
Journal of Instrumentation
     

PAPER • OPEN ACCESS

Radio-frequency waveform investigation for ion
transport within the RFQcb at ISOLDE's Offline 2
facility
To cite this article: S. Warren and T. Giles 2021 JINST 16 P07058

 

View the article online for updates and enhancements.

You may also like
Commissioning of the FRIB RFQ
H. Ren, E. Pozdeyev, D. Morris et al.

-

Deuteron beam commissioning of the
linear IFMIF prototype accelerator ion
source and low energy beam transport
N. Chauvin, T. Akagi, L. Bellan et al.

-

CW RFQ design and investigation for
multi-charge-state acceleration of
radioactive beams from BISOL
P.P. Gan, H.P. Li, Z. Wang et al.

-

This content was downloaded from IP address 128.141.192.153 on 14/02/2022 at 15:38

https://doi.org/10.1088/1748-0221/16/07/P07058
/article/10.1088/1742-6596/1067/5/052010
/article/10.1088/1741-4326/ab1c88
/article/10.1088/1741-4326/ab1c88
/article/10.1088/1741-4326/ab1c88
/article/10.1088/1748-0221/13/08/T08002
/article/10.1088/1748-0221/13/08/T08002
/article/10.1088/1748-0221/13/08/T08002
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsszHKy3VCyczRQTEyQJ3CEDc44C3ShcQobHsLFGfwdXdInPF3ABvCrGBZcI5yQxL8s5asTet40fRHpVCFx4I2dfxLEjvA1XdYvGsc4KOikpBf8jjyyCxt2CxPEy-apq_5sPvtLaATJ-BOiKa0opBwlgBLu3RbActB60FoJzNcWcBCv-CbE_btoxMF8fYqdXtDrJphJJspyJJXA_WQ9I9A7P9uU66OVXWPFsJk5gxg4egi0A8sjF0BigS1Gja_RX9rEz8DXyU_EefC0cZZr0V55vwVif8QgWB_0&sig=Cg0ArKJSzIfxe-oYEiQP&fbs_aeid=[gw_fbsaeid]&adurl=https://ecs.confex.com/ecs/242/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3DBanner%26utm_campaign%3D242Abstract%26utm_id%3D242Abstract


2
0
2
1
 
J
I
N
S
T
 
1
6
 
P
0
7
0
5
8

Published by IOP Publishing for Sissa Medialab

Received: April 19, 2021
Accepted: May 31, 2021
Published: July 29, 2021

Radio-frequency waveform investigation for ion transport
within the RFQcb at ISOLDE’s Offline 2 facility

S. Warren∗ and T. Giles

CERN,
Esplanade des Particules 1, 1211 Geneva, Switzerland

E-mail: stuart.warren@cern.ch

Abstract: A theoretical and practical investigation into the relation of applied waveform, voltage,
and frequency of the quadrupole potential applied to the Radio-Frequency Quadrupole cooler and
buncher (RFQcb) used at the ISOLDE facility and the Offline 2 facility. Non-radioactive ion beams
were transported through the RFQcb over a range of quadrupole parameters to quantify beam
transport efficiency via pre and post beam current measurements. Maximum beam transport was
directly compared to the theoretical model of ion stability within an oscillatory quadrupolar field via
the solutions of the Hill’s equation (shown within this work) for each waveform applied the RFQcb
and over several masses 20Ne, 40Ar, 84Kr and 131Xe. The result of this work has led to interesting
findings on the beam transport dependency with the waveform, the potential to reduce the overall
costs of future RFQ’s, and possible molecular capture break-up options inside RFQcb structure.
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1 Introduction

Beam cooling via a buffer gas has played a significant role in improving the quality of the radioactive
ion beams delivered to users at the Isotope mass Separator On-Line facility (ISOLDE) and many
others around the world [1–3]. Beams are typically cooled by kinetic energy extraction through
stochastic collisions with lesser energetic ‘cooler’ bodies [4]. Helium is one of most commonly
used but there are cases of other impactors, such as, hydrogen [5], and electrons [6]. Buffer gas
cooling occurs while the ions are semi-confined within a transverse quadrupolar oscillating field
as they traverse over the length of the device. In some cases additional cooling can be attained
by trapping the ions within a longitudinal potential well, this increases thermalisation time with
the added benefit of accumulating ions to create high instantaneous flux beam bunches. One such
device is the ISOLDE Radio-Frequency Quadrupole cooler buncher, RFQcb, which at the ISOLDE
facility and named ISCOOL (ISolde-COOLer) [3, 7, 8].

In this study the RF waveform and applied RF potential were investigated for optimum ion
transport over a wide range of voltages, frequencies and several atomic masses at the new Offline
2 facility (figure 1) [9]. Offline 2 offers a clone of the existing ISCOOL RFQcb with significantly
broader range of RF systems, identical (non radioactive) beam preparations as ISOLDE, and a wide
range of beam instrumentation. The majority of the beam measurements were performed on a high
dynamic range beam flux secondary electron emission (SEE) detector located at 2 m downstream
of the RFQcb beam extraction [10].

