach consists of using quantum circuits to tackle classification tasks, in the frame-
work of Quantum Machine Learning (QML) [12]: data are embedded into a quantum state,
which is then passed to a variational quantum circuit, and by varying the circuit param-
eters a training procedure is performed by means of minimising a classical loss function.
Probability measurements of the final state are then used to perform the classification.
Given the intrinsic properties of quantum computation, namely superposition and entan-
glement, the new approach could lead to new insights from the classification point of view.
Jets that originate from gluons, or quarks of a certain charge and flavour, would have a
characteristic particle content and correlations between them, which could be exploited to
aid the identification of the original particle. It is interesting to study if QML, by exploiting
the quantum nature of the algorithm, could enhance the classification performance.

QML techniques have recently been applied to solve High Energy Physics (HEP) prob-
lems, such as signal versus background separation [13–16], anomaly detection [17], and
particle track reconstruction [18, 19]. A more detailed review of QML applications to HEP
can be found in ref. [20]. This paper presents the first application of QML to the task of jet
flavour identification. QML methods are performed on simulators and applied to simulated
LHCb samples, to identify the charge of the b quark that forms the b hadron produced in
the jet hadronisation. In the rest of the paper, this task is simply referred as b-jet charge
tagging.

The paper is structured in the following way: section 2 provides a description of the
LHCb jet reconstruction and identification together with the used dataset. In section 3
the considered QML algorithms are presented while the analysis flow is described in sec-
tion 4. The results are discussed in section 5. The conclusions and future developments
are presented in section 6.

2 Jet reconstruction and identification at LHCb

LHCb [21] is a single-arm spectrometer designed to study b and c hadrons in the forward
region of proton-proton collisions. The reference system used at LHCb is defined by the
z-axis (the beam axis) parallel to the proton beam, the x-axis parallel to the gravity
acceleration, and the y-axis perpendicular to the other two. The direction of particle
momentum is identified by the angles θ and φ, where θ is the angle between the momentum
and the z-axis, and φ is the azimuthal angle between the projection of the momentum in
the xy plane and the y-axis. The pseudorapidity η is defined as η = −log

[
tan

(
θ
2

)]
. The

LHCb detector covers the region in the pseudorapidity range 2 < η < 5, and consists of a
tracking system and a particle identification system [22]. The tracking system is formed
by a vertex detector, several tracking stations and a dipole magnet. The vertex detector
efficiently reconstructs the decay vertex of b- and c-hadron decays, while the tracking
stations measure the trajectories (tracks) of charged particles and their momenta. The
particle identification system is formed by two Ring Imaging Cherenkov detectors, two
calorimeters (electromagnetic and hadronic) and a muon detector, that allows to precisely
determine the type of the particles produced in the collision. Jets are reconstructed using
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inputs selected by the Particle Flow algorithm [23]. These are charged particles detected
by the tracking system, and neutral particles reconstructed in the calorimeter system as
energy clusters isolated from tracks [24]. The selected particles represent the input of
the anti-kt clustering algorithm [25] for jet clusterisation. The jet clusterization is done
using FastJet [26] with radius R = 0.5. The jet momentum is defined as the sum of the
momenta of the particles forming the jet. The jet axis is defined as the direction of the
jet momentum. Particles inside a jet are approximately contained in a cone structure with
a distance from the jet axis ∆R =

√
(∆η)2 + (∆φ)2 = 0.5, where ∆η is the difference in

pseudo-rapidity and ∆φ is the difference in the azimuthal angle with respect to the jet axis.
The goal is to distinguish between jets that contain a b or b̄ hadron just after the

hadronisation, i.e. in the instant of b-hadron production and not at decay, since neutral
B-mesons can undergo flavour oscillation. Therefore the analysis is restricted to a sample
of jets that belong to these two categories, labelled as b jets and b̄ jets.

