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We study the Renormalisation Group (RG) running of the quark mass, for Nf = 3 QCD with
Wilson fermions in a mixed action setup, with standard Schrödinger Functional (SF) boundary
conditions for sea quarks and chirally rotated Schrödinger Functional (χSF) boundary conditions
for valence quarks. This necessitates the tuning of the boundary factor zf(g

2
0) of the χSF valence

action, in order to ensure that QCD symmetries are fully recovered in the continuum. The properties
of this novel setup are monitored through the ratios ZS/ZP and ΣS/ΣP of the renormalisation
parameters and step scaling functions of the scalar and pseudoscalar densities. Where comparison
is possible, our ZS/ZP results are found to agree with previous determinations, based on a mass
ratio method [1] and Ward identities [2, 3], with Schrödinger Functional boundary conditions. The
behaviour of ΣS/ΣP confirms the theoretical expectations of χSF QCD, related to the restoration of
the theory’s symmetries in the continuum limit. From the step scaling function of the pseudoscalar
density we obtain the quark mass RG-running function from hadronic to perturbative energy scales.
This is fully compatible with the earlier result obtained in a similar setup for Wilson quarks with
Schrödinger Functional boundary conditions [4], and provides a strong universality test for the two
lattice setups.

PACS numbers: 12.38.Gc, 12.38.Aw, 11.10.Hi, 11.15.Ha

I. INTRODUCTION

The chirally rotated Schrödinger functional (χSF) [5] is
a variant of the Schrödinger functional (SF) renormalisa-
tion scheme, which enables us to obtain renormalisation
parameters and lattice step scaling functions, which are
“automatically” O(a)-improved.

At the formal level, continuum massless QCD with
SF boundary conditions (SF-QCD) is equivalent to the
one with χSF boundaries (χSF-QCD), as one is ob-
tained from the other by suitable redefinitions of the
fermion fields, which are non-anomalous chiral rotations
in isospin space. These redefinitions also modify the
form of the various symmetries of the theory in the χSF
setup. In particular, standard parity P in SF-QCD is chi-
rally rotated to the so-called P5 symmetry in χSF-QCD.
When massless QCD is regularised with Wilson fermions,
the strict equivalence between the theories with SF and
χSF boundaries is lost. A consequence of this is that

lattice QCD with SF boundaries (SF-LQCD) retains P-
symmetry, while its χSF counterpart (χSF-LQCD) is not
P5 symmetric. The restoration of P5 in the continuum
limit requires the introduction of a new counterterm at
the time boundaries with a coefficient zf(g

2
0). The new

counterterm must be tuned by imposing that a P5-odd
correlation function in χSF-LQCD vanishes. Once this
is achieved (together with the tuning of the Wilson hop-
ping parameter to κc, which ensures that fermions are
massless), continuum limit universality implies that, at
vanishing lattice spacing, P5-even, renormalised correla-
tion functions in χSF-LQCD are equal to their P-even
counterparts in SF-LQCD. The same is true for P5-odd
χSF-LQCD and P-odd SF-LQCD correlation functions;
being pure lattice artefacts, these vanish in the contin-
uum.

In massless QCD with SF boundary conditions, O(a)-
improvement is achieved through the introduction of
Symanzik counterterms in the action, both in the lat-
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tice bulk (i.e. the clover term of the fermion action with
its coefficient csw) and at the time boundaries (i.e. the
terms with coefficients ct of the gauge action and c̃t of the
fermionic one) [6]. Composite operators inserted in the
lattice bulk in correlation functions also require their own
counterterms (e.g. cA, cV for the axial and vector non-
singlet currents respectively). The bulk improvement co-
efficients (e.g. csw, cA, cV) are typically known nonpertur-
batively, whereas ct and c̃t are known in 1- and some-
times in 2-loop perturbation theory. This implies that
O(a)-effects are removed in the bulk and O(g20a)-effects
are removed from the time-boundaries. In practice, the
former have always been found to be dominant, in the
sense that quantities thus improved scale like O(a2).

In massless QCD with χSF boundary conditions, bulk
counterterms like, csw, cA and cV are in principle not re-
quired for the removal of bulk O(a) effects in the quanti-
ties of interest [5] (“automatic improvement”). The only
necessary boundary counterterms are zf and ds (which
are O(a0) and O(a) respectively) for the fermionic ac-
tion and ct (which is O(a)) for the gluonic one. We com-
pute zf nonperturbatively, while ct is known at 1-loop in
perturbation theory. For ds the tree-level value is ade-
quate [5, 7]; this will be checked explicitly in this work.
This leaves us with O(a2)-effects in the bulk and effec-
tively with O(g40 a)-effects at the time-boundaries. Pro-
vided the latter turn out to be subdominant, the scaling
of our results should be compatible with O(a2).

Several tests have been performed, which confirm this
expectation:

• In ref. [8] “automatic improvement” was thor-
oughly investigated nonperturbatively in a
quenched setup for lattices with L = 1.436r0,
with r0 the Sommer scale [9]. The tuning of zf
was shown to be done correctly by checking the
vanishing of P5-odd χSF correlation functions
in the continuum limit. Ratios of P5-even χSF
correlation functions to their SF counterparts,
which ought to have the same continuum limit, are
indeed shown to be compatible with unity, scaling
like O(a2), as they should.

• In ref. [7] analogous tests have been performed in
perturbation theory at 1-loop.

• A second quenched study [10, 11] was centred on
the step-scaling functions of the pseudoscalar den-
sity and non-singlet twist-2 operators at one in-
termediate and one perturbative scale. Moreover,
the renormalisation factor ZP was computed at
the scale L = 1.436r0. Combining ZP with the
bare twisted-mass parameter and the known ra-
tio M/m(1/L) of ref. [12], estimates of the strange
quark mass were obtained. Comparison of results
obtained with (i) unimproved SF Wilson fermions;
(ii) SF clover fermions; (iii) χSF fermions, con-
firmed automatic improvement of the latter and the
universality of the continuum limit.

• In ref. [13] these efforts have been extended to mass-
less QCD with Nf = 2 and Nf = 3 dynamical
flavours. In the Nf = 3 case, the light sea quark
doublet has been regularised in χSF-LQCD and the
third sea flavour in SF-LQCD.

A first goal of the present work is to pursue anal-
ogous tests from a different angle. We use the gauge
ensembles of ref. [4], generated for the nonperturbative
determination of the RG-running of the quark mass in
Nf = 3 massless QCD with SF boundaries. The renor-
malisation scales µ cover a wide energy range ΛQCD /
µ ≡ 1/L / MW. Here L denotes the lattice physical
extension; note that it ranges from very small values of
about L ≈ 10−3fm to L / 1fm. On these ensembles
we compute correlation functions with dimension-3 scalar
and pseudoscalar bilinear operators in the bulk and χSF
boundary conditions. This is a mixed action approach, as
sea and valence quarks have different regularisations (SF
and χSF respectively). So our whole setup is different
to those listed above. Several new universality tests are
then possible, using different χSF correlation functions
which have the same continuum limit.

The main result of this work consists of an estimate of
M/m(1/L) and its comparison to the one obtained in a
SF setup in ref. [4]. This is a first step in a project, which
ultimately aims at providing nonperturbative improved
estimates of the step scaling matrices of all four-fermion
operators that contribute to BK in the Standard Model
and beyond. This has already been done for Nf = 2, but
in SF-LQCD [14, 15]. Adopting a χSF-LQCD setup in-
stead, brings in automatic O(a)-improvement of the rel-
evant dimension-6 operators and allows the introduction
of renormalisation schemes involving simpler correlation
functions with better signal-to-noise behaviour. The cor-
responding bare matrix elements are to be computed in
twisted-mass LQCD at maximal twist (with Osterwalder-
Seiler fermions), with the Clover term retained in the ac-
tion, for reasons explained in ref. [16]. For a first discus-
sion of this strategy, the reader may consult refs. [17, 18].

This paper is organised as follows: Sec. II is an
overview of the fundamental properties of the χSF lattice
regularisation with Wilson quarks and the basic defini-
tions and properties of the quantities of interest. Sec. III
describes the details of our numerical simulations. The
results of the tuning of the χSF-LQCD factor zf , es-
sential for the recovery of all QCD symmetries in the
continuum, is also presented. In Sec. IV we obtain re-
sults for the ratio ZS/ZP of the renormalisation factors
of the scalar and pseudoscalar bilinear operators. We
find that the behaviour of ZS/ZP at high energies agrees
with expectations from perturbation theory; at low en-
ergies it agrees with earlier nonperturbative determina-
tions, based on other methods. Moreover we confirm that
the ratio ΣS/P of the corresponding step scaling functions
in the χSF theory goes to unity in the continuum limit, in
accordance with chiral symmetry restoration. In Secs. V
and VI we obtain results for the step scaling function of
the pseudoscalar bilinear operator in the high- and low-
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energy regimes of our simulations respectively. In each
case we compute the RG running function between the
lowest and highest energy in each of the two regimes. Our
results agree with those of ref. [4]. Finally, in Sec. VII
we conclude by presenting the total RG-running factor
between hadronic and very high (perturbative) scales.
Several details of our analysis are treated separately in
the Appendices. Our results have been presented in pre-
liminary form in refs. [18, 19].