– 1 –
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Figure 1. A CATIA rendered false colour image of the Offline 2 separator layout in simplified terms. Where
FE-8 is the Front End and ion source, BS & FC are the Beam Scanners and Farraday Cups, and the magnet
provides a mass resolving power of 500 𝑀

Δ𝑀
. Not shown is the SEE detector but is located 50 cm downstream

of FC 4.

1.1 The RFQcb

The ISCOOL RFQcb at ISOLDE and the RFQcb at Offline 2 are structurally identical [9], they are
both 80 cm linear Paul traps [11] filled with low pressure helium (< 0.1 mbar) injected 2/3 along the
length of the poles towards the injection region. Instead of using segmented poles of the quadrupolar
Paul trap to apply a longitudinal DC offsets a series of 25 segmented ‘ring electrodes’ are installed
along the entire length of the quadruple (see figure 2). The DC offset electrodes produces a quasi-
exponentially decreasing dc offset to guide the cooling ions to the trapping region where they form
a potential well of 𝑉𝑤𝑒𝑙𝑙 = 0.23𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑 within the quadrupole, where the additional cooling and
beam ‘bunching’ (accumulation) occurs. The injection and extraction assemblies are a series of
charged electrodes to decelerate and focus the injected ions into the quadrupole region, and post
transport, the extraction assembly re-accelerates the beam to the downstream beam energy of the
ion source (see figure 2). These assemblies and their influence on the transport over the RFQcb have
been ignored in the mathematical approach to stability and instead focuses on the transport within
the trap. However, the matching of these assemblies can significantly alter the transport efficiency
over the entire RFQcb and care has been taken to minimise their influence on this study at Offline
2 (see section 3.1).

2 Theoretical approach to stability

This approach considers the ions inside the quadrupolar oscillating potential, after the ion injection
assembly and before the ion extraction assembly. During transport over the QP region the ions are
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Figure 2. A CATIA rendered false colour image of the core of the ISCOOL RFQcb. Where A),B) and
C) are the individually charged injection plates assembly, D) shows the DC axial offset electrodes to apply
a potential gradient along the beam axis, E) are the 80 cm long poles of the quadrupole, F) are ceramic
insulators, G) is the helium gas injection point (located centrally here), H) is the location where the ions can
be trapped, I) is the charged trapping plate, J) and K) are the individually charged ion extraction plates. The
red line represents the ion beam optical axis where the beam passes in the direction of A to H through the
buffer gas and the RF field. (Top left) the cross-sectional view of the RFQcb core with false colour image
of the effective potential from the axial electrode where 𝑉𝑤𝑒𝑙𝑙 = 0.23𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑 at the location H of potential
applied on D.

continuously oscillating between diverging and converging trajectories (w.r.t. to the longitudinal
optical axis). The scattering caused by the collisional ‘cooling’ process is guided back to the optical
axis by the QP potential. The proper tuning of these two parameters, scattering from buffer gas, and
driven quadrupolar potential to guide ions back, constrains the ions along the longitudinal optical
axis throughout the transport. Hence, the stability of the ions within the quadrupole is interlinked
with buffer gas and quadrupolar potential. The helium (buffer) gas within the RFQ will create minor
perturbations to stability, given the size of the two impactors the mean free path of helium and ion
(Xe) can be estimated to be 10 − 1 mm, indicating semi-infrequent collisions in the intermediate
or Knudsen region. The perturbations to the stable ion motion can be modelled via the simple
damped resonator equation 𝜔 = 𝜔0

√︁
1 − 𝛾2, where 𝜔0 is the stable frequency without buffer gas,

𝜔 is the perturbed frequency and 𝛾 is the damping coefficient in the presence of buffer gas. In this
work it is assumed that the low pressure (𝑝 < 0.1 mbar) buffer gas will serve as stochastic cooling
and the ‘damping’ caused to the ion motion will be very ‘light’, where 𝛾 � 0.1, and serve to only
broaden the stable frequency regions 𝜔0. The influence of this is small but not negligible, it adds
a significant level of difficulty to the calculations for stability and will not be included in these
computations. This remains valid for stability for small transverse ion amplitudes and velocities but
can be seen where it begins to fail.

With the buffer gas influence neglected the common practice to perform a calculation for
‘stable’ frequencies and potentials required to attain stable periodic ion oscillations during transport
via the exact solutions to Hill’s equation (equation (2.6)). For the two most common cases the
solutions are, the Miessner solutions for switching potential (square), and the Mathieu solutions for
sinusoidal potential [2, 5].