This preliminary selection is performed in two steps:

• reconstruction of a vertex (secondary vertex) significantly displaced from the primary
proton-proton interaction point, using tracks detected by the vertex detector [27],
representing the b-hadron decay point;

• identification of the jet that contains the secondary vertex within its cone.

The b-jet charge tagging subsequently becomes a binary classification problem where the
jet can belong to one of the two exclusive categories: b jets or a b̄ jets. The charge of the
b quark at production is correlated to the charge of the b-hadron decay products. This
correlation is not perfect, since neutral B-mesons can oscillate, and the charge of the b
quark at production may be different from the charge at decay. As an example, in semi-
leptonic decays, the b hadron can produce a muon, whose charge is directly related to the
charge of the b quark. However, due to possible B-meson oscillations and to the large
number of particles, including muons, in a jet the information is diluted and that has to
be taken into account.

Two types of b-jet charge tagging algorithms are currently used in LHCb:

• exclusive algorithms, based on information coming from particles inside the jet strictly
correlated with the b-hadron decay, such as the muon;

• and inclusive algorithms, which aim to exploit the jet sub-structure, i.e. information
coming from the jet constituents, as shown in figure 1.

The QML approach presented in this paper belongs to the category of inclusive algorithms.
However, for the sake of comparison, the results are compared to the muon tagging [28],
which is an exclusive algorithm. This tagger selects the muon with the highest momentum
with respect to the z axis, pT, inside the jet. This simple requirement is sufficient to identify
the muon coming from a b hadron and therefore to infer the quark charge by measuring
the muon charge. The efficiency of this algorithm is limited by the probability that a b

hadron decays to a final state with a muon, which is ∼ 10% [29].

– 3 –



J
H
E
P
0
8
(
2
0
2
2
)
0
1
4

Figure 1. Sketch representing possible jet tagging methods. In the exclusive method the informa-
tion comes from a particle, e.g. the muon, whose charge is correlated to the b hadron (lower jet);
in the inclusive method, the information is extracted from the jet constituents (upper jet). The
magnitude of the particle momentum transverse to the jet axis is labelled as prel

T .

The performance of different b-jet charge tagging algorithms are compared using the
tagging power εtag [30–32], defined as

εtag = εeff(2a− 1)2 (2.1)

as the figure of merit, where εeff is the tagging efficiency, i.e. the fraction of jets where the
classifier takes a decision, and a is the accuracy, i.e. the fraction of correctly tagged jets
with respect to the tagged jets. The tagging power is the effective fraction of events that
contribute to the statistical uncertainty in a measurement where the b-jet charge tagging
is applied.

2.1 Data samples description

LHCb simulated samples are used in the studies presented in this paper. The bb̄ di-jets sam-
ples are produced within the LHCb simulation framework [33], which uses Pythia8.1 [34]
with a specific LHCb configuration [35], to generate proton-proton interactions and jet
fragmentation and hadronisation at a center-of-mass energy of 13TeV, and an internal im-
plementation of EvtGen [36] to simulate b-hadron decays. The Geant4 software [37],
embedded in the LHCb framework, is used to simulate the detector response. Pairs of b
and b̄ jets are selected by requiring for each jet a pT greater than 20GeV/c and a η in
the range 2.2 < η < 4.2, to ensure that they are well inside the instrumented part of the
detector. After the pre-selection, a fixed number of 16 different features related to the
jet substructure are used as input to the classifiers. Among the reconstructed particles
inside a jet the muon, kaon, pion, electron and proton with the highest pT are selected.
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Muon Kaon Pion Electron Proton
Dataset prel

T q ∆R prel
T q ∆R prel

T q ∆R prel
T q ∆R prel

T q ∆R Q

Complete X X X X X X X X X X X X X X X X

Muon X X X X

Table 1. Summary of the features contained in the two datasets.

