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The COVID-19 pandemic has highlighted the need for a proper risk assess-
ment of respiratory pathogens in indoor settings. This paper documents the
COVID Airborne Risk Assessment methodology, to assess the potential
exposure of airborne SARS-CoV-2 viruses, with an emphasis on virological
and immunological factors in the quantification of the risk. The model
results from a multidisciplinary approach linking physical, mechanical and
biological domains, enabling decision makers or facility managers to
assess their indoor setting. The model was benchmarked against clinical
data, as well as two real-life outbreaks, showing good agreement. A prob-
ability of infection is computed in several everyday-life settings and with
various mitigation measures. The importance of super-emitters in airborne
transmission is confirmed: 20% of infected hosts can emit approximately
two orders of magnitude more viral-containing particles. The use of
masks provides a fivefold reduction in viral emissions. Natural ventilation
strategies are very effective to decrease the concentration of virions, although
periodic venting strategies are not ideal in certain settings. Although vacci-
nation is an effective measure against hospitalization, their effectiveness
against transmission is not optimal, hence non-pharmaceutical interventions
(ventilation, masks) should be actively supported. We also propose a critical
threshold to define an acceptable risk level.

1. Introduction
Currently, the existing public health measures point to the importance of proper
building and environmental engineering control measures, such as proper
indoor air quality. The COVID-19 pandemic has raised increased awareness
on airborne transmission of respiratory viruses in indoor settings. Of the
main modes of viral transmission, the airborne route of SARS-CoV-2 seems
to have a significant importance to the spread of COVID-19 infections world-
wide [1]. Furthermore, infection through aerosol inhalation could lead to
more severe disease than infection from fomites [2]. The potential for presymp-
tomatic and asymptomatic transmission is also reported, with evidence
suggesting that 30–70% of transmission happens before symptom onset [3],
with viral loads peaking at around the time of symptom onset. This contrasts
with other coronaviruses which peak at around 7–14 days after symptom
onset [4]. The high viral loads around symptom onset suggest that SARS-
CoV-2 could be easily transmissible at an early stage of infection.
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Facility managers are facing a new paradigm where the
need for a concrete, quick and simplified tool to prevent air-
borne transmission in buildings and other enclosed spaces is
becoming an essential part of any occupational health and
safety risk assessment.

In occupational health and safety, the best way to ensure
proper protection is to fully understand (i) what are the
causes of a given hazardous event and how to prevent it and
(ii) what are consequences arising from the hazardous event
and how to protect from it. For any given risk, in order to con-
sider the appropriate mitigation and risk control measures for
indoor spaces (e.g. workplaces, household, public spaces), a
multidisciplinary risk-based approach is essential.

In this paper, a physical model is proposed, adapted from
previous implementations of other infectious models such as
the Wells–Riley approach [5,6], to simulate the concentration
of infectious viruses in an enclosed indoor volume, wherein
infectious occupants with COVID-19 are shedding SARS-
CoV-2 viruses. The present study focuses on the so-called
‘long-range’ airborne transmission route, assuming a well-
mixed box model with a homogeneous viral concentration
in the entire volume and that occupants in the room are phys-
ically distant from each other. The model follows a
probabilistic approach to deal with the uncertainties tied to
the concerned variables, such as the characteristics of this
novel virus, including the properties of the emerging variants
of concern (VOC). Various aspects of the medical, biological,
mechanical and physical characteristics of the respiratory air-
borne pathogens are taken into account, in particular, the
mechanistic process of respiratory droplet nuclei emission,
the effectiveness of face covering, the dilution with outdoor
air, the impact of particulate filtration, the inactivation of
infectious viruses, host immunity and dispersion models in
indoor environments.

Human presence is the generation source of expiratory
droplets and droplet nuclei potentially containing virions,
when performing vocal or pure respiratory activities [7,8].
The droplets and droplet nuclei which are sufficiently small
to be aerodynamically suspended in the air may be inhaled
by the exposed occupants in the same indoor setting. Particu-
lar attention is given to the winter period as a result of
increased indoor gatherings with limited air renewal, result-
ing in increased exposure duration [9], and the low relative
humidity of the indoor ambient air, mainly due to the effect
of central heating (e.g. via superheated water radiators).
Low humidity air increases the evaporation of droplets and
consequently the number of airborne droplet nuclei [10].
This increases the virus survival in air and reduces immune
defences of the exposed hosts [11].

The methodology presented in this paper exhibits five
main aspects: (1) the generation (or emission) rate of viruses
coming from the infected host(s), which is a result of the res-
piratory activity combined with the possible use of face
covering (source control); (2) the indoor viral removal rate
resulting from ventilation or air filtration, viability decay
and gravitational settlement; (3) the indoor viral concen-
tration profile over time resulting from the balance of the
two previous quantities; (4) the accumulated viral dose
absorbed by an exposed host and deposited in the respiratory
tract; and (5) the probability of infection (or transmission)
resulting from such a dose.

To estimate the generation rate, a probabilistic approach is
considered by parameterizing the viral load distributions in

the respiratory tract and the volumetric concentration of dro-
plets emitted, measured for different activities [12]. By
convention, droplets and droplet nuclei will be discussed in
this paper as ‘airborne particles’. Once an infected occupant
is emitting viruses into the volume, the physical and mechan-
ical behaviour of the floating virus-containing particles is
simulated, based on the assumption of a homogeneous mix-
ture in a finite volume. With a realistic set of inputs, including
a complex ventilation algorithm with openable windows and
a flexible occupancy profile, the model allows for a combi-
nation and comparison of various mitigation measures,
aimed at properly assessing the situation tailored to
common practices in indoor settings. The main goal of this
paper is to improve the common understanding in the mod-
elling of airborne transmission and identify the pivotal
parameters, in order to develop a quantitative action plan
to help building engineers, facility managers and household
individuals in identifying which measures or combination
of measures are most suitable, allowing for a tailored risk
assessment and targeted investment. The results are com-
pared with similar studies from the literature.

The model, its assumptions and data used will be pre-
sented in §2. The set of possible occupation and activity
profiles taken into account in the model are listed in §3,
and simulation results in various situations follow in §4.
These are then discussed in §5, and our conclusions are
finally presented in §6.

2. Methods
The infection model presented in this paper is computed using
an open source software called the COVID Airborne Risk Assess-
ment (CARA). The availability statement of the software and
associated data is mentioned in Data accessibility. The method-
ology behind the infection model is split into five modules:
Source (emission), Dispersion (removal rate), Exposure (concen-
tration), Dose (inhalation) and Risk (infection).

Several risk assessment tools have opted to adapt the notion
of ‘quantum of infection’, introduced in the 1950s by Wells,
suggesting a hypothetical infectious dose unit for a certain
pathogen [13]. The quantum is generally estimated from epide-
miological data following an outbreak investigation, using a
reverse engineering approach predicting the environmental con-
ditions at the time of the outbreak. In the framework of a risk
management and risk prevention approach, we opted to study
the projection of possible new infections before the potential out-
break takes place. Thus, we decided to adopt an approach by
relating the physiological mechanism of respiratory particle
emissions, introduced by Nicas et al. [5] for tuberculosis and
adapted by Buonanno et al. [12] for COVID-19, while integrating
the virological and pathological characteristics of such respirat-
ory pathogens. The model assumes a homogeneous viral
distribution in the respiratory tract [14] and that the number of
virions in a given particle is proportional to its size, as well as
a homogeneous mixture of airborne particles in a given room
volume (i.e. well-mixed box model). Several authors have
characterized the amount of respiratory particles and their
size distribution, during different vocal activities [7,15–17]. The
underlying question relates to the relationship between a
mechanistic approach and the virological aspects, which we pro-
pose to address in this paper. Since typical coronaviruses seem to
require more than one pathogen to initiate infection [18,19], this
study includes the concept of an equivalent infectious dose (ID).
According to Sze et al. [20], the dose–response models for such
risk assessment are more precise, as many influencing factors

royalsocietypublishing.org/journal/rsfs
Interface

Focus
12:20210076

2



can be determined explicitly, allowing for fewer implicit errors in
general. On the other hand, such models are not yet available for
SARS-CoV-2, hence a solution is described in this paper, taking
into account the effect of host immunity.

Many of the model variables (such as emission rate, removal
rate, and concentration) are considered for a given aerosol diam-
eter D, as the dynamics in the room and the deposition efficiency
in the respiratory tract depend on the particle size. The resulting
dose is then computed over a distribution of particle diameters,
which is then followed by a Monte Carlo integration. Further-
more, some other variables (such as viral load, infectious dose,
mask inward efficiency, breathing rate) are treated as random
to account for their aleatory uncertainties; the related distribution
descriptors are defined by data available in the literature. Finally,
the probability of infection is estimated by using plain Monte
Carlo sampling algorithms.

2.1. Emission rate (vR)
The emission rate of virus per unit diameter, vR (in virion h−1 μm−1),
is estimated by considering the volumetric emissions of respiratory
particles of a given diameter D by the infected host(s), and the
virological characteristics.1 The former properties are evaluated for
three different expiratory activities: (i) breathing (index ‘b’); (ii) speak-
ing (index ‘sp’); (iii) shouting/singing (index ‘sh’). While performing
the expiratory activities, the particle emissions are known to be
affected by the physical activity and loudness of the infected host’s
vocalization, since the faster one breathes or the louder one speaks,
the more particles per unit volume are being emitted [7,16]. Sub-
sequently the emission rate includes the contribution of tidal
volumes and amplitude of the voice. The virological characteristics
include the density of viral copies from nasopharyngeal (NP)
swabs. The viral emission rate can be calculated using the following
formulation:

vRðDÞj ¼ vlin � Ec,jðD, famp, houtðDÞÞ � BRk, ð2:1Þ

where vlin is the viral load inside the infected host’s respiratory tract
(in RNA copies per ml); Ec,j represents the volumetric particle emis-
sion concentration per unit diameter (in ml m−3 μm−1), for a given
expiratory activity j and as a function of the vocalization amplifica-
tion factor famp and the outward mask efficiency ηout(D) (which
also depends on the particle size); BRk (in m3 h−1) is the breathing
flow rate for a given physical activity k. For the purposes of this
model, we will assume a 1 : 1 ratio between RNA copies and virions
when interpreting PCR viral load results, though for PCR assays tar-
geting the N (nucleocapsid) gene, this ratio may far exceed 1. The
volume of the respiratory particles are calculated assuming each is
a perfect sphere. In the present model, vR is assumed to be piecewise
constant over time, for each type of vocalization/respiratory activity,
and is considered constant when the infected host is present (vR= 0
when the infected host is absent).

Due to the large variability of the different variables dis-
cussed in this paper, a probabilistic approach is used to
determine vR. The methods and variables are described in
§§2.1.1–2.1.4 and summarized in §2.5.2.