– 3 –
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The ions amplitude and frequency of oscillation within the RFQcb can been modelled trans-
versely by taking the equations of motion due to the charge in the potential field of a quadrupole,

𝜙(𝑥, 𝑦, 𝑡) = 𝑉RF(𝑡)Φ(𝑥, 𝑦), (2.1)

Φ(𝑥, 𝑦) = 𝑥2𝑥 − 𝑦2 �̂�

𝑟2
0

(2.2)

where Φ(𝑥, 𝑦) is the potential within the quadrupole w.r.t. position 𝑥 and 𝑦, 𝑉𝑅𝐹 (𝑡) is the zero to
peak potential of the applied RF potential, 𝑟0 is the quadrupole radii, 𝑥, 𝑦 are the deviations w.r.t.
the quadrupole central beam axis and 𝑥 and �̂� are the respective unit vectors for the horizontal and
vertical displacements. Here, it is convenient to substitute 𝑢 = 𝑥, 𝑦, 𝑧 to represent the axis of motion,
the force on an ion in direction 𝑢 is given as 𝑒𝑍𝑖𝐸𝑢 , where 𝑍𝑖 is the charge state of the ion, 𝑒 is the
charge of an electron and 𝐸𝑢 is the component of the electric field in the direction 𝑢 given as,

𝐸𝑢 = −𝑑Φ

𝑑𝑢
(2.3)

therefore the ion motion can be given by,

𝑚
𝑑2𝑢

𝑑𝑡2
= −𝑒𝑍𝑖𝑉 (𝑡) 𝑑Φ

𝑑𝑢
(2.4)

where 𝑚 is the mass of the ion. For this investigation the 𝑧-axis is ignored as there is no trapping
potentials present, the RFQcb is operating in ‘continuous mode’ where the net number of ions,
𝑁ions, in the RFQcb remained constant over time, 𝑡, hence 𝑑𝑁ions/𝑑𝑡 = 0.

From the equations of motion we can rewrite them in the common form of the Hill’s differential
equation given as,

¥𝑢 +
(
𝜃0 + 2

∞∑︁
𝑛=1

𝜃𝑛 cos(2𝑛𝑡) +
∞∑︁

𝑚=1
𝜙𝑚 sin(2𝑚𝑡)

)
𝑢 = 0 (2.5)

where ¥𝑢 is the acceleration of position 𝑢 and 𝜃0 + 2
∑∞

𝑛=1 𝜃𝑛𝐶𝑜𝑠(2𝑛𝑡) +
∑∞

𝑚=1 𝜙𝑚𝑠𝑖𝑛(2𝑚𝑡) is any
arbitrary continuous periodic function. For this derivation the simplified version is given as,

𝑑2𝑢

𝑑𝑡2
+ 𝑓 (𝑡)𝑢 = 0 (2.6)

where 𝑓 (𝑡) is the periodic influence of the driving QP field. Through implying only periodic
solutions, the use of Floquet’s theorem 𝑓 (𝑡 + 𝜋) = 𝑓 (𝑡), and for the case special case where 𝑚 = 0
and 𝑛 = 0, 1, the Mathieu differential solution is derived as,

𝑑2𝑢

𝑑𝜉2 + (𝑎 − 2𝑞 cos(2𝜉)) 𝑢 = 0 (2.7)

where 𝜉 = 𝜋 𝑡
𝑇

is the dimensionless unit of time, where 𝑡 is the point along the full period of the
waveform 𝑇 [12], 𝑎 and 𝑞 are give as,

𝑞 = 4
𝑒𝑍𝑖𝑉

𝑚𝑟2
0𝜔

2
and 𝑎 =

8𝑒𝑍𝑖𝑈
𝑚𝑟2

0𝜔
2

(2.8)

where 𝑒𝑍𝑖 is the charge of the ion and 𝑈 is the DC offset component of the RFQcb electrodes [13].

– 4 –
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Figure 3. The stable regions for a sine wave function over a range of 𝑎 and 𝑞 values.Where the stability in
the x-axis (red) is overlaid with the stability in the y-axis to provide stability regions (green) of ion motion
within the quadrupolar field.

In many cases ion stability is often given with low values of 𝑞 and 𝑎 (see figure 3), where the
stability in 𝑦 is overlapped with the stability in 𝑥 via 𝑓𝑥 (𝑎, 𝑞) = 𝑓𝑦 (−𝑎, 𝑞). This provides regions
in both 𝑥 and 𝑦 where stability for ions within the quadrupole reside, for larger values of 𝑎 and 𝑞 it
is clear from figure 3 and figure 4 that alternative ‘regions of stability’ exist (𝑞 ≈ 1, 8, 22, 46, . . .)
and are strongly waveform dependant. This can be seen when we consider the zero DC offset
potential, where 𝑎 = 0, and the location of stability along the 𝑞 axis in figure 4 where stability
varies significantly depending on the waveform chosen. For example sinusoidal solution to stability
overlaps the square waveform initially (𝑎 = 0, 𝑞 < 1) but as the value of 𝑞 increases they significant
drift away from each other. To obtain these higher 𝑞 and 𝑎 values to stability and solutions for any
arbitrary applied potential waveform the Hill’s equation must be solved.