For each particle three physical variables are considered: the magnitude of the transverse
momentum to the jet axis (prelT ), the charge (q), and the distance, measured in the (η,φ)
space, between the particle and the jet axis (∆R). If a particle type is missing, the relative
features are set to 0. The last feature is the weighted jet charge Q, defined as the sum of
the charges of the particles inside the jet weighted with the particles prelT [38–41]

Q =
∑
i(prelT )iqi∑
i(prelT )i

. (2.2)

The analysis for the b-jet identification is performed with two datasets. The complete
dataset includes the events selected with the 16 features described above. The muon dataset
contains jets with at least one muon and only four features: prelT , ∆R, q of the muon and
the weighted jet charge Q. Table 1 summarises the characteristics of the data samples.

3 Quantum Machine Learning models

A quantum algorithm is implemented by means of a quantum circuit, namely a collection
of linked quantum gates acting on a n-qubit quantum state: the measurements on the final
state represent the outcome of the quantum algorithm. Parametrised Quantum Circuits
(PQCs) [42] are a type of circuit that contains adjustable gates with tunable parameters.
The Variational Quantum Classifier (VQC) [43] is a hybrid quantum-classical algorithm
to perform classification tasks using a Machine Learning model based on a PQC with the
following structure:

Data encoding data x, the features representing the jet substructure in this application,
are pre-processed and encoded into a subset of the parameters of a PQC. The stage
produces a quantum state |x〉 representing the input jet.

Variational circuit the state |x〉 is processed by a PQC, U(θ), featuring trainable pa-
rameters θ to be optimised during the training phase. This stage produces a final
state |ψ〉 = U(θ)|x〉.

Prediction expectation values computed on the final state |ψ〉 are mapped to probabilities
for the two labels, Pb and Pb̄. The training process aims to match the label predictions
with the true charge of the b-hadron in the jet in the instant of production, available
in the simulations.

Two different PQC models are studied in this work: Amplitude Embedding and Angle
Embedding, described below.
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3.1 Amplitude Embedding

The Amplitude Embedding model consists in a PQC made by an embedding circuit followed
by a variational circuit. The schematic representation of this model is shown in figure 2.
The embedding circuit consists of an Amplitude Encoder that encodes up to 2n features
into the amplitude of a n-qubit quantum state, or equivalently, a vector of N features can
be encoded using dlog2Ne qubits:

|x〉 =
2n∑
i=1

xi |ni〉 (3.1)

where xi is the ith feature and |ni〉 is the ith vector of the computational basis. The
definition requires the x vector to be normalised,∑

i

|xi|2 = 1. (3.2)

If the number of features to encode is not a power of 2, the remaining amplitudes can
be padded with constant values. This model embeds the 16 (4) variables of the complete
dataset (muon dataset) into the amplitudes of a 4-qubit (2-qubit) quantum state. The
variational stage consists of a variable number L of strongly entangling layers. A strongly
entangling layer consists of trainable generic rotational gates R(αi, βi, γi) applied to each
qubit followed by a collection of CNOT gates applied to neighbouring pairs of qubits,
considering the last one as a neighbour of the first one. The complexity of this kind of
circuit can be tuned by changing the number of strongly entangling layers L: for a generic
n-qubit circuit, the number of trainable parameters of the model Npar is equal to

Npar = 3× n× L. (3.3)

On the final state, the expectation of the Pauli operator of the first qubit 〈σ0
z〉 ∈ [−1,+1]

is measured and used to define the probabilities Pb and Pb̄ of being a b-jet and a b̄-jet,
respectively:

Pb = 1
2(〈σ0

z〉+ 1) (3.4)

Pb̄ = 1
2(1− 〈σ0

z〉) = 1− Pb. (3.5)

3.2 Angle Embedding

The structure of the Angle Embedding model, represented in figure 3, differs from the
Amplitude Embedding model in the encoding used to embed the features of the datasets
into the quantum state: in this case, the embedding circuit consists in a Angle Encoder
that embeds 16 (4) features of the complete dataset (muon dataset) as rotation angles of
16 (4) x-axis rotational gates Rx(θi). Therefore, this circuit structure requires a one-to-one
correspondence between qubits and input features: that makes it impractical to adopt with
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Figure 2. Circuit representation of the Amplitude Embedding model. In blue, variables are em-
bedded into the amplitudes of a quantum state. In red, trainable generic rotational gates to be opti-
mised during the training phase. In green, CNOT gates entangling qubits with a circular topology.

