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We investigate hysteresis effects in the perturbative solution of renormalisation group equations
(RGEs). We present examples for the QCD running coupling and proton’s parton distribution
functions (PDFs), relevant to precision physics at the Large Hadron Collider (LHC) and future
collider experiments. We propose the use of resummation scales to take into account the theoretical
uncertainties from the solution of the RGEs. As a case study, we consider the F2 structure function
in a region relevant to the extraction of PDFs.

Introduction. Experimental studies of fundamental in-
teractions and searches for new physics at high-energy
colliders call for increasingly high precision in Standard
Model theoretical predictions [1]. A large effort has thus
been, and continues to be, devoted to Quantum Chromo-
dynamics (QCD) calculations of collider cross sections at
finite perturbative order [2] as well as to QCD resumma-
tions to all orders of perturbation theory [3, 4].

With the quest for increasing precision, the need arises
for reliable estimates of theoretical uncertainties in QCD
calculations. This work is devoted to investigating poten-
tial sources of theoretical uncertainties associated with
the solution of renormalisation-group equations (RGEs)
that enter calculations based on QCD factorisation. The
theory uncertainties we focus on stem from equations for
a generic renormalised quantity R, function of the strong
coupling αs and renormalisation scale µ, of the form

d lnR

d lnµ
(µ, αs(µ)) = γ(αs(µ)) , (1)

where the anomalous dimension γ can be expanded in
powers of αs as follows

γ(αs(µ)) =
αs(µ)

4π

∞∑
n=0

(
αs(µ)

4π

)n
γn . (2)

Introducing the evolution operator G connecting R at
any two given scales µ1 and µ2,

R(µ1, αs(µ1)) = G(µ1, µ2)R(µ2, αs(µ2)) , (3)

the effects we examine cause the identity
G(µ1, µ0)G(µ0, µ2) = G(µ1, µ2) to be violated for
an arbitrary scale µ0 as a result of the expansions in αs
performed to solve Eq. (1) analytically. That is, one has

G(µ1, µ0)G(µ0, µ2) 6= G(µ1, µ2) (4)

due to formally subleading terms in the αs expansion.

Examples corresponding to the behaviour (4) for the
Sudakov form factor have been studied in Refs. [5, 6]
in the context of analytic resummation and in Ref. [7]
in the context of resummation by angular-ordered par-
ton branching. In this work we observe that effects of
the type in Eq. (4) show up also in the case of single-
logarithmic resummations. Specifically, we analyse the
case of the QCD coupling αs and of the parton distribu-
tion functions (PDFs). We refer to such effects, embodied
in Eq. (4), as perturbative hysteresis. We will leave the
treatment of Sudakov form factor and evolution of trans-
verse momentum dependent (TMD) distributions [4] to
a separate publication [8].

In this work, we point out that the perturbative hys-
teresis can be traced back to additional theory uncer-
tainties arising in the predictions for physical observ-
ables besides those associated with the renormalisation
and factorisation scales. These uncertainties are associ-
ated with the solution of the RGE and can be estimated
by introducing resummation scales in a manner analo-
gous to what is usually done in Sudakov resummation
(see e.g. [9]). To illustrate how this can be achieved, we
generalize the formalism of the g-functions to the evolu-
tion of running coupling and PDFs discussing the emer-
gence of resummation scales. As an application, we eval-
uate the resummation-scale uncertainties on the deep-
inelastic-scattering (DIS) structure function F2, poten-
tially relevant to future determinations of PDFs [10] and
to phenomenology at future lepton-hadron collider ex-
periments [11, 12].

We will proceed as follows. We will start with the
case of running coupling, introducing the g-function
formalism and illustrating the size of the perturbative
hysteresis and the associated uncertainty. We will next
briefly discuss the case of PDF evolution along similar
lines. We will finally present the implications of these
results on predictions for the DIS structure function F2.

Running coupling. Consider the RGE in Eq. (1) for the
case of the running coupling, in which R = αs/4π = as
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FIG. 1. Perturbative hysteresis for the NLL evolution of the
strong coupling αs.

and γ = −8πβ/αs, where β is the QCD beta func-
tion [13]. At leading order, the RGE can be solved ex-
actly in closed form, giving the leading-logarithmic (LL)
resummation of the running coupling [13]. From next-
to-leading logarithmic (NLL) accuracy on, however, the
RGE gives rise to a transcendental equation for which a
closed-form solution does not exist. Therefore, one has to
resort to either a numerical or an analytic solution based
on perturbation expansions.

