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Recently, Damour computed the radiation reaction on gravitational scattering as the (linear) response 
to the angular momentum loss which he found to be of O(G2) in the gravitational constant. This is 
a puzzle because any amplitude calculation would predict both radiated energy and radiated angular 
momentum to start only at O(G3). Another puzzle is that the resultant radiation reaction, of O(G3), 
is nevertheless correct and confirmed by a number of direct calculations. We ascribe these puzzles to 
the BMS ambiguity in defining angular momentum. The loss of angular momentum is to be counted 
out from the ADM value and, therefore, should be calculated in the so-called canonical gauge under the 
BMS transformations in which the remote-past limit of the Bondi angular momentum coincides with the 
ADM angular momentum. This calculation correctly gives the O(G3) radiative loss. On the other hand, we 
introduce a gauge in which the Bondi light cones tend asymptotically to those emanating from the center 
of mass world line. We find that the angular momentum loss in this gauge is precisely the one used by 
Damour for his radiation reaction result. We call this new gauge “intrinsic” and argue that, although 
the radiated angular momentum is to be computed in the canonical gauge, any mechanical calculation 
of gauge-dependent quantities – such as angular momentum – gives the result in the intrinsic gauge.
Therefore, it is this gauge that should be used in the linear response formula. This solves the puzzles and 
establishes the correspondence between the intrinsic mechanical calculations and the Bondi formalism.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction and summary

Two particles interact gravitationally and produce gravitational 
waves. This gravitational scattering problem is presently at the 
center of attention of many researchers, particularly in what con-
cerns the problem of adding radiation reaction effects to the con-
servative potential dynamics. Such effects appear for the first time 
at the 3P M (or O(G3)) level and, in that context, have been found 
[1] to be essential for recovering the smooth ultra-relativistic limit 
first obtained in [2] and recently confirmed in [1] and [3]. The cal-
culation in [1] was carried out in the simpler framework of N = 8
massive supergravity and pointed to the need to include the full 
soft region in the loop integrals (the previously considered poten-
tial region [4], [5] being unable to include radiation reaction). In an 
impressive paper [6] Damour found a smart shortcut for evaluat-
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ing the O(G3) radiation reaction (in the purely gravitational case). 
His paper is the subject of our considerations below.

The theory of gravitational radiation is the Bondi formalism in-
troduced in [7], [8], extended in [9], [10], and amplified by Penrose 
in [11]. A recent review can be found in [12]. We also recommend 
[13], and especially [14] where very clear and detailed equations 
pertaining to the Bondi formalism are presented.

The radiation occurs at the future null infinity (I+) which is the 
product of the time-u axis and the celestial 2-sphere S . The time 
u labels the null hypersurfaces whose generators are the light rays 
that, when traced to the future, come to the asymptotically flat 
infinity. I+ can be regarded as the future limit along these rays.

The two radiative degrees of freedom of the gravitational field 
can be packaged into a symmetric traceless tensor fab , a, b = 1, 2, 
on the 2-sphere S , the shear tensor in the Bondi metric. Differen-
tiated with respect to u, its two components are the Bondi-Sachs 
news functions describing gravitational radiation. The fluxes of en-
ergy, momentum, and angular momentum due to radiation are 
given by the expressions
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://doi.org/10.1016/j.physletb.2022.137419
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2022.137419&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:gabriele.veneziano@cern.ch
mailto:vilkov@lebedev.ru
https://doi.org/10.1016/j.physletb.2022.137419
http://creativecommons.org/licenses/by/4.0/


G. Veneziano and G.A. Vilkovisky Physics Letters B 834 (2022) 137419
∂u M = − 1

32πG

∫
(∂u fab)(∂u f ab)d2 S , (1.1)

∂u P i = − 1

32πG

∫
(∂u fab)(∂u f ab)nid2 S , (1.2)

∂u J i = − 3

16πG
ε i

jk

∫
(n[ j Dank])

(
1

6
(∂u fbc)(Db f ac)

− 1

2
(∂u f ac)(Db fbc)

)
d2 S (1.3)

where the integrals are over the (unit) 2-sphere S . The integration 
measure and contractions are with respect to the standard metric 
on the unit 2-sphere (denoted below by �ab), Da is the covariant 
derivative with respect to this metric, and ni is the direction 3-
vector living on the 2-sphere.