2.1 Matrix approach to stability

The method applied here to describe ion stability is given in detail in [14] where the solutions are
based on two fundamental characteristics: linearity and periodicity. Consider a pair of independent
solutions 𝑢1(𝜉) and 𝑢2(𝜉) to equation (2.6) through one period of the applied RF waveform
0 < 𝜉 < 𝑇 , where 𝜉 is any point along the period 𝑇 of the waveform, these solutions can be defined
at their initial condition as,

𝑢1(0) = 1; 𝑢1(0) ′ = 0; 𝑢2(0) = 0; 𝑢2(0) ′ = 1 (2.9)

where 𝑢′𝑛 (𝜉) = 𝑑𝑢𝑛/𝑑𝜉 and 𝑛 denotes a point later in time. Because equation (2.6) is linear
the general solution can be expresses as a superposition of two independent particular solutions,

𝑢(𝜉) = 𝑥0𝑢1(𝜉) + 𝑣0𝑢2(𝜉) (2.10)

– 5 –
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where 𝑥0 = 𝑥(𝑡 = 0) and 𝑣0 = 𝑣(𝑡 = 0), and since the solutions to 𝑢1(𝜉) and 𝑢2(𝜉) may be
calculated for any time 𝜉, the above is valid for any time along the period 𝜉. However, we need to
calculate the solutions through one period of the applied RF waveform. Due to the periodicity of
equation (2.6) the same solutions 𝑢1(𝜏) and 𝑢2(𝜏) will be valid for 𝜏 = 𝜉 − 𝑇 during the second
period of 𝑇 < 𝜉 < 2𝑇 and the same for 𝜏 = 𝜉 − 𝑛𝑇 . From equation (2.10) we can express 𝑢(𝜉) as,

𝑢(𝜉) = 𝑥𝑛−1𝑢1(𝜏) + 𝑣𝑛−1𝑢2(𝜏) (2.11)

It is now possible to calculate (via equation (2.11)) the trajectory of an ion at any given time,
𝜏, along the applied RF waveform. It is more convenient to rewrite equation (2.11) in a form more
familiar to beam optics calculations,[

𝑥𝑛+1

𝑣𝑛+1

]
= 𝑀 ·

[
𝑥𝑛

𝑣𝑛

]
= 𝑀𝑛 ·

[
𝑥0

𝑣0

]
(2.12)

where [
𝑢1(𝑇) 𝑢2(𝑇)
𝑣1(𝑇) 𝑣2(𝑇)

]
=

[
𝑚11 𝑚12

𝑚21 𝑚22

]
= 𝑀 (2.13)

Methods to calculate the n-th power of a 2x2 matrix are given in [14] and 𝑀 is from this point
referred to as the transport matrix.

The calculation of the general solution to the Hill’s equation is now reduced to the calculation
of two independent solutions through one period.

There are special cases where the solutions can be analytically computed, such as the previously
mentioned Meissner and Mathieu solutions. For the non-analytical solutions to the transfer matrix,
𝑀 , each moment of 𝜏 inside the first period of 𝑇 must be calculated. By applying the constraints
given by beam optics stability, where the matrix 𝑀 has special properties due to Liouville theorem,
the determinate of the matrix must be conservative, det(𝑀) = 1, and such that each momentary
instance of time, 𝜏, is also conservative det(𝑀 (𝜏)) = 1. Therefore, the time varying voltage of the
waveform (𝑉𝑅𝐹 (𝜏)) over the period 𝜏 = 𝑡

𝑇
𝜋 − 𝑛𝑇 = 𝜉 − 𝑛𝑇 can be distributed in to series of 𝑛 fixed

discreet values of 𝜏𝑖 ,
𝑛∑︁
𝑖=0

𝑉 (𝜏𝑖) =
∫ 𝜉

0
𝑉 (𝜉)𝑑𝜉 where 𝑛 = 𝜉/Δ𝜉 (2.14)

such that Δ𝜉 is sufficient to invoke the assumption,

|𝑉 (𝜏𝑖+1) −𝑉 (𝜏𝑖)) | − |𝑉 (Δ𝜉𝑖) | ≈ 0 (2.15)

where at any discrete waveform point 𝑉 (𝜏𝑖) = 𝑉 (𝜉) and 𝑑𝑉 ( 𝜉 )
𝑑𝜉

≈ 0. This allows for the possibility
to solve equation (2.6) for each instance of 𝜏𝑖 as the voltage 𝑉 (𝜉) is constant over the discrete
instance, Δ𝑖 where Δ𝑖 = 𝜏𝑖 − 𝜏𝑖+1. The ion position and velocity at the beginning of the interval 𝑖
are 𝑥𝑖 and 𝑣𝑖 are given as, [

