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In recent years, lattice determinations of non-perturbative quantities such as 𝑓𝐾 and 𝑓𝜋 , which
are relevant for 𝑉𝑢𝑠 and 𝑉𝑢𝑑 , have reached an impressive precision of O(1%) or better. To make
further progress, electromagnetic and strong isospin breaking effects must be included in lattice
QCD simulations.
We present the status of the RBC/UKQCD lattice calculation of isospin-breaking corrections to
light meson leptonic decays. This computation is performed in a (2+1)-flavor QCD simulation
using Domain Wall Fermions with near-physical quark masses. The isospin-breaking effects are
implemented via a perturbative expansion of the action in 𝛼 and (𝑚𝑢 − 𝑚𝑑). In this calculation,
we work in the electro-quenched approximation and the photons are implemented in the Feynman
gauge and QEDL formulation.
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Isospin-Breaking Corrections to 𝐾ℓ2/𝜋ℓ2 Andrew Zhen Ning Yong

1. Introduction

One of the ongoing efforts to search for new physics beyond the Standard Model (SM) of
particle physics is to test the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Since
all SM and potential beyond-the-SM particles contribute to hadronic decays via virtual corrections,
any deviations from the theoretical expectation of unitarity may hint at inconsistencies between
Nature and the SM in the flavor sector. In 2020, the PDG [1] reports the following tension with
unity in the first row of the CKM matrix:

|𝑉𝑢𝑑 |2 + |𝑉𝑢𝑠 |2 + |𝑉𝑢𝑏 |2 = 0.9985 ± 0.0005. (1)

The determination of CKM matrix elements is an endeavour involving the joint effort of precise
experimental measurements and predictions from theory. One of the experimental avenues of
interest is the leptonic decay channels of light pseudoscalars, 𝑃± = 𝐾±, 𝜋±. The tree-level expression
is

Γtree
𝑃 =

𝐺2
𝐹

8𝜋
𝑀𝑃+𝑚2

ℓ+

(
1 −

𝑚2
ℓ+

𝑀2
𝑃+

)2

| 𝑓𝑃 |2 |𝑉𝑞𝑞′ |2, (2)

where 𝐺𝐹 is the Fermi constant and 𝑉𝑞𝑞′ is the CKM matrix element between quark flavors 𝑞 and
𝑞′. The pseudoscalar decay constant, 𝑓𝑃, is a quantity in the isosymmetric theory, where 𝛼 = 0 and
𝛿𝑚 ≡ 𝑚𝑢 −𝑚𝑑 = 0. We note that since the decay constant encapsulates the non-perturbative effects
of QCD, it is evaluated numerically using lattice QCD methods. Traditionally, these calculations
were performed in the 𝛼 = 0, 𝛿𝑚 = 0 regime. However, since recent lattice determinations of 𝑓𝐾
and 𝑓𝜋 have attained percent-level precision [2], further progress will necessitate the inclusion of
isospin-breaking (IB) effects since 𝛼 ∼ 𝛿𝑚

ΛQCD
∼ 1%.

Due to the experimental challenge in distinguishing between final states with or without a soft
photon, only the inclusive rates are measured in the case of pions and kaons. For the extraction of
𝑉𝑞𝑞′ from experimental data, we combine the tree-level expression with its IB corrections with

Γ(𝑃+ → ℓ+𝜈ℓ [𝛾]) = Γtree
𝑃 (1 + 𝛿𝑅𝑃) + O(𝛼2, 𝛿𝑚2, 𝛼𝛿𝑚) (3)

where 𝛿𝑅𝑃 contains the leading order IB contributions to the tree-level width.
In this proceeding, we report on our determination of |𝑉𝑢𝑠 |

|𝑉𝑢𝑑 | , which can be extracted from a
ratio of muonic inclusive rates via

|𝑉𝑢𝑠 |2
|𝑉𝑢𝑑 |2

=
Γ(𝐾+ → 𝜇+𝜈𝜇 [𝛾])
Γ(𝜋+ → 𝜇+𝜈𝜇 [𝛾])