II. THEORETICAL CONSIDERATIONS

We now cover briefly those aspects of the χSF regular-
isation of refs. [5, 7] which are most relevant to our work.
At the formal level, the massless QCD action is invari-
ant under general flavour and chiral transformations. In
particular, it is invariant under the change of variables,

ψ = R(π/2)ψ′ , ψ̄ = ψ̄′R(π/2) , (1)

where ψ, ψ̄ and ψ′, ψ̄′ are doublets in isospin space (e.g.
ψ = (ψu ψd)

T ), related through the above chiral non-
singlet transformations with R(α) = exp(iαγ5τ

3/2). In
the SF-QCD setup, lattices have finite physical volume
L3 × T (in the present work T = L), with fields obeying
Dirichlet (periodic) boundary conditions in time (space).
The former are defined at x0 = 0 and x0 = T as follows:

P+ψ(x)
∣∣
x0=0

= 0 , P−ψ(x)
∣∣
x0=T

= 0 ,

ψ̄(x)P−
∣∣
x0=0

= 0 , ψ̄(x)P+

∣∣
x0=T

= 0 , (2)

with projectors P± = (1 ± γ0)/2. The chiral rotations
(1) map the above conditions onto the χSF boundary
conditions

Q̃+ψ
′(x)

∣∣
x0=0

= 0 , Q̃−ψ
′(x)

∣∣
x0=T

= 0 ,

ψ̄′(x)Q̃+

∣∣
x0=0

= 0 , ψ̄′(x)Q̃−
∣∣
x0=T

= 0 , (3)

with projectors Q̃± = (1 ± iγ0γ5τ3)/2. Thus SF-QCD
and χSF-QCD are equivalent theories, since one is ob-
tained from the other by the redefinition of fermionic
fields (1).

Given the equivalence of the two theories, it is hardly
surprising that they share all symmetries: the well known
SF-QCD symmetries, once transcribed in terms of fields
ψ′ and ψ̄′, are those of χSF-QCD. Flavour symmetry in
its standard SF-QCD version (e.g. Eq. (2.15) of ref. [7])
takes the form of Eqs. (2.16) and (2.17) of [7]; parity P
(Eq. (2.18) of [7]) becomes P5 (Eq. (2.19) of [7]) in χSF-
QCD. Charge conjugation is form-invariant in the two
versions. We note in passing that the parity operator P5

commutes with the boundary projectors Q̃±.
Similar considerations apply to correlation functions.

Following ref. [7], we introduce, in χSF-QCD, a second
flavour doublet (ψu′ ψd′)

T , with exactly the same prop-
erties as the original one. In SF-QCD the two point func-
tion with a pseudoscalar insertion Pud(x) in the bulk and

a boundary operator Odu5 at x0 = 0 is defined as

fP = −1

2
〈PudOdu5 〉(P+) . (4)

Analogous quantities in χSF-QCD are

gf1f2X = −1

2
〈Xf1f2Qf2f15 〉(Q̃+) , (5)

with Xf1f2 = P f1f2 or Xf1f2 = Sf1f2 , and Qf2f15 the
result of the boundary field rotations (1) on the opera-
tor O5. The allowed combinations of flavour indices are
(f1, f2) = (u, u′), (d, d′), (u, d), (d, u) (so that no discon-
nected diagrams arise). See ref. [7] for more detailed ex-
planations. The relations between these correlation func-
tions are then

fP = iguu
′

S = −igdd′S = gudP = gduP . (6)

The SF boundary-to-boundary correlation function

f1 = −1

2
〈Oud5 O′du5 〉(P+) (7)

(with the boundary operator O′du5 defined at x0 = T )
and its χSF counterpart

gf1f21 = −1

2
〈Qf1f25 Q′f2f15 〉(Q̃+) (8)

are also related:

f1 = guu
′

1 = gdd
′

1 = gud1 = gdu1 . (9)

The above properties, though trivial at the formal
level, have non-trivial consequences once the lattice reg-
ularisation with Wilson fermions (χSF-LQCD) is intro-
duced. (Of the three lattice χSF-QCD versions proposed
in ref. [5], we use that of ref. [7]; see Sec. 3.1 of the lat-
ter work for the definition of the action etc.). The Wil-
son term and boundary terms in χSF-LQCD induce the
breaking of the rotated flavour symmetry (i.e. Eqs. (2.16)
and (2.17) of [7]) and parity P5 (i.e. Eq. (2.19) of [7]).
However, a symmetry argument analogous to that in-
troduced in twisted-mass QCD [20] holds in the present
case [5, 21], with the result that P5-even correlation func-
tions of the χSF-LQCD theory, once renormalised, are
O(a)-improved in the bulk. An important additional in-
gredient of the lattice formulation consists in the intro-
duction of the following boundary terms in the action:

ψ̄(x)[δDW]ψ(x) = (δx0,0 + δx0,T )

×ψ̄(x)
[
(zf − 1) + (ds − 1)aDs

]
ψ(x) . (10)

The operator Ds is the Dirac-Wilson lattice opera-
tor, summed over the three spatial directions only (see
Eq. (3.14) of ref. [7]). It is an improvement counterterm,
which cancels boundary O(a)-effects, once the coefficient
ds(g

2
0) is properly tuned. Moreover, the aforementioned

symmetry-breaking pattern of χSF-LQCD necessitates
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the introduction of an additional O(a0) boundary oper-
ator with coefficient zf(g

2
0), which must be appropriately

tuned, in order for the rotated flavour and P5 symmetries
to be recovered in the continuum. The tuning condition
consists in finding, at finite lattice spacing (i.e. non-zero
g20) the value of zf for which a P5-odd correlation function
vanishes. Specifically we require that

gudA (x0)
∣∣∣
x0=T/2

= 0 , (11)

where the P5-odd gudA is defined in Eq. (5), with X = A0.
The above tuning must be coupled to the requirement
that the theory be massless; i.e. the hopping parameter
κ must be tuned to its critical value κc. This can be
achieved by requiring the vanishing of the current quark
mass

m(g20 , κc)
∣∣∣
x0=T/2

= 0 , (12)

which in χSF-LQCD may be defined as [13]

mχSF(g20 , κ) ≡
1

2
(∂0 + ∂∗0 )gudA (x0)

2gudP (x0)
, (13)

where ∂0, ∂
∗
0 are forward and backward lattice derivatives

respectively. Recall that in SF-LQCD, in standard AL-
PHA fashion, the current quark mass is defined by [12]

mSF(g20 , κ) ≡
1

2
(∂0 + ∂∗0)fA(x0) + acA∂

∗
0∂0fP(x0)

2fP(x0)
.

(14)
In the above fA is the analogue of Eq. (4), with Aud0
replacing Pud. In SF-QCD, κ is tuned to its critical value
κc by requiring the vanishing of mSF.

The SF and χSF renormalisation conditions for the
pseudoscalar and scalar operators are imposed in the
usual manner [7, 12]

ZSF
P (g20 , L/a)fP(T/2)√

f1
=

[
fP(T/2)√

f1

]t.l.
, (15)

ZχSF
P (g20 , L/a)gudP (T/2)√

gud1
=

[
gudP (T/2)√

gud1

]t.l.
, (16)

ZχSF
S (g20 , L/a)guu

′

S (T/2)√
guu

′
1

=

[
guu

′

S (T/2)√
guu

′
1

]t.l.
, (17)

where the superscripts t.l. on the r.h.s. stand for “tree
level” (these tree level quantities are computed at non-
vanishing a/L). From them we determine the renormal-
isation constants ZP in the SF and χSF renormalisation
schemes and ZS in the χSF scheme.

As a side remark we point out that standard parity P,
combined with flavour exchanges u↔ d and u′ ↔ d′ is an
exact symmetry of χSF-LQCD [5, 7]. This ensures that

guu
′

S = −gdd′S and gudP = gduP are exact lattice relations.

For this reason we have not used the correlation functions
gdd
′

S and gduP , as they do not convey any new information.
The definitions of the lattice step scaling functions

(SSF) are also standard:

ΣSF

P (g20 , a/L) =
ZSF

P (g20 , 2L/a)

ZSF
P (g20 , L/a)

, (18)

ΣχSF

P (g20 , a/L) =
ZχSF

P (g20 , 2L/a)

ZχSF
P (g20 , L/a)

, (19)

ΣχSF

S (g20 , a/L) =
ZχSF

S (g20 , 2L/a)

ZχSF
S (g20 , L/a)

. (20)

On the lattice, SF-QCD and χSF-QCD are two regulari-
sations of the same continuum theory, in which the pseu-
doscalar and scalar operators belong to the same sym-
metry multiplets (such as the chiral multiplet) and thus
have the same anomalous dimension. Consequently, the
above SSFs should have the same continuum limit:

σP(u) = lim
a→0

ΣY

X(g20 , a/L)
∣∣∣
g 2(L)=u

. (21)

In the above (X,Y) = (P, SF), (P, χSF), (S, χSF). The
squared renormalised coupling g 2(L) is meant to be held
fixed at a value u while the continuum limit is taken. In
terms of the renormalised quark mass m(µ), defined at
a scale µ = 1/L, which corresponds to a renormalised
coupling g 2(µ) = u, the continuum step scaling function
is given by the ratio

σP(u) =
m(µ)

m(µ/2)
. (22)

So far we have dealt with SF-QCD and χSF-QCD as
two distinct, if related, setups. As noted in ref. [5], for
an odd number of flavours, the fermion determinant in
the χSF formalism is in general complex. For Nf = 3
QCD the problem has been circumvented in ref. [13] by
working with a χSF-LQCD light sea quark doublet and
a SF-LQCD third sea flavour. Here we adopt a differ-
ent mixed action approach, with the sea quark action
obeying standard SF boundary conditions, and the va-
lence quark action defined for an even number of fermions
obeying χSF boundary conditions. For the sea quarks,
we use the existing SF-QCD configuration ensembles of
ref. [4]. The novelty with respect to ref. [4] thus consists
in having valence fermions organised in doublets with
χSF boundary conditions. Apart from this, the lattice
gauge action, the fermion action in the lattice bulk (Wil-
son fermions with a clover term), and the renormalised
coupling definition(s) remain the same. Since our lattice
valence quark propagators are now computed in a χSF
setup, it is χSF symmetries that determine the renor-
malisation and improvement properties of the correlation
functions and the quantities derived from them. Thus we
expect O(a)-improvement to be “automatic” in the bulk
(i.e. in general bulk operators do not require Symanzik
coefficients, e.g. cA and cT for the axial and tensor bilin-
ears).