𝑥𝑖+1

𝑣𝑖+1

]
= 𝑀𝑖 ( 𝑓𝑖 ,Δ𝑖) ×

[
𝑥𝑖

𝑣𝑖

]
(2.16)

where,

𝑀𝑖 ( 𝑓𝑖 ,Δ𝑖) ×
[

cos(Δ
√︁
𝑓𝑖) 1√

𝑓𝑖
sin(Δ

√︁
𝑓𝑖)

−
√︁
𝑓𝑖 sin(Δ

√︁
𝑓𝑖) cos(Δ

√︁
𝑓𝑖)

]
(2.17)

– 6 –
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where 𝑓𝑖 is the discreet momentary value of 𝑓 (𝜉) given by 𝑓 (𝜉) = 𝑎 − 2𝑞(𝜉), where 𝑎 and 𝑞 are
described by equation (2.8) and the instance of 𝜏𝑖 with width Δ. For the case of 𝑓 < 0 the hyperbolic
trigonometric functions are substituted (e.g. 𝑐𝑜𝑠(Δ

√︁
𝑓𝑖) to transform to 𝑐𝑜𝑠ℎ(Δ

√︁
− 𝑓𝑖)) and with

equation (2.12) we have the transport matrix 𝑀 = 𝑀𝑛 × 𝑀𝑛−1 × . . . 𝑀1 after 𝑛 segments of 𝑓 (𝜏𝑖)
over a full period of 𝜉 corresponding to the applied waveform 𝑉 (𝑇). From previously, the stability
is given by Liouville theorem as the trace of the matrix 𝑀 , |Tr(𝑀) | = |𝑚11 + 𝑚22 | = 𝛽 where if
𝛽 > 2 the ion’s motion will be increasing and unstable over the period of 𝜉 and if 𝛽 < 2 the motion
is stable [12, 15]. This gives us the parameter for stable transport as

|Tr(𝑀) |
2

≤ 1 (2.18)

From the nature of equation (2.6) and equation (2.18) we can invoke that stability in both
x-axis and y-axis will correspond to permitted transport across the RFQ. Hence, a solution where
|Tr(𝑀𝑥) |/2 ≤ 1 and |Tr(𝑀𝑦) |/2 ≤ 1 is stable through the entire RFQ transport. As and example the
stable (where 𝛽 < 1) solutions for a small range of 𝑎 and 𝑞 values in the x-axis has been computed
for three waveforms and been given in figure 4. To ensure the code was correctly behaving correctly
the Mathieu solutions were compared to the computed sinusoidal solutions and found to match.
Additionally, the code was checked over the values of 𝑎 and 𝑞 given in [15] for the ranges provided
and found to match for all given waveforms.

Figure 4. The stability solutions for the Hill equation for a range of 𝑎 and 𝑞 values (given in eq. (2.8))
calculated within this work for several waveforms for one axis of motion (𝑥). Blue (top layer) is the stability
for a square wave, yellow (median layer) is for a triangle wave and red is for sine wave. The stability (as
defined in section 2.1) is shown as coloured regions for each waveform, outside these the ion oscillations
become chaotic and with ever increasing amplitude.

2.2 Computation

All computations for stability were performed using a single NVIDIA TITAN V GPU with
C++/CUDA programming language for the solutions to the matrices described in section 2.1. The

– 7 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
P
0
7
0
5
8

Figure 5. The applied waveforms with their respect shape co-efficient values over the time period 𝜉

𝜋
. The

shape co-efficient is defined as the percentile of a the period at the maximum of minimum value, such that
50% represents half of the period at the maximum/minimum potential and the remaining 50% transitioning
between.

solutions were computed with 1000 samples of 𝜏𝑖 per waveform over 𝑇 and fidelity of Δ𝑞 = 10−9

for systems with 𝑎 = 0 over a range of 𝑞 = 0 to 250. For full a vs q maps Δ𝑎 = Δ𝑞 = 10−6 from
𝑎 = 𝑞 = −50 to 50 giving a very large number of computations per map. Although a relatively
simple calculation the number of operations becomes very large, the matrix approach does offer sig-
nificant improvements in mathematical simplicity but it also introduces a large amount of operations
per data point. Fortunately, the advances in parallel computing GPU hardware and software means
this problem can be distributed over the thousands of threads available on each GPU processor
such that each waveform calculation took approximately 3 hours to compute with double pointer
precision. This value can be significantly improved by intelligent choice of number precision and
memory management but already is a very significant speed up over the small number of threads
available on a conventional CPU C++ code/method.

