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We report the first calculation using physical light-quark masses of the electromagnetic form
factor V (z) describing the long-distance contributions to the K+ → π+`+`− decay amplitude. The
calculation is performed on a 2+1 flavor domain wall fermion ensemble with inverse lattice spacing
a−1 = 1.730(4)GeV. We implement a Glashow-Iliopoulos-Maiani cancellation by extrapolating to
the physical charm-quark mass from three below-charm masses. We obtain V (z = 0.013(2)) =
−0.87(4.44), achieving a bound for the value. The large statistical error arises from stochastically
estimated quark loops.

I. INTRODUCTION

The K+ → π+`+`− (` = e, µ) decays are flavor-
changing neutral current processes that are heavily
suppressed in the standard model (SM), and thus
expected to be sensitive to new physics. Their
branching ratios, taken from the latest PDG aver-
age [1], are Br [K+ → π+e+e−] = 3.00(9) × 10−7

and Br [K+ → π+µ+µ−] = 9.4(6) × 10−8. This pro-
cess is dominated by a single virtual-photon exchange
(K → πγ∗), whose amplitude is predominantly described
by long-distance, nonperturbative physics [2]. With ten-
sions between the LHCb measurement [3] of and SM pre-
dictions for the ratio RK contributing to increased inter-
est in lepton-flavor universality (LFU) violation, impor-
tant tests of LFU in the kaon sector could also be pro-
vided by K+ → π+`+`− decays [4]. The amplitude for
the K → πγ∗ decay can be expressed in terms of a single
electromagnetic form factor V (z) defined via [2, 5]

Aµ = −i GF
(4π)2

V (z)[q2 (k + p)µ − (M2
K −M2

π)qµ], (1)

where µ is the photon polarisation index, z = q2/M2
K ,

q = k − p, and k and p indicate the momenta of the K
and π respectively. From analyticity, a prediction of V (z)
is given by [2]

V (z) = a+ + b+z + V ππ(z), (2)

where a+ and b+ are free real parameters and V ππ(z)
describes the contribution from a ππ intermediate state
(detailed in [2]) with a π+π− → γ∗ transition. The free
parameters have, until recently, only been obtained by
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fitting experimental data. Having previously measured
the K+ decay channel for electrons and muons at the
NA48 experiment at the CERN SPS [6], the follow-up
NA62 experiment measured the K+ → π+µ+µ− decay
during the 2016-2018 Run 1 [7], with prospects for fur-
ther measurements during the 2021-2024 Run 2 [8]. From
the NA48 electron data, values of a+ = −0.578(16) and
b+ = −0.779(66) have been found [6], and the avail-
able NA62 muon data resulted in a+ = −0.592(15) and
b+ = −0.699(58) [7].

In parallel, the theoretical understanding of these pro-
cesses is being improved. The authors of [9, 10] construct
a theoretical prediction of a+ and b+ by considering a
two-loop low-energy expansion of V (z) in three-flavor
QCD, with a phenomenological determination of quanti-
ties unknown at vanishing momentum transfer. From
the electron and muon they find a+ = −1.59(8) and
b+ = −0.82(6), in significant tension with the experimen-
tal data fit. The authors acknowledge that more work is
being done to estimate more accurately the ππ and KK
contributions.

The nonperturbative ab-initio approach of lattice QCD
is well suited to study the dominant long-distance con-
tribution to the matrix element of the K+ → π+γ∗ de-
cay. Methods with which such a lattice calculation could
be performed were first proposed in [11], and additional
details on full control of ultraviolet divergences were in-
troduced in [12]. An exploratory lattice calculation [13],
using unphysical meson masses, demonstrated a practi-
cal application of these methods.

This letter describes a lattice calculation following the
same approach as [13], but using physical light-quark
masses, thereby allowing for the first time a direct com-
parison to experiment.
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II. EXTRACTION OF THE DECAY
AMPLITUDE

The procedure and expressions in this section are
largely a summary of the approach described in [13]. We
wish to compute the long-distance amplitude defined as

Aµ
(
q2
)

=

∫
d4x 〈π(p)|T [Jµ(0)HW (x)] |K(k)〉 (3)

in Minkowski space, where q, k, and p are defined as
above, Jµ is the quark electromagnetic current and HW

is a ∆S = 1 effective Hamiltonian density, given by [14]

HW =
GF√

2
V ∗usVud

2∑
j=1

Cj
(
Quj −Qcj

)
, (4)

where the Cj are Wilson coefficients, and Qq1 and Qq2
are the current-current operators defined (up to a Fierz
transformation) by [11]

Qq1 = [s̄γµ (1− γ5) d][q̄γµ (1− γ5) q] , (5)

Qq2 = [s̄γµ (1− γ5) q][q̄γµ (1− γ5) d] . (6)

We renormalize the operators Qqi nonperturbatively
within the RI-SMOM scheme [15] and then follow [16]
to match to the MS scheme, in which the Wilson coeffi-
cients have also been computed.