5

In this setup we use renormalisation conditions (16,17)
for the computation of ZP and ZS and definitions (19,20)
for the SSFs. The three SSFs, computed from (18) in
ref. [4] and Eqs. (19), (20) in this work, should yield the
same SSF σP in the continuum, since the same renormal-
isation conditions are imposed.

In a purely χSF-LQCD setup, the necessary tuning of
zf is based on Eq. (11), while that of κ on Eqs. (12)
and (13). In practice the tuning of the two parameters
can be done independently, as they depend weakly on
each other [13]. In our mixed action setup, we avoid
tuning κ altogether, as we can use the κc results of ref. [4],
which are based on Eq. (14). Moreover, the tuning of
zf is performed exclusively in the valence sector, given
that our sea SF-QCD quarks are “blind” to this factor.
This is to be contrasted to the much costlier zf tuning in
the purely χSF-LQCD case, where the generation of the
gauge ensembles depends on zf .

III. NUMERICAL SIMULATIONS

We have seen in Sec. II that sea quarks are regularised
as explained in ref. [4]. For this reason, the first part of
this section consists in a recapitulation of aspects of that
work which are relevant to the present one.

The lattice volumes L4 in which simulations are per-
formed define the range of accessible energy scales µ =
1/L. Essentially there are two energy regimes. The high-
energy one concerns scales in the range µ0/2 / µ /MW,
with an intermediate (“switching”) scale conventionally
chosen to be µ0/2 ∼ 2 GeV. The low-energy regime con-
cerns scales in the range ΛQCD / µ / µ0/2. The main dif-
ference between the two [22–24] is the definition adopted
for the renormalised coupling g : in the high-energy range
it is the nonperturbative SF coupling first introduced in
ref. [25, 26]; in the low energy one it is the gradient flow
(GF) coupling defined in ref. [27]. This allows to opti-
mally exploit the variance properties of the couplings, so
that a very precise computation of the Callan-Symanzik
β-function and ultimately of ΛQCD is achieved [28].

In refs. [22–24], the switching scale, µ0/2, where we
switch between the SF and GF definitions of the coupling,
was given implicitly by the formula:

g 2
SF(µ0) ≡ uSF(µ0) = 2.0120 , (23)

corresponding to the largest value for the renormalised
coupling on the SF ensembles used in the analysis. The
value of the SF coupling was determined down to the
scale µ0/2 in [22]; this amounts to computing the SSF of
the SF coupling

σSF(u0) ≡ g 2
SF(µ0/2) = uSF(µ0/2) = 2.452(11) . (24)

The matching between schemes was subsequently speci-
fied by determining the value of the GF coupling at the
same scale [23]:

g 2
GF(µ0/2) = uGF(µ0/2) = 2.6723(64) . (25)

In physical units this corresponds to a switching scale
µ0/2 of approximately 2 GeV [28].

Moreover, different lattice regularisations were
adopted in each energy regime. At high energies,
simulations were carried out using the plaquette gauge
action [29] and the clover fermion action [30] with the
nonperturbative value of csw [31] and the one- [32] and
two-loop [33] values of c̃t and ct respectively. At low en-
ergies the tree-level Symanzik improved (Lüscher-Weisz)
gauge action was used [34]. The fermion action was
the O(a)-improved clover [30], with the nonperturba-
tive value of the improvement coefficient csw [35] and
one-loop values of c̃t [23, 36] and ct [37].

Note that in ref. [4] the same SF renormalisation con-
dition was used in both energy regimes for the determi-
nation of the quark mass renormalisation factor 1/ZP, its
step scaling function etc. This implies that σP and m are
expected to be continuous functions of the renormalisa-
tion scale µ in the whole simulation range [ΛQCD,MW].
The same quantities, when plotted against the squared
renormalised coupling u, will be discontinuous at the u-
value corresponding to the switching scale µ0/2, due to
different definitions of the coupling below and above this
scale. Any quantity is also going to be a discontinuous
function of the squared inverse bare coupling β, as the
bare actions are different in the two regimes.

At high energies, simulations were carried out [4] for 8
values of the squared renormalised coupling uSF. For each
of these couplings, corresponding to a fixed renormalisa-
tion scale µ = 1/L, the inverse bare coupling β = 6/g20
was tuned appropriately for L/a = 6, 8, 12 (a is the lattice
spacing). At the strongest coupling uSF = 2.012 of this
high-energy range, an extra finer lattice with L/a = 16
was simulated. At low energies, simulations were carried
out for 7 values of the squared renormalised coupling uGF.
The inverse bare coupling β = 6/g20 was chosen so that
uGF remains approximately constant for the three lattice
volumes L/a = 8, 12, 16. In both the high and the low
energy ranges, gauge ensembles were generated at each
(β, L/a) and (β, 2L/a) combination. At fixed (β, L/a)
the hopping parameter κ was tuned to its critical value
κc, so that the bare O(a)-improved PCAC mass defined
in Eq. (14) vanishes at the corresponding value of β; cf.
Eq. (12). For each (β, L/a, κc) and (β, 2L/a, κc) the fac-
tors ZSF

P (g20 , L/a) and ZSF
P (g20 , 2L/a) were computed us-

ing Eq. (15). Their ratio gives the SSF ΣSF
P defined in

Eq. (18). More details can be found in ref. [4] and the
Tables 6, 9 (SF range) and 8, 10 (GF range) of that work.

So far we have recapitulated the simulations of ref. [4],
performed in Nf = 3 QCD with sea and valence quarks
subjected to SF boundary conditions. In the present
work, we use the same configuration ensembles, with the
exception of some β’s where a few subsets of configura-
tions could not be recovered; no significant loss in statis-
tical accuracy resulted from this. We invert the Dirac-
Wilson operator with χSF boundary conditions. Con-
sequently zf has to be determined so that Eq. (11) is
satisfied. The results of zf as a function of β for both
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β
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L/a = 12

L/a = 16

pt

fit O(g2)

FIG. 1: The boundary counterterm zf on the high energy
(SF) and low energy (GF) ensembles. The black dotted line
is the perturbative result known at O(g20). The grey band is
the result from fitting the SF data, plotted after the resulting
expression has been truncated at O(g20) (i.e. the fit to the data
correctly reproduces the perturbative prediction).

high- and low-energy regimes are displayed in Fig. 1. It
should be stressed that determining zf is essential in or-
der to ensure that in our mixed action approach chiral
and flavour symmetries are recovered in the continuum
and thus the theory belongs to the same universality class
as other lattice regularisations. This is corroborated by
the results of Sec. IV.

Details of the tuning procedure leading to zf are dis-
cussed in Appendix A. As stated in Sec. II, the tuning
of zf must in principle be coupled with that of κ for the
theory to be massless. This is not so in the procedure
outlined above and in Appendix A, where we used the κc
estimates of ref. [4], based on the SF quark mass defini-
tion of Eq. (14). In the χSF setup the PCAC quark mass,
defined by Eq. (13), is not expected to be exactly zero
when κc is tuned in SF-LQCD. (The difference however
is an O(a) cutoff effect which induces O(a2) corrections
in P5-even quantities.) One would expect that an itera-
tive procedure in which zf and κ are alternatively tuned
would be needed. Such a procedure is adopted in Ap-
pendix B, where it is demonstrated that the tuning of κc
alongside that of zf is not necessary in practice.

The counterterm ds, introduced in Eq.(10), is known at
tree level [5] and, for the plaquette action, also at 1-loop
order [7]:

ds =
1

2
+ d(1)s g20 , (26)

where

d(1)s = −0.0006(3)× CF . (27)

For the Lüscher-Weisz action d
(1)
s is not known at present.

In Appendix C it is explicitly shown that results are un-

affected when the 1-loop estimate of ds is used instead of
its tree level value.

For global fits throughout this work we use the lsq-
fit [38] and gvar [39] packages for correlated fitting and
error propagation. We have checked that these results are
consistent with jackknife and the Γ-method error analy-
sis of ref. [40]. Except for the last method, data have
been binned by 20 configurations. The code to compute
the χSF correlation functions is built on openQCD 1.0
and previously used in ref. [13].

In order to facilitate future use of our χSF/SF-LQCD
setup, we have gathered all relevant simulation details in
Appendix D. These are the number of measurements Nms

for each ensemble, the lattice size L/a, the bare parame-
ters β, κc, the action coefficients csw, zf , the renormalised
squared coupling u, and the functions gudA and ∂gudA /∂zf
used for the tuning of zf .

