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Abstract. The CERN Tape Archive (CTA) provides a tape backend to disk
systems and, in conjunction with EOS, is managing the data of the LHC exper-
iments at CERN.

Magnetic tape storage offers the lowest cost per unit volume today, followed
by hard disks and flash. In addition, current tape drives deliver a solid band-
width (typically 360 MB/s per device), but at the cost of high latencies, both for
mounting a tape in the drive and for positioning when accessing non-adjacent
files. As a consequence, the transfer scheduler should queue transfer requests
before the volume warranting a tape mount is reached. In spite of these transfer
latencies, user-interactive operations should have a low latency.

The scheduling system for CTA was built from the experience gained with
CASTOR. Its implementation ensures reliability and predictable performance,
while simplifying development and deployment. As CTA is expected to be used
for a long time, lock-in to vendors or technologies was minimized.

Finally, quality assurance systems were put in place to validate reliability
and performance while allowing fast and safe development turnaround.

1 Introduction

The CERN Tape Archive (CTA), in conjunction with the EOS disk system, stores the Physics
data of experiments at CERN. All the experiments at the Large Hadron Collider (LHC) have
been migrated from the CERN Advanced STORage (CASTOR) to the CERN Tape Archive
(CTA), and CASTOR is being phased out gradually for the other experiments, current and
past [1].

CTA is a tape backend for file systems and initially targets EOS. Other filesystems could
use it and adaptation for deployment behind dCache is being investigated [2]. CTA incorpo-
rates the knowledge accumulated during the years of CASTOR operation [3]. Unlike CAS-
TOR, CTA contains no file directory structure or disk storage system: this is the responsibility
of the client disk system. Like CASTOR, CTA keeps track of files stored on tape in a file
catalogue, keeps track of the transfers between disk and tape in multiple queues and manages
the tape drives.
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As the time to mount a tape is significant — O(1 min) — tape systems need to accumu-
late transfer requests in multiple queues before it is worth mounting a tape. Writes define
the destination as a tape pool, while reads are limited to the tape where the file is located.
Both CASTOR and CTA logically queue reads to individual tapes, and writes to tape pools,
creating a natural grouping of requests. Multiple properties of the content of the queues and
drive statuses are then polled to decide when a new tape mount should be started, based on
data volume, request age, priority and user drive allowance. Those requirements of queue
content introspection make standard message passing packages inadequate.

In practice this means there are up to O(1000) queues, whose properties should be in-
spected to reach a mount decision. Such a queueing system should be reliable and provide
adequate throughput. The latency is not always critical, but some user visible operations re-
quire it to be kept low. Finally, as CTA is going to be used in the long run, particular care
should be taken in avoiding vendor or technology lock-ins.

This article will describe the new queueing system introduced with CTA, which builds on
the experience gathered in CASTOR as well as modern possibilities in databases and object
stores to meet those challenges.

2 Issues and opportunities in the CASTOR - EOS scenario

2.1 Vendor lock-in of CASTOR into Oracle due to implementation in PL/SQL

The scheduling of CASTOR [4] is based on a relational database that stores the queued re-
quests both for disk and tape. While the disk operation requests are processed in order and as
soon as resources are available, the tape operations require grouping, sorting and summariz-
ing to take decisions and execute requests. Requests are grouped by tape pool or tape volume
identifier (VID), while sorting is by location on the tape volume for reads and age for writes.
In order to achieve good performance, those operations were implemented as PL/SQL inside
the Oracle database. This led to a vendor lock-in and the impossibility to run CASTOR on
another database as too much code would have to be ported.

This constant summarizing of queues to get totals and extrema require the database to go
through all the elements of the queue repeatedly. Experience in production has shown those
queries to yield unreliable performance. As the queues vary in size so do the underlying
tables, but the disk blocks for their physical storage are not cleaned up accordingly. This lead
to sub-optimal performance, to the point of creating user visible incidents. Mere popping
from such a queue led to incidents in the past years.

2.2 High cost of inter-daemon communication

CASTOR having been developed 20 years ago, its architecture reflects constraints that have
since disappeared. The most notable one is the maximum number of connections a database
allows. Low in the past, this number required servers in front of the database. This is not
the case any more for O(100) connections, which is the order of magnitude of the number of
drives in production. In turn, creating servers required the development and maintenance of
protocols between said daemons and the clients (disk and tape servers), which was a signifi-
cant part of the development.

