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Abstract. We make a number of comments regarding modeling degeneracies in strong lens-
ing measurements of the Hubble parameter H0. The first point concerns the impact of weak
lensing associated with different segments of the line of sight. We show that external conver-
gence terms associated with the lens-source and observer-lens segments need to be included
in cosmographic modeling, in addition to the usual observer-source term, to avoid systematic
bias in the inferred value of H0. Specifically, we show how an incomplete account of some line
of sight terms biases stellar kinematics as well as ray tracing simulation methods to alleviate
the mass sheet degeneracy. The second point concerns the use of imaging data for multiple
strongly-lensed sources in a given system. We show that the mass sheet degeneracy is not
fully resolved by the availability of multiple sources: some degeneracy remains because of
differential external convergence between the different sources. Similarly, differential external
convergence also complicates the use of multiple sources in addressing the approximate mass
sheet degeneracy associated with a local (“internal”) core component in lens galaxies. This
internal-external degeneracy is amplified by the non-monotonicity of the angular diameter
distance as a function of redshift. For a rough assessment of the weak lensing effects, we pro-
vide estimates of external convergence using the nonlinear matter power spectrum, paying
attention to non-equal time correlators.
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1 Introduction

Strong gravitational lensing of galaxies probes the mass distribution in lens objects and
the background cosmology [1–4]. Imaging data combined with gravitational time delays
of quasars and supernovae could allow a determination of the Hubble parameter H0 [5–9].
Subject to simplifying assumptions on the mass profile of lens galaxies, a handful of systems
with quasar time delays were enough for measurements of H0 [10–15] that were widely used
for tests of the ΛCDM model [16–18]. The prospects for time delay cosmography will make a
leap with the advent of various surveys [19–21] and notably the LSST [22], that will discover
thousands of lensed quasars and dozens of lensed supernovae, bringing the number of strongly
lensed quasars with time delay measurements to hundreds [23–25]; and with the JWST [26],
that will sharpen constraints on lens stellar kinematics [27, 28].

While observations become numerous and precise, systematic degeneracies are a well
known limiting factor in the interpretation of lensing data [29–33]. For example, relaxing
some of the simplifying assumptions made in [10–15], a possible tension between the value of
H0 inferred via lensing and via large-scale structure (LSS) analyses [34–36] may be replaced by
a core feature in the lenses [37, 38]. It is clear that a careful account of modeling degeneracies
will be crucial to take advantage of the progress in observations.

In this paper we comment on certain modeling degeneracies that affect the connection of
imaging, time delay, and kinematics with physical information on lens profiles and cosmology.
Several aspects of our discussion have been considered in the past at various levels of detail
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(see, e.g. [29, 30, 32, 39], and notably the discussion in [38]). However, as we show, recent
cosmography campaigns still do not account for the degeneracy in full.

The outline of the paper is as follows. In section 2 we review cosmological weak lensing
effects [40, 41], that are intertwined with the strong lensing reconstruction problem via the
mass sheet degeneracy (MSD).

In section 3 we show a limitation in using kinematics data to alleviate the MSD. The
problem is that weak lensing entails three distinct effects, coming from the source-observer
segment, the source-lens segment, and the lens-observer segment of the line of sight (LOS).
Omitting shear for a moment, these effects are summarised by three convergence terms: κs,
κls, and κl, respectively. In general, different combinations of κs, κls, and κl enter into the
bias in H0 and into the interpretation of kinematics data. To ameliorate this ambiguity,
imaging+kinematics analyses such as [10–15, 28, 38] should introduce nuisance parameters
for κls and κl, in addition to κs.

In section 4 we discuss the use of ray tracing simulations to obtain an observationally-
informed theoretical prior on the weak lensing correction. We note that accounting for the
full bias in H0 requires that the ray tracing be used to extract all of κs, κls, and κl. Existing
analyses [10–15] neglected the κls and κl terms, possibly resulting in residual bias to their
inferred value of H0.

In section 5 we consider systems with multiple sources. This is a timely problem because
analyses of multiple sources in cluster lens systems are advancing [9], and the situation also
occurs in some galaxy lenses [12, 42], where we can expect significant observational progress
with the advent of new surveys [23, 24, 43]. We show that the MSD associated with weak
lensing is not resolved by multiple sources, and clarify what imaging data does measure:
a certain difference-of-differences of convergence terms. This combination of convergence
terms is not the same one that enters the H0 reconstruction problem. To mitigate the
MSD, theoretical estimates of the weak lensing effect must be input to the analysis, similarly
(although not precisely the same) to the way it needs to be input in systems with a single
source. Multi-source analyses such as ref. [9] should be adjusted to include this effect.

In section 5.1 we consider the so-called internal MSD. Specifically, we are thinking of
the impact of a sub-dominant core component in the density profile of lens galaxies, which
could act as an approximate version of the MSD [32, 37]. We show that imaging data by
itself cannot distinguish a core deformation of the intrinsic lens model, from an adjustment
of weak external convergence. Interestingly, this statement remains true even when multiple
sources are available. Introducing theoretical estimates of weak lensing, it should indeed
become possible to identify a core effect if the magnitude of the convergence term associated
with the core is parametrically larger than that expected theoretically from weak lensing.
However, we point out an important dilution factor that makes this distinction potentially
difficult. In section 5.2 we estimate the effect for two sample systems.

A related discussion of the multi-source MSD was given in [44–46]. The main difference
between that work and ours here, is that [44–46] considered the role of intermediate sources as
additional deflectors, that must be modeled separately from the main lens, and that exhibit
a residual multi-lens version of the MSD. We comment on this point in appendix A. It does
not replace our discussion, but adds another layer of complexity in the modeling.

We summarise in section 6. In appendix A we give a brief derivation of the weak
lensing correction in strong lensing systems. In appendix B we provide estimates of weak
external convergence using the nonlinear matter power spectrum and paying attention to non-
equal time correlators that arise due to projection. We use these computations for a rough
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assessment of the effect. This is enough for illustrating our main points in this paper, although
direct weak lensing surveys or ray tracing techniques, specifically designed to match the bias
of the field containing individual strong lensing systems [47–55], are probably mandatory for
more accurate analyses.

2 Recap: weak lensing and mass sheet degeneracy in strong lensing anal-
yses

Consider a gravitational lens system with N sources, located at redshifts zi, i = 1, . . . , N .
The deflection angle caused by the lens (main deflector) relative to source i reads

~αi(~θ) = 1
π

∫
d2θ′

~θ − ~θ′

|~θ − ~θ′|2
κi(~θ′). (2.1)

Here κi(~θ) is the convergence,

κi(~θ) =
Σ
(
dA(0, zl)~θ

)
Σcrit(zl, zi)

, (2.2)

Σ(~x) is the surface mass density of the lens computed at proper position ~x transverse to the
observer-lens line of sight, Σcrit(zl, zi) is the critical density (we use natural units with c = 1),

Σcrit(zl, zi) = 1
4πG

dA(0, zi)
dA(0, zl) dA(zl, zi)

, (2.3)

dA(zo, ze) is the angular diameter distance from an emitter at redshift ze to an observer at
zo, and zi, zl are the redshifts of the i-th source and of the lens, respectively. Notice that we
can write

~αi(~θ) = Ci~α1(~θ) , Ci := dA(0, z1) dA(zl, zi, )
dA(0, zi) dA(zl, z1) . (2.4)

That is, the deflection angle affecting the i-th source is a scaled version of the deflection angle
affecting the 1st source. When we discuss the internal lens model in what follows it would
be convenient to highlight ~α1, understanding that ~αi follows by eq. (2.4).