A. Correlators and Contractions

The corresponding Euclidean amplitude—which is ac-
cessible to lattice QCD calculations—can be computed
with the “unintegrated” 4pt correlator [12]

Γ(4)
µ (tH , tJ ,k,p) =

∫
d3x

∫
d3y e−iq·x

〈φπ (tπ,p)T [Jµ (tJ ,x)OW (tH ,y)]φ†K (tK ,k)〉, (7)

where φ†P (t,k) is the creation operator for a pseudoscalar
meson P at time t with momentum k. To obtain the de-
cay amplitude we take the integrated 4pt correlator [12]

Iµ (Ta, Tb,k,p) = e−(Eπ(p)−EK(k))tJ

×
∫ tJ+Tb

tJ−Ta
dtH Γ̃(4)

µ (tH , tJ ,k,p) , (8)

in the limit Ta, Tb → ∞. The exponential factor trans-
lates the decay to tJ = 0, allowing us to omit any tJ
dependence in further expressions. Here Γ̃

(4)
µ is the “re-

duced” correlator, where we have divided out factors that
are not included in the final amplitude, i.e.

Γ̃(4)
µ =

Γ
(4)
µ

ZπK
, ZπK =

ZπZ
†
KL

3

4Eπ (p)EK (k)
e−tπEπ(p)+tKEK(k),

(9)

where L3 is the spatial volume, Zπ = 〈0|φπ(p) |π(p)〉,
Z†K = 〈K(k)|φ†K(k) |0〉, and EK(k) and Eπ(p) are the
initial-state kaon and final-state pion energies, respec-
tively.

The spectral decomposition of Eq. (7) has been dis-
cussed in detail in [13], in particular describing the pres-
ence of intermediate one-, two-, and three-pion states be-
tween the Jµ and OW operators. As these states can have
energies E < EK(k) they introduce exponentially grow-
ing contributions that cause the integral to diverge with
increasing Ta. These contributions do not contribute to
the Minkowski decay width [12] and must be removed in
order to extract the amplitude

Aµ(q2) = lim
Ta,Tb→∞

Ĩµ(Ta, Tb,k,p), (10)

where Ĩµ is the integrated 4pt correlator with
intermediate-state contributions subtracted. The meth-
ods used to remove the intermediate states follow the
same steps as in [13], and are outlined in Section II B.

The four classes of diagrams—Connected (C), Wing
(W ), Saucer (S), and Eye (E)—that contribute to the
integrated correlator are represented schematically in the
supplementary material. The current can be inserted on
all four quark propagators in each class of diagram, in
addition to a quark-disconnected self-contraction. Dia-
grams of these five current insertions for the C class are
also shown in the supplementary material. The 20 result-
ing diagrams need to be computed in order to evaluate
Eq. (7).

When working on the lattice there are potentially
quadratically divergent contributions that come about
as the operators Jµ and HW approach each other when
the current is inserted on the loop of the S and E di-
agrams [11, 12]. Since we perform our calculation with
conserved electromagnetic currents the degree of diver-
gence is reduced to, at most, a logarithmic divergence
[11] as a consequence of U(1) gauge invariance and the
resulting Ward-Takahashi identity. We emphasise that,
due to exact gauge symmetry in lattice QCD there is a
vector current, which is exactly conserved on each con-
figuration, independent of any residual chiral symme-
try breaking. The remaining logarithmic divergence is
removed through the Glashow-Iliopoulos-Maiani (GIM)
mechanism [17], implemented here through the inclusion
of a valence charm quark in the lattice calculation.

B. Intermediate states

The contribution of the single-pion intermediate state
can be removed by either of the two methods discussed
in [13]. The first of these (method 1) reconstructs the
single-pion state using 2pt and 3pt correlators to sub-
tract its contribution explicitly. The relevant amplitude
can be extracted with this method in several ways, in-
cluding a direct fit of Aµ and the intermediate state, the
reconstruction of the intermediate states using fits to 2pt
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and 3pt correlators, a zero-momentum-transfer approxi-
mation and an SU(3)-symmetric-limit approximation, all
of which are discussed in detail in [13].