Figure 3. Circuit representation of the Angle Embedding model. In blue, x-axis rotational gates
used to embed the variables into the quantum circuit. In red, trainable generic rotational gates to
be optimised during the training phase. In green, CNOT gates entangling qubits with a circular
topology.

high-dimensionality datasets, due to computational constraints of quantum simulators. The
variational stage of the circuit is identical to the Amplitude Embedding model, featuring
a variable number L of strongly entangling layers that can be opportunely chosen to tune
the number of parameters Npar, defined in eq. (3.3), and, therefore, the complexity. The
measurement of the expectation value of the Pauli σz operator is mapped to the tagging
probabilities Pb and Pb̄ as expressed in eq. (3.4) and eq. (3.5), identically to the Amplitude
Embedding model.

4 b-jets identification procedure

Quantum circuits are simulated by means of noiseless simulators (noise impact is studied
in section 5.3) using Pennylane [44], a Python framework designed specifically for QML
applications. The quantum circuit is embedded into a classical optimisation algorithm,
using the Jax [45] Python library. Since the quantum algorithms results are compared
to classical DNN ones, the same analysis is performed with a standard feed-forward deep
neural network, implemented using the Keras [46] framework with the TensorFlow [47]
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back-end. Additional details on the structure and the optimisation of the DNN are reported
in appendix A.

4.1 Training and testing phases

The muon and complete datasets are both split into training and testing sub-datasets:
about 60% of the samples are used in the training process that includes also the validation
and the remaining 40% are used to test, evaluate and compare the classifiers. In the muon
dataset analysis, 60000 jets are used for training and 40000 jets are used for testing. The
complete dataset training is performed on 400000 jets and remaining 290000 are used for
testing and assessing performance. In the analysis of the muon dataset (complete dataset),
the Angle Embedding and Amplitude Embedding classifiers are studied and compared to
a DNN with the same 4 (16) input variables. The training process aims to find the values
of the model parameters θ that minimise the Mean Squared Error loss function

L(θ) = 1
N

N∑
i=1

(P ib (θ)− T i)2, (4.1)

where N is the number of training jets, P ib is the predicted probability, defined in eq. (3.4),
for the i-th jet, and T i is the target probability for the i-th jet, i.e., 1 for a b jet and 0 for
a b̄ jet. Due to the large number of jets in the datasets, the quantum models are trained
implementing a mini-batch gradient descent [48] algorithm using the ADAM optimiser [49]
to minimise eq. (4.1). The training dataset is split in several mini-batches containing a fixed
number of training samples. During each training step, the gradient of eq. (4.1) is evaluated,
averaging over the training samples of a mini-batch, and used to update model parameters.
A training epoch is completed when the whole training dataset is processed, namely after
a number of steps equal to the number of mini-batches. Unless specified otherwise, the
models are trained with learning rate1 ξ = 0.01 for 100 epochs, while the mini-batch size
is fixed to the maximum value allowed by memory constraints. The output of the classifier
gives the probability that a jet is generated by a b or a b̄ quark. The label with the highest
probability is assigned to the jet, i.e. if Pb > 0.5 (Pb < 0.5) then it is classified as a b

jet (b̄ jet). In figure 4a the output distributions for the two classes (b and b̄ jets) after
the training procedure are shown; a separation between the two distributions around 0.5 is
visible leading to a good classification. It should be noted that the Pb distribution is shifted
toward 1 for b quarks, and toward 0 for b̄ quarks, as expected. Figure 4b shows the output
distribution for the Angle Embedding classifier on 16 qubits: in green the jets that are
correctly classified, in red the jets that are wrongly classified and the sum of all jets in grey.
As expected, correctly classified jets tend to stay close to 0 and 1 while the wrongly classified
jets are peaked around 0.5, where the prediction power is minimum. Figure 5 shows the
Receiver Operating Characteristic curve (ROC) and the Area Under Curve (AUC) for the
DNN and the quantum classifiers for the muon dataset and the complete dataset.