By extending techniques frequently applied to soft-
gluon resummation, we write the analytic solution for the
running coupling in terms of appropriate g-functions [8]:

aN
kLL

s (µ) = as(µ0)

k∑
l=0

als(µ0)g
(β)
l+1(λ) , (5)

with

λ = as(µ0)β0 ln

(
µRes

µ0

)
, (6)

where µRes = κµ is the “resummation” scale with κ ∼ 1.
The g-functions necessary up to NLL read

g
(β)
1 (λ) =

1

1− λ
,

g
(β)
2 (λ) =

1

(1− λ)2

[
−β1
β0

ln(1− λ)− β0 lnκ

]
.

(7)

The functional form of the g
(β)
i for i > 2 is straightfor-

wardly obtained from the corresponding Ni−1LL expan-
sion of the running coupling.

Eq. (5) bears the feature that, by evolving αs from µ0

to µ and then back to µ0, one does not re-obtain the
initial value. We illustrate this at NLL in Fig. 1, which
displays the behaviour of the NLL analytic solution with
nf = 5 active flavours evolved from αs(MZ) = 0.118
down to 1 GeV and then back to MZ . Backward and
forward evolution curves do not coincide, leading to a
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FIG. 2. Analytic and numerical evolution of the strong cou-
pling αs at NLL. The bands indicate the uncertainty com-
puted by varying the factors κ and ξ in the range [0.5 : 2].

mismatch in the value of αs(MZ), which is a manifesta-
tion of the perturbative hysteresis.

The resummation scale µRes in the analytic solution
enables subleading corrections to be modelled through
variations of the parameter κ. This allows one to esti-
mate missing higher orders to the anomalous dimension,
and reflects the fact that the analytic solution beyond
LL violates its RGE by subleading terms. Even when
using the numerical solution, we may define a strategy
to perform scale variations at the level of the β function.
To be specific, by displacing the scale µ by a factor ξ, we
obtain

β(µ) = as(ξµ)β0

(
1 + as(ξµ)

[
β1
β0
− 2β0 ln ξ

])
+O(α3

s) .

(8)
This effectively defines a new β-function that differs from
the original one by subleading corrections. The difference
between the solution obtained with the original β(µ) and
the one in Eq. (8) gives an estimate of the effect of higher-
order corrections, much as variations of the resummation
scale do for the analytic solution. In fact, it can be shown
that at NLL accuracy the β-function generated by the
analytic solution in Eq. (5) can be recast in the same
form as Eq. (8) provided that κ = ξ.

Fig. 2 shows the effect of varying the factor κ in the

functions g
(β)
i in Eq. (7) and the factor ξ in Eq. (8).

In order to account for the possible non-monotonicity
of the variations, the bands are obtained as the max-
imum spread due to the variation of either κ or ξ in
the respective ranges. The size of the two bands is
comparable, with the noticeable difference that the band
for the numerical solution consistently shrinks to zero as
µ approaches MZ , where the boundary condition is set.

Parton distribution functions. As a second application,
we consider the RGE equation (1) in which the quantity
R is identified with the Mellin transform f of a non-
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FIG. 3. Perturbative hysteresis for the NLL evolution of the
gluon PDF.

singlet parton distribution. By introducing the formalism
of the g-functions, we write the evolution of f from the
initial scale µ0 to the final scale µ as

fN
kLL(µ) = g

(γ),NkLL
0 (λ) exp

[
k∑
l=0

als(µ0)g
(γ)
l+1(λ)

]
f(µ0) .

(9)
The g-functions for the NLL evolution read

g
(γ),NLL
0 (λ) = 1 + as(µ0)

1

β0

(
γ1 −

β1
β0
γ0

)
λ

1− λ
,

g
(γ)
1 (λ) = −γ0

β0
ln (1− λ) ,

g
(γ)
2 (λ) = − γ0

β2
0

β1 ln (1− λ) + β2
0 lnκ

1− λ
.

(10)
The procedure can be extended to NkLL accuracy by

including the appropriate g
(γ)
i ’s, with i ≤ k + 1, along

with the O(aks) corrections to g
(γ),NkLL
0 . The g-functions

in Eq. (9) are written in terms of the λ variable given
in Eq. (6) automatically allowing for resummation-scale
variations. Such variations can be used to probe higher-
order corrections to the anomalous dimensions.

To estimate higher-order corrections in the case of the
numerical solution, we shift the argument of αs appearing
in the expansion of the anomalous dimension by a factor
ξ. This effectively defines a new anomalous dimension
differing from the previous one by subleading terms. At
NLL it reads

γ(µ) = as(ξµ)γ0 + a2s(ξµ) [γ1 − β0γ0 ln ξ] . (11)

The effect of perturbative hysteresis associated to the
procedure outlined above is shown in Fig. 3. The gluon
PDF from the MSHT20 [15] LHAPDF set is evolved
using the numerical (red curve) and the analytic (blue
curve) solution from 5 to 100 GeV and then back to 5
GeV, and compared to the original distribution at 5 GeV
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FIG. 4. Analytic and numerical NLL evolution of the non-
singlet combination fd − fd = fd− from µ0 = 100 GeV down
to µ = 5 GeV. The bands indicate the theoretical uncertainty
computed by varying the factors κ and ξ in the range [0.5 : 2].