IV. THE RATIO ZS/ZP

Now we turn to the ratio of renormalisation factors
ZS/ZP. In Wilson formulations of lattice gauge theory,
it is a finite quantity that depends on the bare gauge
coupling,

ZS

ZP

' 1 +

∞∑
i=1,j=0

cijg
2i
0

( a
L

)2j
. (28)

In the g0 → 0 limit the above expression would be
written as an equality, if terms containing products like
[a/L]2j [ln(a/L)]k (j > 0, k > 1) were also added to the
series; cf. Eq.(7.4) of ref. [7]. We drop these terms,
which are habitually neglected, as they cannot be re-
solved by the data. We have also ignored nonpertur-
bative contributions depending on aΛQCD. We use the
above expression for analysing ZS/ZP in the high-energy
region. At a fixed bare coupling there is a finite a/L→ 0
limit, and for our lattice setup the leading coefficient
c10 has been calculated in lattice perturbation theory,
c10 = 0.025944(3) [7].

Unlike the renormalisation factors ZS and ZP them-
selves, their ratio does not depend on the scale µ. Its
continuum limit is known to be unity. Moreover, it has
been calculated by other methods in the low energy range
for our lattice setup. Therefore it is suitable for some
crosschecks of our results. Following ref. [7], we compute
ZS/ZP from the ratio

RgSP ≡
gudP (T/2)

iguu′S (T/2)
=
ZS

ZP

+O
( a2
L2

)
. (29)

Note that O(a) boundary effects cancel in this ratio, leav-
ing us with O(a2) uncertainties.

In Fig. 2 we show data for ZS/ZP in the high energy
regime, where contact is made with perturbation the-
ory. Due to the high degree of statistical correlation be-
tween gudP (x0) and guu

′

S (x0), the error bars are extremely
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small, of order 10−5 (as compared to 10−3 for the corre-
lators individually). Nevertheless we are able to fit the
data, performing global fits according to Eq. (28), pro-
vided enough terms in g20 are retained. The coefficient
c10 is kept fixed at its perturbative value and the series
is truncated at (i, j) = (5, 2). The goodness of the fit is
χ2/d.o.f. ∼ 0.68. Thus the numerical results appear to be
joining smoothly onto the one-loop perturbative result at
small bare coupling. If the term c10 is allowed to vary, the
fit returns c10 = 0.073(57) and χ2/d.o.f. = 0.66, compat-
ible at 1σ with the perturbative value, but only weakly
constrained. The three fit results for fixed L/a = 6, 8, 12
are shown as dashed lines in Fig. 2. Although they lie
extremely close to each other, they are clearly distinct
curves. These differences imply that finite size effects are
tiny. This analysis has not been carried out along lines of
constant physics; O(a2Λ2

QCD) effects have been neglected.
It therefore probes the validity of perturbative expecta-
tions in a wide range of high energy scales.

At low-energies (GF) we show results for ZS/ZP in
Fig. 3, and compare them with recent results obtained
in [1] from suitable ratios of current and subtracted quark
masses at two lines of constant physics (LCP-0,1) and
in [2, 3] using Ward Identities (WI). These works use the
same bulk action as the present one, with Schrödinger
functional boundary conditions; quark masses lie close
to the chiral limit; gauge couplings straddle the range of
values of CLS simulations [41, 42] suitable for the com-
putation of low-energy hadronic quantities. Our results
are compatible with those of the other methods in the
infrared. The comparison of results from [1] and [2, 3]
was discussed already in [2, 3], and it was observed that
the WI method has smaller lattice artefacts. This can be
expected to translate to an improved control of the con-
tinuum extrapolation of the quantities requiring ZS/ZP.
Our results feature almost no visible finite volume ef-
fects and coincide numerically with the ones from [2] in
the region of g20 where they overlap. At g20 values larger
than about 1.6, different methods give slightly different
results, signalling the presence of sizeable discretisation
effects.

Besides the ratio ZS/ZP, we also examine the ratio of
the corresponding SSF’s ΣP/S ≡ ΣP/ΣS. This is also
a scale-independent quantity which becomes unity in the
continuum limit. Once again, O(a) boundary effects can-
cel in this ratio, leaving us with O(a2) uncertainties. This
quantity is particularly suitable for studying universality.

We use ΣP/S in order to monitor the size of perturba-
tive discretisation effects, making use of lattice perturba-
tion theory to O(g20); clearly this is meaningful only at
high energy (SF) scales. We first define the ratio of the
lattice SSF ΣP(u, a/L), computed at 1-loop, to the same
quantity in the L/a =∞ limit, in order to determine the
numerical effect of all lattice artefacts appearing at this
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g2
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1.00
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1.08

1.10
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ZP

L/a = 6

L/a = 8

L/a = 12

FIG. 2: The ratio ZS/ZP in the high energy (SF) regime. The
coloured circles show our numerical data, and the coloured
dotted lines show the results of the fit to Eq. (28) evaluated
at the respective L/a values. The black dotted line gives the
O(g20) perturbative result.
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WI [2005.01352]

LCP-0 [1906.03445]

LCP-1 [1906.03445]

WI [2101.10969]

FIG. 3: The ratio ZS/ZP in the low energy (GF) regime. Data
is compared with the results of [1] using quark-mass ratio
methods (LCP-0,1) and [2, 3] obtained from Ward identities
(WI).

order:

Σ1−loop
P (u, a/L)

σ1−loop
P (u)

= 1 + uδP(a/L) , (30)

δP(a/L) = −d0 ln(2)cP(a/L) . (31)

In the above d0 = 8/(4π)2 is the universal anomalous
dimension coefficient for the pseudoscalar bilinear oper-
ator. Analogous expressions are defined for the scalar
operator (same d0). The numerical values of cS,P (a/L),
calculated in ref. [43], are given in Table. I.

The lattice artefacts of O(g20a
n) are subsequently sub-

tracted from the ΣS,P functions, computed nonperturba-
tively as in Eq. (19) and Eq. (20), according to

Σsub
S,P (u, a/L) ≡ ΣS,P(u, a/L)

1 + uδS,P(a/L)
. (32)
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L/a cS(a/L) cP(a/L)

6 0.1080 0.0486

8 0.0688 0.0458

12 0.0240 0.0168

16 0.0121 0.0086

TABLE I: Subtraction coefficients used to remove discretisa-
tion effects from the nonperturbative step-scaling functions
ΣS,P up to O(g2) as given in Eqs. (30), (31).

The remaining discretisation errors in Σsub
S,P are O(g40a

2).

Supressing all O(g20a
n) terms using lattice perturba-

tion theory, we can in principle remove the correspond-
ing parameters in our global fit ansatze; cf. Eq. (33).
This means that we can expect more accurate determi-
nation of the remaining parameters, and more robust de-
terminations e.g. upon increasing the order at which the
expansion is truncated. Furthermore we might expect,
especially at high energies where the gauge coupling is
small, that removing lattice artefacts up to this order re-
moves the largest contribution at each fixed order in an.
This means that we may expect smaller coefficients in
the remaining power series after the subtraction (i.e. the
resulting power series is better behaved), although this
is not guaranteed. Thus we would expect our fit forms,
which are truncated to some order, to represent the sub-
tracted data more accurately, resulting in better χ2/dof
and improved confidence in our extrapolated results

ΣP/S(u, a/L) = 1 +
∑
i,j=1

diju
i
( a
L

)2j
, (33)

where terms depending on ln(a/L) are again neglected.
Here we test these expectations for the ratio of step-

scaling functions ΣP/S. Since the scalar and pseudoscalar
bilinear operators have the same continuum anomalous
dimension, the deviation of this quantity from one is a
measure of lattice artefacts. For a fixed renormalised cou-
pling u, the data should extrapolate to 1 in the a/L→ 0
limit. Fig. 4 shows ΣP/S vs. (a/L)2 for the eight renor-
malised couplings in the high-energy (SF) regime, both
before and after the subtraction specified by Eq. (32).
The strong statistical correlation of ΣP and ΣS on a
given ensemble results to extremely small statistical un-
certainty, leaving systematic effects to dominate. The
raw data is shown above (circles, w/out lines passing
through them), with the darker colours corresponding to
larger renormalised coupling. We observe that the data
at smaller coupling is nearer to 1, as is expected for a
“well-behaved” series at small coupling and sufficiently
small lattice spacing. A fit of the data to Eq. (33) for
(i, j) = (3, 2) gives a χ2/d.o.f. ∼ 0.48. Increasing imax or
jmax in the fit doesn’t appreciably improve the χ2/d.o.f..

The lower part of Fig. 4 gives the same data but after
subtraction specified by (32), along with the curves de-
termined by a global fit to this data. For L/a = 8 and 12,
the subtracted data is exceptionally close to 1, indicat-
ing that the O(g20) lattice artefacts are indeed dominant.

There is a more obvious discrepancy from 1 for L/a = 6,
up to around 0.001 for the u = 2.0120 ensemble, but the
overall size of this is significantly smaller than for the
unsubtracted data, indicating the leading source of arte-
facts are still removed. Note that after subtraction the
data at smaller coupling is still closer to one than the
data at larger coupling. We can fit the subtracted data
to the form Eq. (33), but now excluding the terms d1j
that should be absent from the subtraction. For the same
(i, j) = (3, 2) fit as in the unsubtracted case, we find a
χ2/d.o.f. of 0.96. This is shown as the dotted lines in
Fig. 4. As expected, we note that increasing (imax, jmax)
improves the χ2/d.o.f. somewhat and that fits to the un-
subtracted data using the restricted form d1j = 0 result
in poor χ2.