The news functions ∂u fab are O(G2) since this is the lowest 
order at which the scattering effects manifest themselves in the 
metric. Hence the fluxes of energy and momentum are O(G3). The 
statement persistently appears in the literature that the flux of an-
gular momentum is by an order of G larger:

∂u J i = O(G2) . (1.4)

The reason is that expression (1.3), as distinct from (1.1) and (1.2), 
contains not only the news functions. It contains also fab undiffer-
entiated with respect to u. Damour [6] calculated the undifferenti-
ated fab and found

fab = O(G) . (1.5)

Hence (1.4). The statement goes back to much earlier work by 
Damour and Deruelle [15]. There too the angular momentum loss 
is of lower order in the coupling constant than the energy loss. 
It got to the point where at a recent workshop there appeared a 
graviton having zero energy and robust angular momentum! This 
state of affairs is one of our concerns in the present paper.

It would not be difficult to correct the statement above if it 
were not for another fact. Bini and Damour [16] derived a linear 
response formula for the scattering angle. The scattering angle χ
is divided into two contributions: χ cons which results from the 
conservative dynamics and χ rad which is the radiation-reaction 
contribution. The linear response formula expresses χ rad through 
χ cons as follows:

χ rad(M, J ) = −1

2

∂χ cons

∂M
Mrad − 1

2

∂χ cons

∂ J
J rad (1.6)

where Mrad and J rad are the total radiated energy and angular mo-
mentum

Mrad = −
∞∫

−∞
du ∂u M , J rad = −

∞∫
−∞

du ∂u J . (1.7)

Damour [6] inserted into this formula the apparently incorrect 
O(G2) flux of angular momentum and obtained the correct scat-
tering angle! In subsequent work his result was re-derived by a 
very different shortcut [17] using soft-graviton theorems and an-
alyticity arguments. It was finally confirmed by other, brute-force, 
calculations [18], [19], [20], [21].

The purpose of the present work is to propose a resolution of 
the above puzzles. Since Damour’s shear (1.5) is O(G), we had to 
derive and study the O(G) metric, i.e., the metric generated by a 
collection of non interacting particles at the lowest order in G . The 
relevant part of this study is presented below, and here is the sum-
mary of its outcome. In its Bondi form, the O(G) metric contains 
an arbitrariness which is none other than the BMS ambiguity [9], 
2

[12] which affects the shear tensor and the Bondi angular momen-
tum.1 The solution of the puzzles is in the possible gauge choices 
with respect to the BMS transformations (specifically, to the super-
translations).

It is known (see e.g. [13]) that the BMS supertranslations can 
be parametrized by the value of the shear tensor at u = −∞, and 
there is a “canonical” gauge in which the BMS ambiguity is fixed 
by the condition

fab
∣∣
u=−∞= 0. (1.8)

In the O(G) metric, the shear tensor is u-independent, and we 
present explicitly the supertranslation that turns it into zero.

The canonical gauge is of paramount importance because in 
this gauge, and only in this gauge, the Bondi angular momen-
tum at u = −∞ coincides with the ADM angular momentum. This 
statement has been proven in [23] for stationary spacetimes. Soon 
after, the reasoning was generalized [24] to show that the past 
limit of the Bondi 4-momentum is the ADM 4-momentum for gen-
eral radiating spacetimes. It is straightforward to combine the two 
arguments to show that the past limit of the Bondi angular mo-
mentum computed in the canonical gauge equals the ADM angular 
momentum also in radiating spacetimes [25]. Because the latter 
reference is not yet available in print, we presently take the above 
statement as an assumption. The following argument supports this 
assumption. There is no question that the loss of angular momen-
tum is to be counted out from the initial ADM value. There is also 
no doubt that gravitational radiation (seen as graviton emission) 
starts at O(G3) in a purely gravitational collision.2 Since the O(G)

term of fab sits only in its past limit, this means that the radiated 
angular momentum should be calculated in the canonical gauge. 
We see that the above statement/assumption reconciles classical 
GR reasoning with the G power counting one derives from scatter-
ing amplitudes.