(black dashed curve). The evolution range [5 : 100] GeV
is chosen in order not to cross any heavy-quark thresh-
olds during the evolution. Looking at the lower inset we
observe that, as expected, the numerical solution guar-
antees that the original distribution is recovered. Con-
versely, the analytic solution displays a discrepancy of a
few percent in the low-x region.

To assess the quantitative impact of varying the
parameters κ and ξ in the analytic and numerical
solutions, respectively, in Fig. 4 the NLL evolution is
shown for the non-singlet combination fd − fd = fd− .
The evolution runs from µ0 = 100 GeV down to µ = 5
GeV with nf = 5 active flavours. The bands correspond
to variations of the parameters κ and ξ in the range
[0.5 : 2]. Varying the scales gives rise to similar devia-
tions in both solutions.

Implications for the F2 structure function. As a phe-
nomenological example, we study the impact of the RGE
theory uncertainties on predictions for the DIS structure
function F2. Using the Apfel code [14], we compute F2

at NLO and NNLO and perform variations of renormal-
isation and factorisation scales, µR and µF , and of the
resummation-scale parameters ξ introduced in Eqs. (8)
and (11) for the running coupling and the PDFs, respec-
tively. In Fig. 5 we show results for F2 versus x at Q = 10
GeV using the MSHT20 PDFs [15] at Q0 = 2 GeV and
αs(MZ) = 0.118 [16] as RGE inputs.

We see that the resummation-scale uncertainties asso-
ciated with the solution of the RGE equations are gener-
ally non-negligible with respect to renormalisation- and
factorisation-scale uncertainties. In particular, the left
panel (NLO) shows that the ξPDF contribution dominates
in the low-x region while the µF contribution dominates
at the largest x. The size of the uncertainties is signif-
icantly reduced when going to NNLO (right panel). It
is worth noting that the resummation-scale uncertainties
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FIG. 5. The x-dependence of the structure function F2 at NLO and NNLO in perturbation theory, with the uncertainty bands
associated with variations of renormalisation and factorisation scales, µR and µF , and resummation scales ξαs and ξPDF.
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FIG. 6. Q-dependence of the relative variation ∆F2/F2 at NLO and NNLO associated with variations of renormalisation and
factorisation scales, µR and µF , and resummation scales ξαs and ξPDF.

become larger relative to the µF and µR uncertainties as
Q increases, so that they eventually become dominant
also in the large-x region.

In Fig. 6 we investigate the Q dependence of the rela-
tive variation ∆F2/F2 due to the four different uncer-
tainty sources under consideration at NLO (left) and
NNLO (right) at x = 10−2. The ξPDF contribution
(green band) starts from zero at Q0, grows rapidly with
the evolution scale Q, and remains significant out to large
Q. In contrast, the µF contribution (blue band) is largest
at low Q and decreases with increasing Q. Analogously,
the µR contribution (red band) is important at low Q
and decreases with Q, while the ξαs

contribution (yellow
band) is subdominant at low Q but becomes relevant at
high Q. As expected, the bands shrink when going to
NNLO. We also point out that the size of the ξPDF band
grows as x decreases.

In conclusion, Figs. 5 and 6 demonstrate that the ξPDF

contribution stays comparatively significant in the kine-
matic region of large Q and low x. This corresponds to
higher-order perturbative corrections to the PDF anoma-
lous dimension dominating the low-x region [17] for suf-
ficiently large Q. In general, due to their cumulative
origin, the uncertainties associated to both ξPDF and ξαs

become more and more significant as the evolution inter-

val grows. We thus expect the resummation-scale uncer-
tainties to be especially important for reliable predictions
at high scales.

We observe that the results above for the resummation-
scale uncertainties depend on the boundary condition.
Specifically, we have used Q0 = 2 GeV as a starting scale
for PDF evolution, which is close to the input scale usu-
ally employed for PDF fits. This implies that, due to
the large evolution range, resummation-scale uncertain-
ties can become sizeable for very energetic processes, such
as jet and top production at the LHC. The analysis of
this paper suggests that one may achieve a better control
on such uncertainties by choosing an alternative input
scheme, e.g. a higher Q0 scale.

Conclusion. In this Letter we have studied the theo-
retical uncertainties stemming from the solution of RGEs
and the associate perturbative hysteresis. We proposed
to treat the RGE uncertainties on strong coupling and
PDFs by means of g-function formalism and correspond-
ing resummation scales. This enabled us to quantify for
the first time the effect of RGE uncertainties in the case
of a collider observable, i.e. the DIS structure function
F2. Our numerical results show that RGE uncertainties
are significant in a kinematic region relevant for PDF
extractions and collider phenomenology.
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