The analogous study of the ratio ΣP/ΣS in the low en-
ergy regime, shown in Fig. 5, does not involve any pertur-
bative subtractions. The results reveal that higher order
powers of (a/L)2 are present, and become increasingly
pronounced, at larger coupling. In fact, at our two largest
couplings (u = 5.8673 and u = 6.5489), a low-order poly-
nomial in (a/L)2 has trouble capturing the behaviour,
indicating that in ΣS or ΣP (or both) an extrapolation to
the continuum value may be unreliable for the given lat-
tice extents and couplings. The result of fitting the data
to Eq. (33) for (imax, jmax) = (4, 3) is shown in Fig. 5,
which returns a χ2/d.o.f. of 4.2. Increasing (imax, jmax)
improves the χ2/d.o.f. somewhat, but all fits studied have
trouble with the L/a = 8 points for large coupling. On
the other hand the (4, 3) fit has χ2/d.o.f. = 1.3/0.66 if
data from the last/second to last couplings are removed.

0.000 0.005 0.010 0.015 0.020 0.025 0.030

(a/L)2

0.998

0.999

1.000

1.001

1.002

1.003

1.004

ΣP/S

FIG. 4: Global fit of ΣP/S data in the high energy (SF) regime
after subtraction of O(u, (a/L)n)-effects. Data before/after
subtraction are given by open circles/squares. Fit results to
the subtracted data are shown as dashed lines.

V. QUARK MASS RUNNING AT HIGH
ENERGIES

We now turn to the computation of the step-scaling
functions themselves, which are the main inputs for
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FIG. 5: Global fit of ΣP/S data in the low energy (GF) regime.

the determination of the nonperturbative running of the
quark masses. On each pair of (L, 2L) ensembles we com-
pute ΣχSF

P , defined in Eq. (19); henceforth the superscript
χSF will be dropped:

ΣP(u, a/L) =
ZP(u, 2L/a)

ZP(u, L/a)
. (34)

In both the high energy and low energy regimes we work
at three different lattice spacings, except for the largest
coupling in the high energy range (the switching point,
u = 2.0120) where we use four lattice spacings. We note
here that the values of ΣP at different couplings are sta-
tistically uncorrelated. Furthermore the numerator and
denominator are uncorrelated and as a result the sta-
tistical uncertainties are significantly larger than for the
quantities ΣP/S or ZS/ZP studied in Sec. IV. In order
to effectively leverage the data in the high-energy (SF)
regime, we carry out a global to the following form:

ΣP(u, a/L) = 1 +
∑

i=1,j=0

biju
i(a/L)2j . (35)

The continuum step-scaling function σP is then given
by σP(u) = lima→0 ΣP(u, a/L). Although ΣP(g20 , a/L)
is computed at specific values of the bare coupling
and lattice volume, we are interested in its behaviour
with varying renormalised coupling; hence the notation
ΣP(u, a/L).

The continuum coefficient b10 = −d0 ln(2) is known
from perturbation theory, where d0 = 8/(4π)2 is the
universal lowest-order quark mass anomalous dimension;
see Eqs. (39) below. Also known in perturbation theory
is the coefficient b20 = −d1 ln(2) + (d20/2 − b0d0) ln(2)2.
Here b0 = (11 − 2Nf/3)/(4π)2 is the universal lowest-
order coefficient of the Callan-Symanzik β-function and
d1 = 1/(4π)2(0.2168 + 0.084Nf), the NLO coefficient of
the quark mass anomalous dimension, is specific to the
SF scheme and was computed in [44]. For Nf = 3 we have

b20 = −0.0028. We can constrain the fit form Eq. (35)
using these values. By subtracting leading O(u) discreti-
sation errors from our data (cf. Eq. (32)), we can also set
the terms b1j>0 to zero. However we find that doing so
generally leads to somewhat higher χ2/dof values (and is
less conservative, giving smaller errors), and so we choose
to work with the unsubtracted data.

For the fits considered here we take (imax, jmax) =
(3, 2). When fitting the full dataset, we find χ2/dof ≈
1.4, and this is not appreciably improved by increasing
(imax, jmax). We attribute this to a partial breakdown of
the polynomial form Eq. (35) when including the L/a = 6
points in our dataset, especially at large couplings. If we
remove these points we find an improved χ2/dof = 0.95.
If we leave the term b20 unconstrained this fit returns a
value of b20 = −0.0019(11), compatible with the pertur-
bative value. Including the L/a = 6 data instead gives
b20 = −0.0012(9), once again giving some evidence that
the form (35) strains to represent these points. Therefore
for our preferred fit we drop the L/a = 6 data and fix b20
to its perturbative value.

The raw step-scaling data in the high energy regime,
along with the curves from the global fits evaluated at
their respective u values, are shown in Fig. 6.

The continuum curve σP(u) obtained from the fit (35)
is shown in Fig. 7 and compared with the expectations
from perturbation theory. One sees that in the high en-
ergy region the nonperturbative result agrees well with
the two-loop result from perturbation theory, indicat-
ing that the perturbative series is fairly well converged.
This result is also consistent with the findings of [4], and
demonstrates the universality of χSF and SF.

We have established that the result shown in Fig. 7 is
a robust nonperturbative estimate of σP(u). Having been
constrained by perturbation theory at small couplings, it
is also valid below the lowest simulated value uSF ∼ 1.1.
In other words, this result can be used in the whole en-
ergy range above µ0/2 ∼ 2 GeV, allowing us to compute
the mass-evolution values R(k), defined as (cf. Eq.(22))

R(k) =
m(2kµ0)

m(µ0/2)
=

k∏
n=0

σP(un) , (36)

for arbitrarily large energy scales 2kµ0 (large k); in the
above un = uSF(2nµ0). For small values of k, Table II
shows our results for R(k) from the fit to the full data
set (labelled R(k)) and those excluding the L/a = 6 data
points (labelled R(k)-w/o 6). The results including the
L/a = 6 data are systematically larger than those with-
out, an effect consistent with the findings of [4]. As pre-
viously stated, and in accordance with ref. [4], we take
our preferred values to be those excluding L/a = 6 since
there is evidence that higher order discretisation effects
are large for these points, and the uncertainty estimate
is more conservative when excluding them. Having ex-
cluded the L/a = 6 data from our analysis, we compute
R(k) for increasing k values, which take us beyond the
energy range covered by our data. This is tenable, given
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FIG. 6: Results of a global fit to the step-scaling data
ΣP(u, a/L) in the high-energy regime. The open circles give
the raw data while the filled bands are the results returned
from the fit at the respective u values. The transparent
L/a = 6 data points are not included in the fit. The data
points and the bands of the same colour are at a fixed value
of the renormalised squared coupling u.

that our fit is also constrained by perturbation theory at
small u; cf. Fig. 7. The behaviour of R(k) with growing
k is displayed in Table III, where we also show results
for M/m(µ0/2) (see Eq.(37) below). We observe that
M/m(µ0/2) remains constant within its error as k in-
creases.

Finally, we can construct the running factor that takes
a renormalised quark mass in our chosen (χ)SF scheme
at the scale µ0/2 to the renormalisation group invariant

0.0 0.5 1.0 1.5 2.0 2.5

u

0.90

0.92

0.94

0.96

0.98

1.00

σP

1-loop pt

2-loop pt

χSF

FIG. 7: Continuum limit of the nonperturbatively determined
step-scaling function σP(u), compared with perturbation the-
ory. The 1-loop perturbative result is universal while the 2-
loop result is specific to the (χ)SF renormalisation scheme.

k uk R(k)-w/o 6 R(k) R(k) [4]

0 2.0120 0.9169(13) 0.9191(10) 0.9165(12)

1 1.7126(31) 0.8536(19) 0.8569(16) 0.8530(17)

2 1.4939(38) 0.8031(22) 0.8070(17) 0.8025(20)

3 1.3264(38) 0.7615(24) 0.7656(19) 0.7608(21)

4 1.1936(35) 0.7263(25) 0.7307(20) 0.7257(22)

5 1.0856(32) 0.6961(25) 0.7005(20) 0.6968(24)

TABLE II: Mass ratios R(k), obtained from nonperturbative
SSF in χSF for increasing k-values, compared with the pre-
ferred SF fit from ref. [4]. The column marked R(k)-w/o 6
gives results excluding the L/a = 6 data points in the fit.

quark mass M :

M

m(µ0/2)
=
[ M

m(2kµ0)

] [m(2kµ0)

m(µ0/2)

]
. (37)

The first factor on the r.h.s. can be calculated from

M

m(2kµ0)
= [2b0g

2
SF(2kµ0)]−d0/2b0×

exp
{
−
∫ g SF(2

kµ0)

0

dx
[ τ(x)

β(x)
− d0
b0x

]}
, (38)

with τ and β given by their perturbative expressions

τ(x) = −x2[d0 + d1x
2 + d2x

4 + · · · ] , (39)

β(x) = −x3[b0 + b1x
2 + b2x

4 + b3x
6 + · · · ] .