Note that in the following subsections, for the purpose of
simplification, we will omit the index j for vR and the quantities
that depend on it, as each type of expiratory activity will be com-
puted separately.

2.1.1. Viral load (vl)
In this paper, we describe the viral load as two separate par-
ameters: the viral load inside the infected host, vlin, determined
by RT-PCR assays from NP swabs, and the viral load outside
the infected host, vlout, defined as the number of respiratory par-
ticles emitted from the mouth or nose during a given time t (in

hours):

vlout ¼ vRtotal � t: ð2:2Þ

For vlin, data show a large variability, ranging from
102 to 1011 RNA copies per ml, covering symptomatic, presymp-
tomatic and asymptomatic persons [21–23]. The large variability
in these viral load values is related to the high dynamic range
over the course of the infection and would largely impact vR.
This aspect is particularly relevant when the uncertainty lies on
the virological conditions of the infected host during trans-
mission. Hence, here we considered statistical distributions
where the baseline descriptors correspond respectively to a
mean (SD) of 6.6 (1.7) log10 RNA copies per ml. These values
were determined from the available dataset of approximately
20 000 RT-PCR assays, sampled from February to April 2020
[23]. This parameter is a variable in our model, which could be
adjusted to take into account new datasets.

In December 2020, an increasing portion of cases caused by a
more transmissible new variant (alpha) was observed in the UK.
This has since been superseded by several other VOC reported to
have a significant effect on the risk of transmitting SARS-CoV-2.
The precise mechanism(s) for increased transmissibility are not
yet definitively understood at the time of writing. While prelimi-
nary laboratory results indicated evidence for higher viral load in
infected individuals [24], it now appears that these elevated
values were not substantiated by more recent studies [25]. This
observation is consistent with the dynamics of cycle threshold
(Ct) scores seen during rapid growth phases of the epidemic,
as reported in [26]. There is now emerging evidence to indicate
that the delta VOC may combine both increased infectiousness
and observably higher average viral loads compared to the
wild-type strains or the alpha VOC, although the statistical sig-
nificance of increases in viral load remains to be conclusively
demonstrated.

2.1.2. Expiratory particle emissions (Ec,j)
During different vocalization activities, or by simply breathing, a
large amount of particles are emitted from the mouth and/or
nose, originating from the respiratory tract [27,28]. Particles of
diameter smaller than 100 μm are likely to become airborne
and can remain suspended in the air from seconds to hours,
because of their reduced size and settling velocity compared to
larger droplets [29]. Data on experimental studies measured
the aerosolized particle concentration and size distribution
[7,30], although the aerosol sampling mechanisms employed,
e.g. aerodynamic particle sizer or optical particle counter, are
generally not capable of measuring the diameter of the respirat-
ory droplets prior to evaporation [15], which occurs quasi-
instantaneously after leaving the mouth or nose [31]. Under-
standing the initial diameter of the particle, prior to
evaporation, is crucial for the quantification of the volumetric
emissions [12] and consequently the emission rate (vR).

The particle emissions and their size distribution vary
depending on the vocalization activity. Johnson et al. [15] studied
the size distributions of particle emissions for different expiratory
activities and found three distinct modes associated with different
anatomical processes in the respiratory tract: one originating from
the bronchial region while breathing; another near the larynx
(housing the vocal cords) which is highly active while speaking
and singing; and one from the oral cavity (i.e. mouth) which is
active during any vocalization. The volumetric particle emission
concentration (Ec,j) is, therefore, modelled according to the afore-
mentioned paper using a tri-modal lognormal distribution
model (BLO model) [15], weighted by the particle size distribution
multiplied by the volume at a given diameter (assuming each par-
ticle is a perfect sphere). In the same reference, the author included
an evaporation factor (fevap) of 0.5 to take into account the ratio
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between desiccated and saturated particles. Here, we propose to
use an evaporation factor of 0.3, based on more recent studies
[32], considering an average protein content between 3 and 76
mgperml of nasal fluid.

The particle emissions of the larynx (L) and oral (O) modes
are equally affected by the amplitude of the vocalization (i.e.
loudness) and this relationship is found to scale linearly, while
maintaining a constant size distribution [16]. An amplification
factor (famp) is used to scale the emission concentration relative
to ‘speaking’, which is used during vocalization. The bronchial
(B) mode, on the other hand, is not affected by the amplitude
of vocalization, hence the emission concentration during ‘breath-
ing’ is not impacted by this effect since only the B mode is active.

To make use of these data for the purpose of our study, we
need to compute the volume of respiratory fluid emitted by the
host, per volume of exhaled air, per unit diameter, Ec,j(D), in
ml m−3 μm−1, and for a given diameter D. This is given by

Ec,jðDÞ ¼ NpðDÞ � VpðDÞ � ð1� houtðDÞÞ, ð2:3Þ

where Np(D) is the number of particles of this size (depending on
the expiratory activity through famp, see below), Vp(D) is their
individual volume and ηout(D) is the outward mask efficiency
(cf. §2.1.3) for this diameter. Based on the BLO model, the
number of emitted particles of a given size can be obtained from

NpðDÞ ¼ 1
D

X
i[IðjÞ

cn,i � famp,j,iffiffiffiffiffiffi
2p

p � sDi

exp �ðlnD� mDi
Þ2

2ðsDi Þ2
 !" #

, ð2:4Þ

where I( j ) is a subset of {B, L, O} determined by the expiratory
activity j: for breathing I(b) = {B}, for speaking or shouting
I(sp) = I(sh) = {B, L, O}; mDi

and sDi are the mean and standard
deviation of the natural logarithm of the diameter for each
mode (in ln μm); cn,i is the total particle emission concentration
for each mode. The amplification factor famp,j(i) follows [16]:

famp,j,i ¼
1 if i ¼ B,
1 breathing and speaking
5 shouting

�
if i [ fL, Og:

8<
:

Table 1 provides the list of variables and the related distri-
bution descriptors adopted to compute Ec,j from equations (2.3)
and (2.4) (the size distribution particle emission concentrations
can be found in electronic supplementary material, figure S.1).
Particle emission concentrations have been extensively reported
by Bourouiba [33] with values ranging from approximately
0.01 to 4 particles cm−3 for breathing and 0.01 to 1 particles
cm−3 for speaking. A parametric study was conducted to pro-
duce a fit with experimental data for viral emission rates (cf. §4).

To obtain the total expiratory emission in ml m−3, one has to
integrate equation (2.3) over all particle diameters:

Etotal
c,j ¼

ðDmax

0
Ec,jðDÞdD: ð2:5Þ

Since this paper is focused on airborne transmission, the limits of
integration are set from 0 to Dmax = 30 μm, which correspond to a
desiccated particle diameter up to roughly 10 μm. This assump-
tion is reasoned knowing that respiratory aerosols up to 10 μm
(i.e. PM10) represent 99% of the total emission concentration
while speaking [15].

Note that the integral in equation (2.5), used to compute the
total emission, is performed using a Monte Carlo sampling of the
particle diameters which follow the distribution given by Np(D)
in equation (2.4). In the model, the integral is actually not per-
formed at this stage but later when computing the dose, since
other parameters also depend on D (see §2.4).

2.1.3. Outward effect of face covering (ηout)
Face coverings are reported to be a very efficient source control
measure against infection prevention and disease control [34–
39]. According to the basic prevention principle of risk assess-
ments, reducing the hazard at the source is at the top of the
priority list in terms of mitigation measures. The so-called surgi-
cal masks are widely used and recognized as appropriate face
covering devices for source control. These masks are manufac-
tured following strict performance and quality requirements
and are certified by the applicable national authorities. The mini-
mum material filtration efficiency accepted in, for example, the
USA and European Union is 95%, using the test standards
ASTM F2101 and EN 14683 [40], respectively. It is important to
note that these results are the filtration efficiencies of the material
and do not consider the losses due to the actual positioning on
the wearer’s face, namely leakage. Since surgical masks are not
meant to act as personal protective equipment (PPE) such as
N95 or FFP2 masks, there are no requirements for leak-tightness
in the test standards mentioned above. Both standards use a
mean particle size of 3.0 ± 0.3 μm for the measurements,
although, when breathing, the majority of the emitted particles
are smaller than 3 μm [7], even when considering a saturated par-
ticle size with a geometrical mean of 2.7 μm (cf. table 1).
Reducing the particle size will have an effect on the filtration effi-
ciency. Recent studies measured the outward filtration efficiency
for surgical masks of 80% while breathing [38] and 60–75% in the
0.7–2 μm size range [41]. The results of these measurements
include the effect of leaks, without performing any fit-test or
fit-check procedure. The certification requirement of 95% effi-
ciency may be used for particle sizes ≥3 μm, corrected to take
into account the leakages. We assume a total leakage of 15%
through the sides, nose and chin [42], which would yield an

Table 1. Parameters of the BLO model used in the volumetric particle emission concentration in equation (2.3). The geometric mean (GM) and geometric
standard deviation (GSD) of the lognormal distributions for the particle diameters are also shown. Values for cn,i are taken from [7] and particle diameter
distribution parameters are extracted from [15], applying an evaporation correction factor fevap = 0.3.

tri-modal parameters for Ec,j a

mode (i) cn,i (cm
−3) mDi ðlnmmÞ GM (μm) sDi ðlnmmÞ GSD (μm)

B 0.06b 0.99 2.69 0.26 1.30

L 0.2b 1.39 4.01 0.51 1.67

O 0.001 4.98 145.5 0.59 1.80
aUnit conversion will be necessary to compute Ec,j.
bObtained following a parametric study (see §4).
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equivalent outward efficiency of 82% at sizes larger than 3 μm,
comparable to the same measurements [38,41]. In this paper,
we use the values for outward efficiency (ηout) of surgical
masks, as a function of the particle diameter (electronic sup-
plementary material, figure S.2).

The use of PPE (e.g. respirators), such as N95 and FFP2, is
found to have a similar effect in terms of source control [38]
and thus is assumed here to have an equivalent outward effi-
ciency. ηout is equal to zero if the occupants are not wearing
masks.

2.1.4. Breathing rate (BRk)
A wide variation in breathing rate is observed in numerous
studies. We have chosen to base our values on data originally
reported by [43] as incorporated into the EPA Exposure Fac-
tors Handbook [44]. The estimation of breathing rate is
critical to both the emission of infectious particles and
exposure due to inhalation for an airborne pathogen. We
have taken published tables from the handbook and adapted
them to provide estimations of breathing rates for a variety of
activities. With the available data, we have assumed an
evenly distributed population from ages 16–61, with a male:
female ratio of 1 : 1. Drawing on handbook values from tables
6–17, 6–19, 6–40, 6–42, we created profiles for a number of differ-
ent physical activities:

— sitting (office activity),
— standing (without moving),
— light-intensity activity (walking, lectures, singing),
— moderate-intensity activity ( jogging, manual work in a lab-

oratory or workshop),
— high-intensity activity (running, exercising, heavy duty

equipment manipulation, manual material transport).