𝑀𝐾 +

𝑀𝜋+

𝑀2
𝜋+ − 𝑚

2
𝜇+

𝑀2
𝐾 + − 𝑚2

𝜇+
F −2, (4)

where
F =

𝑓𝐾

𝑓𝜋

√︁
1 + 𝛿𝑅𝐾 𝜋 (5)

and 𝛿𝑅𝐾 𝜋 ≡ 𝛿𝑅𝐾 − 𝛿𝑅𝜋 . By using experimental measurements of the inclusive rate (i.e. branching
ratios and mean lifetimes) and masses, the term 𝛿𝑅𝐾 𝜋 encapsulates the ratio of IB correction to
the hadronic decay amplitudes. The lattice determination of 𝛿𝑅𝐾 𝜋 is thus the main focus of this
calculation.
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2. Calculation strategy

The methodology of separating the calculation of real and virtual IB corrections, along with
the regulating and removal of finite volume effects (FVE) from the amplitudes computed on the
lattice, was first proposed in [3]. Following this, a calculation of 𝛿𝑅𝐾 𝜋 and |𝑉𝑢𝑠 |

|𝑉𝑢𝑑 | was accomplished
in [4, 5]. Here, we adopt a similar strategy and write the inclusive rate as

Γ(𝑃+ → 𝜇+𝜈𝜇 [𝛾]) = lim
𝐿→∞

(Γ0(𝐿) − Γ
(2)
0 (𝐿)) + lim

𝜆→0
(Γuniv

0 (𝜆) + Γ1(𝜆,Δ𝐸𝛾)), (6)

where the subscript denotes the number of real photons in the final state. The virtual corrections in
Γ0 are evaluated with numerical simulations since all momentum modes of the photon are involved
in the interaction with the initial hadron. Thus, the lattice box size, 𝐿, is a natural choice of IR
regulator. To remove the FVE of the lattice calculation, we introduced

Γ
(𝑛)
0 (𝐿) = Γtree

𝑃

(
1 + 2

𝛼

4𝜋
𝑌
(𝑛)
𝑃

(𝐿)
)
+ O

(
1
𝐿𝑛+1

)
. (7)

The O(𝐿−1) FVE’s were calculated in [6], and the O(𝐿−2) structure-dependent FVE’s in [7]. Thus,
the residual FVE coming from our lattice calculation now begins at Γ0(𝐿) − Γ

(2)
0 (𝐿) ∼ O

(
𝐿−3) .

For the real photon contribution, we implement the analytic approach in [3]. In Equation (6),

lim
𝜆→0

(Γuniv
0 (𝜆) + Γ1(𝜆,Δ𝐸𝛾)) = Γtree

𝑃

(
1 + 𝛼

4𝜋
𝛿Γ1,𝑃 (Δ𝐸)

)
, (8)

where Δ𝐸 is an energy threshold, below which the photon is sufficiently soft that it treats the initial
hadron as a point-like particle. Here, for the IR regulator we use a fictitious photon mass, 𝜆.
Additionally, an intermediate ‘universal’ term, Γuniv

0 , is introduced to ensure the IR divergences in
Equation (6) cancel numerically. In the following, we will discuss in detail the contributions going
into Γ0(𝐿).

3. Leptonic matrix elements from Euclidean correlation functions

The 4-fermion operator associated to this decay is

𝑂𝑊 = (𝜈𝛾𝜏L𝜇) (𝑞1𝛾
𝜏
L𝑞2), (9)

where 𝛾𝜏L = 𝛾𝜏 (1 − 𝛾5). For a two-body decay, the rate has a simple form:

Γ = K
∑︁
𝑟 ,𝑠

|M𝑟 ,𝑠

𝑃
|2 (10)

where K contains the kinematic factors from the phase space integral and

M𝑟 ,𝑠

𝑃
≡ 〈𝜇+, 𝑟; 𝜈𝜇, 𝑠 |𝑂𝑊 |𝑃+〉 , (11)

where 𝑟, 𝑠 are the polarisations of the on-shell final state fermions. In the rest frame of the
pseudoscalar, the amplitude in the isosymmetric theory of QCD is