Specifically, we use the 2-loop result for τ(x) (i.e. d0 and
d1 [44]) and the 3-loop result for β(x) (i.e. b0, b1, and
b2 [45–47]), supplemented by an estimate of b3 from a fit
performed in [24]). The second factor is R(k) of Eq. (36)
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k uk R(k)-w/o 6 M/m(µ0/2)

5 1.0856(32) 0.6961(25) 1.7514(63)

10 0.7503(19) 0.5899(25) 1.7519(74)

20 0.4664(8) 0.4769(22) 1.7523(81)

30 0.3392(4) 0.4136(19) 1.7522(80)

40 0.2667(3) 0.3716(17) 1.7524(80)

TABLE III: Mass ratios R(k) and the ratio of RGI to renor-
malised quark mass at scale µ0/2, obtained from nonpertur-
bative SSF in χSF at large k-values.

and it is known nonperturbatively. Having previously
shown that the result and its error are practically inde-
pendent of k, we quote for k = 10:

M

m(µ0/2)
= 1.7519(74) . (40)

The above result agrees with the value obtained in the
SF-LQCD setup of ref. [4], M/m(µ0/2) = 1.7505(89).
This is the outcome of a detailed analysis performed
by the authors, consisting of four different extrapolation
procedures of the ΣP(u, a/L) data, from which estimates
of M/m(µ0/2) are extracted. Their preferred result,
quoted here, is obtained from their so-called τ :global–
FITB* procedure, which consists in performing the con-
tinuum extrapolation of ΣP(u, a/L) and the determina-
tion of the anomalous dimension τ(g ) simultaneously.
We have also applied this procedure to our data. Outlin-
ing the method, we start by rewriting Eq.(35) as:

ΣP(u, a/L) = σP(u) +

2∑
n=0

ρnu
n(a/L)2 . (41)

Note that have been dropped from Eq.(35) terms of
O(a/L)4 and higher (i.e. terms with j ≥ 2). We have also
dropped terms multiplying (a/L)2 of O(u3) and higher
(i.e. bn1 terms with n ≥ 3).

We write the logarithm of σP(u), in terms of the
anomalous dimension τ , as (cf. Eq. (45))

ln

(
ΣP(u, a/L)−

2∑
n=0

ρnu
n(a/L)2

)
= −

∫ √σ(u)
√
u

dx
τ(x)

β(x)
,

(42)
where σ(u) is the step scaling function of the renor-
malised gauge coupling; i.e. for g 2(µ) = u, σ(u) =
g 2(µ/2). For the integrand on the r.h.s. we use the
truncated expansions of Eqs. (39), where d0, d1, b0, b1, b2
are taken from perturbation theory and b3 from a fit as
explained above. Finally, a global fit of the ΣP(u, a/L)
data, with free fit parameters ρ0, ρ1, ρ2 and d2, results to
a continuum expression for τ(u).

Having obtained τ(u), we can now work out directly
M/m(µ0/2), using Eq.(38), with the scale µ0/2 in place
of 2kµ0. This gives

M

m(µ0/2)
= 1.7517(81) . (43)

There is excellent agreement with the result of the first
procedure, cf. Eq.(40), as well as with the SF-LQCD re-
sult of ref. [4]. We find this particularly encouraging,
given the different philosophy of the two procedures. The
first one entails a choice of k in Eqs.(36) and (37), which
we have taken to be k = 10. We have checked the sta-
bility of our results for 5 . k . 40. The parametrisation
of discretisation effects included (a/L)4 contributions. In
the second procedure, these were taken to be (a/L)2. Al-
though we could have included (a/L)4 terms, we opted to
stay as close as possible to the choices made in ref. [4].

VI. QUARK MASS RUNNING AT LOW
ENERGIES

Having computed the running factor to convert the
renormalised mass at the scale µ0/2 to the renormalisa-
tion group invariant mass, we now turn to the computa-
tion of the running factor in the low-energy (GF) regime.

Whereas in the high-energy (SF) regime, we had lat-
tices of extent L/a = 6, 8, 12 (and L/a = 16 at u =
2.0120), in the GF regime our lattices have extent L/a =
8, 12, 16, which should improve the continuum extrapo-
lation. In the high energy regime we found that discreti-
sation effects increase as the coupling is increased, and
we observe a similar trend in our data in the low energy
regime. It is evident from Fig. 9 that the (a/L)2 coeffi-
cient grows with increasing coupling.

The low energy hadronic scale µhad is defined by

u(µhad) = 9.25 , (44)

corresponding to a physical scale µhad = 233(8) MeV [28].
Since the ratio of the switching scale µ0/2 ∼ 2 GeV to
the hadronic scale µhad is not a power of two, it is in-
convenient to carry out the analysis in terms of the step
scaling function σP(u), which only expresses the quark
mass running between consecutive scales µ and µ/2. It
is preferable to rely on the mass anomalous dimension
τ(g), related to σP(u) through

σP(u) = exp
[
−
∫ √σ(u)
√
u

dg
τ(g)

β(g)

]
. (45)

Expanding the integrand of the above equation f(g) ≡
τ(g)/β(g) as a power series

f(g) =
1

g

∑
k=0

fk g
2k , (46)

we obtain the following expression for the step scaling
function:

lnσP(u) = −
∑
k=0

fk

∫ √σ(u)
√
u

dg g2k−1 . (47)

Unlike what we did in the high-energy regime, no input
from perturbation theory is introduced in the above ex-
pression.
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The lattice step scaling function ΣP(u, a/L) is given as
a series expansion in Eq. (35). This can be conveniently
rearranged as

ΣP(u, a/L) = σP(u)
[
1 +

∑
j=1

(a/L)2j
∑
i=1

djiu
i
]
, (48)

resulting to the fit function

ln[ΣP(u, a/L)] = ln[σP(u)] +
[∑
j=1

(a/L)2j
∑
i=1

djiu
i
]
.

(49)
Thus the data points ln ΣP on the l.h.s. are to be fit by
the product of the series of lnσP of Eq.(47) times the
double series with coefficients dji.

We can vary the number of coefficients fk parameteris-
ing the continuum form up to a value kmax. We also vary
the number of coefficients dji that parameterise lattice
artefacts as follows: We consider artefacts that scale as
(a/L)2 as well as (a/L)4; i.e. we set jmax = 2. For each
of the allowed values j = 1, 2, we vary the order of the
polynomial in u up to imax(j). Our preferred fit is the
one with kmax = 4, imax(1) = 4, imax(2) = 0. The fit has
a χ2/dof of 1.1.

We have checked the stability of our final result to
changes in parameters controlling the fit form. We find
good agreement in the result using different fit forms,
with χ2/dof ≈ 1, indicating our data is well-represented
by and relatively insensitive to the precise details of
the fit. This is shown in Fig. 8 for fit forms labelled
(kmax, imax(1), imax(2)). In addition, we can also in-
clude/exclude the data at different couplings used in the
fits. The authors of [4] excluded data at the two highest
couplings u = 5.8673 and u = 6.5489. Including these
couplings gives a consistent result but with somewhat
smaller errors. If one instead removes the next high cou-
pling u = 5.3010, the data is not sufficiently constraining
in the low energy region and the error increases signifi-
cantly. The results from these variations are shown using
our preferred (4, 4, 0) (and (4, 4, 4)) parameterisation in
Fig. 8.

After having fit our data for σP in both the SF and
GF regimes and taken the continuum limit, we find at
the switching scale

σP,SF(µ0/2) = 0.8951(23), (50)

σP,GF(µ0/2) = 0.8941(12) . (51)

The compatibility of these results at the threshold scale
µ0/2, where the definition of the renormalised coupling
changes, is yet another indicator of the robustness of our
analysis.

Having obtained f(g) from the fit and using the poly-
nomial expression for β(g) given in [4], we can reconstruct
the function τ and determine

m(µ0/2)

m(µhad)
= 0.5199(39) , (52)

which can be compared with the result from [4],
m(µ0/2)
m(µhad)

= 0.5226(43).

(4
, 4,

0)

(3
, 4,

0)

(5
, 4,

0)

(4
, 3,

0)

(4
, 5,

0)

no
u=

5.
3

+
u=

5.
9

+
u=

6.
5

(4
, 4,

4)

+
u=

5.
9

fit

0.50

0.52
m(µ0/2)
m(µhad)

χ2/dof 1.1 1.2 0.97 1.3 1.1 1.1 1.1 1.2 1.0 1.2

FIG. 8: Stability analysis of the mass running factor in the
low-energy regime. The leftmost point shows the result of our
preferred fit (Eq. (52)). The indices (kmax, imax(1), imax(2))
on the x-axis give the number of polynomial terms in u used to
parameterise the continuum, (a/L)2, and (a/L)4 dependences
respectively. Moving from left to right, the labels ‘no u = 5.3’,
‘+u = 5.9’, etc. show the effect of removing/adding data at
the specified couplings to our preferred (4, 4, 0) fit. The
rightmost point shows the effect of adding u = 5.9 data to
the (4, 4, 4) fit.

VII. CONCLUSION

We have analysed the ensembles generated for the com-
putation of the RG-running of the quark mass in Nf = 3
massless QCD (with SF boundaries) [4], imposing chi-
rally rotated Schrödinger functional boundary conditions
on the valence quarks. The data spans a few orders of
magnitude, allowing a completely nonperturbative de-
termination of the mass running function between the
hadronic and very high energy scales, where contact with
fixed-order perturbation theory can be made. Our com-
putations are characterised by two different definitions of
the renormalised gauge coupling below and above an en-
ergy threshold (switching scale) of ∼ 2 GeV. This results
to some differences in the computational strategies in the
low- and high-energy regimes.

In order to recover all the symmetries of QCD in the
continuum limit, we have performed the required non-
perturbative tuning of the boundary counterterm zf of
the χSF valence quark. The critical value κc of the mass
tuning parameter κ is taken from ref. [4].