The data for each activity level (electronic supplementary
material, table S.2) have been fitted to a lognormal distribution
model (cf. electronic supplementary material, figure S.3),
having one set of distribution descriptors per activity type (incor-
porating the variability of the population) instead of single point
deterministic values.

2.2. Viral removal rate (vRR)
Once viruses are expelled from the exposed host, they are subject
to environmental and biological effects which would reduce the
viral concentration in air. The effects of air exchange, aerosol
settlement, viral inactivation (biological decay) and filtering
through air cleaning systems may be considered in a simplified
form by combining the contributions from these four effects
into one property λvRR [10], representing the viral removal rate
per hour, by means of the summation

lvRR ¼ lACH þ ldep þ lbio þ lHEPA, ð2:6Þ
where λACH, λdep, λbio and λHEPA (all in h−1) are the removal rates
related to ventilation, gravitational settlement, biological decay
and particulate filtration, respectively.

2.2.1. Effect of ventilation
Effective ventilation is a known preventive measure to mitigate
airborne transmission [1]. The supply of clean outdoor air,
referred to as ‘fresh air’, is important to locally dilute the airborne
virus and remove the pathogens by exchanging them with virus-
free air.

The removal rate due to ventilation (λACH) via mechanical or
natural means is obtained from the amount of fresh air supplied

to the space and the volume of the room:

lACH ¼ QACH

Vr
, ð2:7Þ

in which QACH represents the volumetric flow rate of fresh air
supplied to the room (in m3 h−1) and Vr its volume (in m3).
QACH will depend on the type of ventilation used.

Mechanical ventilation is considered when the indoor space
benefits from active means to supply fresh air, powered by equip-
ment such as motor-driven fans and blowers normally installed
in air handling units (AHU) of heating, ventilation and air con-
ditioning (HVAC) systems. The fresh air flow rate for
mechanical ventilation is considered at the level of the supply
grilles or diffusers. For energy efficiency reasons, some AHU
may be equipped with a mixing chamber to recycle part of the
return air extracted from the indoor space. In this specific case,
it is proposed to evaluate QACH by including only the portion
of fresh air supplied in the space (i.e. total supply flow of the
AHU minus the recycled air flow). If the AHU is fitted with a
high-efficiency particulate air (HEPA) filter, the portion of
recycled air shall be included in λHEPA (cf. §2.2.4).

Although the use of mechanical systems in Europe is increas-
ing, the greatest share of ventilation systems employ natural
ventilation [45], which generates a flow of fresh air coming
directly from outdoors, created by a pressure differential through
permanent or temporary openings in the building’s facade. This
pressure differential is caused either by: (i) outdoor and indoor
temperature difference, where the buoyancy force arising from
gravity and the difference in air densities can be used to drive
the flow, or (ii) wind contouring the building structure, where
the velocity profile, on both facades, creates a windward and lee-
ward exposure. To establish a wind-driven flow, the indoor space
in question shall have openings on opposite facades (windward
and leeward exposure). In addition, the pressure difference
depends on the mean wind boundary velocity, which fluctuates
during the course of the day, ranging in intensity and geographi-
cal direction. With this said, and in view of simplifying the
model, this paper will only consider a buoyancy-driven flow
arising from natural ventilation.

To streamline the estimation of QACH, additional simplifica-
tions and assumptions are proposed. We consider single-sided
natural ventilation, i.e. openings on one facade, although in rea-
lity occupants generally open windows and doors connecting to
corridors or other volumes (i.e. cross ventilation). The latter form
of natural ventilation might extend the pressure gradient beyond
the volume of the room yielding potentially higher flow rates
that would reduce the risk, hence our choice is conservative.
The limiting depth for effective single-sided ventilation is typi-
cally 5.5 m or up to 2.5 times the room height [46], therefore
this limitation is a boundary condition for model validity.

The fresh air flow QACH for single-sided natural ventilation is
derived from a combination of Bernoulli’s equation and the ideal
gas law [47]:

QACH ¼ Cd � A
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g � h � DT
Tavg

s
, ð2:8Þ

where Cd is the discharge coefficient; A is the area of the opening
(in m2); g is the gravitational acceleration (in m s−2); h is the
height of the opening (in m); ΔT is the indoor/outdoor tempera-
ture difference; and Tavg is the average indoor/outdoor air
temperature (in K). Equation (2.8) is valid when ΔT is positive
and not too large (≤20 K). The CARA model incorporates a
large meteorological dataset of averaged hourly temperature,
by month and location. These temperature profiles are based
upon historical data from the HADISD.3.1.1 [48] dataset. The
hourly averages are computed from the past 20 years for each
weather station with complete and valid data within this time
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range. For simplification, in this study, we consider only data for
Geneva, Switzerland during the months of June and December
(replicating summer and winter conditions; electronic sup-
plementary material, figure S.4).

The discharge coefficient Cd represents the fraction of the
opening area that is effectively used by the flow—it is smaller
than the actual area of the opening because of, for example, vis-
cous losses [47]. For sliding or side-hung windows, Cd is
estimated at 0.6 [46,47]. For top- or bottom-hung windows, Cd

depends on the opening angle ϕ (in degrees) and the ratio w/h
(with w the width of the window), according to the following
rule [46]:

Cd ¼ Cd,max[1� expð�M � fÞ], ð2:9Þ

where M and Cd,max are given for different values of w/h in elec-
tronic supplementary material, table S.3. The opening angle ϕ can
be obtained via: sin (ϕ/2) = L/2h, with L the size of the opening
(i.e. such that A = h × L).

In this paper, we consider events in the winter period with a
constant temperature difference ΔT of 10 K and in the summer
with a constant ΔT of 2 K. The indoor temperature is also
assumed constant during the exposure. As for the openings,
we considered a standard sliding-type window with a height h
of 1.6 m and an opening length L of 0.6 m. Examples of other
window opening types can be found in electronic supplementary
material, figure S.5. In the absence of natural and mechanical
ventilation, the removal rate λACH will be governed by the air
infiltration of typical buildings. In this study, we assume a con-
stant average value of 0.25 h−1 [49].

2.2.2. Biological decay
The environmental conditions have an impact on the stability
and viability of the virus in air. The half life of SARS-CoV-2
in aerosols was initially measured with a median of 1.1 h, equiv-
alent to SARS-CoV [50]. However, in this reference, the
measurements were performed at room temperature (23°C) and
with a relative humidity (RH) of 65%, which is not the nominal
humidity level one would assume for indoor spaces in specific
seasons of the year, e.g. during the winter period. The humidity
of the air in the room plays a decisive role in the capacity of the
viruses to survive [51–53]. Air with a low relative humidity (typi-
cally under 40%) allows smaller particles to desiccate quickly
and, while the water is completely removed, the salt content of
the droplet nuclei might crystallize, ending up preserving the
viruses by forming a sort of protection cover. This mechanism
explains why flu epidemics frequently occur during the winter
period with the effect of central heating, which desiccates the
air by adding sensible heat and increasing its enthalpy at a con-
stant specific humidity. It is also apparent that the ambient
humidity may play a role in the effectiveness of the body’s natu-
ral defence mechanisms against airborne viruses, with low
humidity increasing susceptibility to infection [53].

However, a comprehensive model of the interplay between
temperature, humidity and viral infectiousness remains a topic
for further study. In this paper, we do not consider the effect of
temperature on half life, although we acknowledge that there
are significant data linking increases in temperature with a
reported decrease in half life. For this study, we will consider
scenarios in two humidity regimes: RH , 40% and RH . 40%.
For the mid/high humidity regime (RH . 40%), we use the
value measured directly in aerosols [50]. For the low humidity
regime (RH , 40%), we opted to use the mechanistic approach
by Morris et al. [54], which includes the chemical behaviour of
the aerosol and the effect of efflorescence. The adopted half-life
values are as follows:

— In the mid/high humidity regime, we consider a half life
of 1.1, based directly on [50], such that λbio = (ln(2)/1.1)≈
0.63 h−1.

— In the low humidity regime, we apply the data from [54]
(assuming an indoor temperature of 22°C), obtaining a half
life of 6.43 such that λbio≈ 0.11 h−1.

The method employed in the aforementioned study, namely
capture on polypropylene surfaces, is consistent with reports of
longer viral half lives. We therefore consider this to be a conser-
vative figure for the regime RH , 40%, since the reference is
taken at the start of the low humidity region.

In the model, we differentiate between the two regimes on
the basis of the corresponding average seasonal indoor humidity,
due to the effect of central heating. Unless specified otherwise,
the default humidity regime discussed in §4 is RH . 40%.

2.2.3. Gravitational settlement
Once particles are airborne, they are subject to aerodynamic
forces which tend to balance with the force of gravity (dead
weight), with the absence of additional momentum. Using
Stokes’ Law, applied to aerosols [55], one can analytically calcu-
late the settling velocity of a certain particle, corresponding to
equilibrium between the sum of the drag and buoyancy forces
and the downward force due to gravity:

yðDÞ ¼ ðr p � rairÞðDevap � 10�6Þ2 � g
18mair

, ð2:10Þ

where ρp and ρair (in kg m−3) are the mass densities of the
particle and air, respectively; g is the gravitational acceleration
(in m s−2); Devap is the diameter (in μm) of the desiccated particle,
following evaporation (Devap =D × fevap with fevap = 0.3); and
μair≈ 1.8 × 10−5 kg m−1 s−1 is the dynamic viscosity of air (at
room temperature and atmospheric pressure).

Assuming the composition of a given airborne particle is
dominated by water and/or organic solutes of similar density,
the proposed mass density for ρp is 1000 kg m−3 [15]. The mass
density of air (ρair) is taken at 1.2 kg m−3. Assuming that the dro-
plets are falling from the mouth or nose of a person standing, the
height at which the terminal velocity (obtained from equation
(2.10)) is reached is considered at approximately h = 1.5 m from
the floor, which yields λdep = v/h. Thus, particles with a diameter
D≤ 3 μm have a settling time higher than 1.5 h (and it even
reaches more than 13 h for D = 1 μm), whereas larger droplets
with D≥ 10 μm are only able to remain airborne for approxi-
mately 8min and less (cf. electronic supplementary material,
figure S.6). Therefore, the phenomenon of particle evaporation
introduced in §2.1.2, which reduces the particles’ size, has a sig-
nificant effect on the total amount of airborne particles which
could potentially be inhaled by exposed hosts.

As visible from equation (2.10), the setting velocity v(D), and
hence λvRR, depends on the diameter of the emitted particle
D. The concentration in the air of particles of different diameters
evolves therefore differently with time (see §2.3). Using plain
Monte Carlo sampling algorithms for the particle diameters,
we can also compute for λdep(D) the mean (standard deviation)
values, obtaining 0.054 (0.031), 0.146 (0.208) and 0.167 (0.225)
for breathing, speaking and shouting, respectively (all in h−1).
The mean values are in agreement with the range adopted in
other studies [56] for particles with Devap in between 0.7 and
2 μm.

