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Abstract: We propose a new mechanism that adapts to string theory a perturbative method

for stabilizing moduli without leaving the domain of perturbative control, thereby evading the

‘Dine-Seiberg’ problem. The only required nonperturbative information comes from the stan-

dard renormalization-group resummation of leading logarithms that allow us simultaneously

to work to a fixed order in the perturbative parameter α and to all orders in α ln τ where τ is a

large extra-dimensional modulus. The resulting potential is naturally minimized for moduli of

order τ ∼ e1/α and so can be exponentially large given O(10) input parameters. The mecha-

nism relies on accidental low-energy scaling symmetries known to be generic and so is robust

against UV details. The resulting compactifications generically break supersymmetry and

4D de Sitter solutions are relatively easy to achieve without additional uplifting. Variations

on the theme lead to inflationary scenarios for which the size of the stabilized moduli differ

significantly before and after inflation and so provide a dynamical mechanism whereby infla-

tionary scales are much larger than late-time physical (e.g. supersymmetry breaking) scales,

with this hierarchy contingent on past cosmic evolution with the inflaton playing a secondary

late-time role as a relaxation field. We apply this formalism to warped D3-D3 inflation using

non-linearly realized supersymmetry to describe the antibrane tension and the Coulomb in-

teraction, and show how doing so our perturbative modulus stabilization mechanism evades

the η-problem that usually plagues this scenario. We speculate about the relevance of our

formalism to tachyon condensation at later stages of brane-antibrane annihilation.
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1. Introduction

If string theory is right there may be a problem: a simple argument suggests string vacua are

generically strongly coupled and without hierarchies, yet we find ourselves in a world popu-

lated by different scales where experiments often reveal weak interactions at play. How can

these be reconciled? As it turns out, modulus stabilization is the key. Modulus stabilization

is to string theory what logistics is to warfare: it is the difference between winning and losing.

Our goal in this paper is to add a new stabilization mechanism to the string theory toolbox

but we first start with a fuller statement of the issue and why our mechanism helps.

The issue turns about a central string-theory feature: scarcity of free parameters. Things

that would be coupling constants in other theories arise as fields in string theory, making all

expansions ultimately field expansions. For instance weak string coupling is an expansion in

powers of the string dilaton eφ̂ = 1/s and a 4D world only emerges from higher dimensions

through an expansion in inverse powers of fields that express extra-dimensional size (such as

the volume modulus V := τ3/2 that measures its overall volume in string units).
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The ‘Dine-Seiberg’ problem

Crucially, fields like s and V are moduli, in that their values are often not fixed by the leading

classical field equations. This means their vacuum values can be determined by energetic

arguments purely within a four-dimensional low-energy effective theory through their ap-

pearance within a scalar potential that is to be minimized. Performing this stabilization is

a prerequisite for making practical predictions because particle masses and couplings depend

on the resulting stabilized values in an important way. However this potential itself typically

arises as an expansion in these fields, as in

V (s, τ) =
∑
nm

Anms
−nτ−m , (1.1)

and (as first articulated in early searches for realistic string compactifications by Dine and

Seiberg [1]) this leads to the problem.

On one hand, if the leading term is positive then the scalar potential slopes off towards

zero in the limit of vanishing string coupling 1/s → 0 and infinite volume τ → ∞. But

this stationary point of the potential corresponds to 10D flat space and so does not describe

what we see around us, and lies beyond the reach of the 4D EFT. Ref. [1] then argues that

if the potential has a non-trivial minimum, as is required to avoid the runaway to infinity,

different orders in these expansions must compete with one another (e.g. quantum effects must

compete with the classical results) signalling the breakdown of the perturbative expansion

itself. They concluded that the generic weak-coupling situation is a runaway without a non-

trivial minimum. Conversely, if a non-trivial minimum exists then it should generically arise

at strong coupling with an extra-dimensional volume of order the string scale: s ∼ τ ∼ 1.

This argument can also be cast in terms of two accidental approximate scale invariances that

turn out to be shared by all string vacua, for which s and τ play the role of pseudo Goldstone

modes and 10D flat space corresponds to the scale invariant point (see for instance [2]).

Of course the key word in this argument is ‘generic’. Over the years many efforts were

made to overcome this general problem and obtain weak couplings and large hierarchies in

controlled ways. The solutions usually exploit the few parameters that are not vevs of moduli

that can be adjusted to provide non-generic solutions with weak coupling and large volume.

These parameters include the curvature of the extra dimensions, non-critical dimensionality,

the ranks of the various symmetry groups, or integer flux quantum numbers for antisymmetric

tensor fields that thread compact extra dimensions (similar to magnetic flux threading a

sphere – see [3] for a review).

In particular IIB string compactifications have been much explored with successful sce-

narios using a combination of the huge number of possible fluxes and various small non-

perturbative effects, leading to two main approaches for stabilizing moduli in IIB vacua. The

first of these – the ‘KKLT’ scenario – exploits the vast number of fluxes to tune the tree-

level superpotential to be exponentially small (so as to compete with small non-perturbative

contributions to the superpotential [4, 5]). The second class – the ‘large-volume scenario’ or

LVS – instead finds solutions with stabilized moduli by balancing different orders of different

– 2 –



expansions, exploiting the fact that generically there are many moduli and many perturbative

expansions going on at the same time. In particular non-trivial vacua are found for which the

non-perturbative corrections to the superpotential Wnp ' e−aτs for one modulus τs compete

with the perturbative corrections in the much larger volume modulus V = τ3/2, resulting in

minima for which τ ' eaτs and so give exponentially large volumes [6, 7]. For both scenarios

the resulting potential is minimized with Vmin < 0 and so additional ‘uplift’ mechanisms are

required to obtain flat or de Sitter space, using extra ingredients such as antibranes, T-branes,

etc. [5, 8, 9]. These scenarios have been explored in considerable detail and so far represent the

state of the art for moduli stabilization in general and de Sitter string solutions in particular.

In §2 we present an alternative mechanism for moduli stabilization that shares some of

the attractive properties of KKLT and LVS pictures, but also evades some of their difficulties.

Our proposal differs substantially from both of them by being purely based on perturbative

corrections within the corresponding effective field theory (EFT), but doing so in a way

consistent with the Dine-Seiberg problem. Our scenario adapts a proposal made for higher-

dimensional theories in [10] (and further elaborated for 4D supergravity in [11]).

The idea is very simple and can be illustrated with a concrete toy model. To this end,

consider the perturbative expansion for the low-energy scalar potential V in powers of the

volume field τ ,

V (τ) =
∑
n

An(s)τ−n (1.2)

where naively the coefficients An depend on all of the other moduli such as s. It is tempting

to think that the An should also be independent of τ , but this need not be true because

An can depend logarithmically on τ . It is generic that quantum corrections can introduce

anomalous scaling into effective interactions, which become logarithmic dependence on ratios

of particle masses in a perturbative regime for which a small expansion parameter α exists.

(This expansion parameter might simply be another modulus, like α ' 1/s.) But in string

theory particle masses generically depend on τ since this field determines the ratio of fun-

damental scales like the string, Planck and Kaluza-Klein (KK) masses (Ms, Mp and MKK).

Consequently any logarithmic dependence on ratios of masses can also imply a logarithmic

dependence on τ (and on any other moduli that appear in mass ratios).

Because this dependence has its roots in anomalous scaling, renormalization group (RG)

techniques can be used to resum leading-log effects (i.e. they allow one to work to all orders

in the expansion α ln τ while still neglecting subdominant terms like α2 ln τ). Therefore, even

though An might only be known perturbatively in α, RG reasoning gives this expansion to

all orders in α ln τ . The resulting potential can be minimized with respect to τ without

going beyond leading order in the 1/τ expansion, and naturally leads ln τ to be fixed at a size

ln τ ' 1/α. For weak coupling α� 1, this stabilizes τ at exponentially large values (providing

a novel explanation for large hierarchies), and the RG allows this to be done without losing

perturbative control. This is a key part of why we can evade the Dine-Seiberg conclusion, and

suggests the name RG stabilization (see [12] for a related proposal without the RG overlay).
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We see that the modulus τ can easily be exponentially large in RG stabilization (similar

to LVS stabilization), and this in turn reinforces the logic of working within the 1/τ expansion.

Also like the LVS case, the RG proposal requires generically at least two expansions: the 1/τ

and the α expansions. Because the perturbative corrections modify the supergravity Kähler

potential (rather than the superpotential), the non-trivial minima we obtain can equally well

be de Sitter or anti de Sitter and so a separate uplifting mechanism is not necessary (unlike

for KKLT and LVS pictures).

Application to inflationary dynamics

Where de Sitter solutions exist, can inflationary solutions be far behind? Interest in inflation

is driven by its successful description of observed primordial fluctuations in terms of quantum

effects amplified by inflationary expansion. The observation that the fluctuation amplitude

points to energy scales not too far below the Planck scale has raised hopes that these pri-

mordial fluctuations might eventually provide an observational window on very-high-energy

physics.

This has stimulated the development of a great variety of string-inflationary scenarios

over the past decades (see [13, 14] for reviews), for which modulus-stabilization again plays a

crucial role. The various inflationary scenarios choose different moduli to be the inflaton, with

both the scalar and axionic components of supersymmetric complex scalars playing important

roles in different pictures. Many of these proposals are quite promising, with some contenders

rising to the top as observations have become more constraining on theoretical models [15].

They also tend to share the following three challenges.

• Modulus stabilization. A theory of modulus stabilization is always a prerequisite for any

microscopic inflationary model. After all, there is no point arranging the scalar potential

to be very shallow along a putative inflaton direction in field space if the potential also

turns out to be much steeper in other directions; a slowly rolling field prefers to evolve

in the steepest direction available. One way to avoid motion in other steeper directions

is to arrange for local minima in these directions into which noninflationary moduli can

be trapped.

• Fragility. The extreme shallowness of the potential required for slow-roll inflation can

easily be overwhelmed by corrections. In particular, classical scalar masses are no-

toriously sensitive to quantum effects, but having a small slow-roll parameter η =

M2
p V
′′/V � 1 implies the squared-mass of the inflaton, m2 ∼ V ′′, must be much

smaller than the Planck-suppressed Hubble scale, H2
I ∼ V/M2

p . This makes a slow

roll hostage to the many corrections to the inflaton mass that are of Hubble size or

larger. Many string inflation scenarios are in particular plagued by a specific version of

this fragility – called the ‘η problem’ – that arises when inflation occurs within a 4D

supergravity framework (and is discussed in more detail below).
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• Inflation vs SUSY breaking scales. String models often produce inflation at high scales,

such as the GUT scale MGUT ' 1017 GeV, particularly if they are designed to maxi-

mize tensor-mode signals [16, 17]. However such constructions also tend to give a very

large supersymmetry breaking scale. This need not be a serious problem, but makes

specific realizations of low-energy supersymmetry breaking difficult if combined with

inflation since it creates a tension between the large inflationary scale and the low scale

of supersymmetry breaking [18, 19, 20].

In §3 we explore some of the implications of RG modulus stabilization for string-inflationary

models, with the encouraging news that it helps resolve all three of these challenges.

We do so using the specific example of the brane-antibrane inflationary scenario, for which

the inflaton is proposed to be the extra-dimensional separation between a mutually attracting

brane and antibrane. Separations between supersymmetric BPS branes were proposed as

candidates for the inflaton some time ago [21], with slow roll occurring because of the absence

of inter-brane forces implied by the BPS condition. The difficulty breaking supersymmetry

in these models made it hard to compute the inflaton potential, however, though this was

solved by instead exploiting the Coulomb attraction of non-supersymmetric brane-antibrane

configurations [22, 23], though it was realized early on that slow roll remained difficult to

achieve in simple geometries because the branes could not be sufficiently separated within

the extra dimensions to allow them to experience a weak enough force [22].

More detailed string constructions required modulus-stabilization techniques [4, 5], since

only these allow the calculation of the scalar potential for all low-energy moduli. Although

it was initially hoped that extra-dimensional warping might potentially resolve the ‘runway-

length’ problem [5, 24], it turned out that modulus stabilization carried a sting because

it also robustly introduced the η problem [24], requiring parameters to be tuned in a way

that undermined warping’s utility. We find the η problem is evaded within our stabilization

mechanism – largely because it does not rely on the non-perturbative superpotential as do

both KKLT and LVS stabilization – and so allows the utility of warping for inflation to be

resurrected as originally intended.

The inflaton and late-time relaxation

The advantages of RG stabilization for inflation are not tied to the details of specific string

constructions, however. To emphasize this, much of the inflationary discussion of §3 is cast

purely in terms of approximate symmetries of the low-energy 4D effective theory. Although

the required symmetries are in particular generic to string vacua, phrasing the analysis in

terms of low-energy symmetries helps identify what is required (and what is not) in any

particular UV completion. We believe it also undermines the evidence for the swampland

hypothesis [25, 26] because it shows how properties of the low-energy theory (like putative

difficulty obtaining de Sitter vacua) can be seen as relatively mundane consequences of sym-

metries rather than indicating any deep failure of EFT methods [2].