The second method proposed in [13] (method 2) in-
volves an additive shift to the weak Hamiltonian by the
scalar density s̄d [18]

O′W = OW − css̄d, (11)

where the constant parameter cs is chosen such that

〈π(k)|O′W |K(k)〉 = 0. (12)

Replacing OW with O′W in Eq. (7) removes the contribu-
tion of the single-pion intermediate state. As the scalar
density can be written in terms of the divergence of a
current, the physical amplitude is invariant under such
translation [12]. The two-pion contributions are expected
to be insignificant until calculations reach percent-level
precision and the three-pion states are even more sup-
pressed [12]. As we do not compute the rare kaon decay
amplitude to such a precision, the two- and three-pion
states are not accounted for in our studies.

III. DETAILS OF CALCULATION

This calculation is performed on a lattice ensemble
generated with the Iwasaki gauge action and 2+1 fla-
vors of Möbius domain wall fermions (DWF) [19]. The
spacetime volume is (L/a)3 × (T/a) = 483 × 96 and the
inverse lattice spacing a−1 = 1.730 (4)GeV. The fifth-
dimensional extent is Ls = 24 and the residual mass is
amres = 6.102 (40) × 10−4. The light and strange sea
quark masses are aml = 0.00078 and ams = 0.0362
respectively, corresponding to pion and kaon masses of
Mπ = 139.2(4)MeV and MK = 499(1)MeV. We use 87
gauge configurations, each separated by 20 Monte Carlo
time steps.

The Möbius DWF action [20] was used to simulate the
sea quarks, with a rational approximation used for the
strange quark. In this calculation the light valence quarks
make use of the zMöbius action [21], an approximation
of the Möbius action where the sign function has had
its Ls dimension reduced by using complex parameters
matched to the original real parameters using the Remez
algorithm. This gives a reduced fifth-dimensional extent
Ls = 10, reducing the computational cost of light-quark
inversions. The lowest 2000 eigenvectors of the Dirac
operator were also calculated (“deflation”), allowing us
to accelerate the light-quark zMöbius inversions further.
We correct for the bias introduced by the zMöbius action
with a technique similar to all-mode-averaging (AMA)
[22] by computing light and charm propagators also using
the Möbius action on lower statistics, using the Möbius
accelerated DWF (MADWF) algorithm [23] with de-
flated zMöbius guesses in the inner loop of the algorithm
for the light and a mixed-precision solver for the charm
quarks. Further details are in the supplementary mate-
rials.

The GIM subtraction relies on a precise cancellation,
in particular in the low modes of the light and charm
actions, and it is paramount to use the same actions
for those quarks. With the choice of zMöbius parame-
ters for the light quark, the DWF theory breaks down
for the physical charm-quark mass [24]. We instead per-
form the GIM subtractions using three unphysical charm-
quark masses, chosen to be amc1 = 0.25, amc2 = 0.30,
amc3 = 0.35, and extrapolate the results to the physical
point. The physical charm-quark mass was found to be
amc = 0.510(1) by computing the three unphysical ηc-
meson masses and extrapolating to the physical ηc mass.
Previous work has demonstrated that, for the lattice pa-
rameters in use for this calculation, such an extrapolation
is well-controlled [25].

We use Coulomb-gauge fixed wall sources for the kaon
and pion. The pion and kaon sources are separated by
32 lattice units in time, with the kaon at rest at tK = 0
and the pion with momentum p = 2π

L (1, 0, 0) at tπ = 32.
The electromagnetic current is inserted midway between
the kaon and the pion at tJ = 16, so that the effects of
the excited states from the interpolating operators are
suppressed. We omit the disconnected diagram, since it
is suppressed by SU(3) flavour symmetry and 1/Nc to
an expected ∼ 10% of the connected-diagram contribu-
tion [13]. Given the error on our final result, the discon-
nected contribution is negligible. Control of the error is
being explored in an ongoing project.

We use the Möbius conserved lattice vector current [19]
with only the time component µ = 0, which is sufficient
to extract the single form factor from Eq. (1).