2.2.4. Air filtration
The removal of airborne particles in a closed volume can be
achieved by cleaning the air using HEPA fibre-based mechanical
filters. HEPA filters are the most efficient mechanical filters in the
submicrometre range, increasing the probability of capturing
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viral-containing droplet nuclei in the air [57,58]. The effect of this
mechanism on the removal rate is determined by the volumetric
flow rate of the air passing though the filter, multiplied by its effi-
ciency (ηf ) and taking into account the effectiveness of the system
in reducing a certain percentage of the particle load within 20
min (PR20) (electronic supplementary material, figure S.7). The
effect of increasing the air exchange rate of the HEPA device
on the particle removal efficiency can be determined by

lHEPAðPR20Þ ¼ QHEPA

Vr
� h f , ð2:11Þ

in which QHEPA (in m3 h−1) is the effective flow rate through
the device; Vr is the room volume; PR20 is the particle removal
objective; ηf is the filter efficiency. For HEPA filters certified
according to EN 1822 standard [59], ηf is 99.95% and 99.995%
for the corresponding H13 and H14 classes, respectively. Due to
the high efficiency of both filter classes, this term can be neglected.
The commercial filtering device should be selected to ensure a
nominal flow rate that is able to reduce sufficiently the particle
load. The effectiveness of the system determines how fast the par-
ticle load is reduced in a volume. This approach is frequently used
in industry, namely in the design of clean rooms [60], although this
parameter is determined in the decay zone of the concentration
profile ðCðtÞ ¼ C0 e�lvRR tÞ where the generating source is not pre-
sent (i.e. vR = 0). In reality, the effect of a constant vR > 0 in the
presence of an HEPA filter will be included in the solution of
equation (2.13), therefore we use the effectiveness of the filter as
an input for λHEPA when selecting the device. Hence, we opted
to consider a particle removal objective (PR20), of at least 80%
that would yield a clean air exchange rate ≥5 air changes per
hour (ACH): λHEPA(0.8) = 5 h−1, which is comparable with other
design values for biological safety laboratories and hospital
wards [61].

2.3. Viral concentration (C(t))
The concentration of virus depends not only on the emission
source but also on the dynamic effects linked to any potential
removal mechanisms (cf. §2.2.1) and occupation profile (cf. §3),
as well as possible preventive measures (e.g. face covering).
This study proposes a solution of the mass-balance differential
equation to simulate these effects.

The concentration of viruses in aerosols of a given size D is
derived from the following differential equation, determining
the time evolution of the number of virions per unit volume
per unit diameter, in a single-zone model:

@C
@t

¼ vRðDÞ �Ninf

Vr
� lvRRðDÞ � Cðt, DÞ, ð2:12Þ

where vR has been defined in §2.1.2 and λvRR in §2.2, and both
depend on the particle diameter D; Vr (in m3) is the room
volume; Ninf is the number of infected hosts emitting the viruses
at the same time and in equal quantities.

Solving the differential equation, we get

Cðt, DÞ ¼ vRðDÞ �Ninf

lvRRðDÞ � Vr

� vRðDÞ �Ninf

lvRRðDÞ � Vr
� C0ðDÞ

� �
e�lvRRðDÞt, ð2:13Þ

where C0(D)≡C(t = 0, D), and the quantity Cequilibrium≡ (vR ×
Ninf/λvRR ×Vr) represents the equilibrium value that is reached
in the steady-state regime, in which all quantities therein are
diameter-dependent.

Equation (2.13) is valid when all variables are constant over
the full time range. In our model, vR and λvRR may also be piece-
wise constant functions of time; a new value is assigned to each
variable every time a condition changes in the room, in particular
when an infected person(s) enters or leaves the room, or when

the ventilation rate changes (which leads to a modification of
λvRR; see next section). Between such transition times, e.g. tn
and tn+1, all variables are constant and equation (2.13) is valid
provided C0 is replaced by C(tn, D), and t by t− tn. C(tn, D) is
in turn computed from the knowledge of the previous regime
between tn−1 and tn; in practice, all these computations are
done recursively, using an efficient caching mechanism to
avoid computing the same concentration twice.

2.4. Dose (vD)
The term ‘dose’ in this study defines the number of viable virions
that will contribute to a potential infection, therefore we need to
disassociate RNA copies from infectious (viable) viruses. Virus
isolation from NP and throat has been largely reported, although
it varies with the viral load and the number of days post symp-
tom onset [21,62], which indicates a clear relation between
seroconversion and viral culture, as well as the amount of
RNA copies in a given sample. In addition, any existing anti-
bodies wrapped around RNA viruses will be extracted during
PCR-assayed samples. This will ‘hide’ the effect of pre-existing
antibody titre in the infected host’s viral load. Hence, the pro-
portion of virions which are viable (infectious) can be
substantially lower than the measured count of RNA copies, e.g.
in previously vaccinated sources [63], even though their viral
loads have been reported to be similar to those in unvaccinated
sources [64].

Here, we estimate the receiving dose, vD (in infectious vir-
ions per unit diameter), which is inhaled by the exposed host,
by first integrating the viral concentration profile (for a given
particle diameter) over the exposure time and multiplying by a
scaling factor to determine the proportion of virions which are
infectious. Afterwards, these terms are further multiplied by
the breathing (inhalation) flow rate, the fraction of viral-contain-
ing particles that deposit in the respiratory tract and the inward
filtration efficiency of a face mask, if worn:

vDðDÞ ¼
ðt2
t1
Cðt, DÞ dt � finf � BRk � fdepðDÞ � ð1� hinÞ, ð2:14Þ

where t1 and t2 are the start and end exposure times (in h),
respectively; finf is the fraction of infectious virus; fdep(D) is the
(diameter-dependent) deposition fraction in the respiratory
tract; and ηin is the inward efficiency of the face mask (values
between 0 and 1).

Note that the breathing rate is directly proportional to the
dose, hence physical activity plays an important role in airborne
transmission. Equation (2.14) is valid for a single exposure from
t1 to t2.

If during the simulated event, the susceptible hosts are
exposed to multiple independent exposure scenarios (e.g. they
leave the enclosed volume for a lunch break) or in every state-
change (e.g. windows open, outdoor temperature change), the
dose is given by

vDðDÞ ¼
Xn
i¼1

ðtiþ1

ti
Cðt, DÞdt � finf � BRk � fdepðDÞ � ð1� hinÞ, ð2:15Þ

where ti and ti+1 are the start and end times (in h) of each sub-
exposure, respectively; n is the total amount of independent
exposures in the same event (i.e. subject to the same concentration
profile).

The total dose (in infectious virions) then results from the
sum of all the doses accumulated for each particle size; it is
given by an integral of the form

vDtotal ¼
ðDmax

0
vDðDÞdD: ð2:16Þ

The above is computed using a Monte Carlo integration: many
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different diameter samples are generated using the probability
distribution from equation (2.4), the dose from each of them is
then computed, and their average value over all samples rep-
resents a good approximation of vDtotal (provided the number
of samples is large enough).

2.4.1. Infectious virus fraction ( finf )
The aforementioned studies in the section above show the
probability of isolating infectious SARS-CoV-2 viruses in
serum samples increasing with viral loads larger than 106 RNA
copies ml−1, reaching a probability of approximately 90% at
1010 RNA copies ml−1 [21,62]. For airborne samples, data also
show that only a fraction of viral RNA copies are found to
give positive culture. Past studies with Influenza virus have
found positive cultures in 30% of 140 aerosol samples using a
Gesundheit-II (G-II) human source bioaerosol sampler [65], cor-
responding to a mean swab viral load of 8.9 log10 RNA copies
and another study found a 1 : 94 viable-to-RNA ratio on average
[66]. Recent studies for SARS-CoV-2 showed successful virus
isolation in 15%, 45% and 82% of samples collected from outpa-
tients, inpatients and ICU patients, respectively [67], and 3% out
of the 66 aerosol samples in another setting were cultured while
wearing masks, 2–3 days post symptom onset [68]. This provides
evidence on the presence of infectious virus in aerosolized
particles which depends on the initial viral load vlin, although
the exact ratio between RNA copies and infectious virus is extre-
mely difficult to determine with precision, especially when
translating between in vivo and in vitro which may include
other influencing factors such as time post-illness onset, sample
type (nasal swab versus air sample), waning immunity (natural
or vaccine-induced) and even the sampling method used. For
example, Adenaiye et al. [68] noted an additional factor leading
to an underestimate of the infectious titre because the sample
had to be frozen for transport to the laboratory for culture
(−20°C), which typically reduces considerably the infectivity of
enveloped viruses. Conventional air sampling methods can
also underestimate the viable virus count since the high
sampling speeds through tight nozzles impacting on surfaces
can deactivate the virus [69]. Lednicky et al. [70] investigated
this issue by using innovative air sampling techniques in
which they found a much higher viable-to-RNA ratio compared
to previous studies: 0.38 to 0.79 (range from 6 to 74 viable virus
count versus 16 to 94 genome copies, per litre of sampled air). A
ratio of 0.01 was measured for Influenza aerosolized viruses [66].
These values are 3 to 4 orders of magnitude larger than other
studies using nasal swab samples (instead of air samples) or
with destructive air sampling techniques. The authors consider
that a high value for the viable-to-RNA ratio is more likely to
be consistent with the high R0 currently observed (up to 5 with
the delta variant [71]), given the fact that airborne transmission
is considered the dominant mode of transmission.

In the absence of a simpler way of modelling these complex
effects, we propose a novel approach to this parameter which can
take into account the current population’s host immunity, which
evolves over time and requires a regular update. The higher the
host immunity of the infected person, the larger is the expected
antibody titre gained either from natural exposure or vaccines.
The fraction of infectious virus can be estimated by

finf ¼ rinf � ð1�HIinfÞ, ð2:17Þ
where rinf is the viable-to-RNA virus ratio as a function of the
viral load inside the infected host, with values ranging between
0 and 1; HIinf represents the percentage of the infected host
immunity which can be tuned to respect the up-to-date situation
in any given population.

Values for rinf are determined analysing the aforementioned
data with values taken from airborne viruses using non-destruc-
tive techniques [66,70]; given the remaining uncertainties we use

a uniform distribution ranging from 0.01 to 0.60. The high value
on the upper bound (average ratios from [70]) might correspond
to a case where the emitter had no pre-existing antibodies.