1In Machine Learning, the learning rate ξ of an optimisation algorithm is usually defined as the scaling
factor applied to the gradient of the loss function when updating the parameters. It can be tuned as a
parameter of the learning process.
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Figure 4. Probability distributions for jet tagged to b (blue) and b̄ quarks (yellow), showing
separation around 0.5 (a). Probability distribution for the Angle Embedding circuit: jet correctly
(wrongly) tagged are plotted in green (red), showing around 0.5 worse classification. The probability
distribution for all jets is shown in grey (b).
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Figure 5. ROC distributions and AUC score for DNN (green), Angle Embedding (blue) and
Amplitude Embedding circuits (yellow) for the muon dataset (a) and the complete dataset (b). The
dashed line represents a random classifier.
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cutΔ

Figure 6. Probability distributions for jet tagged to (blue) b and (yellow) b̄ quarks.

Classifier
Dataset DNN Angle Embedding Amplitude Embedding
Muon 0.30 0.25 0.16

Complete 0.21 0.19 0.12

Table 2. Width ∆cut for different classifiers and dataset.

5 Results on b-jet charge tagging

The performance of the classifiers is evaluated by using the jet tagging power, defined in
eq. (2.1). The tagging power is computed as a function of the jet pT and η for both the
quantum and the classical classifiers. In order to optimise the tagging power, a region
symmetric with respect to 0.5 is defined, where no classification is performed. The width
∆cut of the excluded region is defined for each classifier by maximising the tagging power
evaluated using all the jets in the dataset. Such an exclusion region reduces the tagging
efficiency because less jets are tagged, but enhances the identification probability. The
probability distributions and the excluded region are shown in figure 6: indeed the region
where the prediction power is minimum is excluded. The width ∆cut of the excluded
region for each classifier and for muon and complete dataset are summarised in table 2.
For comparison, the unoptimised tagging power, obtained by identifying as b (b̄) the jets
with Pb above (below) 0.5, is presented in appendix B.
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Figure 7. Tagging power εtag with respect to (a) jet pT and (b) jet η for the muon dataset. The
Angle Embedding circuit and the DNN show similar performance.

The tagging power εtag as a function of jet pT and η for the classical and quantum
classifiers applied to the muon dataset is shown in figure 7. All the distributions have sim-
ilar behaviour demonstrating that no bias is created by any algorithm. The tagging power
dependence on the jet pT is as expected, since at high pT the reconstruction and identifica-
tion of the jet particle content is more difficult, leading to a lower tagging power [50]. The
DNN shows slightly better performance compared to the Angle Embedding algorithm, even
though the two results are compatible within 2σ in each pT and η bin. Both algorithms out-
perform the Amplitude Embedding model and the muon tagging approach. The muon tag-
ging performance is expected, since it only uses the muon charge q for the prediction. The
other algorithms use also the muon pT, the muon ∆R and the weighted jet charge Q. The
simple 2-qubit Amplitude Embedding model shows a slightly better performance with re-
spect to the muon tagging, but still worse than the DNN and the Angle Embedding model.