In writing ~α(~θ) we think of the main deflector as a localised concentration of mass
(localised compared with cosmological distances), assuming that α(~θ) → 0 for |~θ| much
larger than the Einstein angle of the system, |~θE|, defined via1

~α(~θE) = ~θE. (2.5)

Weak lensing from large scale structure in the intervening space between the sources,
the lens, and the observer, modifies the lens equation by introducing external convergence
and shear. These modifications must be taken into account in lensing analyses [56]. In the
tidal approximation, the lens equation becomes [41, 44, 45, 47, 57–59] (see also appendix A)

~βi = (1− κs
i)(I + Γs

i)~θ − (1− κls
i )(I + Γls

i )Ci~α1((1− κl)(I + Γl)~θ), (2.6)

1The definition of ~θE in eq. (2.5) applies for axisymmetric lenses, but may not apply for arbitrary lens mass
distributions. This subtlety is not important for our analysis.
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Figure 1. RMS external convergence terms, for lens redshift zl = 0.59, presented as functions of the
source redshift zs. The orange band around κs shows a rough estimate of the theoretical uncertainty,
obtained by varying the cutoff of the matter power spectrum calculation from kcutoff = 5 Mpc−1 to
20 Mpc−1; the default in the calculation is 10 Mpc−1. Modifying kcutoff has a similar effect on the
other weak convergence terms in the plot. Details of the calculation are given in appendix B. Note
that κs, κls, κl are statistically independent (albeit correlated) cosmological random variables; thus,
for example, the RMS value of κs − κl is not simply shifted by a constant from the RMS value of
κs, even though the RMS of κl is a constant (given that the plot is done at constant fixed zl). Note
that this plot is not expected to be accurate beyond the O(1) level. More accurate results would
require ray tracing techniques to capture bias from excess of structure along the LOS [47–55]. Code:
https://github.com/lucateo/Comments_MSD/blob/main/Notebooks/delta_kappa_nonlinear.ipynb.

where κr
i are external convergence factors for source i,

Γr
i = −

(
γr,i

1 γr,i
2

γr,i
2 −γ

r,i
1

)
(2.7)

is the reduced shear matrix, and the superscript r = l, s, ls indicates observer-lens, observer-
source, and lens-source lines of sight.

Compared with the internal convergence κi, which is of order unity near the Einstein
angle κi(~θE,i) = O(1), the weak lensing terms are small, typically in the range |γr,i|, |κr

i | ∼
0.01 − 0.1. In appendix B we estimate their magnitude; a typical result is illustrated in
figure 1. We show the root mean square (RMS) values of κl,s,ls, which are cosmological random
variables. The shear terms γl,s,ls

1,2 scale similarly. For coherence with the tidal approximation,
in the following we will mostly keep first order in κr,i, γr,i

1,2. We assume that the large-
scale structure producing the weak lensing is distributed over cosmological scales & 1Mpc
(compared with the galactic scale � 1Mpc of the primary lens that produces ~αi), thus the
weak lensing terms are approximated as constants over the angular range containing the
strong lensing image information.

For simplicity of notation, we define

(1− κr
i)(I + Γr

i) ' I− (Iκr
i − Γr

i) =: I−M r
i . (2.8)

Note that M s
i and M ls

i carry the source label i, while M l is common to all sources. With
this notation, we can write a weak lensing-modified lens equation as

~βi = ~θ − ~̃αi(~θ), (2.9)
~̃αi(~θ) = (I−M ls

i )Ci~α1((I−M l)~θ) +M s
i
~θ. (2.10)
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The modified deflection angle ~̃α contains a mixture of terms, some local to the lens and some
coming from weak lensing. Thus ~̃α(~θ), in general, does not decay at large |θ|; instead, it
satisfies ~̃αi(~θ)→M s

i
~θ.

The time delay between images A and B (associated, e.g., to a time-variable quasar) of
source i is [45, 58, 60, 61] (see also appendix A)

∆tiAB = Di
dt ∆τ iAB, (2.11)

∆τ iAB = 1
2
~θTA

(
I−M s

i −M l +M ls
i

)
~θA

−~βT
(
I−M l +M ls

i

)
~θA − ψi((I−M l)~θA)− {A↔ B}. (2.12)

Here Di
dt is the time-delay distance [62],

Di
dt := (1 + zl)

dA(0, zl)dA(0, zi)
dA(zl, zi)

∝ 1
H0

, (2.13)

and ψi(~θ) = Ciψ1(~θ) is the intrinsic lensing potential, defined via ~∇ψi(~θ) = ~αi(~θ). In this
analyses we do not explore the possibility of obtaining time-delay data for more than one
source. Thus, we will drop the source index i on ∆τAB.

The MSD affecting the lensing reconstruction problem [39] is usually represented by
replacing, in eqs. (2.9) and (2.10),

~βi 7−→ ~βλi = λ~βi, (2.14)
~̃αi(~θ) 7−→ ~̃αλi (~θ) = λ~̃αi(~θ) + (1− λ)~θ, (2.15)

where λ is an arbitrary real parameter. (More general degeneracies exist [63–65], but for our
main points it is enough that we restrict ourselves to eqs. (2.14)–(2.15).) Image coordinates
~θ and magnification ratios are invariant under eqs. (2.14)–(2.15). However, time delays are
affected, and therefore, so is the inference of H0.

Eqs. (2.14)–(2.15) imply a degeneracy in the modeling of weak lensing data, coupled
with a reparameterization of the model describing the “intrinsic” deflection angle ~α1. In-
finitely many different reparameterizations of M r

i and ~α1 can produce eqs. (2.14)–(2.15). In
considering these possibilities we assume that lens and source redshifts are measured per-
fectly, so the cosmological functions Ci are known without appreciable uncertainty (given a
cosmological model).

Because of the inhomogeneous term (1 − λ)~θ in eq. (2.15), it is natural to associate
the MSD with a reinterpretation of the inhomogeneous observer-source weak lensing term
in eq. (2.10), via M s

i 7−→ M s,λ
i = λsM

s
i + (1 − λs)I. However, the interpretation is coupled

to additional degeneracies with M ls
i and M l. It is convenient to parameterize the combined

degeneracy by allowing M ls
i and M l to also be adjusted, alongside an adjustment of the

intrinsic lens model and the modeled source coordinates:

M s
i 7−→ M s,λ

i = λsM
s
i + (1− λs)I, (2.16)

M ls
i 7−→ M ls,λ

i = λlsM
ls
i + (1− λls)I, (2.17)

M l 7−→ M l,λ = λlM
l + (1− λl)I, (2.18)

~βi 7−→ ~βλi = λs~βi, (2.19)
~α1(~θ) 7−→ ~αλ1(~θ) = λs λ

−1
ls ~α1(λ−1

l
~θ), (2.20)

ψ1(~θ) 7−→ ψλ1 (~θ) = λs λ
−1
ls λlψ1(λ−1

l
~θ). (2.21)
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Here λs, λls, and λl are independent parameters. Note that eq. (2.16) (for example) amounts
to κs

i 7−→ κs,λ
i = λsκ

s
i + (1− λs), Γs

i , 7−→ Γs,λ
i = λsΓs

i .
Inserting eqs. (2.19)–(2.21) into eq. (2.12), we see that the dimensionless time delay

∆τAB of the transformed model changes according to (see [38] for an earlier discussion):

∆τAB 7−→ ∆τλAB = λsλ
−1
ls λl∆τAB. (2.22)

Thus, a readjustment of the lensing model according to eqs. (2.16)–(2.19) entails a reinter-
pretation of the inferred value of H0. Since H0 is inferred from the measured time delays
∆tAB and the model dimensionless time delay ∆τAB via H0 ∝ ∆τAB/∆tAB, we have:

H0 7−→ Hλ
0 = λsλ

−1
ls λlH0. (2.23)

We would like to emphasize that the availability of multiple sources does not, by itself,
ameliorate the MSD: as far as imaging information is considered, the modeling degeneracy
expressed by eqs. (2.16)–(2.21) remains exact. It simply amounts to a simultaneous reinter-
pretation of the weak lensing variables affecting all of the sources. (The same conclusion,
with a different version of the MSD and a discussion of intermediate sources as additional
strong lenses for background sources, was reached in refs. [44, 45].) We return to this point
in section 5.