3
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M𝑟 ,𝑠

𝑃 =

(
𝑢𝑟𝜈Γ

0
L𝑣
𝑠
𝜇

)
𝐴𝑃, (12)

where the axial matrix element is

𝐴𝑃 ≡ 〈0|𝑞2Γ
0
L𝑞1 |𝑃〉 = 𝑀𝑃 𝑓𝑃, (13)

with 𝑀𝑃 the pseudoscalar mass in the 𝛼 = 0 isosymmetric theory1. At O(𝛼, 𝛿𝑚), all the possible
virtual IB correction to the isosymmetric amplitude are presented in Figures 1 and 2, which we can
write as

1
2
𝛿Γ0,𝑃

Γ0,𝑃
≡

∑
𝑟 ,𝑠 Re

[
M𝑟 ,𝑠 †

𝑃 𝛿M𝑟 ,𝑠

𝑃

]
∑
𝑟 ,𝑠 |M

𝑟 ,𝑠

𝑃 |2
=
𝛿𝐴𝑃

𝐴𝑃
− 𝛿𝑀𝑃

𝑀𝑃

+
𝛿M𝑃𝜇

M𝑃

, (14)

where 𝛿M𝑃𝜇 is the amplitude correction corresponding to diagrams (e,f) in Figure 2. The contri-
butions in Equation (14) are extracted from correlation functions generated in lattice simulations.
Since 𝛼 ∼ 𝛿𝑚

ΛQCD
∼ 1% in the low energy regime, the QED and strong IB (SIB) corrections can

be treated as a perturbation to our path integral expression [12]. The full QCD+QED expectation
value for some observable 𝑂 is

〈𝑂〉 = 〈𝑂〉0 +
∑︁
𝑞

(𝑚𝑞 − 𝑚𝑞)
𝜕

𝜕𝑚𝑞
〈𝑂〉

����
𝑚𝑞=𝑚𝑞

+ 1
2!
𝑒2 𝜕

2

𝜕𝑒2 〈𝑂〉
����
𝑒=0

+ . . . , (15)

where

〈𝑂〉 = 1
Z

∫
D[𝜓]D[𝜓]D[𝑈]D[𝐴]𝑂 [𝜓, 𝜓,𝑈, 𝐴] 𝑒−𝑆𝐹 [𝜓,𝜓,𝑈,𝐴]𝑒−𝑆𝐺 [𝑈 ]𝑒−𝑆𝛾 [𝐴] (16)

is the path integral over the usual quark fields, 𝜓, 𝜓; the 𝑆𝑈 (3) gluonic fields, 𝑈; and the photon
fields, 𝐴. Here, 〈𝑂〉0 is the QCD-only (𝑚𝑢 = 𝑚𝑑) expectation value. The SIB and QED correc-
tions are then extracted from the slopes of the full correlation function, 〈𝑂〉. Respectively, these
derivatives generate correlation functions that contain scalar insertions (Figure 1) or two insertions
of the electromagnetic (EM) current at O(𝛼) (Figure 2). Together with the subtraction of FVE and
the inclusion of the real photon contribution,

𝛿𝑅𝐾 𝜋 =

(
𝛿Γ0,𝐾 (𝐿)
Γ0,𝐾 (𝐿)

−
𝛿Γ0, 𝜋 (𝐿)
Γ0, 𝜋 (𝐿)

)
− 2

𝛼

4𝜋

(
𝑌
(2)
𝐾

(𝐿) − 𝑌 (2)
𝜋 (𝐿)

)
+ 𝛼

4𝜋
(
𝛿Γ1,𝐾 (Δ𝐸) − 𝛿Γ1, 𝜋 (Δ𝐸)

)
.

(17)
In the following, we classify Figure 1(a,b) and 2(a,b,c) collectively as factorisable diagrams

and Figure 2(e,f) as non-factorisable diagrams. We do not consider the lepton self energy term
(Figure 2(d)) as this is absorbed in the lepton renormalisation.