The tagging power εtag for the DNN and the quantum classifiers on the complete
dataset as function of jet pT and η, is shown in figure 8. Also in this case, the usual
dependence on the jet pT is visible. As expected, the tagging power of the QML and DNN
is higher in the complete dataset with respect to the muon dataset, since a larger number of
features is used. As before, for QML and DNN the performance is above the muon tagging
approach, given that these classifiers use the information coming from the jet substructure.
Differently from the application to the muon dataset, in the complete dataset the QML
algorithms perform slightly worse than the DNN, with slightly better performance for the
Angle Embedding structure than the Amplitude Embedding. It can be deduced that the
DNN makes a better use of the features when a larger number of them is used.
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Figure 8. Tagging power εtag with respect to (a) jet pT and (b) jet η for the complete dataset.
The quantum algorithms perform slightly worse than the DNN, with the Angle Embedding circuit
performing better than the Amplitude Embedding circuit.

5.1 Dependence of the results on number of training events and circuit depth

The dependence of the quantum algorithms performance on the number of training events
and the circuit complexity has to be evaluated if near-term applications on quantum hard-
ware are considered. These parameters have an impact on the execution times and therefore
on the possibility to use it. The performance dependence on the number of training sam-
ples is an interesting parameter to compare QML and DNN methods, in order to assess the
differences between the two approaches. Given the high computational efforts of simulating
complex circuits with several qubits, only the muon dataset is used. For QML, the Angle
Embedding structure is considered with different number of strongly entangled layers and
different number of training events. The results are compared with the same DNN con-
sidered in the previous section; a comparison with more complex networks is described in
appendix A. The metric used to quantify the goodness of the quantum classifier is the accu-
racy on a test subset of 40000 jets. The performance is calculated averaging over 10 training
rounds. In figure 9 (a) the accuracy of the Angle Embedding circuit is shown as a function of
the number of layers of the circuit. As expected, by increasing the depth of the circuit, and
therefore its complexity, the accuracy increases. This behaviour stops at around 5 layers,
where the accuracy is saturating and no further improvement is evident. It is clear that, for
a given number of features and training data, the Angle Embedding model does not profit
of an arbitrarily large number of layers, therefore it is possible to keep a low number of
layers, and subsequently a lower complexity of the circuit, to obtain the best performance.
This would reduce also the computing time and resources needed for the simulation.
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Figure 9. (a) Accuracy of the Angle Embedding structure on the muon dataset versus the number
of layers. (b) Accuracy of the (red) Angle Embedding structure and (blue) DNN on the muon
dataset versus the number of training events.

The accuracy as a function of the number of training events for the Angle Embedding
circuit and the DNN is shown in figure 9 (b). Increasing the number of training events the
performance of the quantum algorithm is similar to the DNN, but when the number of train-
ing events decreases the quantum algorithm keeps very high performance, while the DNN
is not able to perform a good classification. This means that, with respect to the DNN, the
QML method reaches optimal performance with a lower number of events. Considering
the fact that state-of-the-art ML algorithms require very large data sets to get meaningful
performance, this unique feature of QML algorithms needs further investigation, which
could lead to a better understanding on how these algorithms are using the input features.

5.2 Time performance

Time performance is a fundamental figure of merit to understand the feasibility of simulat-
ing such quantum algorithms. Here, the time performance for the Angle Embedding and
the Amplitude Embedding circuits is evaluated for the muon dataset, as a function of the
number of strongly entangling layers in the circuit structure. The quantum algorithms are
trained using 4 NVIDIA Volta V100 GPUs, and the training time to train 60000 jets for
100 epochs is evaluated. Results are shown in figure 10. Results show that it takes less time
to train the Amplitude Embedding circuit than the Angle Embedding structure, and the
training time increases as the number of layers, although with a greater rate for the Angle
Embedding circuit: this may be expected since the complexity of the circuit increases with
the number of layers, therefore it takes more time to simulate the quantum circuit.
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Figure 10. Training time for 100 epochs for (red) the Angle Embedding and (blue) Amplitude
Embedding circuits on the muon dataset with respect to the number of circuit layers.