In the absence of a direct measurement of weak lensing applicable to the field of view of
the strong lensing system, the only way to ameliorate the MSD is by appealing to theoretical
estimates of the magnitude of weak lensing variables. For example, a theoretical estimate of
the expected possible magnitude of κs

i , as shown in figure 1, could constrain the conceivable
range of 1 − λs in eq. (2.16): for some systems, an additive shift of order |1 − λs| ≈ 0.1 in
κs
i may be difficult to justify from a cosmological point of view. In appendix B we estimate

some of these theoretical constraints.

3 On the use of stellar kinematics to resolve the MSD

In an imaging analysis, if only a single source is available (say i = 1), one can use
eqs. (2.16)–(2.21) with the choice

λs = 1
1− κs , λls = 1

1− κls , λl = 1
1− κl , (3.1)

to eliminate all of κs, κls, and κl from the modeling. For this reason, the task of extracting
lensing information in imaging data is often performed ignoring external convergence [10–15].
(The details of how shear is modeled [66] will not be important for the discussion in this
section.)

Suppose we denote the fit result for the “intrinsic deflection angle” in such an analysis
by ~αmodel(~θ). By “eliminating external convergence from the equations”, we mean that the
fit looks for a deflection angle model ~αmodel(~θ) which goes to zero at large |~θ|, possibly up to
a uniform shear term Γs~θ. Eq. (2.20) implies that ~αmodel(~θ) is related to the true underlying
physical intrinsic deflection angle by

~αmodel(~θ) = 1− κls

1− κs ~α((1− κl)~θ), (3.2)

where κs,ls,l are the true physical values of the weak lensing terms. Given a measurement
of the physical image time delays, and deriving the dimensionless time delay ∆τmodel

AB from
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~αmodel, one can extract an inferred result Hmodel
0 , which is related to the truth value H0

by [38]

Hmodel
0 = 1− κls

(1− κs)(1− κl)H0. (3.3)

The usual challenge of the weak lensing MSD for cosmography is to constrain the correction
factor (1− κls)/[(1− κs)(1− κl)] ≈ 1 + κs + κl − κls.

Stellar kinematics is sensitive to the intrinsic mass-per-radius (M(R)/R) of the lens,
and can be used to partially resolve the MSD. Refs. [10–15] used kinematics to constrain
the MSD, but in these works, weak lensing was only parameterised in terms of κs, omitting
κls and κl. The omission of κls and κl biases the inferred value of H0. To explain this we
consider a simplified scenario, where we can inspect the information content of imaging, time
delays, and kinematics separately.

Suppose that the intrinsic deflection angle of the lens is given by the power-law (PL)
profile (we denote θ = |~θ|)

~α(~θ) =
(
θ

θ̃E

)1−γPL
~θ. (3.4)

To this, we add some true physical values for κs,ls,l, so altogether the imaging data satisfies
eqs. (2.9)–(2.10). Note that because of weak lensing, the parameter θ̃E in eq. (3.4) is not
equal to the Einstein angle, that we will denote by θE.

The imaging part of the data can be summarised as a measurement of θE. We will
simplify the discussion by assuming that also γPL is accurately determined. The effective
modeling which transforms away the weak lensing terms would converge onto the model

~αmodel(~θ) = (1− κls)(1− κl)2−γPL

1− κs

(
θ

θ̃E

)1−γPL
~θ

:=
(
θ

θE

)1−γPL
~θ. (3.5)

The relation between the PL parameter θ̃E and the Einstein angle θE is, therefore,

θE = θ̃E

[
(1− κls)(1− κl)2−γPL

1− κs

] 1
γPL−1

. (3.6)

Turning to kinematics, the observable velocity dispersion for the PL profile is

σ2(θ) = 2GΣcritdA(0, zl)
√
πΓ
(γPL

2
)

Γ
(
γPL−1

2

) θ̃γPL−1
E θ2−γPL

= 1− κs

(1− κls)(1− κl)2−γPL

dA(0, zs)
dA(zl, zs)

J(θE, γPL).

(3.7)

In the second line we connect our result with eq. (8) of ref. [15] (see also [11, 67]), defin-
ing J as a cosmology-independent function that depends only on imaging observables. For
simplicity, we assume that the velocity dispersion is isotropic. The term GΣcritdA(0, zl) =

– 7 –
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(1/4π)dA(0, zs)/dA(zl, zs) is a function of the system redshifts and of cosmological parame-
ters, but is independent of H0 which cancels out in the ratio of angular diameter distances; for
simplicity, we assume that it is known without error. Note that: (i) our derivation of eq. (3.7)
accounts explicitly for the impact of weak lensing, so there are no hidden insertions of κr in
the ratio dA(0, zs)/dA(zl, zs) which here simply expresses the ratio of the two usual redshift
integrals defining dA(zo, ze) in an unperturbed FRW cosmology, and (ii) from the first line
in eq. (3.7), the kinematics measurement of σ2 can be summarised as a measurement of θ̃E.

Combining the kinematics data (θ̃E via σ2 in eq. (3.7)) and the imaging data (θE in

eq. (3.6)), one can obtain a measurement of the weak lensing factor
[

(1−κls)(1−κl)2−γPL
1−κs

] 1
γPL−1 =

θE/θ̃E. This measurement is not equivalent to a measurement of the MSD factor (1−κls)/[(1−
κs)(1−κl)] that is needed in order to extract the true physical value of H0 from the effective
model result Hmodel

0 in eq. (3.3).
Ref. [15] presented a treatment of systematics in recent cosmographic analyses. There,

the following expression was used to correct for the weak lensing MSD:2

H inferred
0 = (1− κext)Hmodel

0 . (3.8)

The terms κls,l were effectively set to zero in the modeling, as they were ignored in both
kinematics and imaging. From eq. (8) in ref. [15] and our eq. (3.7) it follows that for a PL
density profile, the term κext should be identified with

1− κext := 1− κs

(1− κls)(1− κl)2−γPL
. (3.9)

This expression coincides with the discussion in ref. [67], cited by [15] for the treatment of
kinematics, if we set κl = κls → 0, in which case κext → κs.

Combining eqs. (3.9), (3.8), and (3.3), we conclude that in ref. [15] the relation between
the inferred value and the truth value of the Hubble parameter was biased by the following
factor:

H inferred
0
H0

= 1− κs

(1− κls)(1− κl)2−γPL

1− κls

(1− κs)(1− κl)
≈ 1 + (3− γPL)κl. (3.10)

We should note that although we considered σ2 as an observable, in practice it is
not directly measured. Various observational effects such as luminosity weighting, point
spread function, etc., must be taken into account. Moreover, there are important theoretical
uncertainties due to the velocity anisotropy, and also due to the actual lens halo density
profile (even in the simple power law model considered above, unknown profile parameters
include the slope γPL), which must be marginalized over in the likelihood and which, as we
have shown, are coupled with the weak lensing correction in a model-dependent way. With
these points in mind, our main lesson from the analysis in this section is simply that the weak
lensing effects, in general, do not factorize out in a comparison of imaging and kinematics
data. A proper way to correctly model these effects would be to add all three terms κs,l,ls

as variables in the likelihood, directly including their effect both in imaging and kinematics,
and marginalize over them with reasonable priors, informed by theory.