Increasing HIinf would skew rinf to lower values, reducing the
amount of viable viruses within the count of aerosolized viral
copies, since more RNA viruses are likely to be bound to anti-
bodies. As an example, the Pfizer-BioNTech and Oxford-
AstraZeneca vaccines offered a 79% and 60% protection against
the S gene-positive samples (covering VOCs like delta) [72]
and, at the time of writing, 55% of the population in Geneva,
Switzerland have had their second dose, exclusively from
mRNA vaccine technologies. Hence, in this case: HIinf = 0.79 ×
0.55≈ 0.43. If host immunity is unknown or strapped with
large uncertainties, we suggest applying a conservative approach
and assume no existing host immunity, i.e. HI = 0.

2.4.2. Inward effect of face covering (ηin)
In the case where occupants are wearing PPE (e.g. respirators),
such as N95 and FFP2, both the filtration efficiency and leak-
tightness requirements are defined in the concerned test stan-
dards in the USA or European Union, i.e. NIOSH-42 CFR Part
84 [73] and EN 149 [74], respectively. Both standards use a
mean particle size of a factor 10 smaller compared to those of sur-
gical masks: 0.3 μm. According to EN 149, the material filtration
efficiency and inward leakage requirements for FFP2 are 94%
and 8%, respectively, providing an overall inward efficiency ηin
of 87 (±5)%. Despite knowing that source control measures,
e.g. surgical masks, are not meant as PPE, they are still found
to have an inward efficiency between 30% and 80% [41,75].
Other studies suggest values in between 25% and 75% [76].
This variability might be linked to how well the mask is fitted
to the wearer’s face. Similar to §2.1.3, we profit from empirical
data [38,41,42,76] to derive the inward efficiency of surgical
masks and use the standard certification values for PPE, which
include fitting requirements. Hence we propose to model ηin
with uniform distributions having the following ranges of vari-
ation:

hin ¼ ½0:25� 0:80� surgical masks ,
½0:83� 0:91� PPE ( respirators).

�

In the proposed model, a constant value of ηin is equally
applied to all susceptible hosts; ηin = 0 if no masks are worn.

2.4.3. Effect of particle deposition in respiratory tract ( fdep)
From a pure physical point of view, the respiratory tract acts as a
filter where particle deposition is distributed along its depth [27].
Similar to a mechanical filter, the three main mechanisms are (i)
inertial impact: large particles (greater than 2.5 μm) generally
deposit in the nasopharyngeal region down to the bronchi; (ii)
diffusion: very small particles (less than 0.3 μm) diffuse and
deposit randomly on the surfaces of the airways; and (iii) sedi-
mentation: intermediate-size particles (between 0.3 and
2.5 μm)—that are small enough to go into bronchioles and alveoli
but big enough to avoid the Brownian motion effect—penetrate
deep into the lower respiratory tract [55]. COVID-19 infections
can occur from SARS-CoV-2 virus binding to ACE2 receptors
which are abundant in nasal and bronchial epithelium and alveo-
lar epithelial cells, covering both upper and lower bounds of the
tract [77]. The virus can start replicating in the nose/mouth,
migrating down to the airways and entering the alveolar
region of the lungs to induce acute respiratory distress [14].
Therefore, it is not prudent to consider that only the smallest par-
ticles that reach the lungs contribute to the infection and we
assume the total deposition in the respiratory tract, independent
of the precise location. With this said, one can conclude that the
fraction of inhaled particles that are absorbed in the respiratory
tract (fdep) is greater than zero; however, the respiratory tract
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does not absorb all the infectious aerosols which are inhaled.
Even if all the particles penetrate into the pulmonary region,
not all are absorbed by a susceptible host since a fraction of
these particles will be re-ejected once again from the airways,
while exhaling, therefore 0 < fdep < 1. A suitable practical illus-
tration is the observation that individuals can inhale and
exhale smoke particles.

In this paper, we use the well-established aerosol deposition
model by Hinds [55] (electronic supplementary material,
equation S.1 and figure S.8), which is based on data from the
International Commission on Radiological Protection (ICRP),
averaged for males and females and at different physical activi-
ties (seated, light and heavy). In this model, fdep depends on
the aerosol particle diameter (after evaporation). One can also
compute average values using plain Monte Carlo sampling for
the diameter (with the BLO model introduced in §2.1.2), thus
obtaining a mean (SD) of 0.33, (0.116), 0.484 (0.224) and 0.519
(0.228) for breathing, speaking and shouting, respectively.

2.5. Estimation of the probability of airborne
transmission

As discussed above and at the time of writing, a dose–response
model for SARS-CoV-2 has yet to be developed. In this study,
we have adopted the findings by Watanabe et al. [18] for the
SARS-CoV virus, where an exponential fit to a dose–response
for SARS has been derived, and most recently a similar approach
was adopted for a SARS-CoV-2 exposure to primates [19].
Assuming a human dose–response for SARS-CoV-2 also fits an
exponential model, the probability of a COVID-19 infection is
represented by

PðIjvDtotal, ID50Þ ¼ 1� e�½vDtotal=ðID50=ln 2Þ � Tvoc � ð1=ð1 � HIexpÞÞ�,

ð2:18Þ
where P(I|vDtotal, ID50) denotes the conditional probability of
event I (infection) for given values of the absorbed and infection
doses vDtotal and ID50, respectively. Tvoc is the reported increase
of transmissibility of a VOC, given by the ratio of basic reproduc-
tion numbers (R0) between non-VOC strains and the VOC itself
(table 2). HIexp is the host immunity of the exposed occupants.
The infectious dose ID50 corresponds to a dose required to
cause infection in 50% of those exposed, and the constant ln(2)
ensures that setting vD = ID50 (with Tvoc = 1 and HIexp = 0)
yields a probability of 50%. Note that the inhaled viruses may
find a source of resistance caused by either a pre-existing
immunological condition, due to past exposure (natural or vac-
cine), or due to environmental conditions, such as indoor air
humidity [53], which would decrease the probability of trans-
mission for the same absorbed dose. Such effect can be
considered in HIexp which effectively shifts the P(I|vDtotal)
curve to the right. For a hypothetical 100% immunity (HIexp =
1), the infectious dose will tend to infinity. Similar to §2.4.1,
the authors recommend a conservative approach in case the
host immunity parameter is unknown, i.e. HIexp = 0. On the
other hand, the presence of new emerging VOCs is found to
result in increased transmissibility in the population [78],
which would, in turn, increase the probability of infection for a
given dose.

The probability of infection P(I ) can be determined by inte-
grating equation (2.18):

PðIÞ ¼
ðþ1

0

ðþ1

0
PðIjvDtotal, ID50Þf ðvDtotalÞf ðID50Þ dvDtotal d ID50,

ð2:19Þ
in which f (vDtotal) and f (ID50) represent, respectively, the prob-
ability density function (PDF) of vDtotal and ID50. The
variability of the simulated dose is accounted for by means of

a probabilistic approach using Monte Carlo sampling of the
model variables (§2.5.2). By neglecting the effects of such a varia-
bility, P(I ) would be underestimated [6]. P(I ) can also be
considered as the attack rate, where the number of new infections
(N) is the product of P(I ) and the number of exposed individuals
in the room which, in turn, is equivalent to R0, if only a single
individual (I = 1) is infected during transmission.

The exponential term of equation (2.18) considers a constant
emission rate with a homogeneous mixture and a steady-state
viral concentration, which varies with the ventilation rate. This
study will cover the transient effects of the evolution of concen-
tration over time, since a steady-state assumption is a limitation
compared to the dynamics of real-world indoor outbreaks.
Another limitation relates to the deterministic implementation
of exponential relations, such as the Wells–Riley model, which
is adapted to a well-known pathogen and large populations
[6]. For volume-specific risk assessments, where a small popu-
lation size is foreseen, a probabilistic approach is necessary.

The ratio between the number of new infections and suscep-
tible hosts corresponds to the attack rate (i.e. infection
probability) of a certain hypothetical outbreak.

The infection model only predicts transmission of secondary
cases with the assumption that the incubation period is longer
than the time scale of the simulation. Since the incubation
period of COVID-19 is 1–2 weeks [79], the evaluation should
be within this timeframe. This assumption is acceptable since
He et al. [3] found less than 0.1% of transmission to secondary
cases 7 days prior to symptom onset. It is important to note
that the results of infection probabilities only take into consider-
ation the airborne transmission of the virus. It does not include
short-range aerosol exposure (where the physical distance of 1–
2 m plays a critical role), nor the other known modes of trans-
mission such as fomites. Hence, the results from this study are
only valid when the other recommended public health and
safety instructions are observed, such as adequate physical dis-
tancing, good hand hygiene and other infection prevention
measures.

2.5.1. Infectious dose (ID50)
The number of infectious viral particles needed to cause an infec-
tion of a disease defines the infectious dose of the pathogen. Such
a dose depends on various factors, such as the type of exposure
(aerosol; intranasal; fomite) causing infection and how the
immune response reacts once exposed [80]. In virology, the infec-
tious dose is normally defined using a dose–response model
expressed as ID50 (median dose) that causes infection in 50% of
the exposed individuals, in vivo; or, in vitro, when inoculating
cell culture, expressed as TCID50 (median tissue culture dose).
The precise dose–response for human hosts via airborne trans-
mission of COVID-19 is not yet determined, hence we have
opted for data reported for other coronaviruses [18]. Based on
dose–response measurements of other known coronaviruses,
e.g. SARS-CoV, the ID50 via airborne transmission was modelled

Table 2. Recommended values for Tvoc based on reported increase in
transmissibility [78].

variants Tvoc

original strain 1

alpha 0.78

beta 0.80

gamma 0.72

delta 0.51
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at the equivalent of 280 plaque-forming units (PFU) (95% confi-
dence interval (CI) from 130 to 530 PFU) [18]. Even lower values
were found for other respiratory viruses like influenza, with an
inhalation of TCID50 between 0.7 and 3 PFU that was enough
to cause seroconversion, as well as prolonged wheezing and
vomiting [81]. For SARS-CoV-2, a more recent study with nonhu-
man primates showed an exposure of 52 TCID50 was enough to
cause seroconversion and 256 TCID50 for the presence of
fever [19], with a dose–response curve likely to equally fit
an exponential model.

Based on a preliminary collection of experimental studies
and modelling estimates, the median infectious dose for SARS-
CoV-2 is likely to be between 10 and 1000 infectious virions
[82]. Nonetheless, in the absence of relevant statistical data, we
have opted to use a probabilistic approach with values ranging
from 10 to 100 infectious virions, which the authors deem reason-
able for a novel agent in a fully susceptible population. This
might also be a safe assumption without knowing the hetero-
geneous infectivity distribution of the respiratory tract such as
for the influenza virus, for example, where ID50 is about two
orders of magnitude higher by intranasal inoculation compared
to aerosol inhalation [20]; hence a range of values is acceptable
in the absence of such data. The infectious dose is considered
as a constant parameter in the model.