3 Offline 2 — RFQcb testing

For the purpose of this investigation we wish to directly compare the mathematical model of
stability (given in section 2.1) to the ISOLDE RFQcb transport over a wide range of q-values and
for a selection of waveforms. The waveforms selected for the investigation were, sinusoidal, triangle
and a trapezoid with varied flat-top duties (shown in figure 5).

3.1 Test apparatus

The investigation was carried out at the Offline 2 test facility, as previously described section 1.1 and
shown in figure 1 . The ion source was a VD5 plasma ion source [16] on a standard ISOLDE target
base. The ion source was supplied with gas mixture of five even parts He, Ne, Ar, Kr and Xe (at
their own naturally occurring isotopic abundances) and regulated to 1250 mbar absolute pressure
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for the duration of the experiment. The gas was forced through a calibrated leak of 10−6 mbar l s−1

into the hot ion source via a short Ta 1 mm capillary. The beam was matched and transported
over the 90 Degree separator magnet to a focal point post separation for maximum resolving power
of 495 𝑚

Δ𝑚
and matched to the RFQcb optimal acceptance. The Offline 2 RFQcb is mechanically

identical to ISCOOL but offers significant improvements: the Pumping capacity pre-injection and
post-extraction are double the online version (2600 to 6850 l/s), the buffer gas injection system is
automated and regulated, and the RF system is a continuous Arbitrary Waveform Generator (AWG)
with a flat response bandwidth of 0.01 to 20 MHz, it can be pushed to 100 MHz if non linearity is
acceptable. The gain of the RF system is as follows: −6 dB on the LabView PIXe-5413 AWG signal
output, +34 dB on the primary amplifier [17] (4 Watt BE-RF-IS 4222), +26 dB on the secondary
amplifier [18] (800 Watt BE-RF-IS 4241). This is then connected over a 50 Ω impedance matched
5 m high power coaxial cable to an impedance matching transformer to compensate the capacitance
of the RFQ poles and give an additional gain of +10 dB. The reflections form the RFQ poles
are isolated by the transformer and attenuated separately via two 2 KW Tenuline 8389-300 load
alternators, this gives the total gain of the RF system of +64 dB.

To ensure continuity between tests, all the systems excluded from the test variables were
prepared using the following procedures:

• Ion source — The ion source was heated through restive heating at 330 A over the line, 5.5 A
applied on the solenoid magnet on the target and a potential of −120 V over the anode. The
system was then left for 24 hours to stabilise and de-contaminate (isotopic contamination’s
from manufacturing and exposure to atmosphere).

• Helium buffer gas — The helium buffer gas used for the RFQ was injected into the core using
a needle valve coupled to a Bronkhorst pressure regulating valve and was set to 1.25 ± 0.01
mbar. The helium pressure in the core will be fractional to this value (estimated through
Molflow++ [19] to be 0.05-0.1 mbar, but remains constant throughout the experiment duration
and optimised at the start to the beam energy).

• Beam matching parameters — The beam optical ‘tune’ pre and post the separator sector
remained constant throughout the experiment. It was optimised with 40 keV 131Xe beam
with an emittance of 30 𝜋 mm mrad. Any changes made were purely to steer the beam to
optimise mass selection via the mass separator magnet.

• RFQcb RF - A sinusoidal waveform known to operate at ISCOOL was used to confirm func-
tionality of the all the prerequisite systems then optimised before the experiment commenced.

• RFQcb Electrodes — The axial offset electrodes and RFQcb trapping plate were grounded
to the platform potential to remove any possible 𝑎 component occurring throughout the tests.
The injection and extraction plate assemblies were optimised with the sinusoidal tune after
each mass change and remained constant throughout the test mass.

Post setup, the beam transport efficiency (𝐼𝑝𝑜𝑠𝑡/𝐼𝑝𝑟𝑒) over the RFQcb of was measured with
large acceptance Faraday cups, FC, up stream and down stream of the RFQcb to confirm ‘nominal’
operating conditions. Directly comparing the measured beam current on the identical detectors gave
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typical transport efficiencies of 70% to 80% were attained but is dependant on the mass (131Xe was
76%). This and a repetition of these set up steps were performed at the end of each test to confirm
beam and ion source stability throughout.

3.2 131Xe Waveform tests

A preliminary test beam of 131Xe was transported while alternating between waveforms to investi-
gate the influence on transport efficiency with the frequency shift of peak transport. The instrument
used to read out the post RFQcb transport beam current was the new SEE detector [10] instead of
the FC. This provided a significant improvement in read out sensitivity and integration with control
systems but cannot absolutely determine the beam current while operating in high flux FC mode.
Figure 6 shows the beam intensity measured post transport over three waveforms (sine, triangle
and square wave) as the frequency of each waveform was swept from 0.01 to 1.0 MHz in steps of
250 Hz.