There is, however, another gauge relevant for the scattering 
problem (and possibly elsewhere). It is fixed by the requirement 
that the Bondi light cones coincide at I+ with the light cones em-
anating from the world line of the center of mass of the particles’ 
system. We call this gauge “intrinsic” because it is attached to the 
dynamics of particles. When a gauge-dependent quantity such as 
angular momentum is calculated by working with the dynamical 
equations in the center of mass frame, the result is obtained in the 
intrinsic gauge. The Bini-Damour formula is derived by this kind of 
calculations. Therefore, the angular momentum loss to be inserted 
in this formula should be taken in the intrinsic gauge rather than 
in the canonical gauge.

It turns out that the Damour’s shear tensor (1.5) is precisely the 
one obtained in the intrinsic gauge. This explains both his correct 
result for the scattering angle and his incorrect identification of 
the radiated angular momentum. The Bini-Damour formula is very 
valuable because it is a rare case where the conservation laws in 
field theory help to solve a dynamical problem. But one should 
know how to use this formula.

The calculations in the paper [15] are also of the intrinsic me-
chanical kind. Therefore, the result for the angular momentum loss 
is obtained in the intrinsic gauge. To obtain the radiated angular 
momentum, it should be supertranslated to the canonical gauge.

The flux of angular momentum in the intrinsic gauge gives the 
loss of mechanical J . It is larger than the radiated J . A large 
amount of it is transferred to the non-radiative part of the grav-
itational field. This is the so-called Schott term. In (1.3) it has the 
form of a total time derivative which, unlike for elliptic motion, 

1 See [22] for another recently discussed implication of this ambiguity.
2 This parallels the well-known fact that, in QED, photon emission in an e+e−

collision starts at O(α3).
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does not integrate to zero for the scattering case. Schott terms of 
this form arise already in the PN expansion (see e.g. [26]).

Thus the solution of the puzzle lies in the way the limit of I+
is taken. To each point of I+ there comes a two-parameter family 
of parallel light rays. At leading order they are indistinguishable, 
but shear and angular momentum are sensitive to which represen-
tative of the family is taken for the limit. This is the reason behind 
the BMS ambiguity. Damour’s result corresponds to the BMS gauge 
in which the relevant light rays emanate from the center-of-mass 
world line (to be more precise, tend to them asymptotically). This 
defines the intrinsic gauge.

The rest of the paper contains details of the above consider-
ation. In Section 2 we present the O(G) metric and calculate its 
Bondi shear. In the process of derivation we discover the arbitrari-
ness in the Bondi metric. In Section 3 we provide an explanation 
of this arbitrariness. In Section 4, the intrinsic gauge is introduced, 
and both gauges, intrinsic and canonical, are discussed. In Sec-
tion 5 we consider Damour’s [6] shear and find that it is exactly 
the Bondi shear in the intrinsic gauge. The consequences of this 
fact were discussed above.

2. The O(G) metric. Shear

The O(G) metric obtained initially in the coordinate-independ-
ent form

gμν = gμν
flat + δgμν , δgμν = O(G), (2.1)

and next specialized to the Minkowski coordinates of gμν
flat: xμ =

(x0, xi) is of the form3

gμν = ημν − 4G
∑ m

�(x)
(vμvν + 1

2
ημν) , (2.2)

�(x) =
√

(xμ − cμ)(xν − cν)�μν , (2.3)

�μν = ημν + vμvν , vμ�μν = 0 . (2.4)

In (2.2), and hereafter, the expression following the 
∑

sign is 
the contribution of a single particle of mass m, and 

∑
denotes 

the sum of contributions of all particles. Operations on the in-
dices μ, ν, . . . are performed with the Minkowski metric ημν =
diag (−1, 1, 1, 1), and vμ , cν are constant 4-vectors appearing in 
the particle’s law of motion with respect to its proper time s:

xμ(s) = cμ + vμs , v2 = −1 , (2.5)

mvμ = (E, pi) . (2.6)

Here E and pi are the particle’s energy and momentum.
We stress that, besides the O(G) approximation, the metric 

above is exact in the sense that it does not involve any large- or 
small-distance approximation.

Using standard definitions related to the behavior of the metric 
at spatial infinity, it is straightforward, though somewhat tedious, 
to check that the metric (2.2) reproduces the correct expressions 
for the ADM mass/energy, linear and angular momentum of the 
system of non interacting particles. We find:

MADM =
∑

E , P i
ADM =

∑
pi ,

J i
ADM = ε i

jk

∑
x j pk = ε i

jk

∑
c j pk (2.7)

in agreement with expectations.

