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arenas to test ideas about the Swampland Distance Conjecture, it is nevertheless non-trivial
enough to improve our understanding of the physics for these limiting geometries, including
phenomena of emergence. It also provides a perspective on infinite distance limits from
the viewpoint of open strings. The paper has two quite independent themes. In the main
part we show that all degenerations of elliptic K3 surfaces at infinite distance as analysed
in the companion paper [1] can be interpreted as (partial) decompactification or emergent
string limits in F-theory, in agreement with the Emergent String Conjecture. We present
a unified geometric picture of the possible towers of states that can become light and
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surfaces and the dual heterotic string. As an application we classify the possible maximal
non-abelian Lie algebras and their Kac-Moody and loop extensions that can arise in the
infinite distance limits. In the second part we discuss the infinite distance behaviour of
certain exact quartic gauge couplings. We encounter a tension with the hypothesis that
effective couplings should be fully generated by integrating out massive states. We show
that by appropriately renormalizing the string coupling, at least partial emergence can
be achieved.
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1 Introduction

Understanding the structure of the landscape of consistent quantum gravity theories, as
opposed to the swampland of effective theories without a UV completion involving gravity,
is one of the most ambitious goals in modern theoretical physics. Numerous criteria defining
the boundary between both types of theories have been proposed within the Swampland
Program initiated in [2]. Among these, the Swampland Distance Conjecture [3] arguably
plays a central role: it underlies the de Sitter Conjecture in asymptotic regions of moduli
space [4], serves as inspiration for the Anti-de Sitter Conjecture [5], the Spin-2 Conjecture [6]
and the Gravitino Mass Conjecture [7, 8], predicts a holographically dual CFT Distance
Conjecture [9, 10] and, quite generally, illustrates the tension between parametrically large
field traversions in cosmology and validity of the effective field theory, to name but a few
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aspects.1 The conjecture asserts that at infinite distance in moduli space, a tower of states
becomes light exponentially fast in any quantum gravity theory. From a conceptual point
of view, the fascination behind this claim lies in the fact that every quantum gravity theory
must enter a new phase at infinite distance in its moduli space where the original effective
description breaks down.

Given its special status within the Swampland Program, the Distance Conjecture
clearly begs for a more fundamental explanation. In [15] it was proposed that the relevant
towers of states, which become light at the parametrically fastest rate on the infinite
boundaries of moduli space, are either a (dual) Kaluza-Klein tower or the tower of ex-
citations of an emergent asymptotically weakly-coupled fundamental string. If generally
true this would drastically simplify our global picture of the quantum gravity landscape,
to the extent that it would reduce the boundaries of moduli space in the asymptotic
regime to well controlled theories.2 This would demystify the breakdown of the effective
theory at infinite distance and also offer a new perspective on the Emergence Proposal
of [18–20].3

This Emergent String Conjecture has been successfully tested for a number of different
corners of string and M-theory in various dimensions and in situations with as little as four
supercharges. Apart from higher dimensional compactifications [22], this includes N = 1
supersymmetric compactifications of F-theory to six [23] and four [24, 25] dimensions and
of M-theory to five [15] and four [26] dimensions, as well as 4d N = 2 supersymmetric
compactifications of Type IIA [15] and Type IIB [27]. In all these cases, the moduli space
whose infinite distance limits were investigated corresponds to the Kähler moduli space of
the underlying Calabi-Yau variety. Intricate features of Kähler geometry guarantee that
whenever the parametrically lightest tower of states does not correspond to a Kaluza-Klein
tower, a unique (oftentimes solitonic) string emerges. The geometry works in such a way
that its excitations lie parametrically at the same scale as a Kaluza-Klein tower and there
exists a duality frame in which the emergent string is weakly coupled. Depending on the
nature of the moduli space under investigation [25, 27], this rests on a remarkable conspiracy
of classical and quantum effects.