This architecture led to the deployment of many utility daemons, which neither interfaced
to the user nor directly managed data transfers to the hardware. Deployment of any change
of protocol between all those daemons required careful planning between the client and the
server.
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to the user nor directly managed data transfers to the hardware. Deployment of any change
of protocol between all those daemons required careful planning between the client and the
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2.3 Redundancy of disk storage between CASTOR and EOS

With both EOS and CASTOR providing a distributed disk based storage, the duplicated func-
tionality was an opportunity to simplify our software portfolio. CTA removes this duplication
by adding a tape back end to EOS, and makes the most of the accumulated experience from
CASTOR, while taking advantage of modern opportunities. EOS is the initial target in the
development of CTA, but its architecture is open enough to accommodate other file systems.

2.4 CTA Architecture

With databases able to handle one connection per tape drive directly, the intermediate dae-
mons are no longer a necessity. In addition, distributed key value stores like Ceph — which
have been deployed at CERN for a long time [5] — naturally support a high number of
clients. CTA therefore relies on a shared central storage — database and object store —
directly accessible by every process, into which the functions of CASTOR’s utility servers
are collapsed. The layout of the classes as a software stack is shown in figure 1, and these
components are described in the following sections.

2.4.1 Catalogue

ObjectStore::Backend (interface)

BackendRados

SchedulerDB (interface)

librados
BackendVFS

glibc

Scheduler

Catalogue (interface)

OStoreDB Oracle
Catalogue

Postgres
Catalogue

MySQL
Catalogue etc.

RDBMSCatalogue (base class)

libocci libpostgres libmysql etc.

Front end Tape server Maintenance

Figure 1. Software stack layout

The CASTOR namespace is
held in a database, with the two
biggest tables for file entries and
tape copies for said files. CTA
does not diverge much from
the CASTOR namespace in this
area. As the data is stable,
and mostly grows with time, the
use of a database is appropri-
ate. In addition to the file cata-
logue, this database also tracks
the tapes, tape pools, storage
classes – which map files to tape
pools – and drive allowance per
user. This database is directly accessed by all the processes of CTA: front end to the user,
tape server processes and maintenance processes — which will be detailed below. The cata-
logue C++ object interface is defined as pure virtual interface potentially allowing multiple
implementations of the service. In practice, a single umbrella implementation gathers most
of the queries, which are common to all supported relational database implementations and
inheriting classes implement both the specifics to each database and the access mechanism.

2.4.2 Scheduler DB, aka Objectstore

On the other hand, CTA’s queueing and request tracking is radically different from CAS-
TOR’s. The queues for different tapes or tape pools are represented by separate objects in
a key value store, and each request is represented by an individual object. In addition, this
object store contains the status of tape drives and of each process operating on the objects,
in order to recover incomplete operations and ensure object store consistency after a process
crash. A completely shared implementation relies on multiple implementations of the access
mechanism in backend classes. A pure virtual interface was also foreseen to allow a complete
re-implementation of the scheduler DB if needed, but like for the catalogue, no alternative
for the scheduler DB was implemented.
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2.4.3 Scheduler

A scheduler C++ object is a client to both the catalogue and the scheduler DB objects, and in
turn provides the functions needed by all of the processes of the system. The scheduler makes
the connection between the two persistent storage systems and takes the decisions for action
(mounting a tape, finding files to transfer for a tape session or keeping track of successes and
failures).

2.4.4 Impact of the architecture

The different daemons having been collapsed into C++ classes, and run with one instance per
process, what used to be calls over the network are now simple function calls. Changes to
their APIs do not impose constraints on deployment anymore as the update comes in a block
at process restart.

Changes in the data schema on the shared storage are handled in a variety of ways. Pro-
tocol Buffers provide a lot of flexibility to handle changes. The objects in the object store
foresee schema versioning, allowing an opportunistic migration of the objects as they are vis-
ited during normal operations, but this mechanism was never implemented as simpler ways
were always found.

The consolidation of the scheduling and namespace information in 2 storage systems in-
stead of 4 in CASTOR and their unification by the scheduler object allows a greater flexibility
in implementing the scheduling algorithms, with a complete view of the situation. This al-
lows better decisions, like avoiding deciding to schedule for mounting a tape located in a
library with no drives available.