2.5.2. Probabilistic approach to the estimation of vDtotal
In this paper, the dose vDtotal is calculated solving the integrals in
equations (2.15) and (2.16) for some given time intervals,
plugging in the concentration function from equation (2.13),
where the presented variables (e.g. fdep, BRk, etc.) are considered
as time invariant. To account for the aleatory uncertainties, most
variables are treated as random, with the result that vR, calculated
by equation (2.1), is considered random as well. Concerning the
viral load vlin, a distribution function has been obtained using
the kernel density estimation technique. Table 3 summarizes the
adopted distribution models and the related statistics.

In the paper, we refer to f(vDtotal) and F(vDtotal), respectively, as
the PDF and the CDF of vDtotal. The values of such PDFs and CDFs

are estimated by applying equations (2.1), (2.13), (2.15) and (2.16)
for each value BRk and vlin obtained by plain Monte Carlo simu-
lations (MCS) from the distribution models described in table 3.

3. Occupation and activity profiles
Themodel supports a piecewise occupation profilewhere both
the infected or exposed hosts can migrate in and out of the
room at a given time, representing a close to real-life occu-
pancy. In addition, we included a set of default activity
profiles in terms of vocalization activity and physical
effort, which provide a weighted average of viral emissions,
depending on the type of activities performed in each scenario.

The scenarios chosen in this study, and their respective
baseline activities, adopted measures and geometric par-
ameters, are summarized in table 4. The baseline preventive
measures are not a representation of any particular real-life
scenario, and shall not be used as a comparison with actual
settings or to local public health related measures. We con-
sider that during the breaks, the occupants leave the room
and do not gather together in another indoor space, i.e. it con-
siders a lapse of time where the occupants are not exposed to
any airborne viruses.

To benchmark our model, we used a case study of the epi-
demiological investigation into the Skagit Valley Chorale
outbreak by Miller et al. [83] and the investigation among
bus riders in eastern China by Shen et al. [84]. The Skagit
Valley Chorale outbreak recorded an attack rate between
53% and 87%, and 34% in the case of the bus ride outbreak.

4. Results
To assess the accuracy of the model, the viral emission rate
vRtotal was benchmarked against experimental data and

Table 3. Summary of random variables for the infection model.

random (stochastic) variables

expiratory
activity variable symbol

mean or
[range] SD unit fitting distribution model

all breathing flowrate BRk m3 h−1 lognormal

seated BRse 0.51 0.053

standing BRst 0.57 0.053

light activity BRl 1.24 0.12

moderate activity BRm 1.77 0.34

heavy activity BRh 3.28 0.72

viral load vlin 6.6 1.7 log10 RNA

copies ml−

1

Gaussian Kernel density

estimation from dataset

[23]

mask efficiency ηin,surgical [0.25–0.80] — — uniform

ηin,PPE [0.83–0.91]

viable-to-RNA virus

ratio

rinf [0.01–0.60] — — uniform

infectious dose ID50 [10–100] — PFUa uniform
aThe dose can simply be expressed as infectious viruses or viable viruses.
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tuned to the datasets for SARS-CoV-2 [65,86,87] (electronic
supplementary material, figure S.9), with a particle concen-
tration of 0.06 and 0.2 cm−3 for the B and L modes,
respectively. The mean NP(swab)-to-aerosol RNA copy
number ratio (vlin/vlout) ranges between 2.4 × 106 for breath-
ing and 7.5 × 103 for shouting.

As a result of the probabilistic approach from a MCS of
250 000 samples, the mean (SD) of vRtotal for breathing,
speaking and shouting was 0.2 (1.7), 1.6 (1.7), 2.3 (1.7)
log10 virion h−1, respectively (figure 1). Note that the absol-
ute values of the emission rates differ mathematically when
computing the mean: 10mðlog10 vR

totalÞ = mðvRtotalÞ. For visual-
ization purpose, we opt to show μ(log10 vRtotal). The
emission rate was dependent on the expiratory and physical
(metabolistic) activities (electronic supplementary material,
figure S.10). Standard vocal (speaking) activities increased
the emission rate by one order of magnitude compared to
tidal breathing, while louder vocalization activities (shout-
ing/singing) yielded an increase of two orders of
magnitude. The physical activity also increased the emission
rate, yet with a smaller weight compared to the activity (2.5-
fold for speaking and 6.5-fold for shouting, compared to
tidal breathing).

The distribution of vRtotal ranges 7 orders of magnitude
from the 1st to the 99th percentile. This is due to the large
variability of the viral load in assessing the emission rate
(figure 1; electronic supplementary material, figure S.10).

Simulations where the infected host is wearing a surgical-
type mask show an average 5.3-fold reduction in the emission
rate. This ratio seems to be maintained through different
physical activities (5.2-, 5.4-, 5.2-fold for seated, light and
heavy activities, respectively).

The successive application of equations (2.1) and (2.13),
generated by MCS on the distributions in table 3, allows corre-
sponding samples of the viral concentration C(t) (integrated

over all aerosol particle diameters) to be calculated and, there-
fore, the estimation of its mean and significant percentiles at
any given time. Following this approach for the baseline scen-
arios, we obtain a peak mean concentration of 3 [90% CI: 1 ×
10−5–10], 14 [90% CI: 5 × 10−5–49] and 233 [90% CI: 6 × 10−4–
727] virion m−3 for the shared office, classroom and ski cabin
scenarios. As for the mean cumulative dose absorbed by the
exposed host (vDtotal), we obtained 3 [90% CI: 2 × 10−5–14], 10
[90% CI: 9 × 10−5–50] and 17 [90% CI: 1 × 10−4–85] infectious
viruses, for the exact same scenarios. Once again the wide confi-
dence interval is governed by the viral load distribution, as
previously discussed. We also compared the effectiveness of
differentmeasures deviating from thebaseline, in order to under-
stand their effectiveness. The results from the shared office
scenario show that combining mask mandates induce a 11-fold
decrease in the cumulative dose, while closing the window
accounts for a threefold increase (electronic supplementary
material, figure S.11). In the classroom scenario, we tested differ-
ent natural ventilation regimes, as well as face covering and air
filtration measures. The results are plotted in figure 2 with
source control (masks) being the most effective measure with a
12-fold decrease in cumulative dose. Closing the window or
choosing to open it only during playground (yard) and lunch
breaks increases the absorbed dose by a factor 2.3 and 1.7 (com-
pared to the baseline). The effect of proper HEPA filtration is
comparable with a full opening of the window during summer,
between 1.5- and 2.1-fold decrease in the dose. In this study,
opting to fully open a window (60 cm) in the summer is slightly
more effective than partially opening the window (20 cm) in
the winter, vDtotal

winter ¼ 10 ½90% CI : 8� 10�5 � 50�; vDtotal
summer ¼

7 ½90% CI : 6� 10�5 � 35� virions.
Out of the three baseline scenarios, ski cabin provides the

largest cumulative dose figures, yet again yielding an 11-fold
decrease in the case of the occupants wearing masks
(electronic supplementary material, figure S.12).

Table 4. Baseline scenarios used to generate results. By default, no masks are used. The preventive measures are not a representation of any particular real-life
scenario, and shall not be used as a 1 : 1 comparison with actual settings or to local public health related measures.

baseline scenario activity occupation ventilation volume (m3) VOC and vaccine

shared office office-type:

speaking 1/3 of the time, seated;

indoor humidity:

40 , RH , 60%

4 occupants; 1

infector:

8 h workday exposure

1 h lunch break

natural: 1.6 × 0.2 m (partial)

window opening, summer season

50 delta VOC and non-

vaccinated

occupants

classroom training-type:

teacher: speaking, light activity

students: breathing, seated; indoor

RH , 40%

20 occupants; 1

infector (teacher):

8 h class

1 h lunch

þ2 yard breaks

natural: periodic opening 1.6 ×

0.2 m (partial) window opening,

winter season

160

ski cabin confined-type:

speaking, moderate activity; indoor

RH , 40%

4 occupants; 1

infector:

20 min ride

— 10

benchmark scenario: Skagit

Valley Chorale outbreak

[83]

singing-type:

shouting, light activity;

indoor humidity:

40 , RH , 60%

61 occupants; 1

infector:

2 h 30 min exposure

mechanical: 0.7 ACH 810 original strain and

non-vaccinated

occupants

benchmark scenario: bus

ride outbreak [84,85]

sedentary-type:

speaking, seated; indoor humidity:

40 , RH , 60%

68 occupants; 1

infector:

1 h 40 min exposure

infiltration: 1.25 ACH 45

royalsocietypublishing.org/journal/rsfs
Interface

Focus
12:20210076

11



Solving equations (2.18) and (2.19), we estimate the
chances of secondary infections in each of the scenarios
in the study, as well as for the two benchmark scenarios.
Assuming the occupants are exposed to an equal
amount of viruses performing similar physical activities,
we can also estimate the number of potential secondary
(new) cases, N, arising from an index host, by multiplying
the infection probability with the number of exposed hosts.
The probability of disease transmission is 0.06 [90% CI: 6.5 ×
10−7–0.36], 0.12 [90% CI: 2 × 10−6–0.78] and 0.16 [90% CI: 4 ×
10−6–0.93] for the three baseline scenarios assuming the
index host was infected with the delta VOC and none of the
occupants were vaccinated (electronic supplementary material,
table S.5).

Figure 3 illustrates the importance of the viral load during
the potential transmission event where, for example, in the
ski cabin scenario, the wearing of masks reduces the total
probability of infection (i.e. including all the random vari-
ables) from 16.1 to 3.6%. Supposing the index host is a

super-emitter, at peak viral load of about 109 copies per ml,
by prescribing masks, we reduce the mean probability from
77 to 20% and can reduce even further to 6% by ensuring
such rides are below 10 min of duration. The results without
masks should be taken with caution as they may underesti-
mate the transmission probability in this particular setting,
due to potential short-range airborne exposure.