To compute the loops in the S and E diagrams we use
spin-color diluted sparse sources, similar to those used
in [26], the structure of which is described in the sup-
plemental material. We use the AMA technique [22] for
our calculation of these diagrams, computing one hit of
sparse noise with “exact” solver precision (10−8, 10−10,
10−12, and 10−14 for the light, c1, c2, and c3 quarks,
respectively) and the same hit of sparse noise with “in-
exact” solver precision (10−4 for all quarks). We then
compute an additional 9 hits of sparse noise with inexact
solver precision and apply a correction computed from
the difference of the reciprocal noises.

We performed all correlation function calculations us-
ing dedicated software [27] based on the Grid [28, 29] and
Hadrons [30] libraries. All three are free software under
GPLv2. The raw lattice correlators used in this work are
publicly available online [31].

IV. NUMERICAL RESULTS

The 4pt functions for the lightest charm-quark mass
are shown in Fig. 1, and Fig. 2 shows the Ta dependence
of the integrated correlator for fixed Tb both before and
after removing the exponentially growing contributions
using method 2. We perform a simultaneous fit to the
2pt, 3pt and integrated 4pt functions, extracting matrix
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FIG. 1. The (a) Q1 and (b) Q2 operator contributions to the amc1 = 0.25 integrated 4pt rare kaon correlator, separated into
C, W , S, and E diagrams. The light- and charm-quark contributions to the S and E diagrams are shown individually, as well
as their difference, the “GIM” contribution.

elements, energies, form factors and A0, using a covari-
ance matrix with fully correlated 2pt and 3pt sectors
and uncorrelated 4pt sector. From this fit, we obtain
A0 = 0.00022(172) with a χ2/dof = 0.996. Further de-
tails on the fitting procedure, including a discussion of
the fit ranges which were used, are presented in the sup-
plemental material. The error on A0 is entirely statisti-
cal.

Table I shows the results for A0 using the three charm-
quark masses, extracted using the different methods de-
tailed above. The results from method 2 have statisti-
cal errors compatible with method 1 results. As method
2 has the simplest fit structure, we use it to extrap-
olate to the physical charm-quark mass and to com-
pute the form factor as our final result. We stress that
method 1 remains an important cross-check on the anal-
ysis. Fig. 4 shows the extrapolation of the method-2
results to the physical charm-quark mass, giving a value
of A0 = 0.00035(180). From Eq. (1) we can relate our

TABLE I. Fit results for A0 for the three unphysical charm-
quark masses and value found from extrapolating these to the
physical point. The first four results are obtained using the
various approaches to method 1, as described in Section II B,
and the final result is obtained using method 2.

Analysis mc1 mc2 mc3

Method 1
Direct fit -0.00052(208) -0.00046(210) -0.00040(211)
2pt/3pt recon -0.00036(162) -0.00024(164) -0.00017(165)
0 mom transfer -0.00087(165) -0.00086(166) -0.00086(167)
SU(3) symm lim 0.00055(165) 0.00085(166) 0.00112(167)
Method 2
cs shift 0.00022(172) 0.00024(173) 0.00027(174)
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(4
)
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original

FIG. 2. The amc1 = 0.25 integrated 4pt rare kaon correlator
shown for I0 (Ta, Tb = 8,k,p) (cf. Eq. (8)) to demonstrate the
Ta dependence. The green data shows the raw 4pt function,
and in red we show the same data after removing the single-
pion exponential growth via method 2. The fit to the plateau,
shown in blue, gives A0 = 0.00022(172).

result to the form factor to achieve V (z) = −0.87(4.44).
For our choice of kinematics we have z = 0.013(2); we
expect the b+z contribution to be ∼ 10−2 assuming b+
is O(1), and we estimate V ππ(z) = −0.00076(73) follow-
ing [2]. We may therefore take our result for a+ as an
approximation for the intercept of the form factor.

V. CONCLUSION

We have carried out the first lattice QCD calculation
of the K+ → π+`+`− decay amplitude using physi-
cal pion and kaon masses. When using physical light-
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FIG. 3. The cross-correlation in the Eye diagram between the light-quark and the lightest charm-quark correlation functions
for (a) the exploratory study [13] at heavier-than-physical light-quark mass and (b) the calculation reported on in this work at
physical light-quark mass. Although equal timeslices exhibit a distinguishable correlation in both cases, it is greatly diminished
in the physical-point calculation. This results in a poor statistical cancellation in the GIM loop, driving the large statistical
error from this calculation.
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FIG. 4. The extrapolation of the A0 results found using
method 2 to the physical charm-quark mass. The linear fit
and extrapolated result are shown in blue, giving a result of
A0 = 0.00035(180). Red, green, and black show the results
at the c masses we simulate at, and we extrapolate those to
the blue data point at physical charm mass.

quark masses, even with unphysically light charm-quark
masses, the contributions in the GIM loops statistically
decorrelate, as shown in Fig. 3. This contributes to the
unsatisfactory amount of noise in GIM subtraction, as
can be seen in Fig. 1. Although sparse noises reduced
the statistical error introduced by the single-propagator
trace contribution to the Eye and Saucer diagrams, we
are not able to obtain a well-resolved result for the am-
plitude.