2See discussion around eqs. (7-8) and eq. (16) in [15].
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4 On the use of ray tracing to resolve the MSD

Another method to constrain external convergence, used in refs. [10–15], is via ray-tracing
in simulated data, calibrated system by system to the source density of the field containing
the primary lens [47–55].

The correction for external convergence requires all of κs,ls,l to be extracted simultane-
ously, and applied to the cosmography analysis via eq. (3.3). However, refs. [10–15] only used
ray tracing to derive the observer-source LOS term, κs. This was identified in these analyses
with the parameter κext, that was applied to correct for the effect in the determination of
H0 using eq. (3.8), with κls,l taken to vanish.3,4

Therefore we expect that in these analyses, the inferred value of H0 (corrected by ray
tracing for κs) is still biased w.r.t. the truth value of H0, by the amount:

H inferred
0
H0

= 1− κls

1− κl ≈ 1− κls + κl. (4.1)

We note that the κs,ls,l terms should be considered as separate (albeit statistically cor-
related) nuisance parameters in cosmography. To clarify this point, in figure 2 we show an
estimate of the statistics of κs and κls in a specific example (see, e.g. [47] and references in
and of it for previous studies). For definiteness, for this example we use the results shown in
figure 1 with a source redshift zs = 2. The top panel of figure 2 shows the 50% and 90% quan-
tiles of the bivariate distribution of κs, κls, assuming Gaussian statistics. The bottom panel
shows the conditional probability distribution of κls given a measured value of κs = 0.034
(corresponding to the RMS of κs in this example). We emphasize that our calculation here
uses the analysis of appendix B, and can only be used as a rough estimate of the statistics
of the weak lensing terms. More accurate results probably require ray tracing simulations.

5 Multiple sources and differential convergence

If multiple sources are available, then the MSD requires a simultaneous adjustment of the
weak lensing variables for all sources. In particular, the κs,ls

i parameters for all sources i must
be adjusted together, following eqs. (2.16), (2.17). Therefore, in the multi-source scenario,
a certain combination of external convergence terms is measurable from the imaging data.
A quick way to see what this measurable combination is, is by assuming that the analysis
pipeline attempts to fit the two systems i and j separately and independently, omitting
external convergence from the equations using eq. (3.2). The outcome of such a procedure
are two independent fits for the effective deflection angle, the results of which should be
related by an over-all factor:∣∣∣~αmodel

j (~θ)
∣∣∣∣∣∣~αmodel

i (~θ)
∣∣∣ = Cj

Ci

1− κls
j

1− κls
i

1− κs
i

1− κs
j

≈ Cj
Ci

(
1 + δκs

ji − δκls
ji

)
,

(5.1)
3As an aside, we note that the identification of κext with κs extracted from ray tracing, and the alternative

identification of κext via kinematics as in eq. (3.9), are consistent for κl = κls = 0, but generally inconsistent
otherwise.

4The correct definition of κext that incorporates all of κs,ls,l was explicitly written in ref. [38] (we thank
Simon Birrer for drawing our attention to this fact). However, also in [38], when making contact with ray
tracing priors it was assumed that κext = κs; see section 5.1 there.
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Figure 2. Top: 50% and 90% joint probability quantiles for κs and κls, using the RMS values from
figure 1 at zs = 2. Bottom: conditional probability P

(
κls|κs = 0.034

)
. The reference value of 0.034 is

approximately equal to the RMS of κs at zs = 2 in figure 1. Note that this plot (like figure 1) relies on
a simplified model of the non-equal time matter power spectrum, and is not expected to be accurate
beyond the O(1) level.

where δκr
ji := κr

j − κr
i . The left hand side of eq. (5.1) is measurable, and the Ci’s are known,

so the combination (κls
j − κls

i )− (κs
j − κs

i) is, in principle, measurable. Unfortunately, as this
combination of terms is invariant under the MSD, it cannot resolve the MSD impact on the
H0 inference.

5.1 MSD-core (“internal convergence”)

Uncertainties in the intrinsic mass profile of the lens could pose a more serious problem to
time-delay measurements of H0, than that posed by weak external convergence. Specifically,
an extended cored density component in lens galaxies would act similarly to external conver-
gence [32, 37], but could, in principle, cause a much larger effect. This scenario could occur
in some models of dark matter [68].

To make the discussion concrete, consider the following change to the intrinsic physical
surface mass density of the primary lens,

Σ(~x) → Σ(~x) + Σc(~x). (5.2)
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We can think of the original density profile, Σ(~x), as some steeply-falling mass distribution.
It could come, for example, from the sum of a CDM Navarro-Frenk-White (NFW) profile,
with ΣNFW(r) ∝ 1/r2 at r � RS, where RS is the NFW length scale parameter, and a
stellar mass distribution Σ∗(r) that falls even faster at large r. At smaller radii, near and
around the projected Einstein radius of the lenses, lensing analyses often assume Σ(r) ∼ 1/r
(corresponding to 3D density scaling as ρ ∝ 1/r2).

In contrast, we will assume that the core component Σc(r) is nearly constant for r
near and below the projected Einstein radius. Note that by adding the core component in
eq. (5.2), we are not eliminating the cusp of Σ(r) at small r, but rather just adding to it a
sub-dominant constant density term. At large radii, r > Rc, the core component is assumed
to decay, eventually joining or falling below the original Σ(r). The lensing analyses constrain
Rc to be larger than a few times the projected Einstein radius of the lens, with precise details
of the transition depending on the precise implementation of the core profile [38, 68]. For
the ultralight DM cores considered in [68], for example, lensing data demands that Rc should
be larger than ∼ 3 times the projected Einstein radius of the lens. In what follows, for
simplicity, we will assume that Rc is large enough so that we can neglect the finite radius
corrections. Restoring these effects is straightforward, and not essential for our current
analysis. Kinematics analyses [69] could also constrain a core feature, and may be able to
provide an upper limit on Rc, although the cusp+core composite model has not yet been
included in existing studies.

If Rc is large enough, then the core term in eq. (5.2) is mathematically identical to a
redefinition of the observer-source external convergence. Considering eq. (2.10), we see that
at the level of the modeling of imaging data, the core component is indistinguishable from
the shift

M s
i → M s

i + (I−M ls
i )(I−M l)Ciκc1, (5.3)

where

κc1 = Σc
Σcrit(zl, z1) . (5.4)

We will think of the internal core convergence κc1 as a small parameter, albeit potentially
somewhat larger than cosmological weak external convergence terms. We have in our mind
the lensing contribution to theH0 tension [17, 18], that could be resolved by κc1 ≈ 0.1 [37, 68].

Expressed in terms of convergence and shear parameters, at leading order in weak lensing
terms, we have

κs
i → κs

i + Ciκc1(1− κls
i − κl), (5.5)

Γs
i → Γs

i − Ciκc1
(
Γls
i + Γl

)
. (5.6)

With this understanding one can see that imaging data alone cannot directly separate a core
component from weak lensing. One must resort to kinematics analyses, or to theoretical
considerations that could limit the plausible weak lensing effect. We focus on the latter.