By contrast, an explicit confirmation or falsification of the Emergent String Conjecture
in the complex structure moduli space of string compactifications has so far proven to
be very difficult. In [20, 28–31] the Swampland Distance Conjecture as such has been
quantitatively confirmed for Type IIB compactifications near the asymptotic boundary of
complex structure moduli space, by arguing for the appearance of a tower of BPS states
from D3-branes wrapping asymptotically vanishing 3-cycles. The mathematical structure
of the boundaries of complex structure moduli spaces has been scrutinised from the point
of view of asymptotic Hodge theory in a series of further works [32–34]. This program in
particular has lead to important insights into the possibilities of moduli stabilisation in

1For further details and a collection of related works we refer to the reviews [11–14].
2A related, but independent idea stressing the role of strings for the asymptotics of moduli space is the

Distant Axionic String Conjecture of [16, 17].
3An explanation of the Swampland Distance Conjecture based on entropy arguments was recently

proposed in [21].
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Figure 1. Infinite distance complex structure degenerations for F-theory on elliptic K3 surface, and
the physics in the various asymptotic regimes.

flux compactifications [35–37], a topic of central relevance in string theory. Irrespective of
this progress, it is fair to say that a clear physics interpretation of the infinite towers of
states, or even an identification of the parametrically leading towers, is yet to be obtained.
By mirror symmetry, Type IIB string theory on Calabi-Yau threefolds is equivalent to
corresponding Type IIA compactifications, for which the asymptotically massless states
at infinite distance in Kähler moduli space have a clear interpretation as Kaluza-Klein
states or emergent string excitations [15]. It is therefore desirable to obtain a comparable
understanding of the asymptotic physics directly from the point of view of the complex
structure moduli space.

In this paper we embark on this program in the arguably simplest non-trivial context,
namely of F-theory compactified to eight dimensions on elliptically fibered K3 surfaces.
While at first sight eight-dimensional theories might look straightforward to analyse, es-
pecially when viewed as compactifications of the heterotic string on T 2

het, the structure
of infinite distance limits turns out to be surprisingly intricate from the geometric point
of view. The focus of our work is therefore on understanding the geometry of complex
structure degenerations and its match to physics at infinite distance. Our analysis builds
on the refinement of the so-called Type III Kulikov models for elliptic K3 surfaces that was
elaborated on in the companion paper [1], as well as in the independent series of works
of [38–42]. We will obtain perfect agreement between the refined Kulikov models and the
possible decompactification or emergent string limits as suggested by the Emergent String
Conjecture. For an illustration, see figure 1. We will give a more detailed summary of the
main points of this analysis, which are the subject of sections 2–5, in the second part of
this introduction.

Moreover, in the largely independent section 6 of this paper, we comment on some other
aspects of emergence, profiting from the canonical, highly constrained structure of the theory
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in eight dimensions. Specifically, we address the interesting proposal [12, 18–20, 43, 44]
that gauge couplings (and by courageous extrapolation, all couplings) emerge in the IR
just from integrating out loops of massive states. In particular, their divergence in the
decompactification limit arises from integrating out an asymptotically massless tower of KK
states or string excitations. In geometric duality frames, such as F-theory, singularities of
gauge couplings generally arise from degenerating geometries, for example, from D-branes
tied to collapsing or coincident cycles; the prime example being the conifold singularity of
Calabi-Yau manifolds. One customarily says that the geometry automatically integrates
out the asymptotically massless states.

However, these singularities arise at tree-level of the geometric compactifications, and
the question arises whether there exist other duality frames where the singularity, or rather
the RG flow for that matter, literally arises from integrating out of loops of massive states.
For the conifold singularity in Type II strings compactified on Calabi-Yau threefolds, it
is known that the relevant dual perturbative frame is the heterotic string, for which the
singularity in the coupling arises at one-loop order due to a massless state circulating in
the loop [45].