Our inflationary analysis relies on the following two crucial components:
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1. Constrained supersymmetry: We use the lagrangian for nonlinearly realized 4D super-

gravity: i.e. a supersymmetric gravity sector coupled to a matter sector within which

supersymmetry is badly broken (i.e. whose superpartners have been integrated out,

and so supersymmetry is nonlinearly realized using a goldstino field G). In practice this

goldstino can be represented using a nilpotent superfield (G ∈ X, with X2 = 0) [27].

The coupling of such a sector to supergravity can be found in [28].

This kind of EFT is of interest in situations where mass splittings within gravitationally

coupled supermultiplets are much smaller than splittings in other supermultiplets [29],

such as often occurs in extra dimensional models [30] and string vacua [31, 32, 33] when

supersymmetry is badly broken on a brane. It also plausibly applies to Standard Model

phenomenology within models that are supersymmetric in the UV, given the evidence

for the absence of weak-scale supersymmetry [34].

2. Accidental approximate scale invariance. We take our representative modulus to be a

dilaton τ ∈ T that sits within a supermultiplet T and acts as the pseudo-Goldstone

boson for an approximate accidental scale invariances. Such scaling symmetries have

long been known to be present for specific string vacua [35, 36], although we now know

them to be generic for extra-dimensional supergravity [37], which in turn very robustly

inherit them from string theory [2].

To these we also add the inflaton field, φ, assuming it to be part of the sector that badly

breaks supersymmetry (and so to realize supersymmetry only nonlinearly). An attentive

reader might be struck by the similarity between this list of ingredients and those used in

ref. [11], for which the only difference is that there the field φ instead enters as a ‘relaxation’

field whose presence dynamically helps suppress the size of the scalar potential at its minimum.

The appearance of φ in [11] is at first sight a bit jarring, since it appears to arise in a

bespoke way with nothing to do with any other physics. We argue here that one way to

understand the presence of φ is as an inflaton: its very definition requires it to interpolate

between a potential that is dominated by a large positive vacuum energy and one where the

potential energy is small. (The only surprise in [11] is in just how small the potential at this

minimum turns out to be.) All that is needed to make early-universe evolution of φ into an

inflationary mechanism is a reason why this transition should happen slowly (and showing

how this occurs is the baton we take up here).

Furthermore, the brane-antibrane system lends itself perfectly to this scenario. First,

it does so because it is well known that the supersymmetry breaking of an antibrane is

captured precisely by the nilpotent superfield X. Second, the brane-antibrane Coulomb

interaction is also easily captured by a superpotential that couples the inter-brane distance

φ to the nilpotent superfield X. Brane-antibrane attraction thereby provides a natural UV

interpretation for the relaxation/inflaton field φ.

In what follows we describe in detail in §3 how RG stabilization resurrects warped brane-

antibrane inflation, after first describing the RG stabilization mechanism in §2. §2 also in-

cludes discussions of how to realize the RG mechanism in IIB string theory; a determination
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of the relevant scales, like gravitino mass and soft-breaking terms for the matter sector and

their implications for the size of the volume modulus τ ; the relevance of RG stabilization to

the Dine-Seiberg problem; and why runaway regions can be sensibly addressed using EFT

methods (including comparisons with calculations in other areas of physics).

2. de Sitter vacua

In this section we explore the simplest stabilization example. Our goal is to illustrate how

standard renormalization-group methods can allow modulus stabilization without losing per-

turbative control. We also use this example to show how combining this stabilization mech-

anism with accidental low-energy symmetries (in particular accidental, approximate scale

invariance) leads to a novel kind of spontaneous supersymmetry breaking that generates de

Sitter solutions with large hierarchies driven by the exponentially large value of the stabilized

moduli. We first present the mechanism in a stripped-down model and then show how it

naturally embeds into low-energy string vacua.

2.1 Accidental symmetries and dilaton dynamics

Consider a general low-energy 4D effective theory that is both supersymmetric and enjoys

an accidental approximate scaling symmetry (of the form argued in [2] to be generic in

low-energy string vacua and in [37] to be generic to higher-dimensional supergravities more

generally). The minimal such a model involves the gravity supermultiplet and the chiral

superfield T 3 {T , ξ} that contains a complex scalar T = 1
2(τ + ia) whose real part (τ) is the

dilaton required by the approximate scale invariance. Because the EFT is a 4D supergravity

it is determined at the two-derivative level in terms of standard supergravity ingredients: by

specifying how the Kähler potential K, the superpotential W and (should gauge multiplets

also be present) the gauge kinetic function fαβ depend on the one chiral superfield T .

We take W = w0 to be independent of T (as can be enforced with the axionic symmetry

under shifts of a). Accidental approximate scale invariance is implemented by demanding

that e−K/3 arises as a series in powers of 1/τ , as in:

e−K/3 = τ − k +
h

τ
+ · · · , (2.1)

where the ellipses denote higher orders in 1/τ . This ensures that the lagrangian density

comes as a series of terms, L =
∑

n Ln, each of which scales homogeneously, Ln → λpnLn
for some pn, when gµν and τ are scaled by powers of the constant parameter λ. This kind of

expansion ensures that semiclassical methods arise as expansions in powers of 1/τ and so are

good approximations in the regime τ � 1 — and so this is where we seek our minima once

we compute a potential V (τ). It represents a scale invariance because these rescalings of τ

and the metric are symmetries of the classical field equations to leading order in 1/τ .

String theorists will recognize this system: in Type IIB string compactifications the role

of the field τ is played by the one always-present Kähler modulus: the extra-dimensional
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volume (in string units), V ∝ τ3/2. In a string context the reliance of semiclassical arguments

on large τ expresses how semiclassical supergravities provide reliable EFTs for string vacua

only for geometries that are much larger than the string scale.

Crucially, although powers of τ are explicit in (2.1), in general quantum effects complicate

the scaling properties of subdominant terms in the lagrangian. We return below to why this is

so, but just record now that it allows the functions k, h to be rational functions of logarithms

of τ : k = k(ln τ), h = h(ln τ) etc..

The lagrangian obtained with these choices for K and W have the familiar supergravity

form, with the Einstein-frame kinetic term for the bosons given (in Planck units) by

− Lkin√
−g

=
1

2
R+KTT ∂µT ∂µT '

1

2
R+

(
3

τ2
+ · · ·

)
∂µT ∂µT , (2.2)

where (as usual) R denotes the Ricci scalar built from gµν and subscripts on functions like

K and k denote differentiation with respect to the fields: e.g. KTT = ∂T∂TK.

The scalar potential is similarly given by

V = eK
[
KTT DTWDTW − 3|W |2

]
. (2.3)

where KTT = 1/KTT and

DTW = WT +KTW '
(
−3

τ
+ · · ·

)
w0 . (2.4)

The last equality uses (2.1) for K. The leading parts of the scalar potential then are

V ' −3 kTT
P2
|w0|2 + · · · = 3 (k′ − k′′)

τ4
|w0|2 +O(τ−5) , (2.5)

where P := e−K/3 = τ − k + · · · and primes denote differentiation with respect to x = ln τ .

Notice that expression (2.5) vanishes whenever k is independent of T , as it must do on general

grounds because (2.1) becomes a no-scale model [38] in the limit that h (and higher terms)

vanish and k is T -independent. For later purposes recall also that kTT can have either sign

since it does not control the sign of the kinetic energy for T in (2.2). Contributions involving

h and other subdominant terms in (2.1) first arise at order O(τ−5).

2.2 Controlled perturbative stabilization

Eq. (2.5) reveals that the leading contribution to the potential for large τ has the form

V (τ) ' U(ln τ)

τ4
, (2.6)

with U(ln τ) = −3τ2kTT |w0|2 = 3(k′−k′′)|w0|2. The minima of (2.6) depend on the functional

form of U and so requires more information about how k acquires its dependence on ln τ .

– 8 –



To this end, following the ideas of [10] and [11], we imagine that k acquires its depen-

dence on ln τ through the running of some dimensionless coupling αg, due to a perturbative

expansion of the form

k ' k0 + k1 αg +
k2

2
α2
g + · · · (2.7)

with a dimensionless coupling αg � 1. In general the running of a dimensionless coupling like

αg introduces logarithms of mass ratios, such as when its renormalization-group evolution is

integrated to give
1

αg(m1)
=

1

αg(m2)
− b1 ln

(
m1

m2

)
. (2.8)

The main observation is that this can become a dependence1 on ln τ if there are multiple

fields coupling to this interaction whose masses2 depend differently on τ .

Such interactions do plausibly arise in string compactifications. For instance in IIB

compactifications particles localized on D3 and D7 branes have masses that depend differently

on the volume modulus and when such branes intersect they can both couple to light open-

string 4D gauge fields (whose gauge coupling could be the αg considered here).

In such a situation (2.7) predicts a logarithmic τ dependence for k that emerges through

the τ -dependence of αg, which in turn can be expressed through a renormalization-group

evolution like

τ
dαg
dτ

= β(αg) = b1α
2
g + b2 α

3
g + · · · . (2.9)

For αg small enough to neglect all but the leading term in β this has solution

αg(τ) =
αg0

1− b1 αg0 ln τ
, (2.10)

for some integration constant αg0 = αg(τ = 1). For the present purposes what is important

about the ln τ dependence given in (2.10) is that its derivation neglects only additional powers

of αg in (2.9). Consequently for large τ it remains valid to all orders in αg ln τ while dropping

contributions of order α2
g ln τ . It is this renormalization-group resummation that ultimately

allows us to trust minima of the potential that occur in the regime ln τ ∼ 1/αg.

Now comes the main point. Using (2.7) and (2.9) to evaluate the T -derivatives of k then

gives k′ = (k1 + k2 αg + · · · )β(αg) and similarly for k′′, and using these in (2.6) then leads to

the expression

U ' U1 α
2
g − U2 α

3
g + U3 α

4
g + · · · , (2.11)

1More precisely masses actually develop a dependence on P rather than just τ because they typically

acquire their leading dependence on τ through powers of the Weyl rescaling factor e−K/3 = P = τ − k + · · · .
This makes k a function of lnP rather than ln τ in the discussions to follow; a distinction that often does not

matter, but plays an important role when discussing the η problem for the inflationary scenarios of §3.4.
2Notice that it is only ratios of physical masses that matter here and not ratios of masses to the RG running

parameter µ. This is because any τ -dependence associated with µ ultimately cancels from physical observables

for the same reason that all µ-dependence also cancels.
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T
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Figure 1: A plot of V vs τ for the scalar potential V = U(ln τ)/τ4, revealing a de Sitter or anti-de

Sitter minimum separated from a runaway by a local maximum. The plots are obtained using the

representative values k1/k3 = 0.01 and k2/k3 = −0.133 (arbitrary scale). The main text describes the

precise parameter range required to get de Sitter rather than anti-de Sitter or a runaway.

where U1 = 3k1b1|w0|2 and so on. Furthermore, the Dine-Seiberg argument leads one to

expect that any minima τ = τ0 of this potential generically occur in the regime where α(τ0) ∼
O(1). But if stabilization of other moduli make αg0 small, then inspection of (2.10) shows

that τ0 must be very large because αg0 ln τ0 ' O(1).

This general argument can be made explicit purely using perturbative methods if we

arrange that the coefficients U1, U2 and U3 appearing in the potential (2.6) with U given by

(2.11) are all positive and satisfy the mild hierarchy∣∣∣∣U1

U2

∣∣∣∣ ∼ ∣∣∣∣U2

U3

∣∣∣∣ ∼ O(ε) (2.12)

for some smallish ε � 1. Such a hierarchy allows solutions to ∂V/∂τ |τ0 = 0 for α0 ∼ O(ε)

and so

b1 ln τ0 = α−1
g0 − ε

−1 (2.13)

can easily be order 1/ε if ε� αg0 and b1 < 0. For ε <∼ 1/10 the value predicted for τ0 can be

enormous τ0 ∼ e1/ε, justifying the validity of the 1/τ expansion ex post facto. As is easy to

check, when 9U2
2 > 32U1U3 the potential has a local minimum at τ0 that is separated from

the runaway to τ →∞ by a local maximum at τ1 > τ0 (see Fig. 1).

The value of the potential at this minimum is positive if U2
2 < 4U1U3 and negative

otherwise. Although (2.11) and (2.12) might naively lead one to expect U(τ0) ∼ O(ε4) when

U3 ∼ O(1), it happens that the condition V ′(τ0) = 0 ensures that this leading contribution

cancels, making the result at the minimum instead U(τ0) ∼ O(ε5). As a result both V (τ0)

and τ2(∂2V/∂τ2)
∣∣
τ0

are O(ε5|w0|2/τ4
0 ), and this can be extremely small given that τ0 can be
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an exponential of 1/ε. Ref. [11] explores some of the implications if this suppression were to

explain the size of the present-day Dark Energy density.

Because U(τ0) can have either sign both de Sitter and anti-de Sitter solutions can be

generated in this way depending on the values of the coefficients U0, U1 and U2. Both signs

are allowed because (2.4) shows that supersymmetry is broken for any finite τ . It breaks

because the auxiliary field F T for the T supermultiplet is nonzero, since w0 6= 0, even though

WT vanishes. Its size is instead controlled by the Planck suppressed term KTW/M
2
p ∈ DTW .

This type of supersymmetry breaking is common in no-scale models and is responsible for

many of the unusual properties encountered in [11]. This source of supersymmetry breaking

is easily missed in global supersymmetry because it disappears in the Mp →∞ limit.