3 This result can be obtained, up to a diffeomorphism, by directly solving the 
Einstein equations; it can also be obtained by judiciously performing a Lorentz boost 
of the Schwarzschild solution (see e.g. Appendix C of [14]).
3

Before proceeding we fix the Lorentz frame, thus far arbitrary, 
to be the center of mass (c.m.) frame in which the total momen-
tum vanishes:
∑

pi = 0 , (2.8)

and xi = 0 is the world line of the center of mass of the particles’ 
system.

We need to transform the metric above to the Bondi coordi-
nates

u, r,�a , a = 1,2 (2.9)

defined by the conditions

(∇u)2 = 0 , (∇u,∇�a) = 0 ,

det(∇�a,∇�b) = r−4 (det�ab)
−1 . (2.10)

Here �a take values on the 2-sphere and label the generators of 
the null surfaces u = const.,

�ab = �ab(�) (2.11)

is the standard metric on the unit 2-sphere, and r is the luminosity 
(area) distance. We are interested in the angular components of 
the Bondi metric, gab , the inverse of

gab = (∇�a,∇�b) . (2.12)

In the limit of I+ , gab is of the form

gab = r2
(

�ab + 1

r
fab +O(

1

r2
)

)
, r → ∞ (2.13)

where fab is the shear tensor. By virtue of the definition of r above, 
this tensor satisfies the trace-free condition

�abfab = 0 , (2.14)

and then its two independent components are the two radiative 
degrees of freedom of the gravitational field.

We shall look for the solution of eqs. (2.10) in the form

u = u + δu , r = r + δr , �a = φa + δφa (2.15)

where

u, r, φa , a = 1,2 (2.16)

are flat-space Bondi coordinates for which we choose the surfaces 
u = const. to be the future light cones (in flat metric) emanating 
from the c.m. world line:

u = x0 − r , r =
√∑

(xi)2 , xi = rni(φ) . (2.17)

Here ni(φ) is the direction 3-vector which already figured in 
Sect. 1, and, for later convenience, we introduce also the 4-vector 
nμ = (1, ni) = −ημν∇νu. In what follows, the scalar product (n · v)

denotes ημνnμvν .
For the O(G) corrections in (2.15) we obtain the equations

∂rδu = −
∑ 2Gm

�
(n · v)2 , (2.18)

∂rδφ
a = 1

r2
�ab∂bδu + 1

r

∑ 4Gm

�
(n · v)�ab∂b(n · v) , (2.19)

−2δr = rDaδφ
a − r

∑ 2Gm
(�ab∂a(n · v)∂b(n · v) + 1) . (2.20)
�
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Since the equations are differential, their solution contains integra-
tion “constants”, i.e., arbitrary functions of u and φa . Solving them 
asymptotically as an expansion at I+ , we find4

δu
∣∣∣
I+= −

(∑
2G E

)
log r − β(u, φa) +O(

1

r
) , (2.21)

δφa
∣∣∣
I+= �ab

(
γb(u, φa) + 1

r
∂bβ(u, φa)

)
+O(

1

r2
) , (2.22)

2δr
∣∣∣
I+= −rDaγa(u, φa) +

(∑
2G E − D2β(u, φa)

)
+O(

1

r
)

(2.23)

where β and γa are the above mentioned integration “constants”. 
As explained below, β corresponds to the BMS supertranslation 
arbitrariness, while γa represent another residual arbitrariness of 
the Bondi coordinates: the freedom to make the transformation 
φa → f a(φ, u).

It is now straightforward to calculate the Bondi metric as an 
asymptotic expansion near I+ with the presently needed accuracy. 
The arbitrary functions are restricted by the requirement that the 
Bondi metric has the correct flat-space limit at I+ . This leads to a 
set of entangled equations for β and γa . They fix γa up to several 
constants, and, without loss of generality, we can set γa = 0. Then 
the solution for β is of the form

β = β1(u) + β2(φ
a) (2.24)

with arbitrary β1 and β2. The term β1(u) can be absorbed by a 
trivial redefinition u → f (u). The remaining function β2(φ

a) is the 
genuine supertranslation parameter.