While this picture is very appealing, it is not a priori guaranteed that for any kind of
large distance singularity in the moduli space there exists a duality frame for which the
singularity arises from perturbative loops of asymptotically massless states. In fact, already
in the early literature [3] it was pointed out that this picture may fail for the special case
of Kaluza-Klein gauge symmetries, for which the large distance singularity arises from to
the diverging volume of the compactification space. For such a case one expects at most
partial emergence, in the sense that only part of the divergence may arise at the quantum
level [12, 19, 43].

We will address this issue for eight-dimensional theories, which are very restricted in
that the perturbative dual frame is unambiguously the heterotic string compactified on
T 2

het, while non-perturbative effects are absent. An extra benefit is that it is the quartic,
and not the quadratic gauge couplings that are dimensionless, and this disentangles the
issues of gauge fields becoming dynamical at low energies, metric on moduli space, and the
running of one-loop diagrams. That is, the quadratic gauge couplings have positive mass
dimension and so vanish in the UV; in this sense, gauge dynamics emerges in the IR. But
these couplings are not renormalized at one loop order, so one cannot really say that it is
the integrating-out of massive states that makes these fields dynamical.

As mentioned, the relevant one-loop exact, BPS saturated gauge couplings in eight
dimensions are quartic, and these share a lot (but not all) of the properties of the well-
investigated quadratic couplings of N = 2 supersymmetric strings in four dimensions. We
will focus only on such couplings of a certain kind, namely on those of the U(1) gauge fields
that arise via KK reduction from ten dimensions. Our point will be to show that certain
1-loop amplitudes, in fact, do not exhibit any singularity in the decompactification limit,
but rather all the divergence arises at tree level. This seems to be in tension even with just
partial emergence.4

4As we will mention later, this phenomenon appears also in four dimensions and is therefore not an
artifact of eight dimensions.
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Subsequently we refine the discussion and argue how this situation can be ameliorated,
by sweeping part of the problem into a renormalization of the string coupling. In this way,
at least partial emergence can be recovered.

The lesson is that the notion of emergence as the phenomenon of literally integrating out
states at the quantum level seems to be overly restrictive, at least in the current framework.5
Because of dualities, there is no absolute distinction between what may be called tree-level
or one-loop effect anyway. Indeed the key features of the Swampland Distance Conjecture,
such as the appearance of massless towers of states at infinite distances in moduli space,
can be well captured in a purely geometric formulation at tree level, irrespective of whether
or not there exists a duality frame for which the singularity arises at the quantum level.

Physical interpretation of Kulikov models. After this general overview, we now
summarize in more detail the results of sections 2–5, which concern the infinite distance
limits in the complex structure moduli space of F-Theory on K3, and in particular their
physical interpretation.

According to the classic theory of semi-stable degenerations [46], a K3 surface generally
splits into a union of several surface components at infinite distance in complex structure
moduli space. The possible degenerations go by the name of Kulikov Type II and Type III
models [47–50].6 The theory of asymptotic Hodge structures guarantees the existence of
one (Type III) or two (Type II) transcendental elliptic curves whose calibrated volumes
vanish at infinite distance. From the point of view of M-theory on the degenerating space,
we therefore expect one or two towers of asymptotically massless states from M2-branes
wrapped an arbitrary number of times along these vanishing cycles. This parallels the
situation for Type IIB compactifications on Calabi-Yau threefolds, where towers of states
appear from wrapped D3-branes along asymptotically vanishing 3-cycles, as in [20, 28–31].
However, it turns out that these states form in general only part of the asymptotically light
towers. This makes it crucial to understand the nature of the asymptotically vanishing
cycles and to interpret the physics of the associated states.

It is at this stage that a refined geometric picture of the degeneration comes into play.
As is well-known to string theorists already from the works [51–53], the elliptic Type II
Kulikov degenerations fall into two qualitatively different sectors, called Type II.a and II.b
in [54].

Type II.a models describe the famous stable degeneration limits where the elliptic K3
breaks up into the union of two rational elliptic surfaces intersecting over an elliptic curve.

5A way out might be that the quantum emergence of KK gauge fields is inherited from an emergence
of gravity itself in the higher dimensional theory [12]. We thank Irene Valenzuela for a discussion of
this possibility.