2.3 Type IIB string theory realization

We next expand on how the above mechanism arises in the low-energy limit of Type IIB

string vacua. One purpose in doing so is to identify the scales to which this stabilization

mechanism points. Another purpose is to see how such an explicitly perturbative mechanism

evades the well-known challenges posed by the Dine-Seiberg problem [1]. We discuss each of

these issues after first making the connection to IIB vacua more explicit.

The massless bosonic fields in the 10D supergravity relevant to Type IIB vacua below

the string scale are

g̃MN , S = s−iC, G(3) = H(3)+iSF(3), F̃(5) = dC(4)+
1

2
C(2)∧H(3)+

1

2
B(2)∧F(3) (2.14)

where a subscript (p) indicates that the corresponding field is a p-form, s = e−φ̂ is the 10D

dilaton3 that controls the local string coupling and C is an axionic scalar while H(3) = dB(2)

and F(3) = dC(2) are field strengths for 2-form gauge potentials. At the two-derivative level

the action for these fields takes the schematic form

Sbulk =

∫
d10x

√
−g̃

{
R̃− |∂S|2

(ReS)2
−
|G(3)|2

ReS
− F̃ 2

(5)

}
+

∫
1

ReS
C(4) ∧G(3) ∧G(3) , (2.15)

This action has two accidental symmetries that are important for our present purposes:

• An SL(2,R) symmetry under which

S → aS − ib
icS + d

and G(3) →
G(3)

icS + d
, (2.16)

where ad − bc = 1. Note that the special case b = c = 0 and a = 1/d reduces to a

classical scaling symmetry

g̃MN → g̃MN , S → a2S , G(3) → aG(3) , F̃(5) → F̃(5) . (2.17)

3The hat on φ̂ distinguishes the string dilaton from the inflaton field φ used everywhere else in this paper.
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• An approximate accidental scale invariance

g̃MN → λg̃MN , S → S , B(2) → λB(2) , C(2) → λC(2) . C(4) → λ2C(4) .

(2.18)

under which the tree level action scales as Sbulk → λ4Sbulk. Upon compactification to

four dimensions the non-trivial scaling of the 10D metric implies an overall scaling of

the volume modulus V → λ3V.

These two approximate symmetries are accidental in the sense that they are broken by

α′ and loop corrections to the effective action. Indeed, how terms scale under these two

transformations can be used to identify how the 10D action depends on these two expansions

[2]. For the 4D theory, the α′ expansion becomes an expansion in inverse powers of the volume

V := τ3/2 while the string-loop expansion is in powers of (ReS)−1 = eφ̂.

Both scaling symmetries are spontaneously broken inasmuch as neither leaves generic

background fields unchanged and the volume modulus and the string dilaton can be regarded

as their pseudo-Goldstone dilaton modes. From this point of view 10D flat space is special

inasmuch as it leaves a scale invariance unbroken because (2.18) does not act on S and scale

transformations of the flat metric can be compensated by a diffeomorphism. 10D flat space

corresponds in 4D to V → ∞ and s → ∞ and the scale-invariance of this point anchors the

asymptotic value of the 4D scalar potential to zero.

2.3.1 IIB modulus stabilization

String theory famously has no parameters, but if so what are the choices that lead to differ-

ently shaped compactifications? For IIB Calabi-Yau orientifold compactifications the choices

made are the quantized fluxes of the three-form fields whose presence and stress-energy sta-

bilizes the complex structure moduli U and string dilaton S, as pioneered in [4]. For super-

symmetric flux configurations these moduli are fixed in the 4D effective description by the

supersymmetric conditions DSW = DUW = 0.

The choice of higher-dimensional fluxes shows up in the low-energy 4D theory in several

ways. First, (0, 3) fluxes induce a non-trivial superpotential w0 ∈W that is generically order

unity (in Planck units) but can be arranged to take larger – or extremely small [39] – values.

Second, since fluxes fix the string dilaton field S they provide a ‘discretuum’ of possible values

for the string coupling constant gs ∼ s−1 in the 4D theory. Third, fluxes can fix the complex

structure moduli in such a way that the corresponding three-cycles in the extra-dimensional

geometry become long throats along which 4D geometries are naturally warped with warp

factor eA ∼ e8πK/gsM , where K,M are integers. The three quantities w0, gs and eA play

important roles defining the different scales that arise within the 4D theory.

The Calabi-Yau space’s Kähler moduli are not similarly fixed by these fluxes and so their

potential is naturally explored within the 4D theory. The simplest case arises for Calabi-

Yau orientifiolds that have the fewest possible Kähler moduli: the single complex modulus

T = 1
2(τ + ia) whose real part describes the overall volume V ∝ τ3/2 of the Calabi-Yau and

whose imaginary part a is an axionic partner. The shift symmetry for this axion a → a + c
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can forbid4 its appearance in the superpotential W . The leading expression for the Kähler

potential for T is well known to be of the no-scale type

K(T, T ) = −2 lnV = −3 ln τ , (2.19)

as can be derived either from explicit dimensional reduction or using the transformation

properties of the 4D action under the approximate accidental scaling symmetries (2.17) and

(2.18).

As discussed earlier, the conditionWT = 0 together with the no-scale identityKABKAKB =

3 satisfied by the Kähler potential (2.19) ensures the scalar potential (2.3) is independent of

τ and this precisely reproduces the microscopic statement that Kähler moduli are not fixed in

the underlying flux construction at leading order in string coupling and α′. Kähler modulus

stabilization proceeds because higher-order corrections lift this flatness and so can stabilize

fields like T . At present the main approaches to modulus stabilization drive this stabilization

by introducing a T -dependent contribution to the superpotential, which can arise nonpertur-

batively in 1/τ through contributions of the form δW = Wnp ∝ e−ξ T for some ξ. Introducing

T -dependence to W lifts the flatness of the no-scale potential, and can be consistent with the

underlying 1/τ expansion either if w0 happens to be extremely small [5] or by considering

multiple Kähler moduli, τv and τs and having τv ∼ e ξτs so that powers of 1/τv can compete

with δW ∝ e−ξ Ts [6, 7].

We instead here do not introduce a T -dependence to W at all, and considering only per-

turbative corrections to K (that would in any case normally dominate over non-perturbative

effects). Denoting s = ReS = e−φ, in general [2] perturbative corrections to K in powers of

1/s and 1/τ can be written as

e−K/3 = s1/3τ
∑
nmr

Anmr
(

1

s

)n ( s
τ

)(m+r)/2
, (2.20)

with n counting string loops and the α′ expansion receives contributions from r powers of

extra-dimensional curvature and m+1 powers of 3-form flux G(3). The coefficients Anmr here

are to be regarded as functions of all other moduli5, but the powers of s and τ associated

with the string-loop and α′ expansions are explicit. Tracking only the volume dependence

then shows that the Kähler potential can be written as the following expansion in powers of

1/τ

K(T, T ) = −3 lnP, with P(τ) = τ

[
1− k

τ
+

h

τ3/2
+O

(
1

τ2

)]
. (2.21)

4Whether it does or not depends on whether the corresponding symmetry has an anomaly. If so W can

depend exponentially on T . T -dependent corrections to W that are perturbative in 1/T are forbidden by the

supersymmetric non-renormalization theorems [40, 35, 36].
5A crucial difference in our approach is to consider that the coefficients Anmr can have a ln τ dependence.
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This has a form very similar to (2.1), differing6 only by being an expansion in powers of

τ−1/2 ∝ V−1/3 rather than τ−1 ∝ V−2/3.

As discussed above, the corrections in (2.21) generically lift the no-scale flat direction,

but when the coefficients k and h are τ -independent the leading contribution to V comes

from h and arises at order δV ∼ O(τ−9/2), corresponding to what are (α′)3 corrections in the

underlying string construction. The persistence of the potential’s flatness in the presence of a

T -independent k is known as the compactification’s extended no-scale property, and follows

because the first two terms of (2.21) still satisfy the no-scale identity KABKAKB = 3.

The new ingredient here is not to try to stabilize τ by balancing different powers of 1/τ in

the expansion of V that follow from (2.21), but instead to recognize that the coefficients k and

h can generically contain a ln τ dependence k = k(ln τ). This gives the leading contribution

to the scalar potential as in (2.6), and the minimum is instead obtained by balancing different

powers of αg ln τ against one another. As discussed earlier this has the advantage that this

balancing can be done without undermining either the 1/τ or αg expansions.

We see in this way that the stabilization scenario proposed in §2.2 can apply directly

to IIB string theory. It easily gives exponentially large volumes, similar to the large-volume

scenario (LVS), and like the LVS requires a second expansion modulus.7 Here, naturally, the

dilaton s can be fixed by fluxes to give small enough coupling (and so 1/s can play the role of

αg in our analysis). This is similar to LVS. But, unlike LVS models, the mechanism presented

here does not need to add new uplifting mechanisms to obtain de Sitter space.8 The scenario

described here also extends straightforwardly to the more general case with more than one

Kähler modulus (ref. [11] explores some multi-modulus examples) inasmuch as the volume

is stabilized by leading order contributions of order τ−4 whereas the smaller ‘fibre’ moduli

can be stabilized using the next order contributions of order τ−9/2 (such as is done in LVS

constructions, and exploited for inflationary purposes in [17]).

Whether ln τ -dependence actually appears in k in specific string constructions is of course

model dependent. For gauge interactions such log dependence requires the existence of more

than one type of matter field for which the masses scale differently with τ since the logs are

sensitive only to ratios of masses. As mentioned earlier, in IIB models this is the case whenever

6Notice that in principle (2.20) allows a contribution with m+ r = 1 that, if present, would change (2.21)

to P = τ(1 + g/
√
τ − k/τ + · · · ). This in turn would lead to a leading correction to the scalar potential of

order δV ∼ O(τ−7/2) that would dominate the contributions we consider here. However no known Calabi Yau

produces these terms and it has recently been shown [41] that such corrections are generally absent at least to

leading order in string loops. Including m+ r = 1 contributions still allows our stabilization mechanism, but

the logarithmic terms in K would arise at order τ−7/2 rather than order τ−4 as we use here.
7As mentioned earlier, exponentially large volumes arise in LVS through the introduction of a second Kähler

‘blow-up’ modulus τs that appears exponentially in the superpotential, with the potential minimized when

powers of 1/V balance against this non-perturbative contribution to W (which occurs when V ' eaτs). It is

the coupling αg itself that would be the required second modulus in the approach we follow here (and so need

not be a Kähler modulus, such as if it is the inverse string dilaton itself).
8Of course obtaining anti-de Sitter space at tree level need not mean a solution fails to describe our universe

because quantum corrections to V often dominate the classical prediction and so can be the source of positive

energy that allows de Sitter solutions (for a recent suggestion along these lines see [42]).
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there are chiral states charged under both D3 and D7 gauge groups. A general study of

concrete models for which these logs are present is beyond the scope of this article, but we refer

the reader to recent discussions on the appearance of logs in IIB EFTs [43, 44, 45, 46, 47, 12].

In particular [12] computes amplitudes that lead to logarithmic corrections to the Kähler

potential of order δK = O(lnV/V) and use them as a mechanism to stabilize moduli (although

without the renormalization-group resummation used here).

2.3.2 Scales and Soft terms

We have seen the value of τ can be fixed at a wide range of exponentially large values using

only a relatively small range of parameters ki, but precisely how big should we like τ = τ0 to

be at the minimum? There are two classes of regimes that are natural to consider.

Yoga models

The ambitious point of view asks τ0 to be large enough that Vmin ∝ τ−4
0 can be as small

as the observed dark energy density. This requires τ0 >∼ 1026 and is the regime explored in

some detail in [11]. For τ0 this large the mass of the τ field and its axionic partner are light

enough to be cosmologically active in the recent universe. Although one might imagine such

light scalars to be ruled out by solar-system and cosmological tests of gravity, ref. [11] shows

that they are surprisingly hard to constrain, partly due to the appearance of surprising new

mechanisms for screening [48].

For the present purposes the main problem with choosing τ0 this large is that the 4D

theory near this minimum requires a UV completion at scales of order Mp/τ0 because this

is where the axion decay constant lies. This in itself need not be a problem because this

occurs at eV scales when τ0 ∼ 1026 and so the required UV physics could plausibly be extra-

dimensional. Whether this kind of a picture is viable then depends on precisely how τ arises

in the UV completion, but if it does so as a volume modulus along the lines described here

then there is a problem.

The problem arises because the string and Kaluza-Klein scales are related to τ by

Ms =
Mp

V1/2
∼ Mp

τ3/4
and MKK ∼

Ms

V1/6
=

Mp

V2/3
∼ Mp

τ
. (2.22)

Requiring MKK
>∼ 10 TeV near the minimum implies τ0 <∼ 1014, but this bound can be model-

dependent because it can be evaded by having some extra dimensions be smaller than others.

More robust is the condition Ms >∼ 10 TeV, which implies τ0 <∼ 1020. Because our focus here

is on string embeddings we do not pursue values of τ0 larger than this any further. See [11]

for more in-depth discussion of these issues.