For the shear tensor we obtain the following result:

fab = −
∑ 4Gm

(n · v)

[
Da(n · v)Db(n · v) − 1

2
�ab Dc(n · v)Dc(n · v)

]

+ (�ab D2 − 2Da Db)β . (2.25)

There is an order-G term in the shear (recall (1.5)) but there is 
also a term containing an arbitrary function. The shear is gauge-
dependent. We shall see below the implications of this fact.

3. Nature of the supertranslation ambiguity

We shall explain the arbitrariness in the Bondi metric by show-
ing that it describes an arbitrary deflection of the central line r = 0
of the Bondi frame from the c.m. world line r = 0 of the particles’ 
system. For that purpose we need the exact solution of eq. (2.18)
normalized at r = 0. The function �2 is a quadratic polynomial in 
r. Introducing a notation for its coefficients, we have

�2 = r2(n · v)2 − 2ra(n · v) + z . (3.1)

Then the solution reads

δu = ω(u, φa) +
∑

2Gm(n · v) log

[
a + � − r(n · v)

a + √
z

]
(3.2)

where ω(u, φa) is the integration “constant” defined as the solu-
tion at r = 0. Expanding (3.2) at I+ , we find the relation between 
ω and β (the renormalization):

β = −ω −
∑

2Gm(n · v) log

[−2(n · v)

a + √
z

]
. (3.3)

4 The coefficient of log r in (2.21) is initially obtained as ∑2Gm(n · v) but, ow-
ing to the c.m. condition (2.8), it reduces to − ∑2G E and thus becomes angle-
independent. The validity of the entire theory rests on this crucial fact.

Her
plic

to s
and
res

r
∣∣
r=

Hen
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a f
forc
clea
to m
imp
in 
of t
sec
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4. C

O(

(∇u

eve
dom
bec
wo

∇δ

As 

∇β

and
Sin
this
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hav
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suffi

tion
of 
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onl
not
cha
stro
the

dep
wo
sult
form

5

shap
4

e z depends only on u, and a on both u and angles. Their ex-
it form will not be needed here.
We need to find δr in (2.15) in the r = 0 limit. This amounts 
olving for the corrections δu, δφa , δr anew starting from (3.2)
 expanding this time at r → 0 rather than at r → ∞. The final 

ult is simple and eloquent:

0=
1

2
D2ω . (3.4)

ce the deviation of the line r = 0 from the line r = 0 is directly 
ted to the supertranslation parameter ω.
Can we set this deviation to zero? This would require ω to be 
unction of u only. But with ω = ω(u) the relation (3.3) will 
e β to be a complicated function of u and the angles which is 
rly incompatible with (2.24). We conclude that it is impossible 
ake the world lines r = 0 and r = 0 coincide and attribute this 

ossibility to the fact that the c.m. world line r = 0 is a geodesic 
flat metric but not in the O(G) metric while the central line 
he Bondi frame is a geodesic in the exact metric. In the next 

tion we shall discuss to what extent the Bondi frame can be 
ed on the c.m. world line.

anonical and “intrinsic” Bondi gauges

The right-hand side of (2.18) is, up to a factor of 2, (∇u)2 in the 
G) metric. It is not vanishing but it is O(1/r) at I+ . Therefore,

)2
∣∣∣
I+= 0 (4.1)

n in the O(G) metric. In other words, although in the compact 
ain the surfaces u = const. are not null, in the limit of I+ they 

ome null and remain the light cones emanating from the c.m. 
rld line.
Consider now imposing the condition

u
∣∣∣
I+= 0 , i.e., ∇u = ∇u at I+ . (4.2)

seen from eq. (2.21), it amounts to

= 0 (4.3)

 thus fixes the supertranslation arbitrariness up to β = const.
ce the vector ∇u is the null tangent to the Bondi light cones, 
 gauge condition requires that the Bondi light cones tend 
mptotically to those emanating from the c.m. world line.5 We 
e seen that it is not possible to impose such a condition ev-
where in spacetime but it can be imposed at I+ , and this is 
cient to fix the gauge.