6Type I models appear at finite distance in moduli space and are not of interest to us here. Notably, they
include the standard enhancements of the fibral singularities, which famously lead to non-abelian gauge
multiplets valued in a Lie algebra; only a finite number of W-boson states become massless there, physically
indicating the finite-distance nature of the limits. This is in sharp contrast with Type II and Type III
models at infinite distance, for which we will find an infinite tower of states that become massless. While
one may indirectly argue via dualities that the mass scale of the tower decays exponentially in the moduli
distance, in this work we focus more on identifying the light states and leave the F-theoretic explorations of
the decay rate for future work.
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Such limits are dual to the T 2 compactification of the heterotic string in the limit of large
volume, Thet → i∞. Indeed, we will argue that the two towers of wrapped M2-branes have
a clear interpretation in F-theory in terms of string junctions: these form the two imaginary
roots that enhance the non-abelian gauge algebra to the double-loop algebra

G∞ = (Ê9 ⊕ Ê9)/ ∼ (Type II.a) , (1.1)

where the quotient indicates that the two imaginary roots of the first double-loop algebra Ê9
and those of the second Ê9 are identified. These string junctions are the F-theoretic incarna-
tion of two towers of Kaluza-Klein states in the dual heterotic frame, as expected in the stable
degeneration limit. This establishes the Type II.a limits as complete decompactification
limits from 8d to 10d.

By contrast, the Type II.b Kulikov models represent limits in which the 10d axio-dilaton
diverges as τIIB → i∞, corresponding to weakly coupled Type IIB orientifold limits. While
it is true that the two towers of states from wrapped M2-branes along the two vanishing
cycles become asymptotically light, they do not furnish the only parametrically leading
light states. Rather, an M2-brane wrapped on a degenerating 1-cycle in the fiber gives
rise to an asymptotically tensionless string, which is identified with the perturbative Type
IIB string. Its (denser) tower of excitations sits at the same scale as the M2-brane states,
and the limit is to be interpreted as an emergent string limit [15] in 8d, rather than a
decompactification limit.

While the Type II limits have been known from the classic works [52–54], the remaining
Type III limits at infinite distance have only recently been understood systematically for
elliptic K3 surfaces [1, 38–42], by analysing their associated Weierstrass models. In particular,
the refined classification in terms of Type III.a and III.b limits has been established in our
companion paper [1] in this way. In both cases, the Weierstrass model of the degenerate K3
surface breaks up into a chain of possibly degenerate elliptic fibrations, where the generic
elliptic fibers of the ith components are of Type Ini in the language of Kodaira’s classification
of elliptic fibrations.7 It is guaranteed that ni > 0 for the middle components and hence
their fibrations degenerate, while three possibilities arise for the end components:

• Both end components are rational elliptic surfaces (Type III.a of first kind);

• one end coomponent is a rational elliptic surface and the other one is a surface with
generic In>0 fibers (Type III.a of second kind);

• both end components are surfaces with generic In>0 fibers (Type III.b).

Type III.a models are similar to the Type II.a models described above, in the following
sense: at the intersection of the rational elliptic end component(s) with the adjacent surface
component with generic fibers of Type In>0, one vanishing transcendental torus is localised.
M2-branes wrapped thereon can be interpreted as string junctions responsible for the

7Recall that a smooth elliptic fiber is of Type I0, while a fiber of Type Ik with k > 1 is a nodal curve and
the result of shrinking the (k, 0) cycle.
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enhancement of an E9−n algebra to the affine algebra Ê9−n. For Type III.a limits with two
rational elliptic end components, the symmetry algebra hence contains an affine algebra

G∞ ⊃ (Ê9−n ⊕ Ê9−m)/ ∼ , 1 ≤ n,m ≤ 9 , (Type III.a of first kind) , (1.2)

while in models with only a single rational elliptic component only one affine algebra factor
can arise. The imaginary root responsible for the affinisation of the symmetry algebra
gives rise to a single tower of Kaluza-Klein modes, and the limit is therefore a partial
decompactification limit from 8d to 9d.