SUSY Breaking at TeV and higher scales

The alternative point of view is to ignore (as most do) the cosmological constant problem and

ask how other scales depend on τ . In this case having Vmin ∝ τ−4
0 still suppresses its present-

day value relative to other approaches, particularly when τ0 takes its largest allowed values.
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In this case the main constraint on the present-day value of τ actually comes from demanding

the field τ to be heavy enough to avoid the cosmological-modulus problem. This problem

is a general constraint on gravitationally coupled relics and requires τ to be heavy enough

to decay before nucleosynthesis, so as not to destroy its successes, which for gravitational-

strength decays requires mτ >∼ 30 TeV [49].

Re-introducing factors of Mp, the mass of τ and of the gravitino are related by

mτ =

(
τ2

M2
p

∂2V

∂τ2

)1/2

∼ ε5/2|w0|
τ2M2

p

∼
ε5/2m3/2

τ1/2
where m3/2 ∼

|w0|
τ3/2M2

p

. (2.23)

In these expressions we take ε ∼ O(1/10) since τ0 ∼ e1/ε, but even once this is done the

implications for τ0 of the condition mτ (τ0) >∼ 30 TeV depends on the value of |w0|. We

choose two representative benchmarks: |w0| ∼ M3
p (as is most commonly found in string

compactifications) or |w0| ∼ M3
p τ

1/2
0 (which is the upper limit on what is possible for a 4D

supergravity EFT, since for larger w0 the gravitino mass becomes larger than the Kaluza-Klein

scale given in (2.22) [50, 11]). Choosing mτ ∼ 30 TeV for each of these cases implies

τ0 ∼ 106 , m3/2 ∼ 109 GeV , MKK ∼ 1012 GeV , Ms ∼ 1014 GeV if |w0| ∼M3
p

τ0 ∼ 108 , m3/2 ∼MKK ∼ 1010 GeV , Ms ∼ 1012 GeV if |w0| ∼M3
p τ

1/2
0 .

Given a value for τ0, the size of soft supersymmetry-breaking terms, superpartner masses

and trilinear couplings for any Standard Model like sector can also be estimated, under the

assumption that their dominant source of supersymmetry breaking comes from the T auxiliary

field, although the result depends somewhat on the particular microscopic realization of the

Standard Model and hidden sectors. For instance, suppose a Standard Model multiplet

ψi appears in the quantity k(ψ,ψ) of eq. (2.21). This would arise, for example, for states

sequestered in local D3 or D7 branes and predicts soft supersymmetry-breaking masses in a

manner similar, although slightly different dependence, to what is found for the large modulus

in LVS (see for instance [56]):

m2
ψ = m2

3/2 − F
iF j∂i∂j lnZψ which implies mψ ∼

w0

τ2
∼
m3/2

τ1/2
. (2.24)

Here Zψ ∼ ∂i̄K ∼ −ki̄/τ and the F -term for T is given by

F T = eK/2KTTKTW ∼
w0

τ1/2
+O(τ−3/2) . (2.25)

For gaugino masses in this type of scenario it is instead the F -term of the dilaton that

plays the key role. This is true (as in LVS) even though to leading order the dilaton S does

not break supersymmetry FS ∝ DSW = 0, since to next order in the 1/τ expansion we have

F S ' eK/2KSSKSw0 ∼ w0/τ
5/2. This gives gaugino masses of order

MG =
F i∂if

Ref
∼ w0

τ5/2
∼
m3/2

τ
. (2.26)
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Similarly for the scalar trilinear soft-couplings in the potential (A terms) which are A ∼MG.

Unless further cancellations happen, this gives a split-SUSY spectrum in the sense that

gauginos are lighter than scalar masses and both of these are lighter than the gravitino mass

and similar to the mass of τ . Since τ has to be heavier than 30 TeV, this allows for gaugino

masses of order the TeV scale for τ0 ' 106. Note however that we have only included the

contribution of the overall volume modulus τ and the dilaton s to supersymmetry breaking,

the contribution of the Standard Model cycle, if present, may dominate and wash out the

sequestering making all soft terms of order the gravitino mass and leading to intermediate

scale supersymmetry breaking. Therefore, similar to LVS but with different volume depen-

dence, our scenario may lead either to sequestered split supersymmetry or intermediate scale

supersymmetry breaking in both cases with intermediate scale gravitino mass. A more de-

tailed study of the structure of soft terms requires constructing concrete realizations of the

Standard Model sector and is beyond the scope of this article.

2.4 The Dine-Seiberg problem

With the broad picture of the string embedding in place we can further comment on how this

construction bears on the challenges posed by the Dine-Seiberg problem. These challenges

come in two separate forms, each of which we discuss in turn.

Field expansions

At its most basic the problem starts with the observation that expansion parameters are fields

in string theory, and for any potential of the form

V (τ) =
∑
n

Vn
τn

(2.27)

the condition V ′(τ0) = 0 requires at least two terms of this series to have a similar size. How

can this be consistent with the underlying expansion in 1/τ? Taken at face value this means

stationary points of V must occur outside the perturbative domain.

There are several well-known ways to evade this argument. One such observes that

perturbation theory need not break down if the first coefficient V0 (or the first few) is for

some reason unusually small. If it happens that V0/V1 = O(ε) for some ε � 1 with all

coefficients except V0 having roughly the same size, then the stationary point τ0 of the series

V (τ) = τ−p(V0 + V1τ
−1 + · · · ) satisfies V ′(τ0) = 0 = −τ−p−1

0 [p V0 + (p + 1)V1τ
−1
0 + · · · ] and

so has a solution well-approximated by

1

τ0
' − p V0

(p+ 1)V1
= O(ε) . (2.28)

Precisely this argument is applied to the series in powers of αg in (2.12) to find stationary

points V ′(τ0) = 0 consistent with the condition αg(τ0)� 1. It is also the argument ultimately

used in single-modulus KKLT models, for which |w0| must be assumed small in order to
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balance against terms like δW ∝ e−aT within the context of an overall expansion in power of

1/τ .

The large-volume scenario (LVS) of string vacua works with a variation of this theme

that requires the existence of at least two expansion parameters. In this case the potential

arises as a multiple expansion of the form

V (τ1, τ2) =
∑
mn

Vmn ε
m
1 εn2 (2.29)

where εi(τ1, τ2) are two small functions of the two independent moduli (and in practice ε1 =

τ
−1/2
1 and ε2 = e−aτ2). In this case different terms in ∂τiV = 0 can balance against one another

provided the εi are similar in size, but now this can be consistent with both of them being

small without having to assume special properties for the coefficients Vmn. It is noteworthy

from this point of view that multiple moduli is the rule for the underlying Calabi-Yau spaces

of interest, not the exception.

The stabilization mechanism used here adds a third way to evade this problem. In this

case two expansion parameters are present but the stabilization occurs completely using a

fixed order in 1/τ since the potential has the form V (τ) ' U(ln τ)/τ4, with U a rational

function of ln τ arising due to its expansion in powers of αg(τ). The existence of a minimum

for V with respect to variations of τ then also requires terms at different orders in αg to

balance, and this is achieved consistent with αg(τ0) � 1 by using the assumption (2.12) –

similar to the reasoning leading to (2.28). The new ingredient arises because the τ dependence

embedded in αg(τ) itself comes as a series in αg ln τ , and solutions come with τ large enough

that αg ln τ need not be small even if αg is. Nevertheless the magic of the renormalization

group ensures that the solution can be computed reliably even if αg ln τ ∼ O(1) without

assuming anything special about the coefficients bi in eq. (2.9).

Perturbation theory and the runaway

A stronger claim is sometimes superimposed on the Dine-Seiberg problem within string theory.

This claim (emphasised in particular by advocates of swampland hypotheses and de Sitter

conjectures [26, 51]) states that full control over perturbative expansions in 1/τ and/or 1/s

are only valid for τ and s large enough to be in the runaway region, for which standard EFT

methods break down because there is no static string vacua exist about which to perturb.

Different versions of this argument involve two separate claims:

• In one the objection is that any effective 4D description inevitably breaks down for

large enough values of fields like τ because for large τ a tower of high-energy states

descend into the low-energy theory and ruin its validity. This tower is not hypothetical

in the case where τ is the volume modulus because the solution in the limit τ → ∞ is

10D flat space and the dangerous tower in question consists of the higher-dimensional

Kaluza-Klein modes.
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• In the other the objection is that the state of the string-theory art only provides tools

for studying static vacua and these do not allow comparison with the runaway region

for which τ and s are asymptotically large but not actually infinite.

We argue here that neither of these objections need be that worrisome.

In one sense the first objection is simply true: the first nonzero Kaluza-Klein mass

provides the UV scale above which any 4D EFT must break down, and it is also true that

MKK → 0 as τ → ∞. As argued in [52] it is never a good approximation to include even

a few KK states with nonzero masses in the 4D EFT while neglecting the rest because the

underlying EFT expansion is in Mlow/Mhigh where Mlow is the highest nonzero energy scale

appearing in the low-energy theory and Mhigh is the lowest energy scale intrinsic to the high-

energy theory. But Kaluza-Klein masses come in quantized towers, such as when Mn = n/L

for n some integer and L some extra-dimesional length. Keeping the n = 1 state in the

low-energy EFT while integrating out the n = 2 state is only justified within an expansion in

powers of M1/M2 = 1
2 ; never a parametrically small variable.

The same problem does not arise if only n = 0 states (i.e. the moduli) are included in

the 4D theory because in this case the low-energy mass need not be tied as rigidly to the KK

scale 1/L. Whether a 4D theory makes sense depends on the masses acquired by the moduli,

and in the examples of interest here we have e.g. mτ/MKK ∝ τ−1 ∼ (MsL)−4, which can be

parameterically small precisely when τ � 1 because then MKK ∼ 1/L�Ms. Although it is

true that the UV cutoff of the 4D theory declines monotonically as τ → ∞, the 4D theory

can have a nontrivial domain of validity for any large but finite τ . One must of course check

that this suffices to describe the physical process of interest.

The second objection ultimately puts a premium on static solutions when justifying using

EFT methods. There is no evidence, however, that this is required elsewhere in the many areas

of physics for which EFT methods apply. It is true that EFTs have additional conditions for

validity when applied to time-dependent systems: most notably the motion must be adiabatic

in the sense that φ̇/φ must be a low-energy scale (i.e. be much smaller than UV scales like

MKK) for any moving low-energy field φ (see [52, 53] for a more detailed discussion). But once

these are satisfied the usual rules for EFTs apply and there is no necessity to expand around

a strictly static vacuum solution (for examples where 4D effective evolution is compared to

explicit higher-dimension evolution see [54]). In the end the only issue is whether the 4D

EFT is being used within its domain of validity, including for applications to time-dependent

problems.

Many examples from other types of physics parallel the runaway situation encountered

for fields like τ and s in string theory (and extra-dimensional models more generally). One

of these is the interaction energy of two nearby atoms regarded as functions of their centre-

of-mass positions, V (r1, r2). For spinless atoms the low-energy EFT variables can simply be

the ri if internal atomic size and structure define the UV scale.

It can happen that van der Waals forces can make atoms attract for large separations

until more microscopic (e.g. exchange) forces eventually intervene to convert this to strong
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repulsion. For specific atomic properties a stable static (molecular) solution can exist for a

specific separation, r := |r1 − r2| = a0, with no static solution possible for any other finite r.

This does not forbid the use of EFT methods (such as the Born-Oppenheimer approximation)

for values r 6= a0, such as is done to map out the shape of the potential V (r1, r2). Neither

does it make expansion around the free theory (in powers of 1/r around r =∞) useless. We

see no reason why the large-τ and large-s limits of string theory should not be as benign as

is this everyday analog.

Simpler atomic systems also shed light on arguments that non-perturbative effects require

a stable vacuum in order to be computable [55] (which we mention despite our stabilization

mechanism not requiring the use of non-perturbative effects). For instance, suppose one or

both of the underlying nuclei were to be unstable to α decay with a very long half-life (such

as Uranium). Since α-decay proceeds through the tunneling of He nuclei through a Coulomb

barrier it can be regarded as a nonperturbative effect. It is hard to argue that one cannot

compute – even in principle – the decay lifetime of the uranium atom except at the one

place where the molecule is static. Notice that because the tunnelling rate is through an

electromagnetic potential it depends in principle on the position of the external electrons and

so at some small level also depends on the inter-atomic separation since the electrons adjust

to the presence of the other atom in the molecule.

We conclude that even though string theory has no free parameters and weak couplings

are related to runaway directions, the underlying issues of control are not unique to string

theory. Experience with reliable calculations under similar conditions elsewhere in physics

suggest that trustable perturbative calculations should also be reliable in string theory.

3. Non-linear SUSY and Inflation

de Sitter solutions enter practical considerations in one of two ways: as descriptions of our

cosmological future or as descriptions of our distant inflationary cosmological past. Although

the solution described above might conceivably describe the future universe, the necessity for

inflation eventually to end means that it cannot in itself do so in the past. We next argue

that minor extensions of the previous section’s discussion can include both cases, along the

way potentially explaining why each involves such different scales.

3.1 The goldstino and the inflaton

To incorporate inflation we require two new ingredients. We first require a large source of

positive potential energy and because this necessarily breaks supersymmetry we require a

sector that breaks supersymmetry more dramatically than does the dilaton multiplet9 T .