Figure 6. Beam current measured post RFQcb transmission with three waveforms applied at varied frequen-
cies 0.1 to 1 MHz. The spectra shows the locations of maximum transmittance and subsequently lesser peaks
of transmission for each of the waveforms with constant amplitude of 1 𝑉0𝑝 applied on the AWG generator.
The Beam current from the SEE detector is a relative measurement as it is measuring the secondary beam
current generated by the electrons, this makes it more sensitive but not absolute.

The transported beam current with frequency (figure 6) shows several peaks of ‘good’ transport
over the frequency domain. The multiple peaks of ‘good’ transport can be correlated to the arms
of stability given in figure 4. The optimum transport varies significantly in location with respect to
the applied waveform and also shows optimum transport for the square wave. The beam transport
improved significantly with increasing values of 𝑞 (∝ 1/𝜔2) with significant shifts in the most
efficient peak frequency.

The preliminary result prompted an investigation into the parameter space of 𝑞(𝑉, 𝜔, 𝑚) given
in equation (2.8), in particular, the shape and potential of the applied voltage 𝑉 and the frequency
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𝜔. A waveform with a given shape co-efficient (see figure 5) and amplitude, 𝑉 , was used to
transport the beam over the RFQcb while varying the frequency (as previously done). The resulting
transport spectra (similar to figure 6) becomes increasingly overcrowded with several peaks per
spectra overlapping for each shape co-efficient value. To make the data legible and understandable
the location of each peak (a region where significant transport was attained) was quantified by taking
a minimum beam current threshold of 0.5 nA and taking the peak centre with respect to the full
width half maximum to provide the stable frequency of stability 𝜔. This data was then processed
via equation (2.8) using the known values for 𝑉 , 𝑚 and the measured values of 𝜔 to give to get the
corresponding 𝑞-values. These values were then overlaid with the computed stable solutions for the
waveform to provide correlation between the theory and the predicated values, figure 7.

Figure 7. Computed q-values (represented by black circles) plotted against the values calculated q-values
from the 131Xe data taken on the RFQcb (represented by the red asterisk) for constant applied voltage in on
the AWG. Only the peaks with significant transport are shown (> 0.5nA for a beam of 5 nA) the lower values
of 𝑞 were cut off by this threshold. The calculation and error bars are discussed within the body of the text.

The errors associated with the computed vales (in figure 7) are strongly dominated by the
uncontrolled variance in 𝑟0 = 20±3 mm (measured in centre), the quadrupole radii. The mechanical
structure of the poles, a 80 cm long split cylinder rod, sags in the middle of its length and is only
supported by the ends mechanically held in place by M8 bolts and two 5 mm peek pins that deform.
The centre of the rod is compressed slightly by the weight of the axial electrodes and relies on the
rigidity of the pole to remain in place.

To confirm the relation between computed and calculated values the process was repeated
with a range of 𝑉 and overlaid with the previous results to show the q-values are correlated within
error(see figure 8). A similar beam threshold of 0.5 nA was applied to this data and it can be seen
as the transmission becomes gradually worse for the lower voltages.

3.2.1 Kr and Ar testing

Identical testing was performed (as described in 3.2) with the same set up procedures described
in 3.1 but with two alternate masses. This serves as a validation and confirmation of the computed

– 11 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
P
0
7
0
5
8

Figure 8. Computed q-values (represented by black circles) plotted against the values calculated q-values
for the 131Xe data taken on the RFQcb for a range of𝑉 on the AWG. Only the peaks with significant transport
are shown (> 0.5nA for a beam of 5 nA) the lower values of 𝑞 were cut off by this threshold. For illustrative
purposes and to show correlation the error bars have been removed from the graph.

Figure 9. Computed q-values (represented by black asterisk) plotted against the values calculated q-values
(represented by the red circle) from the 84Kr data taken on the RFQcb.

values as the frequency of stable transport relates too the inverse square-root of the mass. The 84Kr
data (figure 9) and the 40Ar data (figure 10) both show a strong correlations with predicted and
measured 𝑞-values over the range of waveforms.
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Figure 10. Computed q-values (represented by black circles) plotted against the values calculated q-values
(represented by the red asterisk) from the 40Ar data taken on the RFQcb.

3.3 Peak performance

Due to the nature of the ion source it was not appropriate to assume the beam properties (especially
the ion beam current) remained constant over the long data taking (typically 36 hours per mass) over
the previous study section 3.2 data collection. Due to these uncertainties in the beam the maximum
transport across the RFQcb could not be fairly determined. Instead, an alternative method was used
to determine maximum transport for several masses with different waveforms.
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Figure 11. The associated gain and loss in beam transport relative to sine wave RF for several masses over
the RFQcb
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The beam was changed quickly changed between masses and the maximum transport was
optimised using the standard sine waveform then immediately compared to the maximal transport
of alternative waveforms through manual optimisation of frequency. To speed up the process the
extremes of the waveform, sine, square, triangle and saw-tooth were used. The waveform transport
efficiency was directly probed through FC measurements pre and post the RFQcb transport to
provide relative transport efficiency (instead of the SEE detector used for the previous studies) with
respect to the standard sine waveform (see figure 11). This gave maximal transport for the square
waveform with an increase of 15% over the traditional sine wave. The transport efficiency was
significantly reduced (−10 to −25%) for the triangle waveform over masses greater than 40Ar and
remained significantly worse over the range of masses tested. All the waveforms provided similar
(or within error) transport efficiencies for the light mass, 20Ne, indicating an alternative dominating
affect influencing transport.