We call this gauge “intrinsic” because it is attached to the mo-
 of particles in their c.m. frame. The ADM or Bondi definition 

the center of mass is far removed from the events in the in-
or of spacetime where the particles interact. Therefore, it fixes 
y the freedom of performing the Lorentz boosts at infinity but 
 the freedom of the BMS supertranslations. The intrinsic me-
nical definition which uses the notion of the c.m. world line is 
nger. Basing the Bondi frame on this world line would fix also 
 supertranslation arbitrariness. And it suffices to do so near I+ .
This is the meaning of the intrinsic gauge. When a gauge-
endent quantity, such as angular momentum, is calculated by 

rking with the dynamical equations in the c.m. frame, the re-
 is obtained in the intrinsic gauge. Since the linear response 

ula [16] is derived by this kind of calculations, the angular 

Since the term with log r in (2.21) is angle-independent, it does not affect the 
e of the light cones. At a given r , it is a large additive constant.
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momentum loss to be inserted into this formula should be taken 
in the intrinsic –rather than in the canonical– gauge.

It follows from eq. (2.25) that in the intrinsic gauge

β = 0 , (4.4)

fab = −
∑ 4Gm

(n · v)

[
Da(n · v)Db(n · v)

− 1

2
�ab Dc(n · v)Dc(n · v)

]
. (4.5)

In the canonical gauge conversely

fab = 0 , (4.6)

β = −
∑

2Gm(n · v) log(−(n · v)) . (4.7)

One can check by a direct calculation that this β represents pre-
cisely the supertranslation that turns the shear (2.25) into zero.

5. Damour’s shear [6]

Consider the O(G) term of the metric in Minkowski coordi-
nates, its spatial part

δgik =
∑ 4Gm

�

(
pi pk

m2
+ 1

2
δik

)
(5.1)

and convert it into a 2D tensor

Fab = (Dani)(Dbnk)δgik . (5.2)

To see what this corresponds to in the Bondi coordinates, trans-
form the metric from Minkowski to flat-space Bondi coordinates 
(marked below as “Bondi”). For the angle components of the 
“Bondi” metric one obtains

“Bondi” gab = (Daxi)(Dbxk)(δik + δgik) = r2(�ab + Fab) (5.3)

and notices that if one writes

Fab = 1

r
fab , r → ∞ , (5.4)

then fab plays the role of shear in the “Bondi” metric. One might 
try to take it for one’s shear but, because the “Bondi” r is not cor-
rectly defined, the “shear” does not satisfy the trace-free condition:

�ab Fab = (δik − nink)δgik �= 0 . (5.5)

However, one can correct Fab:

F cor
ab = (Dani)(Dbnk)δgTT

ik , F cor
ab = 1

r
f cor
ab (5.6)

where δgTT
ik is the transverse and traceless part of δgik . Since

niδgTT
ik = 0 , δikδgTT

ik = 0 , (5.7)

F cor
ab satisfies the trace-free condition. The f cor

ab is Damour’s [6]
shear.

It is not difficult to calculate f cor
ab in (5.6). The result is ex-

pression (4.5). Damour’s shear [6] is exactly the Bondi shear in the 
intrinsic gauge! This explains both the success of ref. [6] in the cal-
culation of radiation reaction through the linear response formula 
and its failure in obtaining the true angular momentum loss.

Let us finally comment on the calculation of [15] for which 
most of the remarks made about [6] remain true. We can add that, 
in the non-relativistic limit considered in [15], the news functions 
5

(converted into a 3D tensor) can be obtained as the third time 
derivative of the quadrupole moment of the system6:

∂u fi j = 2G

3
∂3

uuu Q TT
i j . (5.8)

The solution of this equation for shear is

f i j = 2G

3
∂2

uu Q TT
i j + ci j(φ) , (5.9)

and the integration “const.” ci j(φ) cannot be ignored. For the pur-
pose of obtaining the true angular momentum flux it should be 
fixed by the requirement f i j(u → −∞) = 0 of the canonical gauge.

Notes added

• After completion of this paper we were informed by R. Oliv-
eri of the existence of a paper [28] where a similar coor-
dinate transformation from harmonic to Bondi coordinates is 
performed in the context of the multipolar post-Minkowskian 
approximation. Unfortunately, the issue of the Bondi gauge de-
pendence of the radiated angular momentum is not addressed 
in that paper.

• Two recent [29], [30] amplitude-based derivations of Damour’s 
result have appeared, in which the O(G2) contribution of ex-
actly zero-energy gravitons (whatever that means) is included. 
Our interpretation of such “gravitons” (as corresponding to a 
non-radiative component of the gravitational field) is in line 
with that of the authors.
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