1Such a theory is scheme-dependent and beyond the scope of the proceedings. Interested readers may refer to
e.g. [8–11].
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µ+

P+

(a)

νµ

q1

q̄2

P+

(b)

µ+

νµ

q1

q̄2

Figure 1: Feynman diagrams of scalar insertions on quark legs (marked with red boxes).

(a)

µ+

νµ

P+

q1

q̄2

(c)

µ+

νµ

P+

q1

q̄2

(d)

µ+

νµ

P+

q1

q̄2

(f)

µ+

νµ

P+

q1

q̄2

(e)

µ+

νµ

q1

q̄2

P+

µ+

P+

(b)

νµ

q1

q̄2

Figure 2: Feynman diagrams of all possible insertions of the electromagnetic current (marked with green
squiggle lines) at O(𝛼). QED interactions with sea quarks are neglected.

4. Lattice methodology & implementation

For this calculation, we generate correlators in a 483 × 96 lattice using near-physical Möbius
Domain Wall Fermions (DWF). The Domain Wall height and the length of the fifth dimension
are 𝑀5 = 1.8 and 𝐿𝑠 = 24, respectively [13]. To reduce the computational cost of generating
near-physical light quark propagators, we make use of ZMöbius fermions [14] together with the
eigenvectors generated by the RBC/UKQCD collaboration for deflation. The 60 QCD gauge
configurations used are also generated by the RBC/UKQCD collaboration using the Iwasaki gauge
action [15]. The sea quark masses are 𝑎𝑚𝑠𝑒𝑎

𝑙
= 0.00078, 𝑎𝑚𝑠𝑒𝑎𝑠 = 0.0362. We choose the valence

up- and down-quark masses to have the same value as the sea, 𝑎𝑚𝑢 = 𝑎𝑚𝑑 = 𝑎𝑚𝑠𝑒𝑎
𝑙

and similarly for
the valence strange quarks, 𝑎𝑚𝑠 = 𝑎𝑚𝑠𝑒𝑎𝑠 . In this setup, the lattice spacing is 𝑎−1 = 1.7295(38)GeV
and the ensemble pion mass is 𝑀𝜋 = 139.15(36) MeV.

The correlators are built from quark propagators with Coulomb gauge-fixed wall sources. As
such, we must generate correlators with both wall and point sinks in order to extract the axial
matrix element. The implementation of QED on our lattice simulation is as follows: we remove
the photon’s spatial zero mode with the QEDL formalism. As in the case of the scalar current, we
sequentially insert a local EM current in Feynman gauge to obtain a sequential propagator with an /𝐴
insertion. The correlators built from these propagators are then renormalised by appropriate factors
of 𝑍𝑉 [16]. To build the hadron-leptonic correlators corresponding to diagrams (e,f) in Figure 2,

5
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we include the charged lepton on the lattice. This is done by generating muon propagators with
a free DWF action, using an input mass such that the pole mass of our DWF propagator matches
with the experimentally measured value. The propagator is given twisted boundary conditions to
conserve 4-momentum of this decay. The neutrino is a spectator fermion in this whole process,
so we choose to omit it in the lattice simulation and include it in the analysis stage. We put the
pseudoscalar interpolator at the origin and insert the 4-fermion operator on every timeslice, 𝑡𝐻 ,
with the muon source-sink separation fixed at, 𝑡𝜇 − 𝑡𝐻 = 12, 16, . . . , 36, 40.

In this calculation, we omit SIB contributions coming from sea quarks. We are also working
in the electro-quenched approximation of QED - treating the sea quarks as electrically neutral.

5. Physical predictions from lattice calculations

Since the two sources of isospin-breaking are O(1%) effects, we can perform a linear expansion
about the physical point and treat these effects as shifts from the isosymmetric point, where
𝛼 = 0, 𝛿𝑚 = 0. Let 𝑋 be the observable of interest (e.g. hadronic mass). Then, at O(𝛼, 𝛿𝑚),