Type III.b limits, on the other hand, are weak coupling limits in which τIIB → i∞,
while at the same time the complex structure of the Type IIB torus diverges. Such limits
must therefore be full decompactifications from 8d to 10d. This might seem, at first sight,
to be in tension with the fact that one finds only a single, rather than two independent
light towers from wrapped M2-branes. This tower can be interpreted as the winding tower
along the small 1-cycle on T 2

IIB. The missing second tower must correspond to a proper
supergravity Kaluza-Klein tower that cannot be detected as easily from geometry, even
though the physical interpretation of the limit is unambiguous.

As explained before, the limits of Type II.a and III.a correspond to decompactification
limits in the heterotic duality frame, where the infinite distance limit is to be understood
as the limit

• Thet → i∞ with Uhet finite (Type II.a);

• Thet → i∞ with Thet/Uhet finite (Type III.a).

In the original F-theory duality frame, by contrast, the infinite directions in moduli space
can be interpreted as non-compact directions in the moduli space of 7-branes. While naively
one might think that the open string or brane moduli space, on a compactification space of
finite volume and at finite values of the complex structure, should be compact, this is in
general not true if one includes mutually non-local 7-branes. The non-compact directions
appear when certain such (p, q) branes approach each other. More precisely, as explained
in [55], the affinisation of an En algebra to Ên appears, in the brane picture, when a single
7-brane of certain (p, q)-type approaches a stack of branes with some gauge algebra En.
In such a situation the elliptic fiber degenerates to a non-minimal type in the sense of
Kodaira’s classification, i.e., the vanishing orders of the Weierstrass sections f and g both
exceed the critical values of 4 and 6. The Type II and Type III Kulikov models are obtained
by removing these singularities by a chain of blowups in the base. This establishes the
following generic correspondence:

Non-minimal
Kodaira fibers
in codimension one

⇐⇒ Affine or loop extensions
of Lie algebras

⇐⇒
Decompactification lim-
its in a dual frame at in-
finite distance
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In section 2 we begin by reviewing the affinisation of Lie algebras in F-theory in
the language of (p, q) 7-branes, as established in [55]. In section 3 we elaborate on the
physical interpretation of the possible infinite distance limits of elliptic K3 surfaces, as
probed by F-theory. An important test of the resulting picture is provided in section 4,
where we systematically construct infinite distance limits for a Weierstrass model with
minimal non-abelian gauge algebra E7 ⊕ E8; the geometric results there can be compared
quantitatively with the dual heterotic description via the mirror map worked out in [56]. In
section 5 we classify the possible maximal enhancements of non-abelian gauge algebras in
9d, as determined by the Type III.a Kulikov models, and find complete agreement with the
previous results of [57–59].

2 Review: affine algebras and infinite distance limits

Infinite distance limits in the complex structure moduli space of F-theory on elliptic K3
surfaces can be approached from several different angles. The most systematic one is
via the theory of semi-stable degenerations of K3 surfaces, and we will follow this route
beginning with section 3. To facilitate the physical interpretation of the geometric results,
it is beneficial to first sharpen our intuition on the possible phenomena that we expect to
encounter at infinite distance in complex structure moduli space.

An obvious non-compact direction is the 10d string coupling, gs, i.e. the imaginary part
of the axio-dilaton, τ = C0 + i

gs
. It is geometrised in F-theory as the complex structure

modulus of the elliptic fiber. In absence of other competing effects, infinite distance limits
along the direction τ → i∞ in the moduli space will describe weak coupling limits. These
can be superimposed with infinite distance limits in the complex structure of the torus T 2

IIB
of the associated Type IIB orientifold.

A less evident type of non-compact directions occurs in genuinely non-perturbative
configurations with mutually non-local 7-branes, and this corresponds to the formation
of certain affine, or more generally loop algebras. Before developing a clear geometric
description for such limits in the subsequent sections, we will first take a complementary
viewpoint as provided via the formalism of string junctions, which we now briefly review
following the discussion in [55].