2.5 Development techniques

Thanks to the availability of trivial backends — local file system for the object store and in-
memory SQLite for the catalogue — unit tests running in a single process can validate not
only the base functions but also significant chunks of the software stack, including the main
scheduling scenarios, simulating the calls from a tape server and front end. The fact that the
unit test runs in a single process also allows validation of memory allocation and threading
with Valgrind and Helgrind [6]. All those validations are part of the continuous integration
system (CI) and are run automatically. In practice, this made race conditions and memory
leaks a non-existent problem in production.

A Kubernetes environment was put in place to validate the deployment in a virtual en-
vironment. This allows running a full stack CTA, including EOS, virtual tape drives and
Kerberos in a CI environment. The same Kubernetes environment allows running the full
stack in a disconnected environment, like a laptop. Running against any other backend is also
possible.

2.6 Advantages

The catalogue part, stored in a relational database, is mostly unchanged with respect to CAS-
TOR and carries the usual advantages and drawbacks of a database: queries are simple to
write, and algorithms are relatively well chosen automatically by the optimizer, as long as the
data profile is stable over time.

The object store allows a direct representation of the data, which can be split into more
objects to reduce contention by increasing the granularity of locking, where needed. On the
other hand, arbitrarily complex structures can be serialized in objects using Protocol Buffers,
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allowing a reduction of code complexity where multiple tables are needed in an RDBMS
environment. Each object of a given type can also have its schema updated independently
from other objects, allowing many options in case of schema update. In summary, we have
complete objects with independent schemas as opposed to schema-synchronized rows in mul-
tiple tables, which require joining when dealing with complex cases like structures containing
arrays.

The algorithms used on the object store are well controlled and can be tuned to needs,
avoiding the RDBMS optimizer issues mentioned in section 2.1.

2.7 Costs

The object store algorithm flexibility comes at the cost of development effort, including the
handling of error cases arising from the nature of running on distributed, unreliable processes.
This aspect will be developed in section 4.2.1.

3 The Catalogue

3.1 Multiple back-end implementations, included one contributed.

Due to the systematic structure of the catalogue data most of the operations can be imple-
mented in generic SQL statements. A base class gathers all the commonalities using SQL
statements applying to all DBs. Derived classes implement the concrete access to each DB
with its specificities and implement the few operations that benefit from a dedicated, per
backend implementation. The order of magnitude is 10 % of the approximately 130 mem-
ber functions of the catalogue class interface. Four backends exist: PostgreSQL, Oracle
and MySQL/MariaDB (contributed by IHEP, Beijing, China) for production use cases and
in-memory SQLite for validation/unit tests.

4 The Scheduler DB, aka Objectstore

The scheduler DB provides the tracking of the transient data transfer requests — to and from
tape — as well as the internal states of the drives and of all the processes interacting with
the scheduler DB. The underlying storage is a persistent key-value store. The interface to
the backends is defined by an abstract class, and two concrete implementations exist: one
using Rados, the distributed key-value store of Ceph, and one relying on a Linux Virtual File
System (VFS). The latter is only used in tests, and while a Network File System (NFS) based
deployment would work in theory this was never tested because it presents a single point of
failure unless expensive hardware is used.

The scheduler database has a heterogeneous tree structure. Objects are stored as values in
the key-value store, and referenced by their key. A special object with the key "root" is at the
root of the structure. The objects contain arbitrary structures serialized with Protocol Buffers
[7]. Protocol Buffers is an open source serialization and deserialization package developed
by Google. It allows storage of any composition of structures, arrays, scalars and strings in a
size-efficient and portable binary format.

Objects reference each other by their key. Some objects representing processes and tape
drives have a static location and are referenced by fixed registries. The objects representing
processes are called "agents". Queues also have a static location.

Other objects have a more dynamic life cycle: the requests. Requests to transfer data
to and from tape, respectively named ArchiveRequests and RetrieveRequests, are referenced
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by various structures during their life cycle. They are attached to queues when pending
processing and are attached to the agent object of the process working on them. This per-
status queueing simplifies the writing of the processing stages. The tree structure is illustrated
in figure 2.

RootEntry

Tape-BTape-A

RetrieveRequestA1

RetrieveRequestA2

RetrieveRequestB1

RetrieveRequestB2

TapePool-C TapePool-D

ArchiveRequestC2 ArchiveRequestD2

DriveRegisterSchedulingGlobalLock AgentRegister

Agent1 Agent2

ArchiveRequestC3

Figure 2. Object store’s instance diagram showing retrieve queues for Tape-A and B, archive
queues for TapePool-C and D, and 2 Agents, one of which is processing an archive request

4.1 Challenges

As the data structures are shared, permanent access from multiple processes should ensure
consistency at all times, including after a process crash. The problem is hence similar to
classic multi-threaded programming with extra considerations for process crash and latency,
the distributed key-value stores having much higher latency than local memory. On the other
hand, the key-value stores allow asynchronous IO, which eases algorithmic complexity to
O(1) in many cases.