𝑋 = 𝑋 +
∑︁
𝑞

Δ𝑚𝑞𝜕𝑚𝑞
𝑋 |𝑚 𝑓 =𝑚 𝑓

+ 1
2!
𝑒2𝜕𝑒2𝑋 |𝑒=0 + O(𝛼2, (Δ𝑚𝑞)2, 𝛼Δ𝑚). (18)

where 𝜕𝑦𝑛𝑋 = 𝜕𝑛𝑋/𝜕𝑦𝑛. Working to this order, we can set the electric charge in terms of the fine
structure constant in the Thomson limit, 𝑒2 = 4𝜋𝛼EM2. The set of Δ𝑚𝑞 are the isosymmetric-to-
physical point bare quark mass shifts. For a theory of QCD with 3 flavors, we can solve for the
three Δ𝑚𝑞’s by imposing the following mass ratios:

(𝑎𝑀𝑃)2

(𝑎𝑀Ω−)2 =

(
𝑀
𝑒𝑥𝑝

𝑃

)2(
𝑀
𝑒𝑥𝑝

Ω−
)2 , (19)

where we choose 𝑃 = 𝜋+, 𝐾+, 𝐾0. Scale setting can also be done by considering the following
dimensionful constraint:

𝑎 =
𝑎𝑀Ω−

𝑀
𝑒𝑥𝑝

Ω−
, (20)

where we chose the omega baryon owing to the clean signal from lattice simulations.
An additional step is required of our setup. Namely, we are not simulating at but close to the

desired isosymmetric point and thus we must correct for this mismatch before calculating the IB
corrections. Here, we note that since there is no natural phenomena which interacts exclusively
with the strong nuclear force, this unphysical definition of the isosymmetric point will depend on
the separation scheme we prescribe to our calculation. To that end, consider the following mesonic
quantities,

𝑀2
𝑢𝑑 =

1
2

(
𝑀2
𝑢𝑢

+ 𝑀2
𝑑𝑑

)
≈ 2𝐵𝑚𝑢𝑑 + . . .

Δ𝑀2 = 𝑀2
𝑢𝑢

− 𝑀2
𝑑𝑑

≈ 2𝐵(𝑚𝑢 − 𝑚𝑑) + . . .

𝑀2
𝐾𝜒 =

1
2

(
𝑀2
𝐾 + + 𝑀2

𝐾 0 − 𝑀2
𝜋+

)
≈ 2𝐵𝑚𝑠 + . . .

(21)

2𝛼EM = 7.2973525693(11) × 10−3[17]
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where 𝑞𝑞 are neutral pseudoscalars made from connected-only propagators. Here, we have used the
fact that, at leading order partially-quenched 𝜒PT [18, 19], these squared masses are proportional
to the quark masses we are interested in, with 𝐵 the chiral condensate. Thus, we can tune our setup
to the isosymmetric point by setting 𝛼 = 0 in Equation (18) and determine another set of bare quark
mass shifts, {Δ𝑚′

𝑞}, with the following constraints:

𝑀2
𝑢𝑑 =

(
𝑀
𝑒𝑥𝑝

𝜋0

)2
, Δ𝑀2 = 0, 𝑀2

𝐾𝜒 =
1
2

( (
𝑀
𝑒𝑥𝑝

𝐾 +
)2 +

(
𝑀
𝑒𝑥𝑝

𝐾 0

)2
−

(
𝑀
𝑒𝑥𝑝

𝜋+
)2

)
. (22)

Most notably, by fixing Δ𝑀2 = 0, we emulate the constraint in which 𝛿𝑚 = 0.

6. Constructing the amplitude correction

6.1 Factorisable IB correction

The extraction of IB correction to the amplitude from correlators corresponding to Figure
1(a,b) and Figure 2(a,b,c) proceeds in a manner analogous to the standard two-pt analysis, i.e. we
need the pseudoscalar (𝑝) and axial-pseudoscalar (𝑎) interpolators:

𝜙𝑝 = 𝑞2𝛾
5𝑞1 and 𝜙𝑎 = 𝑞2𝛾

0𝛾5𝑞1. (23)

Excluding backward propagating effects, the QCD-only 𝑝𝑝/𝑝𝑎−correlator is

𝐶
𝑝 𝑗

𝑃 (𝑡) ≡
∫

𝑑3𝑥 〈0|𝑇
{
𝜙 𝑗 (®𝑥, 𝑡)𝜙†𝑝 (0)