The minimum number of degrees of freedom such a sector can introduce at low energy is

9One might ask whether inflation can be obtained directly from motion driven by the τ potential (2.6)

itself. We have been unable to do so within a regime under EFT control, largely because the τ−4 behaviour

of the potential is too steep.
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the goldstone fermion, G, for supersymmetry breaking. We follow [27] and incorporate this

fermion into the present discussion using a chiral field X that satisfies a nilpotentcy constraint:

X2 = 0 . (3.1)

This constraint removes any scalar superpartners of G and ensures that it nonlinearly realizes

supersymmetry. The couplings of such fields to supergravity are explored in [28].

The second new ingredient is an inflaton field φ that can interpolate between a region

where the large supersymmetry-breaking energy dominates and one where it does not. Infla-

tion is then imagined to take place as the gravitational byproduct of the slow evolution of the

field φ between these different regimes. With later applications to brane-antibrane inflation in

mind we imagine φ also to arise within the sector for which supersymmetry is badly broken.

A nonsupersymmetric scalar φ can also be represented by a chiral superfield Φ subject to a

constraint [27, 28], which in this case becomes:

D(XΦ) = 0 . (3.2)

This states that XΦ is left-chiral. If φ is also real then the left-chiral field it is equal to

is XΦ, in which case (3.2) strengthens to the constraint X(Φ − Φ) = 0. In either case the

constraint removes the fermionic and auxiliary-field components of Φ in a way consistent with

nonlinearly realized supersymmetry.

To incorporate these fields into a supersymmetric framework with accidental approximate

scale invariance we repeat the previous section’s construction but now include these two new

fields. For example, the Kähler potential built only from the minimal superfields X, T and

Φ is, as before,

e−K/3 = τ − k +
h

τ
+ · · · , (3.3)

where the ellipses denote higher orders in 1/τ , but now

k = K(Φ,Φ, ln τ) + (X +X)KX(Φ,Φ, ln τ) +XXKXX(Φ,Φ, ln τ) , (3.4)

and similarly for h and higher-order terms (although these are not needed in what follows).

The most general superpotential similarly is

W ' w0(Φ) +XwX(Φ,Φ) , (3.5)

where the unusual dependence of W on Φ is allowed because the constraint (3.2) ensures that

the result is chiral once multiplied by X.

The component lagrangian obtained from K and W is as given in [28]. The constraint

(3.1) ensures there is no independent propagating scalar for the X multiplet, but the kinetic
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terms for the scalar parts of the remaining fields zI := {T,Φ} are given by the standard form

− Lkin√
−g

= KIJ ∂µz
I ∂µzJ

' 3

P2

(
1 +

k′′ − 2k′

P

)
∂µT ∂µT −

[
3

P2

(
kφ − k′φ

)
∂µφ∂

µT + h.c.

]
(3.6)

+
3

P

(
kφφ +

kφkφ
P

)
∂µφ∂

µφ+ · · · ,

where the ellipses denote terms involving higher-order coefficients like h and primes denote

derivatives with respect to lnP.

The scalar potential resembles the standard supergravity form, although the absence of

auxiliary fields in Φ also makes it slightly different. Writing zA := {T,X} and adopting the

standard notation where KAB is the inverse to the matrix KAB, the scalar potential works

out to have the familiar supergravity form [28]

V = eK
[
KABDAWDBW − 3|W |2

]
. (3.7)

with the important proviso that the constrained field Φ is not included in the index sums

over A and B. X = 0 must be chosen (after differentiation) when tracking the dependence

on scalar fields because (3.1) ensures the scalar part of X is built from fermion bilinears.

The scalar potential again comes as a series in inverse powers of τ , whose leading terms

turn out to be

V =
A|wX|2

P2
− 2Re(BwXw0)

P3
+
C|w0|2

P4
, (3.8)

where (as before) P := τ − k + · · · and we keep in mind that each T derivative of k costs a

power of 1/P because k is a function of lnP rather than just ln τ (see the observation in the

footnote below eq. (2.8)). The coefficients appearing in (3.8) are given explicitly by

A ' 1

3
KXX ,

B

P
' KXXKXT and

C

P2
' −3(KTT − KXXKTXKXT )

1 + 2KXXKXKX
, (3.9)

and we assume A > 0 so the leading |wX |2 term is positive. Notice that (3.8) reduces to

(2.6) in the limit wX = kX = kXT = 0. Notice also that KTT and KXT would both be O(α2
g)

if k inherits its T dependence through the P-dependence of a perturbative coupling αg(P),

as in §2.2, and this suggests that B/A,C/A ∼ O(α2
g). The inflationary implications of this

potential are the subject of the remainder of this section.

3.2 Inflaton potential

The potential (3.8) is a function of the two scalars τ and φ, and we turn now to exploring

its properties. The first step is to make contact with previous sections, which can be done if

there exists a configuration φ0 for which wX(φ0) = 0. When this exists it is very close to a

minium of the potential, since it effectively turns off the leading P−2 and P−3 terms in V ,
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leaving terms of order |w0|2/P4 to dominate. τ can be minimized in this regime using the

lnP dependence of k very much along the lines discussed in §2.

Within an inflationary perspective this minimum with φ near φ0 is the endpoint of any

φ evolution and so represents our present-day vacuum. The inflationary regime instead oc-

curs for φ far from φ0, where the potential is dominated by the large positive contribution

coming from the |wX |2/P2 term in (3.8). The next sections compute how the solution for

τ(φ) obtained by minimizing V (τ, φ) changes between these inflationary and post-inflationary

regimes.

Minimization at late times

Suppose first that there exists a field configuration φ0 that satisfies wX(φ0) = 0, and consider

the extremization problem near this point. This can be done very simply in the particular

case where none of KXX , KX and KTX depend on φ (though this assumption of φ-independence

can also be relaxed – see [11]). In this case φ enters the potential only through wX and so

minimizing V with respect to φ amounts to doing so with respect to wX .

Since V is quadratic in wX it is extremized by evaluating at the saddle point

wX = 3KXT w0 , (3.10)

leading to

V [φ(τ), τ ] ' −3|w0|2

P2

[
KXXKXTKTX +

KTT − KXXKTXKXT
1 + 2KXXKXKX

]
=:

U

P4
. (3.11)

Notice that this vanishes when k is independent of T . As described in the footnote below

eq. (2.8), we write the potential as a function of P (rather than just τ) because this plays an

important role in our later discussion of the η problem.

The potential (3.11) now has precisely the same form considered in §2, though with

U = U(lnP) given by a slightly different function of k and its derivatives. Minimization with

respect to τ can be carried over in whole cloth provided that k depends on lnP in the way

described in §2.2, such as if

K ' K0 + K1αg +
K2

2
α2
g + · · · and

1

αg
= b0 − b1 lnP (3.12)

and so on (for constants bi). The arguments of §2 then go through as before, showing that

a minimum is possible at P = P0 with α0 = αg(P0) ∼ O(ε) and lnP0 ∼ 1/ε, with ε � 1.

The potential evaluated at this minimum is again order V ∼ ε5|w0|2/P4
0 and so can be

extremely small. The field φ, introduced here as an inflaton, plays the role of a relaxation

field by dynamically minimizing the |wX |2 term (providing a simple rationale for the relaxation

mechanism as applied in [11] to present-day Dark Energy).
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Inflationary regime

The other region of interest for the potential (3.8) is when φ is far from φ0 and so wX is not

small. This is the regime likely appropriate for inflationary evolution since the potential is

dominated by the large positive contribution proportional to |wX |2. In general the fields τ

and φ can evolve independently in this regime and it is not a priori necessary that either

should sit at a local minimum of the potential [57]. However when seeking the conditions for

slow-roll inflation it is instructive to first extremize the potential (3.8) with respect to τ and

ask how the result looks as a function of φ.

To this end, suppose that φ lies in a region for which δ := |wX/w0| <∼ 0.01 is small

(a regime that actually arises for large φ for the brane-antibrane example described below

because the brane tensions are parametrically smaller than the extra-dimensional Planck

scale). In this case V is a sum of terms of relative order δ2, δ/P and 1/P2, and so can

be extremized for values 1/P ∼ δ. For example, for real B, wX and w0 the extrema are

τ = τ±(φ, φ) where10

1

P±
' D±wX

w0
∼ O(δ) with D± :=

3B

4C
±
√

9B2

16C2
− A

2C
. (3.13)

This expression predicts several regimes:

• When A/C < 0 only one of these roots is positive, corresponding to a local maximum

with Vmax > 0 when A > 0 (and a local minimum with Vmin < 0 when A < 0).

• If A/C > 0 then no stationary points exist at all for positive P if 9B2 < 8AC. For

fixed φ the potential V is then a monotonically decreasing positive function if A > 0.

• Both roots are real and positive (with P− being a local maximum and P+ a local

minimum) when A/C and B/C are both positive and 9B2 > 8AC. The potential

evaluated at the minimum τ+ is also positive provided B2 < AC and negative otherwise.

When a local minimum exists and A/C and B/C are O(1) and ε ∼ δ are similar in size

(and small) then τ+(φ) ∼ 1/δ � 1 is large but is much smaller than its value τ0 ∼ exp(1/ε)

at the global minimum. If on the other hand |A/C| � |B/C| – as might be expected if

A ∼ O(α0
g) and B,C ∼ O(α2

g) – then stationary points only arise for positive A if C < 0,

corresponding to a local maximum with Vmax > 0. Notice that having B/A,C/A ∝ α2
g ∼

O(ε2) need not be inconsistent with the existence of two roots τ± (and so having a local

minimum) but only if the numerical coefficients in C/A are adjusted to be O(ε2), since then

B2/C2 and A/C are both O(ε−4). This can be done, for example, by arranging KTT to be

numerically suppressed by ε2 so that KTT ∼ O(ε2α2
g) is similar in size to (KXT )2 ∼ O(α4

g).

Using this in (3.13) then shows that P± ∼ ε2/δ are only large if δ � ε2.

10For this we neglect for simplicity any dependence of A, B and C on lnP that is implicit through their

dependence on αg(P). This neglect is justified because αg(P) = αg0/(1 − b1 αg0 lnP) ensures that all lnP-

dependence is subleading in powers of αg0. This argument is consistent with keeping all orders in αg0 lnP0 for

the present-day stabilization of P0 because P turns out to be much smaller during inflation than at present.
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In the special case where a local minimum exists we can compute an effective potential

for φ defined by Veff(φ) = V [φ, τ+(φ)], for which τ is assumed to remain at its local minimum

as φ changes. This evaluates to

Veff(φ) ' (A−BD+)

2P2
+

|wX(φ)|2 =
(A−BD+)D2

+

2|w0|2
|wX(φ)|4 (3.14)

3.3 Inflationary evolution

For inflation we are interested in how the fields φ and τ evolve and so must keep track of their

kinetic terms given in (3.6). Although in general τ and φ are mixed by the kinetic terms,

this mixing arises at subleading order in 1/τ . The leading form for the target-space metric is

KIJ dzI z̄J ∼ (dτ/τ)2 + kφφ|dφ|
2/τ and so for kφφ ∼ 1 the canonical fields are dχ ∼ Mp dτ/τ

and dϕ ∼ dφ/
√
τ̄ near a semiclassical background τ = τ̄ .

In general, motion along the τ direction is not a slow roll if inflation is dominated by the

term V ∼ |wX |2/τ2 since the slow-roll parameter in the τ direction is then

ε(τ) ∼
(
MpVχ
V

)2

∼
(
τVτ
V

)2

∼ O(1) . (3.15)

The τ ‘mass’ can be similarly estimated when V ∼ |wX |2/τ2 dominates, giving

m2
τ =

(
∂2V

∂χ2

)
τ+

∼ τ2

M2
p

∂2V

∂τ2
∼ V

M2
p

∼ H2
I , (3.16)

where HI is the inflationary Hubble scale, during an epoch when V dominates the gravitating

energy density. This is also insufficiently small to justify a slow roll.

This makes it important to choose parameters so that V has a local minimum in the τ

direction that stabilizes τ = τ(φ), in which case we can see whether motion in the φ direction

can be sufficiently slow. Even if this can be done it must be asked whether it is a good

approximation to have τ remain trapped at its local minimum as φ evolves. This depends

on whether the volume modulus is heavy enough to integrate out the transverse τ field to

obtain an effectively single-field description. A brief estimate arguing that it is heavy enough

is given in Appendix §A.

Evaluated at the local minimum for τ = τ+(φ) described above we can evaluate the slow-

roll parameters for evolving in the direction of the canonically normalized field ϕ, and this is

particularly simple when φ dominantly enters through wX , since

∂V

∂ϕ
' ∂

∂ϕ

(
A|wX |2

τ2
+

− 2Re (BwXw0)

M2
p τ

3
+

+
C|w0|2

M4
p τ

4
+

)
'

(
AwX
τ2

+

− Bw0

M2
p τ

3
+

)
∂wX

∂ϕ
+ h.c. , (3.17)

where factors of Mp are re-instated for later convenience. Evaluating at τ = τ+(φ) ensures

each term in V and ∂V/∂ϕ has a comparable size and so ensures wX ∼ (Bw0)/(AM2
p τ+) and

so we may estimate the right-hand side of (3.17) as being of order [Bw0/(M
2
p τ

3
+)](∂wX/∂ϕ).
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For comparison, with these same estimates the potential energy itself is V ∼ C|w0|2/(M4
p τ

4
+)

and the inflationary Hubble scale is HI ∼
√
V /Mp ∼

√
C |w0|/(M3

p τ
2
+).