It is worthwhile to highlight a key difference between convergence and shear. Under
eqs. (2.16)–(2.18), which deal purely with the modeling of external weak lensing, shear is
adjusted multiplicatively, while convergence receives an additive correction. This feature is
modified in eqs. (5.5)–(5.6), but a key part of it remains manifest: the addition of the core
adjusts Γs via an additive term, however that additive term is itself proportional to the shear
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terms Γls+Γl. As a result, even if κc1 is somewhat larger than typical weak lensing effects (e.g.
κc1 ≈ 0.1), this still only amounts to a relative correction of ∼10% in Γs. Constraining such
a small effect observationally or theoretically would be challenging. This point is important
because certain combinations of weak lensing shear terms can, in principle, be measured
directly from imaging data [59, 66]. For convergence, eq. (5.5) suggests a potentially large
additive readjustment of κs, if κc1 is larger than typical weak lensing effects. However, if
only one source is available (i = 1), then it could be difficult for imaging data alone to
constrain κc1.

If more than one source is available, then we have seen in section 5 that a certain
combination of differential convergence terms is measurable from the imaging data. Inserting
eq. (5.5) into eq. (5.1), and neglecting the small correction factor 1−κls

i −κl ≈ 1 in eq. (5.5),
we see that the following ratio of deflection angles can be measured:

Ci
Cj

∣∣∣~αmodel
j

∣∣∣∣∣~αmodel
i

∣∣ ≈ 1 + (κs
j − κs

i)− (κls
j − κls

i ) + κc1 (Cj − Ci) . (5.7)

At a first glance in eq. (5.7), one could hope that multiple source systems could resolve
the core-MSD ambiguity, because the last term on the right hand side contains the large
additive term ∝ κc1. However, a second glance reveals a setback: in eq. (5.7), κc1 appears
multiplied by the factor Cj − Ci, proportional to the relative difference of angular diameter
distance combinations of the two sources (see eq. (2.4)). Unfortunately, the angular diameter
distance is a non-monotonous function of redshift; moreover, the sources of typical strong
lensing systems are often located between z ∼ 1 and z ∼ 2.5, that is, around the shallow
maximum of dA(0, z). As a result, in many systems of interest, the difference Cj−Ci ∼ O(0.1)
is much smaller than unity. This “dilutes” the efficiency at which imaging data in multiple
source systems could constrain the internal MSD.

Figure 3 illustrates our point. We show two examples of the curve C2−1. The blue line
is inspired by the multiple source system of the cluster lens MACS1149.5+2223 [9, 70]. The
primary lens (cluster) redshift is zl ≈ 0.5. Time-delays are measured for a type Ia supernova
(source 1) at z1 ≈ 1.5. Figure 3 shows C2 − 1 as function of a second source redshift z2.
(Actual additional sources of this system are distributed between z2 ∼ 1.2 and z2 ∼ 3.7.)
The orange line is inspired by the galaxy lensing system DES J0408-5354 [12], zl ≈ 0.6, with
time-delays measured to a quasar at z1 ≈ 2.3.

Because Cj − Ci is a small number, the κc1 term in eq. (5.7) could be diluted down to
the natural scale of weak cosmological convergence. To detect (or constrain) an internal core,
it therefore becomes crucial to estimate the magnitude of weak differential convergence. We
consider this problem in appendix B, and comment on examples in section 5.2.

Before we move on, let us make a rough assessment of the precision by which the left
hand side of (5.7) can actually be measured. Note that most of the information in the
lensing data comes from the angular range θ ∼ θE, where for simplicity of this estimate we
can consider spherically symmetric systems and drop the vector notation on θ. Using the
fact that α(θE) = θE, the relative uncertainty by which |~αj/~αi| can be measured is of similar
size as the quoted precision on the ratio of Einstein angles, |θEj/θEi|. For typical TDCOSMO
systems, this precision is at the level of ∼ 1%. Of course, this quoted precision corresponds
to the main source considered by the analysis (usually, the source for which time-delays are
measured). What we actually need is the differential convergence, and the precision on that
would be dominated, given two sources i = 1, 2, by the source for which the precision on θE,i
is poorest.
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Figure 3. The angular diameter distance combination C2, appearing in lensing analyses with
multiple sources. Code:
https://github.com/lucateo/Comments_MSD/blob/main/Notebooks/delta_kappa_nonlinear.ipynb.

5.2 Examples of multiple source systems

A key point of our analysis is that the availability of multiple sources in a lensing system can
only resolve the core-MSD degeneracy to the extent, that the core-induced term, κc1(Ci−Cj),
is significantly larger than the natural expectation for the weak cosmological differential
convergence term, δκs

ij − δκls
ij , in eq. (5.7). Having armed ourselves, in appendix B and

appendix B.1, with an estimate for the external convergence, we now explore two multi-
source systems from the literature.

5.2.1 DESJ0408-5354

As noted earlier, this galaxy lensing system has a primary lens at zl ≈ 0.6, and main source
(lensed quasar-host galaxy) at z1 ≈ 2.3, and a secondary source at z2 ≈ 2.2. A TDCOSMO
analysis of this system, fitting an elliptic power-law density model for the lens (without
allowing for a core component), inferred a value of H0 which was ≈ 11% higher than the
CMB/LSS result [12]. Thus, a core component at κc1 ≈ 0.1 could completely resolve the
lensing H0 tension for this system [37, 68].

The question arises, whether the presence of the second lensed source for this system
could resolve the core-MSD associated with κc1. To address this question, in the top panel
of figure 4 we plot (blue line) the function C2 − 1 for this system, weighted by the factor
κc1 ≡ 1− λ = 0.1. To demonstrate the confusion with weak external convergence, following
eq. (5.7) we superimpose a band with width chosen as the RMS value of δκs

12 − δκls
12 for the

system. The red vertical line marks the redshift of the actual secondary source.
We conclude that multi-source imaging data for DESJ0408-5354 [12] is unlikely to help

in constraining the core-MSD proposal sufficiently to solve the lensing H0 tension.

5.2.2 MACS J1149.5+2223

As noted earlier, the lens in MACS J1149.5+2223 [9, 70, 71] is a galaxy cluster at zl ≈ 0.54.
The main source is a type-Ia supernova at z1 ≈ 1.5. Six additional multiply-imaged sources
are distributed in redshift in the range zi ≈ 1.2 to zi ≈ 3.7.
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Figure 4. The angular diameter function C2 − 1, weighted by a factor κc1 ≡ 1 − λ = 0.1
(chosen to mimic a resolution of the lensing H0 tension), compared with the cosmological
RMS weak differential convergence δκ. Top: redshift parameters chosen to resemble the TD-
COSMO system DESJ0408-5354 [12]. Bottom: parameters chosen to resemble the MACS
J1149.5+2223 cluster system [9, 70]. In both panels, the function Ci − 1 vanishes at the red-
shift of the primary source (the source to which time-delays are measured). Vertical red lines
mark the redshifts of secondary sources, that one could try to use to resolve the core-MSD. Code:
https://github.com/lucateo/Comments_MSD/blob/main/Notebooks/delta_kappa_nonlinear.ipynb.

In the bottom panel of figure 4 we show that for the secondary sources in MACS
J1149.5+2223 [9, 70], weak differential convergence should significantly (although, perhaps,
not entirely) mask the presence of an internal MSD. We thus expect that adding differential
convergence as nuisance parameters for the secondary sources (that is, the sources additional
to the SNIa host, to which time delays were specified in the mock of [9]) would significantly
increase the uncertainty on the impact of the MSD as compared to the preliminary results
in the appendix of [9].

6 Summary

In the effort to determine the Hubble parameter H0 using strong lensing time delays, a key
challenge is the mass sheet degeneracy (MSD). The MSD can be naturally associated with
two physical phenomena: cosmological weak lensing (“external convergence” or “external
MSD”); and the possibility of a core component in the lens object (“internal MSD”). Well
known methods to alleviate the MSD are: (i) the combination of imaging data with stellar
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kinematics, (ii) the use of ray tracing simulations to obtain an observationally-informed
theoretical prior on external weak lensing, and (iii) the study of systems containing more
than one strongly-lensed source.