Our model can compare the risk with different VOCs in
circulation, as well as the effect of vaccinated occupants.
Figure 6 shows this comparison using as example the chorale
outbreak, which had a confirmed attack rate of between 53
and 87% [83] and our model result is 73% [90% CI: 15–94].
If the event would have happened today, one could question
what the impact of emerging VOCs and vaccination roll-out
would be. Assuming the index host was infected with the
delta variant, the mean transmission probability would
increase from 73 to 92% and the outbreak would have
recorded 12 additional secondary infections (55 [90% CI:
16–60] in total). On the other hand, if all the occupants

viral load
breathing
speaking
shouting
mean

6420

vR (log10 virions h–1)

–2–4

vlin (log10 RNA copies ml–1)

1087 96542 3

Figure 1. Results of the MCS of the viral emission rate distribution for an infected host breathing, speaking and shouting, while undertaking sedentary physical
activity (seated) and comparing with the viral load distribution. Dashed lines correspond to the mean of the log10 values. The vertical axis of the histograms
corresponds to the estimation of distribution PDFs. Median vRtotal values: 3, 67 and 349 virion h−1 for breathing, speaking and shouting, respectively. The
values are without the effect of face covering (ηout = 0).
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Figure 2. Results of the viral concentration profile over the exposure time and the cumulative absorbed dose, in the classroom scenario, for different combination of
measures. The solid lines represent the concentration (left y-axis) and the dotted lines represent the cumulative dose (right y-axis). The horizontal section of the
dotted lines correspond to the breaks (starting t = 2 and t = 7 h for 30 min in the playground and t = 4 h for 1 h lunch), where the infected and exposed hosts
leave the room and are not in contact for the duration. Panel (a) illustrates the scenarios with different natural ventilation scenarios and (b) the effect of HEPA
filtration and masks. Note that the scale of both y-axes differ in the two panels (a,b). For visualization purposes, the confidence interval is not represented in the
figure; these values can be found in electronic supplementary material, table S.4.
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were fully vaccinated with, for example, an mRNA vaccine
offering 92 and 79% protection against S gene-negative and
-positive samples, respectively [72], this would have reduced
the transmission probability from 73 to 42% in the case of
delta, and to 13% in the case of alpha. Other risk mitigation
measures such as improving ventilation from 0.70 to 4 air
changes per hour (ACH) are far more effective, reducing
the risk from 73 to 5%.

5. Discussion
Modelling the emission and concentration of pollutants or
harmful airborne agents in a room has been used extensively
in occupational health and safety, namely for carbon dioxide
and other chemicals [88]. The same fundamental physical
approach was used for airborne viruses.

With this study we were able to develop a methodology
and algorithm to assess the risk of airborne transmission,
which can be used by facility managers, occupational
health experts or interested individuals. Building on existing
research done by aerosol scientists [12], we have extended the
tool to include important epidemiological, virological and
immunological parameters. Using this CARA modelling
tool, our main findings are: 20% of infected hosts can emit

approximately 2 orders of magnitude more viral-containing
particles, suggesting the importance of super-emitters in airborne
transmission; the use of surgical-type masks provides a fivefold
reduction in viral emissions; air filtration and natural ventilation
through the opening of windows at all times are effective strat-
egies to decrease the concentration of virions; slightly opening
a window in the winter has approximately the same effect as a
full window opening during the summer; a critical value of
vlin,0.05 = 109 RNA copies ml−1 could be used as the concentration
threshold limit for definitions of an acceptable risk level; and
pharmaceutical interventions can be included in the model to
study the impact of host immunity in a given population.

Every model should be benchmarked with real-life exper-
imental data. However, human clinical in vivo trial data
studying the infection probability and dose response for
SARS-CoV-2 are unknown to the authors. Nonetheless, we
proceeded with a step-by-step validation of the model with
available experimental findings and high level epidemiologi-
cal investigation data for the main methods in the algorithm.

One of the major parameters in modelling airborne pollu-
tants is the generation source term of the hazardous aerosols.
Understanding this important aspect, we were cautious to
analyse the model results for viral emission rate against
those found in the literature, across two separate domains:
(1) the physiological aspects linked to the particle
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Figure 3. Probability of infection in the ski cabin scenario, and related dependency on the viral load. Results assume the index host was infected with the delta VOC
and none of the occupants were vaccinated. (i) Expected probability of infection for a given viral load value, with mean (solid line) and 90% CI (shaded area).
Comparison between the baseline scenario (blue curve) and situations with stricter set of measures. The X markers denote the critical viral load vlcrit,p≤0.05 in each
situation. The dotted line corresponds to the hypothetical viral load of the infected (index) host. (ii) Histogram of the viral load data from [23]. The vertical axis
corresponds to the probability density function of the adopted distribution. The dotted line indicates the hypothetical viral load of the infected (index) host. (iii) Set
of histograms of the conditional probability of infection P(I|vl), one for each scenario, showing the results of the MCS, including the integration on the full range of
viral load data in [23]. The P(I ) values shown in the middle of each histogram plot indicate the full probability (as per equation (2.19)).
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concentrations and size distribution and (2) the virological
aspects linked to the viral load of the exhaled particles. For
the former parameters, the values in table 1 match the exten-
sive literature review of about 20 publications by Bourouiba
(figs 6 and 7 in [33]). As for the virological aspects, the pub-
lished data available are scarce [65,86,87], although the
results of the model were still compared to studies using a
human source bioaerosol sampler capable of reproducing
the wanted measurements (electronic supplementary
material, figure S.9). For breathing, our model was tuned to
fit experimental data on SARS-CoV-2 (measured average
ratio of the order of 106; model results: 2.4 × 106), although
the swab-to-aerosol viral load ratio is likely to be host-
virus-specific (i.e. differing between humans and animal
models) as the results in humans for influenza show higher
values compared to SARS-CoV-2 (electronic supplementary
material, figure S.9a), suggesting (1) different viruses react
uniquely to the respiratory fluid properties, their location
and the physical process of fluid fragmentation from
mucosa to a particle spray. Since the majority of the volu-
metric particle emissions while breathing come from the
bronchial region, the viral abundance in that location of the
influenza patients would justify higher ratios; (2) the natural
immunological control in the population, for viruses that
have been in circulation for decades (such as influenza),
which would correspond to higher levels of specific and
cross-protective antibodies, yielding a lower amount of
viable virus per RNA sample.

Comparing the emission rate results with the expiratory
activities, we found one order of magnitude increase from
breathing to speaking and a further order of magnitude
increase from speaking to shouting, which confirms the
importance of vocalization in indoor risk assessments. In
fact, the expiratory activity has an overall higher effect on
viral emissions increase than the physical activity, since some-
one shouting while seated yields larger emission rates than
breathing under heavy physical activity (e.g. while at the
gym). As expected, the distribution of vRtotal is highly gov-
erned by the range of viral load data used in the
simulation, visually illustrated by the shape of the PDFs in
figure 1. Although one could define boundaries to reduce
the variability of the data, we would lose the real-life effects
of the particular dynamics of this disease.

Comparing these results with the Skagit Valley Chorale
superspreading event [83], where the authors used the
Wells–Riley formulation to derive the so-called quanta of infec-
tion using reverse engineering from the outbreak investigation.
The quantum (q) can be considered as a cluster of inhaled
pathogens (SARS-CoV-2 virions in our case) required to
cause infection in 63% of those exposed [89]. In other words,
q can be interpreted as the number of inhaled virions divided
by the infectious dose at 63% probability (ID63): q = dose/ID63,
where ID63 = ID50/ln(2). For the chorale outbreak, a mean
quantum was estimated at 970 q h−1; assuming an infectious
dose between 10 and 100 infectious virions we get vRtotal

from 1.4 × 104 to 1.4 × 105 virion h−1. This would correlate for
our results in the range of the 75th and 95th percentiles for
someone shouting undergoing light activity (electronic sup-
plementary material, figure S.10), which would be consistent
with a superspreading scenario reported by the authors and
the findings by Endo et al. [90] which modelled about 10%
of infectious individuals (i.e. 90th percentile) are responsible
for the majority of secondary infections. These results could

also indicate that the index host of the chorale outbreak had
a viral load in between 108 and 109 copies ml−1. Such findings
also support the notion of super-emitters in airborne trans-
mission where a small subset of infected hosts (greater than
80th percentile) emit approximately 2 orders of magnitude
more viral-containing particles, compared to the median, for
any given expiratory activity. In part, it may correlate to a
few individuals which are found to emit much more particles
than others [16] and also shed much more viruses [23].
Another outbreak during a bus ride to a worship event in east-
ern China, with a potential for airborne spread, was reported
[84] and a quantum rate of 45 q h−1 ([6.5 × 102− 6.5 × 103]
virion h−1) was derived based on the epidemiological study
[85]. In our results, this value would correspond to an index
host speaking while seated, in the 70th to 90th percentile
range and could indicate a viral load during transmission
between 5 × 107 and 5 × 108 copies ml−1. Speaking during the
bus ride could well be considered as an accurate assumption
since the occupants of the bus where all attending the same
worship event [84], having similar interests and a common
topic, leading to a sustained conversation during the duration
of the bus ride. Such assumption might not be extrapolated to
similar exposures in public metropolitan transpiration, where
the occupants are generally not speaking to each other. Fur-
thermore, the results of vRtotal are also cross checked against
literature data gathered by Mikszewski et al. [91] (with the
Wells–Riley approach), converted into virions to compare
with vRtotal (figure 4). Note that the literature values used in
figure 4 were normalized to the same infection coefficient,
independent of the type of virus. Knowing that viruses
might differ in terms of virulence, this assumption is
deemed acceptable since the original reverse engineering
application of the Wells–Riley equation from epidemiological
data does not include any viral infection dose [13].

The results for the use of face masks in the model are in
agreement with Asadi et al., where the effect of particle emis-
sions with surgical masks was studied and measured a factor
6 reduction [38], compared to a 5.3 reduction factor given by
our model.

We assume a homogeneous dispersion of virions in the
room, hence potentially underestimating the infection risk
for the occupants in close proximity to the infectious source
[6]. In epidemic modelling, adopting the homogeneous mix-
ture assumption is generally more reasonable than
theoretically reconstructing the layout, airflows or interperso-
nal distances of the precise event where the transmission took
place [20]. This assumption implies that: (1) a proper interper-
sonal distance of at least 1.5–2 m is ensured; (2) there is a
single-zone ventilation mode; and (3) occupants are not in
the same ventilation streamflow. These conditions (in particu-
lar the interpersonal distance) imply a slight overestimation
of the risk of the long-range airborne transmission for
short-term exposures, due to the time needed for the viruses
to disperse and mix within the volume. The assumptions
could be relieved by performing case-specific computational
fluid dynamics simulations at the extra cost of a dramatic
increase in complexity and computational time, thus hinder-
ing the benefits of a quick and easy risk assessment.
Nonetheless, the authors are investigating an analytical
approach to include short-range airborne transmission in
this infection model, as a potential future upgrade.

The simulations for typical shared offices show that
exposure to airborne viruses is almost negligible when the
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occupants are wearing masks and slightly opening the win-
dows ensuring a minimum amount of air exchange
(maximum ACH: 3.8 h−1 in this case).

Recent guidance has emerged to encourage natural venti-
lation in classrooms [92], hence we focused on the different
possible modalities adapted to a typical school routine. The
absence of ventilation in the classroom is clearly a situation
to avoid and simply fully opening the window during play-
ground and lunch breaks (ideally to avoid the fresh air
intake when the room is occupied) is not very efficient, result-
ing in a slight reduction (1.4-fold in exposure). Whereas,
keeping a slight window opening during the winter is 60%
better, yielding a 2.2-fold decrease in the dose. This suggests
natural ventilation through the opening of windows at all
times is an effective strategy to decrease the concentration
of virions in the air, contradicting published guidance in
Europe [93]. We also tested the comparison between
summer and winter seasons and found that slightly opening
the window in the winter has approximately the same effect
as a full window opening during the summer. This result was
expected since the fresh air flow for single-sided natural ven-
tilation is proportional to

ffiffiffiffiffiffiffi
DT

p
—representing the difference

between outdoor and indoor temperature. This finding
could be of high importance in settings where the occupants
may argue against this particular measure.