The first slow-roll parameter for motion in the φ-direction then becomes

ε =
1

2

(
Mp ∂V/∂ϕ

V

)2

∼

(
BM3

p τ+

C|w0|
∂wX
∂ϕ

)2

∼ τ3
+

(
BM3

p

C|w0|
∂wX
∂φ

)2

, (3.18)

which shows that slow roll requires ∂wX/∂φ to be much smaller than order C|w0|/(BM3
p τ

3/2
+ ).

The second slow-roll parameter is similarly estimated to be

η =
M2
p

V

∂2V

∂ϕ2
∼ 1

H2
I

[
B|w0|
M2
p τ

3
+

(
∂2wX
∂ϕ2

)
+
A

τ2
+

(
∂wX
∂ϕ

)2
]

∼ τ+

[
BM4

p τ+

C|w0|

(
∂2wX
∂φ2

)
+
AM6

p τ
2
+

C|w0|2

(
∂wX
∂φ

)2
]
. (3.19)

The property B2 ∼ AC – required for the existence of a minimum τ+(φ) – ensures the second

term of this expression is small when ε is small, so requiring small η implies ∂2wX/∂φ
2 is

much smaller than order C|w0|/(BM4
p τ

2
+). Using w0 ∼ M3

p and (B/A)2 ∼ C/A ∼ ε4M2
p and

τ+ ∼ ε2/δ (as found above when B,C ∝ α2
g) then shows that slow roll requires the derivatives

of wX to satisfy∣∣∣∣∂wX∂φ
∣∣∣∣� C|w0|

BM3
p τ

3/2
+

∼ ε2Mp

τ
3/2
+

and

∣∣∣∣∂2wX
∂φ2

∣∣∣∣� C|w0|
BM4

p τ
2
+

∼ ε2

τ2
+

. (3.20)

To go further we must specify in more detail how the functions k and W depend on φ.

We next identify a promising choice for these functions by re-examining the brane-antibrane

inflationary scenario to see how it is affected by the new modulus stabilization mechanism.

3.4 Warped D3-D3 inflation revisited

Brane-antibrane inflation was the first attempt to derive inflation from a string theory con-

struction within a framework in which the inflaton potential could be explicitly calculated

[22, 23] (see [58] for a recent discussion). The inflaton field is the separation between a brane

and an antibrane and for large separations the corresponding potential is the sum of two

terms: the brane tension and the brane-antibrane interaction generated by their couplings

to the various bulk fields. At large distances the inter-brane force takes a ‘Coulomb’ form11

(and so weakens at large separations) but the challenge was to find how to separate the

branes sufficiently within a finite-sized manifold and to compute how brane motion changes

the energetics of modulus stabilization.

11We take the Coulomb energy for sources separated by a distance y in d transverse dimensions to be an

interaction energy that falls like y−p with p = d − 2 (with p = 4 – corresponding to d = 6 – being the case

relevant to space-filling 3-branes in 10D string vacua).
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Let us briefly recall the main ideas. Fluxes in IIB compactifications back-react on the

metric in such a way that the resulting compactification is a conformal Calabi-Yau threefold

with metric of the form [22, 23, 24]

ds2 =

(
1 +

e4A

V2/3

)−1/2

ds2
4 +

(
1 +

e4A

V2/3

)1/2

ds2
CY (3.21)

with A(y) a calculable function of position within the extra dimensions. The warp factor

W :=
(
1 + e4AV−2/3

)−1/2
plays a significant role in highly warped regions, defined by the

condition e4A � V2/3 � 1. For future use we note in passing that in order to have the warped

string scale be larger than the Kaluza-Klein scale (as required to have a reliable low-energy

effective field theory) the warping must be constrained to satisfy [59]

eA <∼ V
2/3 . (3.22)

A space-filling D3 brane sits at a particular point in the extra dimensions and experiences

no position-dependent forces due to supersymmetric BPS cancellation of bulk forces, and so

are free to move within the Calabi-Yau space. Anti-D3 branes by contrast energetically prefer

to minimize the warp factor and so move to the tip of any warped throat for which e4A takes

its largest value, which turns out to be

e4Atip := e4ρ = e8πK/(3gsM) (3.23)

where K and M are the integer flux quantum numbers that fix the relevant complex structure

moduli. Depending on the values of K and M the warp factor can be significant and so can

naturally lead to a source of hierarchies within the theory.

Keeping in mind that g̃µν = Wgµν implies
√
−g̃4 = W2√−g4, the tension of an anti-

D3 brane localized at the tip of a strongly warped throat contributes the following positive

contribution to the low-energy 4D scalar potential,

2T3W2 =
2T3

1 + (e4ρ/V2/3)
' 2M4

s e
−4ρV2/3 ∼

e−4ρM4
p

V4/3
(3.24)

which uses e4ρ � V2/3 for strongly warped regions as well as the value of the brane tension

T3 ∝M4
s and the relation (2.22) between the string scale and the 4D Planck scale:

T3 =
1

8π3gsα′2
=

(2π)11g3
sM

4
p

4V2
. (3.25)

The exponential dependence of the warp factor appearing within this brane tension is used in

[5] (with a volume dependence later corrected by [24]) to uplift the AdS minimum found in

previous modulus-stabilization mechanisms in order to obtain a dS solution rather than AdS

or the more generic runaway.
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Combining this brane tension term with the Coulomb interaction between a mobile D3

brane and the anti-D3 brane sitting in a warped environment gives the candidate brane-

antibrane inflation potential [22, 23, 24] (again in the Einstein frame):

V = 2T3(e−4ρV2/3)

(
1− 27

64π2

2T3(e−4ρV2/3)

|ϕ|4

)
=: Ω

(
1− bΩ

|ϕ|4

)
(3.26)

where ϕ is the canonically normalised field determining the brane separation y: ϕ =
√
T3 y

and the last equality evaluates T3 in Planck units using (3.25), and so

Ω =
c e−4ρM4

p

V4/3
, c =

(2π)11g3
s

2
and b =

27

64π2
. (3.27)

Naive inflationary analysis

Putting aside for the moment how V evolves given this potential, consider first the naive single-

field inflationary picture that emerges for ϕ evolution at fixed V. The slow-roll parameters

for this motion in the regime bΩ� |ϕ|4 are

ε =
M2
p

2

(
Vϕ
V

)2

' 8b2

(
ΩMp

|ϕ|5

)2

and η =
M2
pVϕϕ

V
' −

20bΩM2
p

|ϕ|6
. (3.28)

Although these can be made arbitrarily small by making |ϕ| sufficiently large, as noted in

[22] inflation does not work (without the warp factors) because it would require the brane

separation to be larger than the typical linear extent of the extra dimensions. But if the

warp factors buried in Ω are small enough the slow roll conditions ε � 1 and η � 1 can be

satisfied. Notice that these also imply that the ratio

− ε
η
' 2bΩ

5|ϕ|4
� 1 , (3.29)

is deep into the regime where quantum effects are dominated by stochastic methods [60].

In terms of these the number of inflationary e-foldings between horizon exit and inflation’s

end is

Ne =
1

Mp

∫ ϕ∗

ϕend

dϕ√
2ε
' ϕ6

∗
24bΩM2

p

(3.30)

and the amplitude of primordial scalar density perturbations becomes

δH =
1

π
√

75

(
V 3/2

M3
p Vϕ

)
ϕ∗

' ϕ5
∗

4πb
√

75M3
p

√
Ω
. (3.31)

In these expressions ϕ∗ is the inflaton position at horizon exit, relative to which its value at

inflation’s end is neglected: ϕ∗ � ϕend. The slow-roll parameters evaluated at horizon exit

then become

η∗ = − 5

6Ne
, ε∗ =

20πδH

9
√

2N
5/2
e

' 16π

5

√
3

5
δH |η∗|5/2 . (3.32)
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The spectral index ns and tensor-to-scalar ratio r are given by the usual expressions

ns = 1 + 2η∗ − 6ε∗ ' 1 + 2η∗ and r = 16ε∗ (3.33)

in which ε∗ � |η∗| is used in ns, showing that the measured value for ns fixes η∗ ' 1
2(ns−1) '

−0.015 and so Ne ' 56. Combining (3.32) and (3.33) and using the measured amplitude

δH = 1.9× 10−5 then gives the following prediction for the scalar-to-tensor ratio

r = 16ε∗ '
64π

5

√
3

10
δH |ns − 1|5/2 ' 2× 10−8 , (3.34)

which is too small to be observable in the foreseeable future.

Although at face value the warp factors (buried in Ω) allow a potential as flat as desired,

this assumes that the physics that stabilizes the overall volume modulus appearing in Ω

has been fixed in a way that does not significantly alter the potential for φ. However, the

same shallowness that makes (3.26) attractive for inflation also makes it fragile to changes

associated with modulus stabilization, as can be most clearly seen by embedding the brane-

antibrane dynamics into a full 4D supergravity EFT that allows a consistent description of

both inflaton and modulus-stabilization. As argued in [24] this exercise opens up a new

problem (the η problem) that generically ruins the shallowness of the potential (3.26). We

repeat this exercise here to show why the RG stabilization mechanism avoids this problem.

3.4.1 The Nilpotent Superfield and anti-D3 Branes

An interesting feature of the nilpotent superfield formalism of §3.3 is that it captures very

efficiently the physics of anti-D3 branes at the tip of a Calabi-Yau throat as described above

in this section. We now explore this connection and determine the choices that it implies for

quantities like K, w0 and wX .

Antibrane tension from the nilpotent superfield

First we recall how the P-dependence of the leading part of the potential built using a

nilpotent superfield reproduces the volume dependence of the anti-D3 brane tension at the

tip of the warped throat. For this recall that when W = w0 +wXX then the leading term in

the scalar potential (3.8) is

V ' KXX |wX |2

3P2
(3.35)

which for wX ∝ e−2ρ reproduces the KKLT expression (3.24) once the volume modulus is

identified in the usual way: P = V2/3.

It is noteworthy that this agreement between the volume-dependence of the nilpotent

potential and the brane tension works only when one uses the warping-corrected volume-

dependence given in [24] rather than the original expression of [5] that does not include

warping. Only in the warped case is supersymmetry breaking sufficiently sequestered to be

captured using only the single goldstino field X. From the string point of view the fact the

– 29 –



X has no independent scalar degree of freedom corresponds to the fact that the isolated anti-

D3 brane has no position modulus because it is energetically stuck at the tip of the warped

throat.

There is also additional evidence that warping can be captured by the superpotential in

this way, since it can also be derived within the 4D effective supergravity as the expectation

value of the throat’s complex structure modulus Y , which schematically contributes to the

superpotential in the form W (Y ) = Y (n1 log Y +n2)+Y X with ni being integer flux quantum

numbers. Eliminating Y from this superpotential in a supersymmetric way gives rise to the

required warp factor multiplying X in W [4, 33].

Inter-brane dynamics

To obtain a supergravity representation for the dynamics of brane-antibrane motion we require

a supermultiplet for the inter-brane separation field φ. We do so here by representing the

inter-brane separation using the constrained inflaton field Φ of §3.3.

To describe the kinetic energy of these fields we choose the function K defined in (3.4) to

have the form

K(φ, φ, lnP) ' γ(φ, φ) + K̂(lnP) , (3.36)

where φi is proportional to a complex coordinate describing the 3-brane position within the

extra dimensions. The quantity K̂ is the φ-independent function of lnP described in (3.12)

whose presence stabilizes P at exponentially large values in the present-day vacuum. In terms

of this the kinetic term for changes to φ become

− Lkin√
−g

= Ki̄ ∂µφ̄
j ∂µφi ' 3γi̄

P
∂µφ̄

j ∂µφi (3.37)

showing that γi̄ is naturally proportional to the extra-dimensional metric gi̄ and so γ(φ, φ)

is proportional to this metric’s Kähler potential. Coordinates can be chosen without loss of

generality so that γ ' φφ near φ = 0.

To capture the antibrane tension and the separation-dependent Coulomb interaction we

use the following superpotential12

W = w0 +XwX(Φ,Φ) with wX(Φ,Φ) = t− g

|Φ|4
+ · · · (3.38)

where the ellipses denote terms suppressed by even higher powers of |Φ|−1.

With this choice the leading term in the scalar potential (3.8) then is

V =
KXX |wX |2

3P2
=

KXX

3P2

[
|t|2 − 2Re(tg)

|φ|4
+ · · ·

]
, (3.39)

which is to be compared to (3.26) and (3.27). This comparison is most easily done using the

canonically normalized field – see (3.37) – ϕ ∝ P−1/2φ ∝ V−1/3φ, for which |φ|4 ∝ |ϕ|4P2 ∝

12See [32] for a first supersymmetric discussion of the Coulomb potential.
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|ϕ|4V4/313. Once expressed in terms of ϕ both terms of (3.39) have the same dependence on P
(or V) as in (3.26) and (3.27), and so it becomes possible to read off the warping dependence

of the coefficients t and g in wX , leading to KXX |t|2 ∝ ce−4ρ and KXX2Re tg ∝ bc2e−8ρ. The

freedom to rescale X allows the warping dependence to be moved around somewhat, but if

this is used to ensure KXX is warping free then (for real t and g) it implies

t ∝ e−2ρ and g ∝ e−6ρ . (3.40)

As mentioned earlier, it is a good thing that both t and g are suppressed by warping

because we have seen – c.f. eq. (3.20) – that inflationary slow roll can be ensured by making

the ϕ derivatives of wX sufficiently small. The subtlety in this argument is that V is really a

function of two fields, φ and τ , and one must check that τ evolution does not ruin the desired

inflationary behaviour.