In this paper we discussed some issues related to the MSD. In section 3, regarding the
use of kinematics, we noted that the relation between kinematics constraints and imaging
data involves a combination of weak lensing terms that includes all of the observer-source,
observer-lens, and source-lens segments of the line of sight (LOS). Neglecting the source-
lens and observer-lens convergence terms — a common practice in current analyses — could
lead to a bias of the order of a few percent in the inference of H0 from time delays. It
is possible to account for the effect by adding the observer-lens and lens-source terms as
nuisance parameters in the combined imaging+kinematics likelihood.

In section 4 we noted that the neglect of the source-lens and observer-lens LOS contri-
butions also affects ray tracing methods. Here too, omitting some of the LOS terms should
bias the H0 inference. It should be possible to extract priors for all of the LOS terms, and
not only the observer-source one, from ray tracing.

As we review in section 2, the MSD is not broken by the availability of multiple sources
in the imaging analyses. In section 5 we considered what multiple sources do allow one
to measure, which is differential convergence between different sources. Interestingly, weak
differential external convergence complicates attempts to resolve the internal MSD, even if
the internal core effect is parameterically larger than the weak lensing terms. The problem is
that multiple sources are only useful against the internal MSD to the extent that they come
with significantly different angular diameter distances; in practice, however, the angular
diameter distances in typical multi-source systems used in cosmography are similar to the
10% level.

In appendix B we described a non-perturbative calculation of cosmological external
convergence, that allows us to provide rough estimate of the expected size of the effect,
as well as estimates of statistical correlations between different convergence terms. Our
calculation suggests (what we think is) a natural approximate way to account for non-linear
matter power spectra entering in correlation functions at different values of the cosmic time
variable.
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A The lens equation with weak lensing

In this appendix we review the derivation of the weak lensing effects in the lens equation.
These results are known [40, 41, 44, 45, 47, 57–59], and we include them here for completeness
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of the main text. Let us suppose that we have a strong deflector located at a comoving
distance ηl. We can split the gravitational potential as

Φ(~β(η), η) = Φ̃(~β(ηl), ηl)δ(η − ηl) + Φt(~β(η), η), (A.1)

where Φt(β(η), η) is the weak gravitational potential associated to weak lensing effects, and Φ̃
is the gravitational potential of the main deflector. We can implement the tidal approximation
on Φt by setting

Φt(~β(η), η) ≈ Φt(0, η) + βi∂iΦt(0, η). (A.2)

The lens equation may be written as [75]

βi(η) = θi − 2
∫ η

0
dη′ η − η

′

ηη′
∂iΦ(~β(η′), η′). (A.3)

Within the tidal approximation, eq. (A.2), we can write

βi(ηl) = θi − 2
∫ ηl

0
dη′ ηl − η′

ηlη′
∂iΦt(0, η′)− 2

∫ ηl

0
dη′ ηl − η′

ηlη′
∂i∂jΦt(0, η′)βj(η′). (A.4)

The second term on the r.h.s. of eq. (A.4) is an unobservable overall shift of the deflection
angle (independent of ~θ), which can be reabsorbed in the source coordinates. Defining

Mij(η1, η2) := 2
∫ η2

η1
dη′ (η2 − η′)(η′ − η1)

(η2 − η1)η′2 ∂i∂jΦt(0, η′), (A.5)

we expect Mij terms to be small as long as we are dealing with weak fields and maintain
only terms at first order in these quantities. In particular, for η < ηl, substituting

βi(η) = θi − 2
∫ η

0
dη′ η − η

′

ηη′
∂i∂jΦt(0, η′)βj(η′) (A.6)

in eq. (A.4), we obtain
~β(ηl) = (I−M(ηl, 0))~θ. (A.7)

For η > ηl, the situation changes due to the presence of the strong deflector. Considering the
full Φ from eq. (A.2), avoiding the tidal approximation for the strong deflector (but using
the thin lens approximation, encoded in the Dirac delta), we have, with ηs as the comoving
distance of the source,

βi(ηs) = θi − 2
∫ ηs

0
dη′ ηs − η′

ηsη′
∂i∂jΦt(0, η′)βj(η′)− 2ηs − ηl

ηsηl
∂iΦ̃(~β(ηl))︸ ︷︷ ︸

=αi(~β(ηl))

= (δij −Mij(ηl, 0))θj − αi(~β(ηl))

+ 2
∫ ηs

ηl
dη′ ηs − η′

ηsη′
∂i∂jΦt(0, η′)

[
2η
′ − ηl
ηlη′

∂iΦ̃(~β(ηl))
]
,

(A.8)

where on the last step we substituted ~β(η′) inside the integral with the term

βi(η′) =


θi for η ≤ ηl,

θi − 2η
′ − ηl
ηlη′

∂iΦ̃(~β(ηl)) for η > ηl.
(A.9)
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We can rewrite the term in square brackets in eq. (A.8) as

2η
′ − ηl
ηlη′

∂iΦ̃(~β(ηl)) = (η′ − ηl)ηs
η′(ηs − ηl)

αi(~β(ηl)), (A.10)

finally arriving at eq. (2.6) in the form

~β(ηs) = (I−M(ηs, 0))~θ − (I−M(ηs, ηl))~α
(
(I−M(ηl, 0))~θ

)
. (A.11)

The time delay between image solutions of eq. (A.11) can be computed by exploiting
the Fermat principle [2, 45, 61]. First, note that we can write the potential part of the time
delay due to the main deflector, tpot, as

tpot = −Ddtψ((I−M l)~θ). (A.12)

The Fermat principle states that, up to an affine transformation, the lens equation can be
obtained by taking the gradient ∇~θ

of the time delay function t(~θ, ~β) and setting it to zero.
Eq. (A.12) can then be used to understand what is the correct prefactor (the affine parameter)
entering the time delay function. We see that from the function

t(~θ, ~β) = Ddt
(1

2
~θT
(
I−M s −M l +M ls

)
~θ

−~βT
(
I−M l +M ls

)
~θ − ψ((I−M l)~θ)

)
, (A.13)

one indeed recovers eq. (A.11) using ∇~θ
t(~θ, ~β) = 0, recalling the definition ∇~ξ

ψ(~ξ) = ~α(~ξ).
Notice that eq. (A.13) has the correct prefactor, eq. (A.12), in front of ψ((I−M l)~θ). Finally,
eq. (2.11) is recovered via ∆tAB = t(~θA, ~β)− t(~θB, ~β).

A.1 Multi-plane lens equation
In our discussion, we did not take into account the possibility that nearer sources could act
as additional lens planes for further sources [44, 45]. It should be clear that adding this effect
into the modeling increases the complexity and also adds more possible layers of degeneracy,
beyond and on top of the weak lensing MSD we emphasized in our analysis. Here we briefly
explain how the effect can be embedded into our notation.

Adjusting our notation to that in ref. [45], we label with the index i = 0 the primary lens
plane and with index i > 0 the source planes, with i > j implying that source i has bigger
redshift than source j. α̂i is now the deflection angle due to lens/source i, which relates with
the usual quantity used in lens equations, ~αi, with

~αi = dA(zi, zi+1)
dA(0, zi+1) α̂i . (A.14)

With this, we can write the multi-plane lens equation as

~βi = (I−M(ηi, 0))~θ −
i−1∑
j=0

(I−M(ηi, ηj))Cji~αj(~βj), (A.15)

where M(ηi, ηj) is defined in eq. (A.5) and where Cji is the generalization of the factor in
eq. (2.4) coming from the definition eq. (A.14),

Cji := dA(zj , zi) dA(0, zj+1)
dA(0, zi) dA(zj , zj+1) . (A.16)
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To incorporate these results into our discussion in the main text, one only needs to add
to the MSD of eqs. (2.14), (2.15) the further requirement (for i > 1)

i−1∑
j=1

(I−Mλ(ηi, ηj))Cji~αλj (~βλj ) = λ
i−1∑
j=1

(I−M(ηi, ηj))Cji~αj(~βλj /λ). (A.17)

This is a stretch of the argument in ~αj along with an over-all rescaling of ~αj and/orM(ηi, ηj).