In practice, the use of natural ventilation via open windows
might be found to be either (i) uncomfortable for children due
to low outdoor temperatures during the winter; (ii) highly pol-
luted outdoor air; or (iii) a source a distraction from external
nuances. The best solution would be to equip schools with
properly sized mechanical HVAC systems, although it is
sometimes complicated to perform retrofitting works within

existing installations. A quick, easy, affordable and effective
solution would be the use of HEPA filters. Installing HEPA fil-
ters ensuring, as a minimum, λHEPA(0.8) = 5 h−1, would reduce
the mean absorbed dose by a factor of 5 compared to having
the windows closed without further measures. Measurements
performed in classrooms reported a similar result showing
that inhaled dose is reduced by a factor of 6 when using air
purifiers at 5.7 h−1 [94].

To summarize, natural ventilation is less effective during
the summer period, although still more effective than the
most conservative periodic venting scenario in [93]. Natural
ventilation is, nonetheless, very important and our study
would suggest leaving the windows open at all times for
maximum viral removal efficiency. Analysing the effect of
natural ventilation from a slightly different angle, a study
has shown that higher airborne pollen concentrations might
have an effect on increased infection rates [95]. Hence, open-
ing the windows during the local pollen season may also
induce a second order, detrimental effect on the infection
probability which is not included in this study. However,
it is safe to say that HEPA filtration will also help in redu-
cing the pollen load in a given volume providing an extra
mitigation measure against this effect. A further study
could aim at including the seasonal pollen load as a variable
in the model.

The model also exposes the relationship between viral
load (vlin) and transmission probability. The conditional
probability of transmitting the disease to other occupants
for a given viral load value in a defined indoor environment
can be evaluated by analysing three different zones in figure 5.
For viral loads below a critical threshold value vlcrit,a, the
probability of infection is close to 0%, whereas above vlcrit,b the
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Figure 4. Comparison of the viral emission rate from this study with those reported in outbreaks. SARS-CoV-2 (model) reflects the result from the MCS for a light
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probability is close to 100%. This demonstrates the aforemen-
tioned importance of the viral load of the infected host at the
time of transmission, showing how to maximize the chances of
breaking the chain of transmission—i.e. reaching P(I|vl)≈ 0.

By defining the critical limits at 5 and 95%, the threshold
values can be annotated as vlcrit,p≤0.05 and vlcrit,p≥0.95. They
depend on the effectiveness of the prevention measures;
by adding stricter measures the graph would move to the
right, whereas relaxing the measures would shift the values
to the left. Therefore, a less conservative approach in terms
of preventive measures would increase the likelihood of
infectious hosts with lower viral loads transmitting the
disease, as shown in figure 3.

Some countries opted to keep ski resorts open during the
widespread COVID-19 restrictions. For a typical 10 m3 ski lift
cabin, the recommended maximum travel time is approxi-
mately 10 min with surgical type masks. Ski cabins
generally have a small opening on one side, although if we
assume that the volume is not actively heated (e.g. sensible
heat from radiators) or passively heated (e.g. latent heat
from the occupants), the outdoor and indoor air temperature
can be assumed to be in equilibrium. Hence the effect of
removal rate from natural ventilation (including infiltration)
is neglected, as a conservative approach. The data also indi-
cate that the probability of infection follows a quasi-binary
relationship, i.e. for a given scenario either transmission
will occur (P(I )≈ 1) or will not (P(I )≈ 0). This can be
observed by analysing the histograms in figure 3(iii),
where the majority of the samples generated by MCS on
viral load distributions lead to a value of P(I|vl) in the
neighbourhood of the lower and upper bounds 0 and
1. The probability of falling within the orange zone in the
baseline scenario (vlcrit,p=0.05 < vlin < vlcrit,p=0.95) is 28%,
which is spread throughout the range 0.05 < P(I|vl) < 0.95.
In our study, the rise in probability of infection for several
baseline scenarios occurs at viral loads higher than 106

RNA copies ml−1, which strikingly correlate to the findings
of van Kampen et al. [62] where the probability of isolating
infectious SARS-CoV-2 viruses in RNA samples starts to

increase in the same range. A deeper analysis of figure 3
reveals the importance of introducing appropriate measures
that would shift the curves in plot (i) towards the right.
Relaxing preventive measures (i.e. shifting the curve to
the left) would yield higher density of samples close to
P(I ) ≈ 1 and therefore increase the chances of transmitting
the disease. This also shows the importance and effective-
ness of large-scale diagnostics in asymptomatic or
presymptomatic hosts early into their infection, so that
they are placed in isolation before the viral load increases
beyond the critical value.

By adopting appropriate measures, tailored for the
specific indoor environment, the user could apply this critical
threshold approach vlcrit,p≤0.05 as a goal/objective for the risk
assessment. Approximately 80% of the viral load samples in
[23] are less than 108 RNA copies ml−1 and approximately
95% less than 109 RNA copies ml−1; therefore by applying
control measures such that even with a potential viral load
during transmission of the infected host up to 109, one still
ensures a significantly reduced chance of on-site trans-
mission, i.e. vlcrit,p≤0.05 ≥ 109, hence the risk assessment of
airborne transmission could be considered as acceptable.
The residual risk linked to the remaining 5% of viral
loads above 109 RNA copies ml−1 might not be acceptable
in settings which possess identified superspreading charac-
teristics, such as crowded, close-contact and confined
settings—three C’s—or for settings involving a large gather-
ings of people, such as conferences, social events or
concerts. For such settings, we recommend to either (1)
increase the threshold to vlcrit,p≤0.05≥ 1010 RNA copies ml−1,
which would probably require a non-negligible upgrade of
venue layouts and ventilation systems, or (2) include, in
addition, other diagnostic measures such as a rapid antigen
testing strategy of the participants. The latter option would
cover the residual risk of infected hosts with higher viral
loads (greater than 109), where this type of diagnostic
technique is most effective.

In this study, we also looked at the effect of
pharmaceutical interventions, such as vaccination, and
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Figure 5. Conditional probability of infection P(I|vl), with a 90% CI (blue shaded area). vlcrit,a and vlcrit,b are the critical threshold values up to which the probability
of infection is close to 0 and 1, respectively, dividing the range of viral loads into three shaded regions (in green, orange and red).
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epidemiological characteristics related to emerging VOC
(figure 6). Our findings suggest the increase transmissibility
of a given variant surpasses the counter effect of the vacci-
nation when the protection level (against the S gene sample
in question) is lower than 1 − TVOC—in the case of the delta
VOC, a protection of 49% would be equivalent to an non-
vaccinated host infected with the original (wild) strain.
With a vaccine providing 79% protection against delta, the
chances of on-site transmission are reduced by a factor
of six. This analysis is valid as long as average viral loads
remain similar from vaccinated to non-vaccinated hosts;
such parameter can be included in the model once accurate
data are available. Since the reasons for increase transmissi-
bility are unknown (e.g. spike mutations that would alter
the infectious dose or an increased level of viral shedding,
among others), a dedicated parameter such as TVOC,
which is based exclusively on epidemiological data, is
most accurate. Vaccination and host immunity is an impor-
tant preventive and protective measure; however, according
to this model, non-pharmaceutical interventions such as
ventilation seem to be much more effective with a 14-fold
reduction. Hence, measures which reduce the viral density
in the air should be actively supported and included early
in the risk assessment process. In addition, vaccine effective-
ness will be limited by the continuous emergence of new
variants, whereas the non-pharmaceutical interventions
(masking, ventilation, interpersonal distance) are effective
independently of the VOC. When performing risk assess-
ments, it is very important to adopt the hierarchical
pyramid approach for protection measures, starting from
eliminating, substituting or reducing the hazard, following
with engineering/scientific measures and administrative

controls, and leaving the prescription of PPE as a last
(final) layer of protection, if needed.

To maximize the benefit and global use by the public, it is
important that such models are accompanied with a func-
tional user friendly interface where the input parameters
are simple and relatively easy to identify by non-experts.
An example is provided for the CARA calculator tool
(electronic supplementary material, figure S.13).

6. Conclusion
Just like any other occupational health and safety risk, it is of
vital importance to fully understand the hazards and the
rationale behind any preventive measures. A proper under-
standing of how respiratory viruses are transmitted is an
essential step towards ensuring proper protection. This
paper focuses on describing the airborne transmission
mode of SARS-CoV-2 and proposes a multidisciplinary
approach to assess the most suitable preventive and protec-
tive measures. Facility managers, health and safety
professionals, as well as individuals must systematically
address the risk of airborne transmission of respiratory patho-
gens in indoor settings. Providing easy access to such models,
despite their intrinsic complexity, accompanied by a proper
user friendly interface, will greatly facilitate the required
analysis to estimate the risk level. Although the notion of
acceptable risk depends on national legislation and corpor-
ate/organizational risk management strategies, this paper
provides some guidance on how to determine whether or
not the risk of airborne transmission is mitigated. The
CARA tool allows for such a quick and accurate assessment
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of the indoor setting, which has been benchmarked against
epidemiological and experimental data, as well as other pub-
lished findings. Having a simplified model obviously relies
upon some of the assumptions and consequent limitations
that were discussed and justified in this study.

The present methodology is highly dependent on the
viral load data and associated statistical descriptors. The
use of other datasets would have an impact on the results,
which might modify the findings of this study. Nonetheless,
the authors were cautious to choose a distribution that would
represent a broad envelope by taking data during the expo-
nential growth phase of the epidemic, yielding conservative
values compared to other less critical datasets. Although
this could be considered as a vulnerable aspect of the
model, it is one that can be tuned once further data are pub-
lished. The same can be said with respect to immunological
effects. Plugging in data on the waning levels of population
immunity (from either natural infection or vaccination)
from the time post-infection, or post-inoculation for different
vaccine technologies, would increase the accuracy of the
dose–response relation. Hence, detailed modelling of host
immunity dynamics, as well as short-range airborne trans-
mission (discussed above), will be subject to a future
upgrade of CARA.

To conclude, this study shows that with a risk-based
approach, transmission can be mitigated in existing infra-
structures without major modifications or costly
consolidations plans (e.g. optimizing of the exposure time/
occupation profile, ensuring sufficient natural ventilation
adapted to the different temperature profiles or using ade-
quate face covering measures). In a post-COVID era, we
will face a new paradigm with the inclusion of this novel
occupational hazard, using models and tools such as CARA
to endorse healthy buildings and protect their occupants
against respiratory infections.
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Endnote
1The total emission rate, vRtotal in virion h−1, can be obtained by inte-
grating the emission rate over the diameter D.
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