}
|0〉 𝑒−𝑖 ®𝑘 · ®𝑥 = 𝑐𝑝 𝑗

𝑃
𝑒−𝑀𝑃 𝑡 , (24)

with 𝑐𝑝 𝑗
𝑃

= 〈0|𝜙 𝑗 |𝑃〉 〈𝑃 |𝜙†𝑝 |0〉 /2𝑀𝑃 . For 𝑝𝑝/𝑝𝑎−correlators containing either electromagnetic or
scalar currents, we have

𝜕𝑔𝑘𝐶
𝑝 𝑗

𝑃
(𝑡) =

(
𝜕𝑔𝑘 𝑐

𝑝 𝑗

𝑃
+ 𝑐𝑝 𝑗

𝑃
𝜕𝑔𝑘𝑀𝑃𝑡

)
𝑒−(𝑀𝑃+Δ𝑔𝑘𝜕𝑔𝑘𝑀𝑃)𝑡 , (25)

where 𝑔𝑘 = {𝑒2, 𝑚𝑙, 𝑚𝑠} and Δ𝑔𝑘 = 𝑔𝑘 − 𝑔𝑘 . Taking the ratio of Equation (25) and (24), we have

𝑅
𝑝 𝑗

𝑃,𝑔𝑘
(𝑡) =

𝜕𝑔𝑘 𝑐
𝑝 𝑗

𝑃

𝑐
𝑝 𝑗

𝑃

− 𝜕𝑔𝑘𝑀𝑃𝑡. (26)

Since the QED and SIB correlator ratios share a common mass parameter, 𝑀𝑃, we include 𝑅𝑝 𝑗
𝑃,𝑔𝑘

for all 𝑗 and 𝑔𝑘 in a combined fit. In Figure 3, we present a preliminary result of this combined fit.

6.2 Non-factorisable IB correction

The hadron-leptonic correlators on the lattice are generated with a modified 4-fermion operator:

𝑂𝑊 ,𝛽 = (𝛾𝜏L𝜇)𝛽 (𝑞1𝛾
𝜏
L𝑞2), (27)
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Figure 3: A combined fit of all correlator ratios defined in Equation (25). The pink points are the 𝑚𝑢𝑑
scalar insertion data and should be read with the left 𝑦-axis, while the green points are the QED data and
should be read with the right 𝑦-axis. The blue and orange lines are the fits to the scalar insertion and
QED data, respectively. The error bands are not visible. For this combined fit, 𝜒2/𝑑𝑜 𝑓 = 70/52 = 1.35,
𝑝−value= 0.099.

where 𝛽 is an open spinor index. The spectral representation of these novel correlators is

𝐶𝑃 (𝑡𝐻 , 𝑡𝜇 − 𝑡𝐻 )𝛽1𝛽2 ≡
∫ ∏

𝑗=𝜇,𝐻

𝑑3𝑥 𝑗 𝑒
−𝑖 ®𝑝 𝑗 · ®𝑥 𝑗 〈0|

(
𝜇(®𝑥𝜇, 𝑡𝜇)Γ0

L

)
𝑂𝑊 (®𝑥𝐻 , 𝑡𝐻 )𝜙†(0) |0〉

𝛽1𝛽2

= −
〈𝑃 |𝜙†

𝑃
|0〉

4𝐸𝜇𝑀𝑃

[
M𝑃 · ( /𝑝𝜇 − 𝑖𝑚𝜇)

]
𝛽1𝛽2

𝑒−𝑀𝑃 𝑡𝐻 𝑒−𝐸𝜇 (𝑡𝜇−𝑡𝐻 )
(28)

where 𝛽1,2 are spinor indices. The correlator containing electromagnetic currents has an analogous
functional form. In order to extract the non-factorisable amplitude correction, we saturate the spinor
indices by including the missing neutrino leg, giving us a trace over the correlator. Then, taking the
ratio of the QED and QCD-only hadron-leptonic correlator, we find that at large time separations,