The form factor that encapsulates the behavior of
the long-distance amplitude of the rare kaon decay was
found to be V (0.013 (2)) = −0.87 (4.44). When this is
compared to experimental results, V exp (0) ≡ aexp+ =
−0.578(16) from the electron and aexp+ = −0.592(15)
from the muon, it can be seen that the error on our lat-
tice result is about 8 times larger than the central value
of the experimental result. However, our error is 3 times
larger than the phenomenological central value obtained
in [9, 10], which suggests that lattice QCD calculations
will be able to provide a competitive theoretical bound
on a+ in the coming years.

We would like to stress that since the noise emerges

mainly from the lack of correlation in the GIM sub-
traction, the error obtained here has the potential to
be reduced beyond square-root scaling by optimising the
stochastic estimator used for the up-charm loops. Such
problems have common elements with similar challenges
in computing quark-disconnected diagrams, for example
as discussed in [32].

Finally, it might also be possible to work in 3-flavor
QCD, foregoing the calculation of the charm-quark loop
[33], further reducing computational costs. This would
require a new renormalization procedure which would be
analogous to that of the K → πνν̄ study that was per-
formed by the RBC-UKQCD collaborations previously
[34, 35].

In conclusion, despite obtaining a first physical result
with a large uncertainty, we believe that optimisation of
the methodology, combined with the increased capabili-
ties of future computers, should allow for a competitive
prediction of the K+ → π+`+`− amplitude within the
next years.
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Supplementary material: Simulating rare kaon decays K+ → π+`+`−

using domain wall lattice QCD with physical light quark masses

I. SPARSE SOURCES

The spacetime distribution of a source may be treated
stochastically, in order to decrease the effects of local
fluctuations from the gauge fields. This is important
for constructing lattice propagators of the form S (x, x),
which are needed to calculate a disconnected diagram
or a single-propagator trace contribution to a correlation
function, needed for the Eye and Saucer diagrams (Fig. 7)
contributing to the rare kaon decay amplitude. To cre-
ate the propagators we depend on N stochastic sources
κi that fulfill the properties

lim
N→∞

1

N

N∑
i=1

κi (x) = 0,

lim
N→∞

1

N

N∑
i=1

κi (x)κ†i (y) = δxy.

(1)

One appropriate choice is the Z2 source [36], where each
element is randomly chosen from

Z2 ⊗ Z2 =

{
1√
2

(±1± i)
}
. (2)

It is expected that the statistical error introduced from
using stochastic sources scales as 1/

√
N . Each stochastic

source here covers the full volume but we can also create
“sparse sources”, similar to those described in [26], to

improve the 1/
√
N scaling of the statistical error. In d-

dimensional spacetime we create N = nd sparse sources
where

κsparse(x) =

{
κZ2

(x) : xµ mod n = 0, µ = 0, 1, 2, 3

0 : otherwise

(3)
for the first source and we shift in each dimension to en-
sure that the N sources cover the entire volume with no
overlap when combined, see Fig. 5 for a d = 2, n = 2
example. When investigating rare kaon decays we use
N = 24 = 16 sparse sources for each hit of a propagator,
S (x, x), that we compute.
A cost-benefit analysis was performed using the quan-

tity ∆X
∆Sparse

√
NX

NSparse
, where ∆X is the statistical error

of the result from method X and the root of the number
of inversions NX tracks the computational cost of using
method X. Fig. 6 shows the results of this cost-benefit
analysis for the 3-point Saucer diagram with zero mo-
mentum. The loop in the diagram was computed using
sparse sources, full volume sources and time-diluted all-
to-all vectors [37] with 2000 low modes, with the other

propagators being computed with Coulomb-gauge fixed
wall sources. This was performed on RBC/UKQCD’s
483 × 96 Möbius domain wall fermion gauge ensembles
[19]. It can clearly be seen that the sparse-noise approach
is the most successful.