In order for the data to remain coherent in the event of a process crash the data structures
must have a valid state at each object update. Key-value stores do not provide multi-object
transactions, so this limitation was worked around.

As the data are accessed from multiple processes locking is needed and we used classic
locking techniques to synchronize them.

Blocking between processes can limit performance and locking strategies should ensure
contention between processes accessing the object store does not impact performance.

We had to ensure that multiple back ends can be used or added if necessary (as with the
catalogue).

4.2 Implementation and algorithms

4.2.1 Reliability with unreliable processes

The interface to the backend is defined in an abstract class according to the needs of the rely-
ing class, the schedulerDB. This includes atomic creation, fetch, update and deletion of ob-
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4.2 Implementation and algorithms

4.2.1 Reliability with unreliable processes

The interface to the backend is defined in an abstract class according to the needs of the rely-
ing class, the schedulerDB. This includes atomic creation, fetch, update and deletion of ob-

jects, per-object locking and asynchronous operations. The backend objects implement those
calls in the native libraries of the underlying storages. In all cases the key is any arbitrary
string and the value an arbitrary bitstream. Other backends can be added by implementing
the interface in a new class.

In order to avoid clashes, while providing a human-readable naming convention, each
process determines a unique name for itself and adds a serial number to each object it creates.
In addition the name of the object has a prefix indicating the type of the object.

In order to prevent objects from being orphaned and allow safe deletion and atomic trans-
fer from one position in the tree to another, references to objects are allowed to be stale, and
the software handles the situation. Objects confirm being owned by a given container by
having an "owner back reference" to the active owner. Stale references cover both cases of
reference to a non-existing object and references to an object not confirming the ownership
with the back reference to the owner. This allows atomic transfers of ownership where the
new owning container (queue or agent) first references the object. The new reference is then
confirmed by updating the object, which is an atomic operation. The old, invalid reference
is then cleaned up from the previous container. A process crashing before the owned object
update leaves the ownership unchanged, while if crashing afterwards, leaves at most an in-
valid reference that will be disregarded and cleaned up eventually. The stale references are
not normally seen by other processes thanks to locking. This safe ownership transition is
illustrated in figure 3.

Queue
Shards list

Shard
Requests list

Request
Owner
backpointer

Agent
Requests list

1: Initial state
Queue

Shards list

Shard
Requests list

Request
Owner
backpointer

Agent
Requests list

2: Create reference in new owner

Queue
Shards list

Shard
Requests list

Request
Owner
backpointer

Agent
Requests list

3: Switch backpointer: 
the transfer is effective

Queue
Shards list

Shard
Requests list

Request
Owner
backpointer

Agent
Requests list

4: Cleanup dangling reference
from queue

Figure 3. Sequence of the safe ownership change from
a queue to an agent (queue pop)

A typical ownership change
happens when the state of a re-
quest gets updated. The owner
backpointer update and the in-
ternal status update in the re-
quest object are committed in
the same object write, as this
both saves a round trip to the
storage and ensures both oper-
ations happen in the same intra
object transaction.

Each ownership change op-
eration involves at least 9 round
trips to the object store: lock-
ing of the destination con-
tainer, fetching of the container,
adding the new reference, lock-
ing, fetching and committing
the request, and then locking,
fetching and committing the
source container. As requests
are processed in bulk in the
tape system, many new refer-
ences are added to the destina-
tion container in one go. Then
the requests are locked, fetched
and updated in parallel using
asynchronous IO, and finally
the source container is updated.
This parallelism allows an update bandwidth mostly independent from the key value store la-
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tency, at the cost of slightly more complex error handling (source and destination references
to requests might need to be corrected, adding an extra round trip).

4.2.2 Performance: latency hiding, contention domain control

The interface to EOS is driven by file-by-file user interactions. Transfer requests in both
directions, to and from tape, are created and queued at this point. In order to hide the queueing
latency, which can vary depending on the contention on the queue, the front end first creates
a reference to the request in its agent object and then the request itself, before reporting to
the client that the request has been received. The request is indeed safe in the system at that
point, as it is referenced as owned by the front end process. In case of process crash at that
point, the queueing of the requests will be done by the garbage collection.