5.3 Noise models

In order assess the performance of the algorithms in quantum hardware it is important to
understand the impact of noise on quantum circuits. Two kinds of noise can affect quantum
algorithms:

• coherent noise: it originates from unitary errors in the application of quantum gates.
This lead to the construction of a different quantum state with respect to the desired
one. A typical source of this kind of noise is non-ideal calibrations of the quantum
hardware;

• incoherent noise: this noise results from the interaction between the quantum hard-
ware and the environment. This noise gives quantum states that are not pure anymore
and are described by mixed states, i.e. probability distributions over different states.

The simulations of noise contribution taking into account both sources of noise in quan-
tum circuit measurements have been performed using the pennylane-qiskit plugin [44, 51].
This plugin allows to simulate noise models coming from different real IBM quantum com-
puters [52], including state preparation and readout errors, and to keep the Pennylane
syntax. The result is a simulation of a quantum algorithm on a real device structure. Four
IBM quantum computers are considered: ibmq-belem, ibmq-santiago, ibmq-jakarta and
ibmq-toronto, which have different numbers of qubits (respectively 5, 5, 7 and 27 qubits),
different quantum volumes2 (respectively 16, 32, 16 and 32) and different qubits structure,

2The quantum volume is the maximum size of a quantum circuit that can be effectively implemented
on a noisy intermediate-scale quantum device. In this paper, the definition from ref. [53] is adopted.
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Figure 11. Qubit structure of ibmq-belem (a) and ibmq-santiago (b).

Noise model accuracy
no noise 0.640± 0.017

ibmq-belem 0.629± 0.047
ibmq-santiago 0.633± 0.038
ibmq-jakarta 0.637± 0.042
ibmq-toronto 0.631± 0.044

Table 3. Accuracy for noisy circuits obtained with the muon dataset.

as shown in figure 11 for the ibmq-santiago and ibmq-belem which have the same number
of qubits.

Studies are performed on the Angle Embedding circuit structure with three strongly
entangled layers. A small subset of the muon dataset is used because simulating circuits
including noise contribution is more time and computationally consuming; on the other
hand, with a low number of events the quantum algorithm performance is sufficiently high,
as shown in figure 9. In this way, a subset of 1000 jets of the muon dataset is selected for
training while validation is performed on a subset of 10000 jets. For each noise model the
training is performed for 50 epochs using ADAM with a learning rate ξ = 0.01 and batch
size of 10 jets. The results are averaged over five rounds of training, using five independent
training subsets. The relevant figure of merit to assess noise models performance is the
accuracy on the validation test. The results are shown in figure 12 and summarised in
table 3. Models including noise need more epochs to reach convergence, but in the end
the results are consistent with those of noiseless simulations within error. Such a result
demonstrates that the proposed circuit model for the muon dataset is robust to noise.

6 Conclusions

The first application of QML algorithms to identify the charge of the b hadron produced in
the jet hadronisation, at the LHCb experiment has been presented. The results using the
muon dataset show that the Angle Embedding structure almost reaches the performance
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Figure 12. Validation accuracy for noise models as a function of the number of epochs. Blue
(light-blue) band represent 1σ (2σ) uncertainty bounds for the noiseless model.

of the DNN while being better than the muon tagging approach. The amplitude encoding
structure presents no evident improvement with respect to the muon tagging method.
When the complete dataset is used, the best quantum algorithm performance is given by
Angle Embedding structure. The study of the performance dependence on the circuit
depth has shown that the number of layers is a parameter to be optimised. More layers,
which means more complex structures, do not necessarily result in improved performance,
since saturation is reached. The impact of the noise on the results appears to be negligible,
suggesting that the proposed circuits could be implemented on a quantum hardware if
available. QML algorithms achieve performance consistent with classical methods like the
DNN with low-complexity circuits and a smaller number of training events. This could have
important implications for LHC experiments where often the training phase is the most
expensive in terms of resources. However, when a large number of features is employed,
the DNN performs better than QML algorithms. Here huge improvements are expected
when the hardware will be available. In fact, the comparison of QML models to classical
kernel methods [54] shows that QML models achieve classification tasks separating data in
Hilbert spaces whose dimension scales exponentially with the number of qubits involved.
As this number increases, quantum simulations on classical computers become unfeasible.