4 Discussion of results

The mathematical model and solutions given in section 2 and section 2.1 adhere closely to measured
values for the low q values (figure 7 and figure 9), where we would expect the higher frequencies
of RF to cause smaller ion oscillation amplitudes. In the region of higher values of 𝑞 the computed
and calculated values begin to deviate, this can be explained by considering the path length (and
amplitude) of the ion oscillations, 𝑢, during one period of the applied waveform, 𝑓 (𝑡). For the
simple case we only consider the time dependant field 𝐸 (𝑡) ∝ 𝑉𝑅𝐹 (𝑡), the maximum velocity
attained will be proportional to the integral of 𝑑𝑢

𝑑𝑡
∝

∫ 𝜋

0 𝑞𝑍𝐸 (𝑡)𝑑𝑡. Where an aggressive waveform,
such as, the 100% shape co-efficient from figure 5 will experience the maximal field for a longer
duration and result in greater acceleration and velocities the transverse plane. The additional path
length 𝑑𝑢 traversed through the helium buffer gas will result in more collisional cooling, leading
to thermalisation of the ion beam in a shorter duration. The limit to this is determined by: ion
capture (beam injection), where the sudden deceleration into the RFQcb causes the non-normalised
emittance, 𝜀, to grow proportionally to the square of the fractional difference in kinetic energies
(𝜀𝑅𝐹𝑄𝑐𝑏 ∝ 𝜀

√︃
𝐸𝐵𝑒𝑎𝑚

𝐸𝑅𝐸𝐹𝑐𝑏
without buffer gas cooling), and the maximum permitted deviation from the

central beam axis due to beam collisions with the quadrupole structure. To further this hypothesis,
beam transport for light mass 20Ne does not appear to be heavily influenced by the change in
waveform (figure 6). 20Ne-4He collisions occurring will result in significant deviations from the
optical axis with significant changes in the ion momentum vector; this results in a heavily damped
system than that of the heavier ion system. These postulates could be simulated using transport
codes with ion-gas collisions for selected frequencies and would be of great benefit to future studies
but care would need to be taken to ensure the computations do not become to massive.

These considerations lead to an interesting conclusion for RFQ coolers and the RFQcb (IS-
COOL), beam transportation can be attained using many other waveforms and much more impor-
tantly alternative waveforms can even give significant gains on the transport over the conventional
sine wave. The square wave holds major significance, it can efficiently transport beam over the
RFQ with improved transmittance, it is speculated to improve cooling and is significantly cheaper
to produce. The amplifiers/waveform generators required for these tests come at a considerable
expense and the results here show it is possible to replace these expensive generators (or resonant
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circuits used in many other RFQ coolers around the globe) with a simple set of on/off transistors
and DC power supplies. The lack of dependence on resonant systems makes swapping from high to
low masses very simple and easy, a very attractive feature for many RFQ’s with wide mass ranges.

If we build upon this work and deliberately use the higher 𝑞 values for transport it opens up
the door to the possibility of having several masses contained in the RFQcb via a superposition of
several waveforms. An obvious and interesting exploit of this could be the injection of molecular
beams of mass 𝑚1 and the disassociation of the bond within the trap to give the daughter masses
𝑚2 and 𝑚3 that are also trapped within the RFQcb. By utilising the solutions given in section 2.1
and careful alteration of the waveform function 𝑓 (𝜉) it becomes possible to manipulate and control
the masses held and chaotically rejected the undesired from the trap, see figure 12.

Figure 12. A supposition of two waveforms (shown top left of each figure) with integer periodicity such that
by changing the amplitude ratio between one waveform (left) and the next (right) it is possible to manipulate
the regions (circled red) of stability and force trapped masses into a chaotic non-trapping region of 𝑞 and 𝑎

while also trapping the desired mass.

The trapping component through the use of the DC axial electrodes would require the addition
of the 𝑧-axis to be included into the stability calculations. This will reduce the parameter space
for stable transport as it is overlaid with 𝑥-axis and 𝑦-axis stability but could also be used to
further manipulate additional ion rejection. Future studies should include this influence and the
pseudo-potential well for trapping to improve ion delivery to the ISOLDE experiments.

Given all theses benefits future RFQ’s designers should strongly consider the square wave
driven system with 𝑞-values higher than the traditionally used to improve the overall transport and
the cooling efficiency where capture permits.
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