When we compactify F-theory to eight dimensions, the physical compactification space,
as seen from the Type IIB string perspective, is a rational curve which forms the base B of
an elliptic K3 surface X. The 24 singular fibers of the K3 surface correspond to the locations
of 7-branes of general [p, q]-type. Upon encircling such a location counter-clockwise, as
depicted in figure 2, a general (r, s) string undergoes an SL(2,Z) monodromy of the form(

r

s

)
→M[p,q]

(
r

s

)
, M[p,q] =

(
1 + pq −p2

q2 1− pq

)
. (2.1)

Suitable combinations of such [p, q] type 7-branes are well known to realize Lie algebras
of ADE type [60]. Adopting the conventions of [61], we consider the following set of 7-branes
X[p,q] to serve as building blocks:

A = X[1,0] , B = X[1,−1] , C = X[1,1] . (2.2)
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Figure 2. Monodromy around a [p, q] 7-brane in F-theory on K3.

Then gauge theories of ADE type are constructed as configurations of branes including the
ones in table 1.8

The singularity in moduli space that leads to an enhancement to some finite Lie algebra
of ADE type corresponds to a finite distance motion in the 7-brane moduli space. This can
be formulated as a finite distance deformation in the complex structure moduli space of
the associated elliptic K3 surface X. The corresponding singularities in the elliptic fiber
were famously classified by Kodaira and Néron and can be realized by tuning the vanishing
orders of the characteristic functions f and g of the Weierstrass model for X, as recalled in
table 2. This raises the natural question whether also infinite distance deformations in this
brane moduli space are possible. As we will argue, such deformations correspond to the
formation of infinite dimensional loop algebras, rather than ordinary ADE Lie algebras.

In [61] it was explained how an exceptional Lie algebra9 EN can be enhanced to a loop
algebra, more precisely an affine algebra of Kac-Moody type, by addition of a single extra
brane. Specifically, for N = 1 . . . , 8, the finite exceptional Lie algebra EN can be enhanced
into the affine algebra ÊN by adding to the brane stack AN−1BCC an extra 7-brane X[3,1]:

EN
+X[3,1]−→ ÊN , N = 1, . . . , 8 , (2.3)

ÊN = ENX[3,1] = AN−1BCCX[3,1] = AN−1BCBC . (2.4)

A second series of affine enhancements can be constructed as
ˆ̃EN

+X[4,1]−→ ˆ̃EN , N = 0, . . . , 8 , (2.5)
ˆ̃EN = (ANX[2,−1]C)X[4,1] , (2.6)

which for 2 ≤ N ≤ 8 turns out to be equivalent to the series (2.3). However for N = 1 and
N = 0 this yields independent enhancements, with Ẽ1 = u(1) and Ẽ0 = ∅.

The resulting brane configuration induces an SL(2,Z) monodromy of the form

MÊN
= M ˆ̃EN

=
(

1 9−N
0 1

)
. (2.7)

8Recall that as for characterizing the monodromies, one considers a brane combination X[p1,q1] . . . X[pn,qn]

as a chain and takes the branch cut induced by the SL(2,Z) backreaction of the collection of [p, q] 7-branes
as a straight line flowing down from X[p,q]. The monodromy associated with a brane configuration written
as such a chain X[p1,q1] . . . X[pn,qn] is then computed as the matrix product M[pn,qn] · . . . ·M[p1,q1].

9Here E1 = A1, E2 = A1 ⊕ u(1), E3 = A2 ⊕A1, E4 = A4, E5 = D5.
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G branes Monodromy MG

AN AN+1
(

1 −N − 1
0 1

)

DN ANBC

(
−1 N − 4
0 −1

)

EN AN−1BCC

(
−2 2N − 9
−1 N − 5

)

Table 1. Brane content and monodromies for ADE groups on elliptic K3 surfaces.