𝑅𝑃𝜇 (𝑡𝐻 , 𝑡𝜇 − 𝑡𝐻 ) =
Tr

[
/𝑝𝜈𝜕𝑒𝑞𝜕𝑒𝜇𝐶𝑃 (𝑡𝐻 , 𝑡𝜇 − 𝑡𝐻 )𝛾

0
L
]

Tr
[
/𝑝𝜈𝐶𝑃 (𝑡𝐻 , 𝑡𝜇 − 𝑡𝐻 )𝛾

0
L

]
𝑡𝜇�𝑡𝐻�0
−−−−−−−−→

Tr
[
/𝑝𝜈𝜕𝑒𝑞𝜕𝑒𝜇M𝑃 (/𝑝𝜇 − 𝑖𝑚𝜇)𝛾

0
L

]
Tr

[
/𝑝𝜈M𝑃 (/𝑝𝜇 − 𝑖𝑚𝜇)𝛾

0
L

] .

(29)

For each pseudoscalar, we have eight of these correlator ratios, corresponding to the different muon
source-sink separations, 𝑡𝜇 − 𝑡𝐻 . We perform a 2D combined fit in the 𝑡𝐻 and (𝑡𝜇 − 𝑡𝐻 ) direction
and Figure 4 shows the result of this fit analysis.
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Figure 4: The non-factorisable correlator ratio defined in Equation (29). The red line and pink error band
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For this combined fit, 𝜒2/𝑑𝑜 𝑓 = 29/31 = 0.94, 𝑝−value= 0.812.

6.3 Combining lattice and analytic results

We are now in the position to construct 𝛿𝑅𝐾 𝜋 in Equation (17), which we recast here for
convenience

𝛿𝑅𝐾 𝜋 =

(
𝛿Γ0,𝐾 (𝐿)
Γ0,𝐾 (𝐿)

−
𝛿Γ0, 𝜋 (𝐿)
Γ0, 𝜋 (𝐿)

)
− 2

𝛼

4𝜋

(
𝑌
(2)
𝐾

(𝐿) − 𝑌 (2)
𝜋 (𝐿)

)
+ 𝛼

4𝜋
(
𝛿Γ1,𝐾 (Δ𝐸) − 𝛿Γ1, 𝜋 (Δ𝐸)

)
.

(30)
The output of the combined fits discussed in the previous subsections, properly tuned to the
isosymmetric point using Equation (18) and the appropriate bare quark mass shifts, {Δ𝑚𝑞}, will
give the contribution of the first parentheses on the RHS of the above equation. Combining with the
analytic results from [7] and [3], corresponding to the second and third parentheses, respectively,
we obtain 𝛿𝑅𝐾 𝜋 .

7. Conclusion & Outlook

A high precision test of the unitarity of the CKM matrix is made possible, in part, with recent
improvements in lattice simulations. Through the inclusion of IB effects, we are now in the position
to predict light CKM matrix elements at percent-level precision or better. In the RBC&UKQCD
collaboration, we have a lattice setup that allows us to extract the amplitude correction, 𝛿𝑅𝐾 𝜋 , from
a near-physical point simulation. At the time of writing, we are estimating the systematics on the
prediction of |𝑉𝑢𝑠 |

|𝑉𝑢𝑑 | . Indeed, we expect to provide an update on the ratio of CKM matrix elements
shortly after the publication of this proceeding.

9



Isospin-Breaking Corrections to 𝐾ℓ2/𝜋ℓ2 Andrew Zhen Ning Yong

Our immediate plan for the leptonic decay sector is as follows: progress is under way to
renormalise the weak operator, 𝑂𝑊 . This will enable us to obtain |𝑉𝑢𝑑 | and |𝑉𝑢𝑠 | and, in turn,
provide an update to the unitarity tension seen in Equation (1). Further improvements are possible
with an unquenched calculation, i.e. including disconnected contributions and QED interactions
with sea quarks. Additionally, we envision in the near future a departure from the point-like
approximation to a first principle lattice calculation of the real photon contribution. In the long
term, it is our objective to further constrain CKM matrix elements by studying semi-leptonic decays,
e.g. 𝐾± → 𝜋0ℓ±𝜈ℓ .
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