We computed in both high- and low-energy regions
the ratio ZS/ZP and the ratio of step-scaling functions
ΣS/ΣP. For the former we find that results match
smoothly with 1-loop PT in the high energy regime. We
also find consistency with determinations based on Ward
identities in the low energy regime. The latter provides
an important diagnostic check for the validity of our fit
forms, and we find that the one-loop subtraction is effec-
tive at removing the leading lattice artefacts in this quan-
tity. The ratio of step-scaling functions ΣS/ΣP provides
a second diagnostic check of our setup. The continuum
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FIG. 9: Results of a global fit to the step-scale data ΣP in
the low-energy regime. The open squares give the raw data
while the filled bands are the results returned from the fit at
the respective u values. The data points close to the bands
are at approximately the same u.

limit step scaling functions σS and σP are expected to be
equal in a χSF setup. We confirm that the ratio ΣS/ΣP

fulfils this expectation.

Our main result consists in the computation of the
step-scaling function σP (equivalently τ/β) from hadronic
to electroweak energy scales. In the high energy regime,
we computed the quark mass running factor from the
switching scale to the RG-invariant definition of the
quark mass. In the low energy regime, we computed the
mass running factor from the hadronic scale µhad to the
switching scale. Putting these results together we obtain

the total running factor

M

m(µhad)
= 0.9108(78) . (53)

from eq.(40) and

M

m(µhad)
= 0.9107(80) . (54)

from eq.(43). These can be compared to the SF-LQCD
result from ref. [4], namely M/m(µhad) = 0.9148(88),
obtained on the same configuration ensembles.

Our results for the mass running factors are consistent
with the findings of [4]. The two formulations are for-
mally equivalent in the continuum, but are obtained from
two different regularisations of the valence quark action.
Their compatibility is a non-trivial check of universality
of the two lattice theories.

Having validated our setup quantitatively lays the
groundwork for studies of other bilinear operators, such
as the tensor which, without an improvement scheme in
SF, suffers O(a) artefacts. Work towards obtaining auto-
matically improved tensor matrix elements is under way;
see ref. [48] for preliminary results. Similar advantages
are expected for more complicated four-quark operators,
like those used in studies of kaon mixing beyond the Stan-
dard Model. The strategy for computing automatically
O(a)-improved BK matrix elements, including BSM con-
tributions, in a χSF renormalisation scheme, has been
outlined in refs. [17, 18].
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Appendix A: Determination of zf

To obtain “automatic” O(a)-improvement we tune
nonperturbatively the boundary counterterm zf in order
to satisfy Eq. (11). This is done at the κc values obtained
in ref. [4] with SF boundary conditions for the quarks
fields. We use an iterative procedure. Starting from an

initial guess (z
(0)
f , s(0)), for zf and s ≡ ∂

∂zf
gudA (T/2), we

compute gudA (T/2)[zf ] ≡ gudA [zf ] for a given gauge field
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FIG. 10: The slope ∂
∂zf

gudA (T/2) as a function of β, with

varying L/a, in the high energy range.

ensemble. We then update the values

z
(i+1)
f = z

(i)
f − gudA [z

(i)
f ]/s(i) (A1)

s(i+1) = (gudA [z
(i+1)
f ]− gudA [z

(i)
f ])/(z

(i+1)
f − z(i)f ) , (A2)

where gudA [z
(i+1)
f ] is computed after (A1) in order to up-

date the slope in (A2). As convergence criterion we re-
quire that the correlator be zero within statistical errors,

|gudA (T/2)| < δgudA (T/2) . (A3)

As an initial starting guess we take the O(g20) pertur-

bative result [7] for z
(0)
f = 1 + g20CF × 0.16759(1). The

initial guess for the slope s(0) was determined empirically

by measuring gudA [zf ] for a few zf values near z
(0)
f on a

single ensemble, from which we obtained s(0) = −2.3. In
practice the slope is found to be a slowly varying function
of g20 (cf. Fig. 10) and the termination of the algorithm
does not depend sensitively on its initial value. Because
we are working in a narrow range around the final value
of zf , the correlator gudA [zf ] varies nearly linearly with zf .

For the computation of gudA the algorithm is first
run in a low-precision mode using 1000 configurations,
and when the convergence criterion (A3) is satisfied, it
switches to a high-precision mode using the full ensem-
ble. The new starting values are the the zf - and the
slope-estimates of the low-precision run. The values of
gudA [zf ] for successive zf estimates are highly correlated,
so the slopes are determined precisely and the algorithm
terminates quickly.

Results for both the SF and GF ensembles are shown
in Fig. 1. We see that zf varies smoothly with g20 in
each energy regime (SF and GF). Compared to the O(g20)
perturbative result, it clearly has sizeable contributions
from higher orders. The results for zf could turn out to be
useful in future studies of χSF-LQCD with Nf = 3. For
this reason we present detailed results on the quantities
relevant to this tuning in a separate Appendix D.

FIG. 11: Simultaneous tuning of zf and κ at uSF=2.012 and
lattice volume L/a = 12. On the x axis we enumerate the
iteration step of the overall tuning procedure; the vertical
dotted lines indicate the end of a tuning stage. Each tuning
stage ends when the appropriate convergence criterion is met.

Appendix B: Retuning κc

The value of κc tuned in the χSF regularisation differs
from the value tuned in the SF one by O(a) lattice arte-
facts. However, when physical observables in the χSF
setup are computed using these two κc values, the two
determinations differ only by O(a2) lattice artefacts [7].
In this Appendix we check that physical results computed
with zf tuned with κc fixed at the SF values of ref. [4] are
compatible to those obtained when zf and κc are tuned
simultaneously with an iterative procedure in the χSF
setup.

Our test consists in computing the SSFs of the pseu-
doscalar and scalar operators (19) and (20), at a single
value of the renormalised coupling, uSF(µ0)=2.012, for
which an extra fine lattice with L/a = 16 is available.
Considerations based on O(a)-improvement in ref [13]
imply that the quark mass depends weakly on zf . This
suggests an iterative procedure, in which either zf or κc
is tuned in alternation, while the other parameter is held
fixed. The output of a tuning stage (say, zf) is thus kept
fixed in the successive stage, in which the other param-
eter (say κc) is being tuned. As we do not expect the
quark mass to change appreciably with small variations
of zf , the overall process should converge rapidly.

This procedure is displayed in Fig. 11. The first stage
consists in tuning of zf with κc held fixed at the SF value
of ref. [4]. Essentially this is what is described in Ap-
pendix A. The convergence criterion is met after 3 itera-
tions (step 3 in Fig. 11). Then the second stage begins,
where κc is tuned with zf held fixed. This is analogous to
what is done in Appendix A, with zf replaced by κc: the

initial guesses for κc and the slope ∂(mL)
∂κ are taken from

refs. [4] and Appendix B of ref. [13] respectively. The al-
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L/a Nconf
z
χSF
f

−zSF
f

z
χSF
f

×100
κχSF
c −κSF

c

κ
χSF
c

×100

6 5000 0.94 0.06

8 5000 0.36 0.02

12 3000 0.31 0.01

16 4604 0.19 0.005

TABLE IV: Percentage variation of zf and κc (for uSF = 2.012
ensembles) between the values tuned as in Appendix A (de-
noted by a superscript SF) and those tuned according to the
present procedure (denoted by a superscript χSF).
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FIG. 12: ΣχSF
P vs (a/L)2 at uSF=2.012. In red we show data

and related fits computed with the simultaneous tuning of zf
and κc; in blue, those computed w/out κc retuning.

gorithm first runs in low precision mode and then in high
precision mode; after 3 iterations (step 6 in Fig. 11) the
PCAC mass is naught within statistical precision. Note
that in practice we tune the bare quark mass m0 using

the slope ∂(mL)
∂(m0L)

and then we convert it to κ = 1
2m0+8 .

We prefer this because m is linear in m0. See ref. [13] for
more details.

We can carry on by retuning zf while keeping κc fixed
to its new value; this is stage 3 of our procedure. The new
initial guesses for zf and the slope ∂

∂zf
gudA (T/2) are the

output of the previous zf tuning (stage 1). We alternate
the two tuning procedures until both parameters remain
stable within their errors.

Looking at the percentage variations of zf and κc after
their retuning, we see that both of them have not changed
considerably: the variation of zf is less than 1 percent for
all lattice volumes and that of κc is smaller than 1 per
mil. The values are given in Table IV.

We finally compare results for ΣχSF
P , obtained with

and without retuning of κc. In Fig. 12 ΣχSF
P is plot-

ted against (a/L)2 at the renormalised squared coupling
uSF=2.012. The figure shows that the two sets of data
overlap strongly, both at finite lattice spacing and in the

FIG. 13: ΣχSF
P vs (a/L)2 at uSF = 2.012. In red we show data

and related fits computed with dtree
s ; in blue, those computed

with d1−loop
s .

continuum.

We conclude that the tuning procedure can be stopped
after completion of the first stage (step 3 in Fig. 11), as
described in Appendix A, without loss of precision for
the quantities of interest.

Appendix C: The effect of ds

We compare the results for ΣχSF
P obtained with the

tree level value of ds to those obtained with the 1-loop
result. We perform the test at uSF=2.0120, where the
difference between the tree-level and 1-loop estimates of
ds is the biggest possible in our high energy (SF) range:

(d1−loop
s − dtree

s ) = d
(1)
s × 2.0120 = 0.0016(8). As expected

and shown in Fig. 13, the datapoints obtained with the
two ds estimates overlap completely.