The above discussion ignores the |g|2/|φ|8 term in V because this must compete with

higher order terms in wX that are already dropped in (3.38). It is noteworthy that some

things can nonetheless be said for smaller |φ| even if the detailed form of wX is not known in

this limit. The main observation is that the supergravity structure of the leading 1/P2 term

of V comes proportional to |wX |2 and so cannot decrease without bound as |φ| decreases.

The lowest it can get is zero, which would be obtained if there exists a φ = φ0 for which

wX(φ0) = 0. If such a field exists within the domain of validity of the 4D EFT then this point

is a local minimum of the potential; unlike the standard Coulomb interaction V would reach a

minimum value beyond which the interaction becomes repulsive rather than attractive — see

figure (2). Although in the simplest scenario this would usually be expected only to occur at

scales of order the warped string scale or less – and so be beyond the domain of 4D methods

– it remains to be seen whether more complicated examples exist for which φ0 can lie within

the domain of 4D methods.

3.4.2 Inflation, modulus stabilization and the η problem

The problem is that the τ -dependence of V does tend to ruin inflation, at least when τ is

stabilized using the superpotential. To see why we now repeat the argument given in [24]

that shows why stabilizing the volume modulus often introduces new issues. The problem

is that the mechanism used in [24] to fix the volume modulus also induces a mass term for

the would-be inflaton field ϕ that makes the slow-roll parameter η of order one. This is a

special case of a more general problem for supergravity-based inflationary models, called the

η problem.

The η problem

The problem arises because the Kähler potential very generally depends on both τ and φ:

K = −3 ln[τ − k(φ, φ̄) + · · · ], where k(φ, φ̄) ' φ̄ φ+ · · · is responsible for the kinetic term for

13Note that it is not trivial that the volume-dependence in the scalar potential comes out as required given

the fact that the volume cannot appear in the superpotential.
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Figure 2: The Coulomb potential from the superpotential wX(φ). Since V ∝ |wX |2 this potential

reproduces the Coulomb interaction for large values of the brane separation φ but at smaller distances

the interaction potential has a minimum and becomes repulsive. At large field values, and due to the

large amount of warping the potential is flat enough to give rise to inflation in a natural way. The

minimum of the potential lies outside the domain of validity of the EFT and only for large values of

φ is this potential under control.

φ. So once τ is fixed by adding a holomorphic non-perturbative superpotential Wnp(T ), the

dependence of K on φ introduces a potential energy that generates a mass for φ because of

the potential’s overall dependence on eK :

V = eK V̂0 '
V̂0

[τ − φ̄ φ+ · · · ]3
' V̂0

τ3

[
1 +

3φ̄ φ

τ
+ · · ·

]
' V̂0

τ3

[
1 + ϕ̄ ϕ+ · · ·

]
. (3.41)

It is the superpotential terms within V̂0 that contain the small warp factors that allow V̂0 to

depend so weakly on φ that inflation can be possible. The value of V̂0 also fixes the value

of the Hubble scale whenever the universal energy density is dominated by V , since then

H2
I ' V/M2

p ' V̂0/(τ
3M2

p ). But when this is so eq. (3.41) shows (once the Mp factors are

reinstated) that φ inevitably has a mass contribution that is of order m2
φ ∼ V̂0/(τ

3M2
p ) ∼ H2

I

which therefore contributes a factor of order unity to the second slow-roll parameter η =

M2
p Vϕϕ/V ' m2

φ/H
2
I . Slow roll is only achieved in the standard construction by including a

large (unwarped) φ̄ φ contribution into V̂0 and tuning this to cancel against the term coming

from eK . Even though inflation is achievable in this way, it needs a very particular fine tuning

and the Coulomb potential is essentially replaced by a tuned inflection-point inflation [61, 62].

The problem is quite generic because the Kähler potential very generally depends only

on P = τ − k+ · · · but because the superpotential must be a holomorphic function it cannot

depend on P and must only depend on T and φ separately. But – as already pointed out in

[24] – this also shows that it is potentially evaded if the modulus-stabilization mechanism can

arise from corrections to K rather than to W , provided these directly stabilize P rather than
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Figure 3: A plot showing the inflationary region in which the potential is temporarily fixed at a

minimum in the modulus τ direction while the inflaton ϕ slowly rolls. At the end of inflation the two

fields run to their minimum at τ0, ϕ0 with τ0 � τinf .

just τ . The modulus-stabilization mechanism presented here evades the η-problem in precisely

this way: the stabilizing potential naturally arises as a function of P directly. Inflation is

therefore driven by an expression like (3.41) regarded as a function of φ for fixed P rather

than for fixed τ (see Fig. 3).

Inflating with Kähler stabilization

We now return to the combined τ and φ dynamics when W is independent of T and modu-

lus stabilization instead arises through RG stabilization, with the potential generated using

(3.36). There are two ways to proceed. The first simply uses the analysis given in §3.3, which

explicitly follows the potential as a function of τ and φ, specializing it to the superpotential

(3.38) and Kähler function (3.36). This leads to expressions (3.18) and (3.19) for the slow-

roll parameters, and to the condition (3.20) for inflation, which notably translates into the

following conditions that really can now be satisfied by choosing sufficient warping

4g

|φ|5
� C|w0|

BM3
p τ

3/2
+

∼ ε2Mp

τ
3/2
+

and
20g

|φ|6
� C|w0|

BM4
p τ

2
+

∼ ε2

τ2
+

. (3.42)

The second approach uses the effective potential Veff(φ) = V [φ, τ+(φ)] given in (3.14)

obtained by evaluating τ = τ+(φ) at its φ-dependent minimum. Single-field methods are

then directly applicable. Writing (3.14) as

Veff(φ) ' D|wX(φ)|4

|w0|2
, (3.43)

we can directly differentiate to evaluate the slow-roll parameters. For these purposes we can

neglect the φ-dependence of D because this is inherited from the lnP-dependence of A, B and

– 33 –



C, which have been argued to involve subdominant powers of αg. Differentiating with respect

to the canonically normalized field ϕ ' φ/
√

3P gives (for real wX) the slow-roll parameters

ε =
1

2

(
MpVϕ
V

)2

= 8

(
MpwXϕ
wX

)2

' 8P
3

(
4Mpg

t|φ|5

)2

' 8

(
3

P

)4(4Mpg

t|ϕ|5

)2

, (3.44)

and

η =
M2
pVϕϕ

V
'

4M2
pwXϕϕ

wX
+ 12

(
MpwXϕ
wX

)2

(3.45)

' −4

(
3

P

)2
(

20M2
p g

t|ϕ|6

)
+ 12

(
3

P

)4(4Mpg

t|ϕ|5

)2

where the warping suppression enters through the factor g/t ∝ e−4ρ.

To see the need for warping it is useful to estimate the size of the factors that enter into

η and ε. To this end consider the following factor

η 3 4

(
3

P

)2
(

20M2
p g

t|ϕ|6

)
' 80P

3

(
g

t|φ|4

)(
M2
p

|φ|2

)
. (3.46)

Estimating t ∼ e−2ρM2
s and g ∼ e−6ρM6

s and taking the inter-brane separation to be no

bigger than the extra dimensions, which means

φ ∼M2
s y <∼M

2
s /MKK ∼MsV1/6 ∼Ms P1/4 ∼Mp P−1/2 (3.47)

then allows the lower bound on (3.46) to be written

η >∼
80P

3

(
e−4ρ

P

)
P . (3.48)

Although the requirement P � 1 precludes η being small for unwarped geometries [22], a

slow roll is possible provided e−4ρ � O(P−1) ∼ O(V−2/3), which is consisent with the lower

bound e−ρ >∼ V−2/3 given in (3.22).

We see that large enough warping now leads to the predictions η < 0 and ε � |η| � 1,

and this is consistent with the stabilization of the modulus τ without the η problem because it

is actually the full quantity P that is stabilized. Because ε is hierarchically smaller than η it is

clear that the tensor to scalar ratio is so small that there should be no observable primordial

tensor fluctuations. If these should be observed in the next few years this inflationary scenario

would be decisively ruled out.

As inflation proceeds the value of wX decreases until at some point the above slow-

roll analysis breaks down. Then the fields roll more quickly until they are captured by the

minimum or the 4D EFT breaks down and we become unable to predict what happens (such

as by having brane and antibrane annihilate and release prodigious amounts of energy). One

scenario would be to have φ reach the zero of wX before the EFT breaks down (such as
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in Fig. 2), in which case the fields can be trapped by the late-time modulus-stabilization

solution near wX ∼ 0 described in §3.2. It is not in general guaranteed that the volume

modulus must get trapped at its new minimum, since it can also overshoot and crest the

nearby local maximum, followed by a decompactification runaway to infinity.

Although trapping by the local minimum is not guaranteed, given efficient enough re-

heating the ruthless efficiency of Hubble friction often makes it much more robust than might

naively be expected (as can be seen by numerical evolution in the presence of a thermal

background in similar examples [10, 19, 11]). When such trapping occurs the value of the τ

modulus stabilized in its late time minimum τ = τ0 can be exponentially larger than its values

during inflation. Since τ determines the sizes of the string and Kaluza-Klein scales relative

to the Planck scale such a change can allow the possibility of inflation being controlled by

a much larger energy scale than is associated with low-energy supersymmetry breaking and

the later universe.

Any large excursion by τ between inflation and now can easily require the canonical field

χ ∼ Mp ln τ to run a distance larger than Mp. This need not be in contradiction with the

distance conjecture [26, 51] since the Kaluza-Klein levels provide explicit realizations of the

hypothesized infinite tower of states that descend into (and so ruin) the low-energy theory.

The only control issue concerns whether the evolution can be described purely within the

low-energy 4D EFT used here. As we have checked, this is easy to ensure during inflation

because the fields roll so slowly. It is also fairly easy to arrange for cosmological evolution at

later times since the late-time 4D EFT breaks down at scales of order Mp/τ0 [11]. Whether a

4D description suffices in between depends somewhat on the nature of the post-inflationary

evolution that intervenes between inflation and now, and for some choices of this its evolution

might require a more comprehensive UV treatment (such as perhaps along the lines of [54]).

3.5 Annihilation and the tachyon superpotential

We close with more speculative remarks about the small-φ limit. Typically the anti D3 brane

also hosts other matter fields, including Higgs-like scalar fields H. These again appear in the

low-energy supergravity in a nonsupersymmetric way, appearing in the superpotential only

coupled to the goldstino superfield X such as through terms like W (H) = X|H|2.

Including this kind of coupling in the superpotential together with the Coulomb interac-

tion gives rise to a superpotential like:14

W = w0 +XwX with wX = t− g

|Φ|4
− λ|H|2 . (3.49)

14Recall that XH is chiral for a constrained superfield representing a spinless state, allowing terms like

X|H|2 to appear in the superpotential.
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In this case the scalar potential is15 (assuming all constants real and positive)

V ∝ |wX |
2

P2
=

(
t|φ|4 − g

)2
P2|φ|8

+
2λ
(
t|φ|4 − g

)
P2|φ|4

|H|2 +
λ2|H|4

P2
(3.50)

and so as long as the combination t− g/|φ|4 is positive, the field H has a positive mass and

the potential is minimized at H = 0. But once φ is small enough that t − g/|φ|4 < 0 the

canonically normalised field H ∝ H/
√
P acquires a tachyonic mass

m2 =
2λ

P

(
t− g

|φ|4

)
< 0 . (3.51)

This captures the same behaviour as would be expected within string theory for a mode

of an open string stretching between the brane and the antibrane 16. Such a state becomes

lighter as the branes approach one other until at a critical distance it becomes tachyonic

(believed to herald the onset of the brane-antibrane annihilation instability). Indeed for large

separations, φ, the mass for H predicted by (3.51) becomes proportional to t/P ∝ e−2ρ/P,

which has the same warping and volume dependence as does the square of the warped string

scale. See Figure 4 for a plot of the potential as a function of φ and H, showing in particular a

flat inflaton direction with a waterfall-style end of inflation occuring when theH field becomes

tachyonic.17 Notice that such a tachyonic field is easily ‘integrated in’ within our inflationary

picture simply by using (3.49) when evaluating |wX |4 in the scalar potential (3.43). Most of

our discussion goes through unchanged because most of our conclusions are independent of

the detailed functional dependence of wX(φ).