The full exploitation of QML in high energy physics experiments at colliders, just
began. As for any brand new tool, unexpected applications may manifest themselves while
using. For example, results obtained involving tensor network methods [6, 55] have shown
that quantum algorithms can allow to study correlations among the features. This is done
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by measuring the entanglement correlations between qubits of an optimised multi-qubit
system. Given that a quantum circuit is a unitary matrix, the same approach applied to
tensor networks can be applied in QML by easily inverting the unitary matrix representing
the circuit. This new and yet not investigated approach could allow to extract information
on jet constituents correlations starting from the measurement of the entanglement between
the qubits of a trained VQCs and possibly help in improving the classification performance.
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A Deep Neural Network model and further comparisons

The DNN is built following a classical feed-forward structure shown in figure 13: it starts
with a Batch Normalisation Layer [56] and it applies several Dense layers, each one followed
by a Dropout [57] layer. Depending on the number of input features the input vector for
the DNN changes (4 variables for the muon dataset and 16 for the complete one). For
the hidden layers the ReLu3 activation is used while a sigmoid4 function is applied to
the output node. The network is trained using the ADAM optimiser [49]. The model is
trained for 250 epochs with an early stopping of 25 epochs on the test loss function and a
learning rate of 0.0001. The hyperparameters of the DNN (such as depth, number of nodes
per layer, dropout rate, normalisation moment, and kernel initialisation) are optimised
using the hyperopt package [58], maximising the accuracy in the test dataset by exploring
different parameter spaces. Given the classification task, we take cross entropy as loss
function. A scheme of the DNN model is shown in figure 13. Different DNN structures
have also been considered, in order to have a fair comparison between quantum and classical
classifiers. Usual state-of-the-art networks, such as CMS DeepJet algorithm [9], make use
of LSTM [59] and convolutional layers, resulting in an improvement of performance. RNN
structures are also under study within the LHCb experiment as potential flavour tagging
algorithms. Therefore the following DNN models are studied:

• “LSTM” model: starting from the DNN structure we apply a LSTM layer to the
particle features (therefore excluding the “global” variable of the total jet charge)
before the first Dense layer. The Dense structure is identical to the DNN structure.

• “LSTM+Conv” model: from the LSTM model we firstly apply a convolutional layer
of the particle features (as before not applied to the total jet charge).

3ReLu is the rectifier activation function, defined as ReLu(x) = max(0, x).
4The sigmoid activation function is defined as sig(x) = [1 + exp (−x)]−1.
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Figure 13. DNN structure.
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Figure 14. DNN structure for (a) the “LSTM” model and for (b) the “LSTM+CONV” model.

The two models are shown in figure 14. The DNN performance in terms of tagging power is
compared to the LSTM and LSTM+CONV models. Results for tagging power as function
of the jet pT and η are shown in figure 15, where results for different models are comparable
within the error and therefore allow us to consider just the DNN model for the comparison
with quantum algorithms.

B Unoptimised tagging power distributions

In this section the distributions for the unoptimised tagging power are shown, both for the
muon and the complete datasets. This is done in order to check if there are performance
biases when cutting on the probability distributions to maximise the tagging power. In
figures 16 and 17 the unoptimised tagging power distributions as function of jet pT and
η respectively for the muon and the complete datasets are shown. No evident biases are
present and the same considerations done for the optimised distributions are valid.
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Figure 15. Tagging power εtag with respect to (a) jet pT and (b) jet η for the complete dataset
applied to different DNN models.
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Figure 16. Unoptimised tagging power εtag with respect to (a) jet pT and (b) jet η for the muon
dataset. The angle embedding circuit and the DNN show similar performance.
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Figure 17. Unoptimised tagging power εtag with respect to (a) jet pT and (b) jet η for the complete
dataset. The angle embedding circuit and the DNN show similar performance.
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