Appendix D: Simulation details
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u L/a β κc csw Nms gudA ∂gudA /∂zf zf

1.110000 6 8.5403 0.13233610 1.233045285565058 5000 3.34e-07 +/- 0.000529 -2.6411749 1.18588709299

1.110000 8 8.7325 0.13213380 1.224666388699756 5000 -6.87e-07 +/- 0.000397 -2.6152159 1.18374688510

1.110000 12 8.9950 0.13186210 1.214293680665697 2769 1.89e-06 +/- 0.000348 -2.5572039 1.17624612625

1.184460 6 8.2170 0.13269030 1.248924515099129 5000 -1.33e-05 +/- 0.000571 -2.6258675 1.19427949923

1.184460 8 8.4044 0.13247670 1.239426196162344 5000 7.34e-06 +/- 0.000419 -2.5982674 1.19224223013

1.184460 12 8.6769 0.13217153 1.22701700000000 2476 1.12e-07 +/- 0.000403 -2.5383549 1.18417905314

1.265690 6 7.9091 0.13305720 1.266585617959733 5000 7.17e-06 +/- 0.000598 -2.6054349 1.20212085045

1.265690 8 8.0929 0.13283120 1.255711356539447 5000 -9.56e-07 +/- 0.000456 -2.5579952 1.20026752592

1.265690 12 8.3730 0.13249231 1.24095900000000 2729 2.36e-08 +/- 0.000400 -2.5034648 1.19163887560

1.362700 6 7.5909 0.13346930 1.288146969458134 5000 -8.57e-07 +/- 0.000656 -2.5642314 1.21157164130

1.362700 8 7.7723 0.13322830 1.275393611340024 5000 -1.20e-06 +/- 0.000485 -2.5192879 1.21009426577

1.362700 12 8.0578 0.13285365 1.25770900000000 2448 1.20e-06 +/- 0.000456 -2.4722959 1.20100624217

1.480800 6 7.2618 0.13393370 1.315030958783770 5000 1.37e-06 +/- 0.000709 -2.5311118 1.22119155568

1.480800 8 7.4424 0.13367450 1.299622821237046 5000 2.26e-06 +/- 0.000538 -2.4850676 1.22025587648

1.480800 12 7.7299 0.13326353 1.278252758659668 2711 -5.95e-07 +/- 0.000463 -2.4422897 1.21049262680

1.617300 6 6.9433 0.13442200 1.346919223092444 5000 2.77e-06 +/- 0.000786 -2.4829699 1.23119560164

1.617300 8 7.1254 0.13414180 1.327878356622864 5000 1.47e-07 +/- 0.000582 -2.4485296 1.23052937460

1.617300 12 7.4107 0.13369922 1.30220600000000 2535 4.55e-08 +/- 0.000509 -2.3828505 1.22067806449

1.794300 6 6.6050 0.13498290 1.389385004928746 5000 -2.33e-06 +/- 0.000859 -2.4255593 1.24169304397

1.794300 8 6.7915 0.13467650 1.364706438701718 5000 -1.19e-05 +/- 0.000638 -2.3657177 1.24218454960

1.794300 12 7.0688 0.13420891 1.333551296494656 2339 -7.03e-06 +/- 0.000592 -2.3034246 1.23170004013

2.012000 6 6.2735 0.13557130 1.442967721668930 5000 -8.02e-06 +/- 0.000971 -2.3627021 1.25238467445

2.012000 8 6.4680 0.13523620 1.409845308468962 5000 -3.40e-07 +/- 0.000706 -2.3251048 1.25331910626

2.012000 12 6.7299 0.13475973 1.372481791156670 3000 -1.44e-06 +/- 0.000603 -2.2547920 1.24396571640

2.012000 16 6.9346 0.13441209 1.34788873527000 4604 3.14e-06 +/- 0.000340 -2.2150346 1.23527136701

TABLE V: The first column refers to the values of the squared
renormalised gauge coupling g 2(µ) = u in the SF energy re-
gion; columns 2 to 5 display the relevant bare lattice parame-
ters corresponding to u; column 6 shows the number of gauge
field configurations used for the measurements. The last three
columns contain the output of the tuned zf and the final val-
ues of gudA and ∂gudA /∂zf .
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u L/a β κc csw Nms gudA ∂gudA /∂zf zf

2.125700 8 5.3715 0.13362120 1.259364773796311 5000 4.06e-06 +/- 0.000534 -2.4642129 1.22654269651

2.125700 12 5.5431 0.13331407 1.244237155112229 2001 -1.15e-06 +/- 0.000285 -2.3724251 1.21985757706

2.125700 16 5.7000 0.13304840 1.232057931661424 8000 1.70e-06 +/- 0.000217 -2.2984404 1.21389574489

2.390000 8 5.0710 0.13421678 1.291712997425573 5000 -2.46e-06 +/- 0.000593 -2.3937509 1.24245430325

2.390000 12 5.2425 0.13387635 1.272228757209511 2001 1.77e-05 +/- 0.000311 -2.3527260 1.23476121175

2.390000 16 5.4000 0.13357851 1.256705230332892 8000 -1.26e-06 +/- 0.000261 -2.2530349 1.22758469820

2.735900 8 4.7649 0.13488555 1.335350323996506 5001 -2.82e-06 +/- 0.000687 -2.3249628 1.25947416858

2.735900 12 4.9387 0.13450761 1.308983384364439 2001 1.83e-05 +/- 0.000442 -2.2719935 1.25193714648

2.735900 16 5.1000 0.13416889 1.288203306487197 5001 -1.65e-06 +/- 0.000297 -2.1546738 1.24351820011

3.202900 8 4.4576 0.13560675 1.395741031275910 5001 6.60e-05 +/- 0.000793 -2.3080103 1.27801540556

3.202900 12 4.6347 0.13519986 1.358462476494125 2001 4.79e-06 +/- 0.000520 -2.1513773 1.27063136963

3.202900 16 4.8000 0.13482139 1.329646151978636 5001 3.06e-07 +/- 0.000360 -2.0625697 1.26149028258

3.864300 8 4.1519 0.13632589 1.482418125298923 5001 3.73e-07 +/- 0.000980 -2.1399699 1.29722920690

3.864300 12 4.3317 0.13592664 1.427424655158656 2001 -9.72e-07 +/- 0.000617 -2.0302207 1.29144247047

3.864300 16 4.5000 0.13552582 1.386110343557152 5001 -1.38e-06 +/- 0.000427 -1.9484240 1.28199124254

4.490100 8 3.9479 0.13674684 1.563885414775983 5001 1.64e-04 +/- 0.001100 -2.0493154 1.30786594013

4.490100 12 4.1282 0.13640300 1.490702297580152 2001 -1.31e-05 +/- 0.000713 -1.9429389 1.30582505718

4.490100 16 4.3000 0.13600821 1.436199798821361 5001 -1.53e-05 +/- 0.000493 -1.8420700 1.29622706156

5.301000 8 3.7549 0.13701929 1.668369108400627 5001 -8.19e-06 +/- 0.001380 -1.9545399 1.31461240780

5.301000 12 3.9368 0.13679805 1.569056010619204 2001 2.31e-05 +/- 0.000831 -1.8037352 1.31770290718

5.301000 16 4.1000 0.13647301 1.500935714848465 5001 -2.01e-05 +/- 0.000717 -1.7111716 1.31005410303

5.867300 8 3.6538 0.13707221 1.738234164347418 5001 -3.05e-05 +/- 0.001560 -1.8809782 1.31487229203

5.867300 12 3.8333 0.13696774 1.621966539608638 5001 5.56e-05 +/- 0.000921 -1.7457623 1.32327345473

5.867300 16 4.0000 0.13668396 1.540714371185832 4602 -2.24e-05 +/- 0.000654 -1.6560183 1.31588724381

6.548900 8 3.5565 0.13703245 1.818951161611082 5001 -3.29e-05 +/- 0.001830 -1.8016743 1.31531748561

6.548900 12 3.7354 0.13708263 1.680901952205217 5001 2.42e-06 +/- 0.001080 -1.6027921 1.32886731276

6.548900 16 3.9000 0.13687202 1.586881030973021 4600 -5.17e-07 +/- 0.000737 -1.5210420 1.32248784097

TABLE VI: The first column refers to the values of the
squared renormalised gauge coupling g 2(µ) = u in the GF
energy region; columns 2 to 5 display the relevant bare lattice
parameters corresponding to u; column 6 shows the number
of gauge field configurations used for the measurements. The
last three columns contain the output of the tuned zf and the
final values of gudA and ∂gudA /∂zf .
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[12] S. Capitani, M. Lüscher, R. Sommer, and H. Wittig,
Nucl. Phys. B 544, 669 (1999), [Erratum: Nucl.Phys.B
582, 762–762 (2000)], hep-lat/9810063.

[13] M. Dalla Brida, T. Korzec, S. Sint, and P. Vilaseca, Eur.
Phys. J. C79, 23 (2019), 1808.09236.

[14] P. Dimopoulos, G. Herdoiza, F. Palombi, M. Papinutto,
C. Pena, A. Vladikas, and H. Wittig (ALPHA), JHEP
05, 065 (2008), 0712.2429.

[15] P. Dimopoulos, G. Herdóıza, M. Papinutto, C. Pena,
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