This simple supersymmetric 4D EFT provides a transparent toy model that captures

many features of the full string brane-antibrane annihilation picture [63]. Since the tachyon

field’s expectation value breaks the gauge symmetries to which it couples this evolution of φ

to an H waterfall provides a dynamical description of symmetry breaking in the antibrane

gauge sector.18 Depending on the scales chosen one might build models for which H breaks

a Grand Unified symmetry at very high scale, or perhaps break the symmetry group of the

15Notice that when two fields appear in a potential V ∝ |wX(Φ,H)|2 there is generically a flat direction

H(Φ) defined by the condition wX(Φ,H) = 0. This direction is generically lifted by the D-term potential when

the fields carry charge (as would the brane-antibrane tachyon).
16The standard discussion assumes a mass term for the tachyon proportional to (φ2−m2)H2 which becomes

tachyonic once φ reaches the mass scale m. A similar expression can be obtained from (3.51) by expanding

φ = φ0 − δφ with δφ� φ0 as done in [32].
17We here consider only the simplest potential for the tachyon. Further options can be chosen in order to

match the different proposals in the literature [63].
18The current intuition about the end-point of brane-antibrane annihilation within the full string theory is

that no perturbative states remain after tachyon condensation. A puzzle arises because the tachyon field only

breaks one combination of the two U(1) gauge symmetries that live on the two branes. It has been conjectured

that the second U(1) survives, but in a confining phase that is not manifested perturbatively [64, 65, 66, 67].

It is tantalising to propose that this late-time behaviour is instead governed by a brane-antibrane bound state

– similar to branonium [68] but corresponding to a nontrivial zero of wX – rather than continuing to the

singularity at φ = 0.

– 36 –



Figure 4: The 4D scalar potential as a function of brane separation φ and the tachyon H.

standard model itself. As noted in [22] the tachyon plays other key roles in the physics of

the brane-antibrane inflation (besides providing its waterfall finish) such as by giving rise to

topological defects such as cosmic strings [69, 70]. For a discussion on reheating after brane

inflation see [71].

4. Conclusions

In this paper we explore the consequences of the RG modulus-stabilization mechanism of

[10, 11] to string vacua, showing that it can generate both de Sitter and non-supersymmetric

anti-de Sitter solutions. For the de Sitter vacua no particular uplifting mechanisms is required

(unlike for KKLT or LVS stabilization19). We further explore its implications for relatively

simple inflationary scenarios, for which we find it can evade other commonly encountered

problems (such as the η problem).

Because the RG mechanism is at heart a perturbative process, it must confront the

generic no-go arguments whose roots lie within the old Dine-Seiberg problem [1] (and have

been recently revived in the context of swampland conjectures [26, 51]). We argue:

• The Dine-Seiberg issue relies on the scalar potential’s runaway behaviour in the weak-

coupling limit, and this runaway itself can be interpreted in terms of approximate

symmetries of the EFT that are inherited from symmetries of the underlying 10D su-

pergravity (and string theory) underlying the robustness of the problem.

• The behaviour of the potential and of evolution in its presence can be addressed within

the runaway region using semiclassical expansions without losing calculational control.

19It is worth emphasising that even though we introduced anti D3 branes to address inflation, we do not

need them to get de Sitter. Furthermore, unlike KKLT, the contribution of the brane tension is only the

constant contribution of a field dependent wX which essentially vanishes at the overall minimum.
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We argue that the control issues encountered – such as domain of validity of EFT meth-

ods in time-dependent situations for both perturbative and nonperturbative physics –

arise more generally in, and do not undermine conclusions for, other areas of physics

and that there is no evidence that string theory effective actions behave differently.

• Although the Dine-Seiberg argument is true generically – there are doubtless many

solutions in regions of strong coupling (gs ' O(1)) and small volume (τ ' O(1)) –

it can be evaded in specific situations. The RG approach exploits mild hiearchies of

coefficients in perturbative expansions of the action (which allows minima to arise with

small expansion parameter, α � 1) together with RG methods that both identify a

dependence on ln τ and allow controlled resummations that work to all orders in α ln τ .

As a bonus solutions naturally arise at very large values ln τ ' 1/α.

Although the RG scenario provides alternatives to the standard KKLT and LVS in IIB

string theory, there are plenty of moduli to go around and specific solutions might exploit

several of these mechanisms at the same time. For instance, our mechanism may be used

to stabilise the overall volume modulus whereas the other Kähler moduli may be fixed by

non-perturbative effects as in KKLT or LVS. Furthermore, the O(1/10) hierarchy required

in the RG approach to obtain exponentially large volumes might itself be obtained if these

parameters are functions of other fields, such as the complex structure moduli, fixed in other

ways.

There is also nothing intrinsically IIB about the RG mechanism, which can in principle

also be put to work in other types of string vacua, such as heterotic models, for in which

modulus stabilization has proven to be more challenging (see for instance [72]) than for IIB.

We leave it as an open question to explore this scenario through more explicit constructions,

both in IIB string compactifications and in heterotic and type IIA theories.

Combining RG stabilization with string-inflation models can be done by adding a sector

with badly broken supersymmetry (to provide the large positive inflationary energy density)

and an inflaton field whose evolution slowly interpolates between the early-time large-potential

regime and the more negligible scalar potential at later times. The tools of nonlinearly realized

supersymmetry and approximate accidental scale invariance are well-suited to the situation

where the inflaton is the brane antibrane separation of D3-D3 inflation scenarios. Because RG

stabilization evades the usual η problem of these models found in [24], it revives their initial

motivation: warping can itself provide the slow roll needed for successful inflation. Moreover,

because the volume modulus takes on different values during and after inflation it allows us

to have inflation take place at high (eg GUT) scales and still end at late times with a low

enough gravitino mass with TeV supersymmetry breaking in the visible sector.

Although the purely Coulombic interaction potential moves beyond the domain of validity

of 4D EFT methods when separations are at the string scale, attractive cosmologies would

emerge if the inflaton were to reach a regime with wX = 0 while still in the 4D regime.

This is because this naturally becomes a local minimum for which the natural relaxation

described more fully in [11] acts to suppress the value of Vmin at the minimum. The resulting
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cosmologies then provide an explicit classical transition between an early inflationary regime

and a later de Sitter universe with a suppressed curvature with the inflaton as the relaxation

field.

Finally, we remark how the 4D EFT with non-linearly realized supersymmetry to which

we are led, actually shares many other features of brane-antibrane annihilation as well, such as

the transition between relative motion and tachyon condensation. As such it can be regarded

as a useful toy model for thinking through what brane annihilation might look like at the

end of inflation. This simple scenario is very attractive: it addresses the two main challenges

of string inflation – the η problem and the separation of scales while explicitly addressing

moduli stabilization – in a relatively simple framework. We leave to the future the study of

concrete string theory models that more fully include all these ingredients.
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A. Trapping efficiency and effective single-field evolution

In the main text we follow [62] in assessing the inflationary slow-roll using an approximate

single-field model with the volume modulus trapped at a local minimum τ = τ(φ) as the

inflaton rolls. In this Appendix we briefly explore the efficacy of this assumption. In principle

the gravitational response should be done using the full multi-field model, and it need not

be true that an effective single-field description suffices (although it generally does if the

non-inflationary field is sufficiently massive). For more detailed discussions of these issues see

[57, 73].

For a general multi-scalar lagrangian

L = −
√
−g
[1

2
Gij(φ) ∂µφ

i ∂µφj + V (φ)
]

(A.1)

the classical equations governing a homogeneous roll are

φ̈i + 3Hφ̇i + Γijk φ̇
j φ̇k +Gij∂jV = 0 , (A.2)

where as usual

Γijk :=
1

2
Gil
(
∂jGkl + ∂kGjl − ∂lGjk

)
(A.3)
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is the Christoffel symbol for the target space metric Gij . The energy density and pressure for

such a homogeneous roll is

ρ =
1

2
Gij φ̇

i φ̇j + V (φ) and p =
1

2
Gij φ̇

i φ̇j − V (φ) . (A.4)

In a slow roll the kinetic energy is negligible 1
2 Gij φ̇

i φ̇j � V and the evolution is approx-

imately governed by

H2 =
ρ

3
' V

3
and 3Hφ̇i +Gij∂jV ' 0 . (A.5)

These equations allow the requirement of small kinetic energy to be cast as a condition on

the scalar potential

ε :=
Gij∂iV ∂jV

2V 2
� 1 , (A.6)

which also satisfies Ḣ ' −εH2 when time derivatives are evaluated using (A.5).

Having ample inflation requires ε to be small for a sufficiently long time and so also

requires its time-derivative to be small. Since using (A.5) to evaluate the time derivatives of

ε gives

ε̇

H
' −

V|ijv
ivj

V
+ 4ε2 , (A.7)

where V|ij := Vij − ΓkijVk and vi := GijVj/V , we see that a field-redefinition invariant repre-

sentation of the slow-roll conditions |Ḣ/H2| � 1 and |ε̇/(Hε)| � 1 is

ε =
1

2
Gijv

ivj � 1 and ηijv
ivj � ε where ηij :=

V|ij

V
. (A.8)

Brane example

In the supersymmetric case the target space is a Kähler manifold with complex coordinates φa

and φā, for which Gab = Gāc̄ = 0 and the only nontrivial metric components are Gac̄ = ∂a∂c̄K.

In this case the only nonzero Christoffel symbols are the purely holomorphic combinations

Γabc =
1

2
Gēa

(
∂bGcē + ∂cGbē − ∂ēGbc

)
= Gēa∂b∂c∂ēK (A.9)

and their complex conjugates. The evolution for the homogeneous roll of φa is then

φ̈a + 3Hφ̇a + Γabc φ̇
b φ̇c +Gc̄a∂c̄V = 0 . (A.10)

For the case considered in the main text we have two complex fields φa = {T, φ} with

K = −3 lnP with P = T + T − φφ, where τ = T + T is the real dilaton. In this case the

leading derivatives are KT = KT = −3/P, Kφ = 3φ/P and Kφ = 3φ/P, and the Kähler

metric has components

KTT =
3

P2
, K

Tφ = − 3φ

P2
, KφT = − 3φ

P2
and Kφφ =

3

P
+

3φφ

P2
=

3τ

P2
. (A.11)
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The components of the inverse metric then are

KTT =
P
3

(
P + φφ

)
=
τP
3
, KTφ =

Pφ
3
, KφT =

Pφ
3

and Kφφ =
P
3
. (A.12)

To compute the Christoffel symbols we require the derivatives Kabc̄, which are

KTTT = − 6

P3
, KφTT =

6φ

P3
, KφφT = −6φ

2

P3
(A.13)

and

K
TTφ =

6φ

P3
, K

Tφφ = − 3

P2
− 6φφ

P3
, Kφφφ =

6τφ

P3
, , (A.14)

and so the holomorphic Christoffel symbols are

ΓTTT = 2 Γφ
Tφ = − 2

P
, ΓTTφ =

φ

P
, Γφφφ =

2φ

P
and ΓφTT = ΓTφφ = 0 . (A.15)

The field equations (A.10) for T and φ therefore become

T̈ + 3HṪ − 2Ṫ 2

P
+

2φφ̇Ṫ

P
+
PτVT

3
+
PφVφ

3
= 0 , (A.16)

and

φ̈+ 3Hφ̇+
2φφ̇2

P
− 2φ̇Ṫ

P
+
PφVT

3
+
PVφ

3
= 0 . (A.17)

Note the absence of the φ̇2 terms in the T evolution equation and the absence of the Ṫ 2 term

in the φ equation. These kinds of term could be dangerous in that e.g. φ̇ 6= 0 could become

an obstruction to having Ṫ = 0 even if the potential term in the T equation were to vanish.

Such a term tries to drive T along a target-space geodesic, which need not align with the

direction towards which the potential encourages the field to move.

It is clear from (A.17) that starting at rest near a zero of VT allows φ to evolve with

the speed expected for the single-field model with Veff(φ) = V (φ, τ(φ)), but the question is

whether (A.16) also pushes T to evolve so that it remains at its local minimum as φ evolves.

This should occur if the VT term is the dominant one (for slow motion) in the T equation

since then slow roll naturally seeks to adjust T to find the zero of VT .

We can estimate the size of different terms using the potential (3.8) of the main text

evaluated in the vicinity of the local minimum τ(φ), where all terms — w2
X/P2, wXw0/P3

and w2
0/P4 — are similar in size. This allows the estimates

τVT ∼ V ∼ H2 ∼ w2
0

P4
and Vφ ∼

w0wXφ
P3

. (A.18)

In slow roll we therefore expect

φ̇ ∼
PVφ
H
∼
P(w0wXφ/P3)

w0/P2
∼ wXφ (A.19)
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and so requiring |φ̇|2/P be much smaller than V ∼ H2 implies wXφ � w0/P3/2. But this

makes the Vφ ∼ w0wXφ/P3 <∼ w2
0/P9/2 term in the T equation smaller than the τVT ∼ V ∼

w2
0/P4 term. Because there are also no φ̇2 terms this means that an initially motionless T

preferentially evolves towards the zero of VT , as required by a single-field treatment.

Of course real multi-field evolution can be complicated, perhaps oscillating around the

trough at τ = τ(φ), depending on the precise initial conditions. When such evolution is

studied in detail for brane-antibrane inflation – as, for example, in [73] – it can be the case

that the full multi-field evolution gives more inflationary e-foldings than would have been

inferred using the approximate single-field estimate.
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