II. FURTHER RELEVANT CORRELATORS

Before giving details on the fit parameters that were
used we outline the definitions of several relevant Eu-
clidean correlation functions.

A. 2-point correlators

Given an interpolation operator φP (t,p) for a pseu-
doscalar meson, P , with spacial momentum p at time t,
for t� 0 the 2-point function

Γ
(2)
P (t,p) = 〈φP (t,p)φ†P (0,p)〉 (4)

has the following behavior:

Γ
(2)
P (t,p) = L3 |ZP (p)|2

2EP (p)
[e−EP (p)t + e−EP (p)(nt−t)], (5)

where ZP (p) = 〈0|φP (0,0) |P (p)〉 and EP (p) the meson

energy
√
M2
P + p2.

We calculated the pion and kaon 2pt functions using
Coulomb-gauge fixed wall sources and both Coulomb-
gauge fixed wall sinks and point sinks. Although we only
require the wall-wall matrix elements in order to extract
the decay amplitude the point-wall 2pt functions have
a cleaner signal. Thus both the wall-wall and point-
wall correlators can be used in a combined fit to ob-
tain EP (p) with greater accuracy. All pseudoscalar/sink
combinations are calculated for p = 2π

L (0, 0, 0) and

p = 2π
L (1, 0, 0).

B. 3-point weak Hamiltonian correlator

The weak Hamiltonian 3pt function

Γ
(3)
H (tH ,p) =

∫
d3x 〈φπ(tπ,p)HW (tH ,x)φ†K(0,p)〉 (6)

has the following behavior for 0� tH � tπ:

Γ
(3)
H (tH ,p) =L3Zπ(p)ZK(p)†MH(p)

4Eπ(p)EK(p)

× e−Eπ(p)tπe−[EK(p)−Eπ(p)]tH

(7)
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v(3,0) f(3,1) v(3,2) f(3,3)

FIG. 5. An example of sparse noises for d = 2, n = 2. The filled circles represent a site with Z2 noise, the empty circles
represent a site that has been set to zero. Two further shifts are needed to cover the full volume, giving 22 = 4 sparse sources.

FIG. 6. The statistical error relative to that of the “Sparse: 16” noise, weighted by the cost of inversions, of the zero-momentum
Saucer diagram contribution to the 3-point weak Hamiltonian correlation function, computed using different noise strategies
for the single quark propagator loop.
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FIG. 7. The four classes of diagrams obtained after performing the Wick contractions of the charged pion and kaon interpolating
operators with the HW operator. ` denotes a light (u or d) quark propagator. The two black circles represent the currents in
the four-quark operators Qq1,2 defined in the main paper. The C and E diagrams contain an insertion of Qq1 and the W and S
diagrams contain an insertion of Qq2.
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FIG. 8. The five possible current insertions for the C class of
diagrams contributing to the 4pt rare kaon decay correlator.
The diagrammatic conventions are the same as in Fig. 7

with MH(p) = 〈π(p)|HW (0) |K(p)〉. This correlator is
calculated for both p = 2π

L (0, 0, 0) and p = 2π
L (1, 0, 0).

C. 3-point electromagnetic current correlator

The electromagnetic current 3pt function for a pseu-
doscalar meson, P ,

Γ
(3)P
Jµ

(t, tJ ,p,k) =

∫
d3x e−iq·x 〈φP (t,p)Jµ(tJ ,x)φ†P (0,k) 〉

(8)
has the following asymptotic behavior for 0� tJ � t:

Γ
(3)P
Jµ

(t, tJ ,p,k) =L3
ZP (p)ZP (k)†MP

Jµ
(p,k)

4EP (p)EP (k)

× e−(t−tJ )EP (p)e−tJEP (k)

(9)

where MP
Jµ

(p,k) = 〈P (p)| Jµ(0) |P (k)〉. This correlator

is calculated for both the pion and the kaon.