As the requests are created from multiple threads independently, and to avoid competi-
tion between threads of the same process for objects in the object store, both agent object
and queue accesses are mutualized by a thread synchronization mechanism. The first thread
needing to access a container creates a batch with its own request reference, and waits for
any running access to the container to complete. Other threads, noticing the existence of the
batch, simply piggy back on the batch and wait. Once the previous access completes, the
first thread wakes up, closes the batch and signals it is accessing the container to a potential
followup thread, references the requests in the container, and signals all the waiting threads
they can proceed with their per-request part of the queueing.

Contention can be controlled by adjusting the size of contention domains. This means
spinning sections of a structure off, into distinct objects. For example, initially the drive
states were all stored in a single object, leading a non-scaling contention when more drives
are added to the system and competed to update their value on the drive registry. The drive
registry was then turned into a two-stage structure where each drive has it own state object,
and the central registry only references the state objects. The drives stopped competing to
update their statuses and only the rare referencing and de-referencing of a drive can lead to
contention. On the other extreme of the spectrum, we could imagine a single root object
containing all the scheduling data. Any update of it would require taking a global lock and
block any other update in the system.

The majority or reads are non-contended as lockless reads are generally adequate. Some
operations can also be probed in read-only mode before deciding if a locked run is necessary.
This is used for scheduling new tape mounts, where a dry-run scheduling is executed without
locks, and only if a mount seems possible is a global scheduling lock taken, followed by a
committing scheduling. As the actual scheduling of a new mount is a rare event at the scale
of the object store accesses, a single global lock is adequate in this case.

4.2.3 Queue structures for arbitrary size

In order to keep the size of objects capped, the queue objects are sharded. This keeps the
update time bound even in the presence of arbitrarily long queues — tests were pushed to
several millions — as well as keeping the size of individual objects below the underlying
storage limits (100 MB for Rados). The queue is composed of a header, referencing the shards
and their properties, and shards referencing the individual requests. To avoid accessing the
individual objects, necessary values for them are cached with their references. Most notably
for the extrema cases like oldest request age, each extremum for a shard is cached next to
the reference to the shard, allowing the efficient re-computation of the global extremum over
all shards after updating one. Likewise, any value of interest from a request (age, size, and
position on the tape for reads) is cached inside the shard with the request reference, allowing
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tency, at the cost of slightly more complex error handling (source and destination references
to requests might need to be corrected, adding an extra round trip).

4.2.2 Performance: latency hiding, contention domain control

The interface to EOS is driven by file-by-file user interactions. Transfer requests in both
directions, to and from tape, are created and queued at this point. In order to hide the queueing
latency, which can vary depending on the contention on the queue, the front end first creates
a reference to the request in its agent object and then the request itself, before reporting to
the client that the request has been received. The request is indeed safe in the system at that
point, as it is referenced as owned by the front end process. In case of process crash at that
point, the queueing of the requests will be done by the garbage collection.

As the requests are created from multiple threads independently, and to avoid competi-
tion between threads of the same process for objects in the object store, both agent object
and queue accesses are mutualized by a thread synchronization mechanism. The first thread
needing to access a container creates a batch with its own request reference, and waits for
any running access to the container to complete. Other threads, noticing the existence of the
batch, simply piggy back on the batch and wait. Once the previous access completes, the
first thread wakes up, closes the batch and signals it is accessing the container to a potential
followup thread, references the requests in the container, and signals all the waiting threads
they can proceed with their per-request part of the queueing.

Contention can be controlled by adjusting the size of contention domains. This means
spinning sections of a structure off, into distinct objects. For example, initially the drive
states were all stored in a single object, leading a non-scaling contention when more drives
are added to the system and competed to update their value on the drive registry. The drive
registry was then turned into a two-stage structure where each drive has it own state object,
and the central registry only references the state objects. The drives stopped competing to
update their statuses and only the rare referencing and de-referencing of a drive can lead to
contention. On the other extreme of the spectrum, we could imagine a single root object
containing all the scheduling data. Any update of it would require taking a global lock and
block any other update in the system.

The majority or reads are non-contended as lockless reads are generally adequate. Some
operations can also be probed in read-only mode before deciding if a locked run is necessary.
This is used for scheduling new tape mounts, where a dry-run scheduling is executed without
locks, and only if a mount seems possible is a global scheduling lock taken, followed by a
committing scheduling. As the actual scheduling of a new mount is a rare event at the scale
of the object store accesses, a single global lock is adequate in this case.