B Cosmological external convergence

The cosmological external convergence between comoving distance η1 and η2 > η1 in the
direction n̂ on the sky can be written as (see ref. [40] and eq. (A.5)):

κ(η2, η1; n̂) = 3H2
0 Ωm
2

∫
dη q21(η)δ(n̂, η), (B.1)

qij(η) := Θ(η − ηj)Θ(ηi − η)(ηi − η)(η − ηj)
ηi − ηj

(1 + z(η)), (B.2)

where δ(n̂, η) is the matter overdensity at ~x = ηn̂,

η(z) = 1
H0

∫ z

0

dz′√
ΩΛ + Ωm(1 + z′)3 (B.3)

is our comoving distance to the shell at z, and we have neglected 3-curvature and radiation
in the cosmic energy budget.

To calculate RMS differential convergence,
√〈

δκ2
i

〉
, we need to evaluate mixed correla-

tion terms of the form

〈
κ(ηi, ηj ; n̂)κ(ηl, ηm; n̂′)

〉
=

9H4
0 Ω2

m,0
4

∫
dη
∫

dη′ qij(η)qlm(η′)
〈
δ(n̂, η)δ(n̂′, η′)

〉
. (B.4)

Passing to Fourier space, and using the power spectrum〈
δ(~n, η)δ(~n′, η′)

〉
= (2π)3δ(~k + ~k′)Pδ(k, η, η′), (B.5)

we arrive at

〈
κ(ηi, ηj ; n̂)κ(ηl, ηm; n̂′)

〉
=

9H4
0 Ω2

m,0
4

∫
dη
∫

dη′ qij(η)qlm(η′)
∫ d3k

(2π)3Pδ(k, η, η
′)e−i~k(ηn̂−η′n̂′).

(B.6)

The typical angular separation of multiply-lensed sources in galaxy lensing campaigns
is in the ballpark of arcseconds. This means that the proper transverse distance between the
relevant geodesics is smaller than ∼ 10 kpc, which is a small separation w.r.t. LSS. In the
following, we will therefore compute the cosmological correlators at the same line of sight,
n̂ = n̂′. With this simplification, the integral for the variance of differential convergence reads

〈
(κ(ηl, ηm; n̂)− κ(ηn, ηo; n̂))2

〉
=

9H4
0 Ω2

m,0
2(2π)2

∫
dη
∫

dη′

× qlmno(η, η′)
∫

dk k2j0(k(η − η′))Pδ(k, η, η′),
(B.7)
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with

qlmno(η, η′) := qlm(η)qlm(η′) + qno(η)qno(η′)− 2qlm(η)qno(η′). (B.8)

The quantities we are mostly interested in are〈
(δκs

ij)2
〉

=
〈

(κ(ηi, 0; n̂)− κ(ηj , 0; n̂))2
〉
, (B.9)

and
〈

(κs)2
〉

=
9H4

0 Ω2
m,0

2(2π)2

∫
dη
∫

dη′ qsoso(η, η′)
∫

dk k2j0(k(η − η′))Pδ(k, η, η′). (B.10)

(We remind the reader that the indices o,s denote observer, source respectively.) Analogous
formulas hold for

〈
(δκls

ij)2
〉

and
〈

(κls)2
〉
,
〈

(κl)2
〉
. The line of sight integrals invoke the

power spectrum of matter density perturbations δ, computed at non-equal times η, η′. In
section B.1 we estimate these correlators using HALOFIT [76, 77]. Our numerical results,
obtained through this computation, are illustrated in figure 1.

B.1 Evaluation using HALOFIT

The main difficulty in evaluating expressions for the variance of the external convergence is
obtaining a reliable estimate of the non-equal time matter power spectrum Pδ(k, η, η′).5 This
problem has been extensively studied in the literature, both analytically and numerically
(see for instance [47–51] and references therein). The purpose of this section is to provide
a simple, yet accurate enough analytical approximation to Pδ(k, η, η′), which can be used
to easily estimate the typical magnitude of external convergence given the lens and sources
configuration.

In linear theory, the non-equal time matter power spectrum is simply given by

Pδ(k, η, η′) = D(η)D(η′)Plin(k) , (B.11)

where Plin(k) is the liner power spectrum evaluated at redshift zero and D(η) is the linear
theory growth factor. However, since a significant contribution to the external convergence
comes from very nonlinear scales, the linear theory estimate is not reliable. Indeed, as we are
going to see making comparison to the results from simulations with ray-tracing, the linear
theory predictions significantly underestimate the variance of external convergence.

To get a more reliable theoretical estimate, one has to use the nonlinear matter power
spectrum, which can be simply obtained using HALOFIT [76, 77]. Unfortunately, HALOFIT
outputs the nonlinear power spectrum only at equal times. To extend this output to non-
equal times requires some approximations. Inspired by the linear theory, the commonly used
prescription is

Pδ(k, η, η′) =
√
Pδ(k, η)Pδ(k, η′) . (B.12)

We are going to argue that this and other similar approximations do not properly capture
the non-equal time matter power spectrum on small scales. The reason is large bulk flows,
which displace the dark matter particles by O(10)Mpc. These large displacements exactly

5We note that simply neglecting the unequal time contribution to the correlator can bring biases when
discussing projection fields like external convergence [78].
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cancel for equal time correlation functions,6 due to the equivalence principle. However, for
non-equal time correlation functions, the dark matter particles are displaced by different
amounts, depending on times at which the density fields are evaluated. On scales smaller
than O(10)Mpc, this leads to exponential suppression of power in the non-equal time power
spectrum. This important effect is not captured by eq. (B.12).

In order to gain some intuition about how large displacements affect the non-equal time
power spectrum, we can use Lagrangian perturbation theory. In this setup we have (with ~r
the Euclidean coordinate and ~q the Lagrangian coordinate)

1 + δ(~r) =
∫

d3q δ(~r − ~q − ~ψ(~q)), (B.13)

where ~ψ is the displacement field

~r(~q, η) = ~q + ~ψ(~q, η). (B.14)

In Fourier space,
δ(~k) =

∫
d3q e−i~k(~q+~ψ) . (B.15)

Hence, we can write the two-point correlator as〈
δ(~k, z1)δ(~k′, z2)

〉
=
∫

d3q1

∫
d3q2

〈
e−i~k(~q1+~ψ1)e−i~k′(~q2+~ψ2)

〉
, (B.16)

where we used the shorthand ~ψi := ~ψ(~qi, zi). Using homogeneity and isotropy of the universe,
we can write〈

δ(~k, z1)δ(~k′, z2)
〉

= (2π)3δ(~k + ~k′)
∫

d3q e−i~q·~k
〈

e−i~k(~ψ(~q,z2)−~ψ(0,z1))
〉

; (B.17)

which translates into the following formula for the non-equal time power spectrum

Pδ(k, η, η′) =
∫

d3q e−i~q·~k
〈

e−i~k(~ψ(~q,η′)−~ψ(0,η))
〉
. (B.18)

Note that for two different times the relative displacement in the exponent can be large. For
a large k (small scales) this implies that the contribution to the power spectrum becomes
exponentially suppressed, as we argued at the beginning of this section.