III. VARIANCE REDUCTION TECHNIQUES

To compute the costly loop diagrams we use a vari-
ation of the all-mode-averaging (AMA) technique. On
each configuration, for a given operator O, we have an
estimator Oe

tj at “exact” solver precision (10−8, 10−10,

10−12, and 10−14 for the light, c1, c2, and c3 quarks, re-
spectively) using T source times tj and a sparse noise
n0. We furthermore have N estimators Oie

tj ,ni on each

source time tj at “inexact” solver precision (10−4 for all
quarks), computed for N − 1 sparse noise sources ni in
addition to the noise source n0. The AMA estimator we
construct from those estimators is

OzM
tj =

(
Oe
tj −O

ie
tj ,n0

)
+

1

N − 1

N∑
i=1

Oie
tj ,ni , (10)

where the superscript ”zM” highlights that so far, the
zMöbius action has been used. In a second AMA step,
we compute a single estimator OM for the sparse noise
source n0 and source time t0 at “exact” precision to get
our final estimator

O =
(
OM −OzM

t0

)
+

1

T − 1

T∑
j=1

OzM
tj . (11)

The resulting expectation value 〈O〉 = 〈OM 〉, but at a
much reduced variance. In practice, we used N = 10 and
T = 6, where the 6 source times have been chosen to
evenly interlace the time extent of our lattice (16 times-
lices apart from each other).

IV. FIT PARAMETERS

Results of the decay amplitude are derived from global
fits over all correlation functions involved in a specific fit
strategy. A summary of the fit parameters for the 2pt
and 3pt functions used, consistent across all fit strate-
gies that they enter, is given in Table II. The range of
Ta and Tb used in each case is given in Table III. In
Fig. 9 we show the correlation matrix of the 2pt and 3pt
functions, as well as slices of the integrated 4pt function,
which highlights the high degree of correlation between
elements of the integrated 4pt function. This correlation
structure in the data makes the use of uncorrelated fits
for the integrated 4pt function necessary.
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FIG. 9. The correlation matrix for the simultaneous fit used to extract A0. The correlators in this fit are: the 2pt pion correlator
with zero momentum and a point- (πP0 ) wall-sink (πW0 ), the equivalent correlators with one unit of momentum (πP1 , π

W
1 ), the

same again for the kaon (KP
0 , K

W
0 , KP

1 , K
W
1 ), the vector current inserted on the pion (3ptπ ) and kaon (3ptK), the 3pt weak

Hamiltonian correlator with zero (H0
W ) and one unit of momentum (H1

W ), and the integrated 4pt correlator (I
(4)
0 ). This shows

the correlation matrix for a fully correlated fit. Due to the highly correlated nature of the matrix, off-diagonal elements for the
integrated 4pt function were set to zero to make the unintegrated 4pt function “uncorrelated” to the other fit variables.

TABLE II. Fit parameters for the various 2pt and 3pt correlators and methods used to extract the K+ → π+`+`− decay
amplitude. With the exception of 3pt cs each of these were correlated to each other for the relevant simultaneous fits with the
integrated 4pt function. The cs parameter was fitted separately and used as an input to the cs shift and cs × s̄d analyses. The
3pt HW and cs fit parameters are the same for the three unphysical charm-quark masses. “Thinning” is the stride between
data points entering the fit within the fit range.

Correlator Momentum Sink tsrc ti tf Thinning

2pt pion 2π
L

(0, 0, 0) Point 32 7 18 2
2pt pion 2π

L
(0, 0, 0) Wall 32 13 20 2

2pt pion 2π
L

(1, 0, 0) Point 32 6 25 2
2pt pion 2π

L
(1, 0, 0) Wall 32 9 22 2

2pt kaon 2π
L

(0, 0, 0) Point 0 10 23 2
2pt kaon 2π

L
(0, 0, 0) Wall 0 9 20 2

2pt kaon 2π
L

(1, 0, 0) Point 0 11 26 2
2pt kaon 2π

L
(1, 0, 0) Wall 0 10 25 2

3pt pion - Wall 0 1 10 2
3pt kaon - Wall 0 20 35 2
3pt cs

2π
L

(0, 0, 0) Wall 0 9 24 1
3pt HW

2π
L

(0, 0, 0) Wall 0 17 24 2
3pt HW

2π
L

(1, 0, 0) Wall 0 13 17 1
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TABLE III. Fit parameters for the various methods of extracting A0. No thinning was performed on the integrated 4pt function
data—meaning that all data points within the fit range entered the fit—which were uncorrelated when fitted simultaneously
with the relevant 2pt and 3pt correlators.

Analysis Ta min Ta max Tb min Tb max

Direct fit 2 10 4 11
2pt/3pt recon 1 10 7 15
0 mom transfer 1 12 3 8
SU(3) symm lim 1 10 6 13
cs shift 1 8 5 12
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