4.2.3 Queue structures for arbitrary size

In order to keep the size of objects capped, the queue objects are sharded. This keeps the
update time bound even in the presence of arbitrarily long queues — tests were pushed to
several millions — as well as keeping the size of individual objects below the underlying
storage limits (100 MB for Rados). The queue is composed of a header, referencing the shards
and their properties, and shards referencing the individual requests. To avoid accessing the
individual objects, necessary values for them are cached with their references. Most notably
for the extrema cases like oldest request age, each extremum for a shard is cached next to
the reference to the shard, allowing the efficient re-computation of the global extremum over
all shards after updating one. Likewise, any value of interest from a request (age, size, and
position on the tape for reads) is cached inside the shard with the request reference, allowing

the recomputation of the shard’s totals with only the shard itself loaded in memory from the
object store. This relies on the fact that in CTA request properties are immutable for the
lifetime of the request.

The queues for reads are sorted, as reading a tape in order is more efficient than a random
location order, which would result from FIFO ordering. Algorithms have been devised to
assign requests to the proper shards before creating or updating them in turn, with the main
queue object. When insertions happen in the middle of the queue, a given shard can be split
in two to keep the shards size bound.

With queues sharded, updates to the queue contents are no longer atomic. For this reason,
queueing always ensures that references are added to one shard before being removed from
another, in the shard split scenario. This ensures that references are present at least once in
the queue in the case of a process crash. Double references will lead to slightly off contents
summaries, but as the software tolerates dangling references, the queue will eventually return
to correctness as processes consume from it.

Finally, when scheduling a tape mount, the tape drives load all the main queue objects
asynchronously and without locking, which costs on first order one round trip time, irrespec-
tive of the number of queues present. The main queue objects contain all the necessary values
for deciding which queue to process in the next mount, if any.

These queues are the workhorse of CTA scheduling and required a significant amount of
development, but provide guaranteed performance queueing with no vendor lock-in.

4.2.4 Maintenance process, garbage collection

As the tape sessions lock a tape drive while they work, the amount of scheduler housekeeping
was kept to a minimum in the tape daemon process, in order to ensure the tape drive is utilized
as much as possible.

The rest of the life cycle of requests is executed in a different process. This maintenance
process makes sure that successful transfers to tape are reported to the EOS client system,
and ultimately to the user. Having this step of the transfer outside the tape session provides
the additional benefit of allowing a retry of the reporting step in the case of failure.

The maintenance process also handles repack scheduling, where operators queue tape
volume identifiers (VIDs) and the system automatically expands them to file-level detail on
demand, so that millions of files are not queried from the catalogue in one go. The mainte-
nance process ensures the expansion is just a few tapes ahead of the current execution. The
repack requests are executed in a similar way to the user requests, with a special reporting
process.

Finally, the maintenance process handles the garbage collection of dead processes. Pro-
cesses are represented by agent objects, which are normally owned by a central agent registry.
Each maintenance process watches all the agents in the system. The agent objects contain an
increasing heartbeat counter which stops being incremented after a crash. When a mainte-
nance process detects such a crash, it takes ownership of the agent object and then requeues
all the requests, and more generally returns the owned objects to their original location. For
example, if a maintenance process crashes during garbage collection, the owned agent will be
returned to the registry, re-detected as a dead process and garbage collected again by another
process.

4.3 Limitations

While vendor and technology lock-in were carefully avoided where reasonable, CTA is de-
pendent on Protocol Buffers serialization at its core. Serialized objects and their memory
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representations all rely directly on the Protocol Buffers calls. No wrapper was devised for
this part as the work required would probably barely break even when introducing a second
serialization package. As Protocol Buffers are a standard part of current Linux distributions,
the need for such a replacement is unlikely in the foreseeable future.

5 Conclusion and possible generalization

This article described methods used to develop a reliable shared structure that is accessed
in a distributed manner. The structure inherits the reliability of its underlying storage, and
in the case of Ceph provides the absence of any single points of failure, while running on
commodity hardware.

By moving the queueing burden and complexity out of a relational database, this queueing
system future proofed CTA by ensuring it is not vendor or technology locked.

While the methodologies used are systematic, the source code is only partially generic, al-
lowing reuse of queues in different contexts. Further generalization might provide in-process
container-like interfaces to those distributed structures.
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