We can calculate this exponential suppression a bit more explicitly. For this purpose
we can focus on the simplest case of Zel’dovich approximation. The Zel’dovich displacement
is simply given in terms of the linear density field as follows

~ψZ(~q, η) =
∫ d3k

(2π)3 ei~k·~q i
~k

k2 δlin(~k, η) . (B.19)

Using the cumulant theorem and assuming Gaussian initial conditions, the non-equal time
Zel’dovich power spectrum is given by

PZ(k, η, η′) = e−k2Σ2(D(η)−D(η′))2/2PZ(k, η̄) , (B.20)
6Large displacements can have observable effects only for sharp features in the correlation functions. Baryon

acoustic oscillation (BAO) peak is one such feature and large displacements lead to the spread of the BAO
peak, or damping of the BAO wiggles in the power spectrum.
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where
Σ2 = 1

6π2

∫ ∞
0

dk Plin(k, 0) , (B.21)

PZ(k, η) is the standard equal-time Zel’dovich power spectrum and we have defined
D(η1)D(η2) =: D2(η̄), with η̄ an appropriate mean comoving distance which can be de-
termined using the form of the linear growth factor D. The same result was obtained in [79]
(for a similar discussion see also [80]).

One can show that the same exponential suppression remains going to higher orders
in perturbation theory. However, beyond Zel’dovich approximation, the nonlinear spectra
cannot be simply expressed through the equal time counterparts anymore. For instance, the
general structure of the one-loop result can be written as

P1−loop(k, η, η′) = e−k2Σ2(D(η)−D(η′))2/2 [P1−loop(k, η̄) + δP (k, η, η′)] . (B.22)

The exact form of δP (k, η, η′) is not important, but we know that it has two important
properties. First, this correction is small in perturbation theory [81, 82]. Second, δP (k, η, η′)
vanishes for equal times. Therefore, we expect that the correction to the equal-time one-
loop term in the square brackets is always small. Furthermore, given the expectation that
P (k, η, η′) is a smooth function of η and η′, when the two times are not equal, the exponential
suppression at high k is always large enough to make any small mistake in the modeling of
the nonlinear power spectrum insignificant.

Motivated by these results, we make the following ansatz for the non-equal time power
spectrum

Pδ(k, η, η′) = e−k2Σ2(D(η)−D(η′))2/2Pδ(k, η̄) . (B.23)
This equation has the correct equal-time limit, on large scales (small k) it reduces to the
linear theory result given by eq. (B.11), and on small scales it has the correct exponential
suppression of power induced by the difference in magnitudes of large bulk flows at differ-
ent redshift. The equal time power spectrum on the right hand side Pδ(k, η̄) can be simply
evaluated using the HALOFIT [76, 77]. Eq. (B.23) can be used in eq. (B.7) to compute the
differential external convergence variance. The highly oscillating integrand (due to the pres-
ence of the Bessel function j0) can be tamed by means of FFTlog techniques [74, 83]. Finally,
we introduce a cut-off in the k integral at some kcutoff . We choose kcutoff = 10 Mpc−1, where
individual galaxies and baryonic effects most likely lead to a breakdown of the HALOFIT
result. Note that similar smoothing is implicitly used in the ray-tracing simulations when
the gravitational potential is estimated from the distribution of matter. Changing kcutoff by
a factor of 2 up or down affects our results at the level of a few tens of percent, which is
comparable to other theoretical uncertainties in our equations. In section B.2 we compare the
results of our calculations with results obtained in the literature using ray tracing techniques.

B.2 Comparison to ray-tracing results
TDCOSMO derives Bayesian priors for external convergence by using ray-tracing through the
Millennium simulation [84], on LOSs which are chosen to match the galaxy density observed
in each strong lensing system of interest [6, 51, 85]. We can use these numerical results to
compare with our analysis (eq. (B.10)).

In figure 5 and table 1 we compare our computation (linear, obtained using eq. (B.11)
for the power spectrum; and non-linear, obtained using eq. (B.23)) with ray tracing results
from the TDCOSMO collaboration available here: https://github.com/TDCOSMO/hierar-
chy_analysis_2020_public/tree/master/TDCOSMO_sample/TDCOSMO_data. Figure 6
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Figure 5. Comparing the probability distribution obtained in ray tracing [51] (blue bar histograms)
with our computation, in linear theory (solid orange) and with the non-linear approximation
(solid green: kcutoff = 10 Mpc−1, dashed green: kcutoff = 5 and 20 Mpc−1). We remark that
our results cannot reproduce the bias on the external convergence (nonzero mean seen in some
of the blue bar histograms), since our computation is equivalent to an average over all LOSs,
differently from the ray-tracing analysis TDCOSMO performs, which is calibrated to match
the richness of the actual lensing systems. A fairer comparison between our computation and
typical TDCOSMO results, obtained by averaging over many LOSs, is shown in figure 6. Code:
https://github.com/lucateo/Comments_MSD/blob/main/Notebooks/delta_kappa_nonlinear.ipynb.

– 22 –

https://github.com/lucateo/Comments_MSD/blob/main/Notebooks/delta_kappa_nonlinear.ipynb


J
C
A
P
0
7
(
2
0
2
2
)
0
2
7

0.10 0.05 0.00 0.05 0.10 0.15
s

0

10

20

30

40

50 Linear
Non linear
TDCOSMO

Figure 6. Comparing the distribution of the system B1608+656, when the aver-
age in the Millennium Simulation is done over all LOSs, with our estimates. Code:
https://github.com/lucateo/Comments_MSD/blob/main/Notebooks/delta_kappa_nonlinear.ipynb.

System σlin σhalofit σTDCOSMO κTDCOSMO
ext

DES0408-5354 0.0109 0.0390 0.0380 −0.0397+0.0421
−0.0242

HE0435-1223 0.0088 0.0299 0.0342 0.0040+0.0363
−0.0215

PG1115+080 0.0089 0.0303 0.0330 −0.0054+0.0358
−0.0209

SDSS1206+4332 0.0092 0.0313 0.0410 −0.0037+0.0402
−0.0215

B1608+656 0.0076 0.0251 0.0903 0.1026+0.0949
−0.0451

RXJ1131-1231 0.0037 0.0110 0.0433 0.0695+0.0480
−0.0260

WFI2033-4723 0.0087 0.0295 0.0660 0.0591+0.0863
−0.0442

Table 1. Comparing our external convergence estimates with ray tracing results from the literature.
We show the external convergence variance using linear theory (eq. (B.11)) on the second column
and non-linear approximation (eq. (B.23)) on the third column. The ray tracing results from the
TDCOSMO collaboration (available here) are shown in the last two columns (κs variance on the
fourth, κs mean and the 16th and 86th percent quantiles on the fifth).

shows the results obtained in ref. [51] for the probability distribution of external convergence,
averaging over all LOSs (that is, not restricting to fields containing strong lensing systems).

Our nonlinear analysis (incorporating HALOFIT and the non-equal time approxima-
tion) reproduces the variance in κs to within about 30% accuracy for the systems which have
a mean value of κs compatible with zero (first 4 systems in table 1, top 4 panels in figure 5).
Some systems, however, are found in [51] to be biased with a mean κs that is significantly
off zero (last 3 systems in table 1, bottom 3 panels in figure 5). This probably reflects excess
structure along the LOS, typical of systems in crowded fields. For these systems, our calcu-
lation not only misses the bias, but also underestimates the spread in κs, by up to a factor of
∼ 4. Thus, indeed, the simplified computation from the previous section can only be used to
provide a rough estimate of the magnitude of weak lensing effects, and ray tracing analyses
on the lines of refs. [51, 86–88] are probably mandatory on a system by system study.
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