In particular, it leaves invariant the charges of a (1, 0) string encircling the configuration
because10

MÊN
δ1 = δ1 , δ1 =

(
−1
0

)
. (2.8)

Such a (1, 0) string winding around a non-trivial path encircling the branes gives rise to a
particle in the eight-dimensional field theory, which becomes massless in the limit for which
all branes in the ÊN configuration coincide, i.e. precisely when EN enhances to ÊN . See
figure 3. The string junctions associated with this state satisfy the relations [61]

δ1 · δ1 = 0 , δ1 · αENj = 0 (2.9)

within the string junction lattice, where αENj is a string junction associated to one of the
simple roots of the Lie algebra EN . Group theoretically both conditions identify δ1 as
the imaginary root within the root lattice of the affine Lie algebra ÊN [61]. The possible
rank-one affine enhancements which can be obtained in this manner are [61]

Ê8, Ê7, Ê6, Ê5 = D̂5, (2.10)

Ê4 = Â4, Ê3 = Â2 ⊕A1, Ê2 = ̂A1 ⊕ u(1), Ê1 = Â1,
ˆ̃E1 = û(1), ˆ̃E0 = ∅̂ .

In this list we include for Ê3 and Ê2 the imaginary roots for both involved Lie algebras,
but identify them such that the total rank increases just by one.

Since the condition for a string junction J to give rise to a BPS state is that J ·J ≥ −2,
any multiple

n δ1 , n ∈ Z (2.11)

gives rise to a BPS state. As a result, we obtain an infinite tower of massless BPS states
from the collision of an EN brane stack and an X[3,1] brane, or equivalently in the limit of
enhancing EN to its affine algebra ÊN .

Based on a monodromy analysis, ref. [61] furthermore identifies a number of rank-two
enhancements. The only one which turns out to make an appearance in our context is

10For simplicity of notation, here and in the sequel we will not explicity refer to ˆ̃EN as opposed to ÊN
unless the difference is important.
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the enhancement from E8 to the double-loop algebra Ê9, which is realised as the brane
configuration

Ê9 = AÊ8 = AE8X[3,1] = A8BCCX[3,1] = A8BCBC . (2.12)

Its monodromy matrix

MÊ9
=
(

1 0
0 1

)
(2.13)

leaves invariant a 2-dimensional lattice of string junctions spanned by

δ1 =
(
−1
0

)
, δ2 =

(
0
−1

)
. (2.14)

These satisfy
δi · δj = 0 , δ1 · αE8

j = 0 (2.15)

and therefore act as the two imaginary roots in the enhancement of E8 to the double loop
algebra Ê9 (which in fact is not an affine algebra). In the limit of enhancement, one finds
two towers of massless BPS states from the junctions

n1δ1 , n2δ2 , ni ∈ Z . (2.16)

The appearance of one or two infinite towers of massless states suggests that the affine
or double loop enhancements occur at infinite distance in the moduli space. We will show
that this intuition is indeed correct, and that the deformations leading to loop algebras are
in fact the only possible infinite distance degenerations in the complex structure moduli
space of F-theory on K3 except for the weak coupling limits (possibly followed by an
infinite distance degeneration in the complex structure of the Type IIB torus T 2

IIB). In
the Weierstrass models, loop enhancements will be identified as deformations giving rise
to certain non-minimal Kodaira singularities over codimension-one loci on the base B. To
remove the non-minimal singularities, a sequence of blowups leads to a degeneration of the
K3 into multiple components, which we identify with certain Kulikov models [1]. From a
physics perspective, the tower of states associated with the imaginary roots δ play the role
of a Kaluza-Klein tower in the dual heterotic string and signals decompactification from 8d,
either to 9d for affine enhancements to ÊN with N ≤ 8, or to 10d for the loop enhancement
to Ê9. In general, these states may form only a subset of the parametrically leading towers
of states which become light, and one of our tasks will be to identify the full set of leading
towers in order to establish the correct physical interpretation of the infinite distance limits.

3 Kulikov models as emergent string limits or decompactifications

We now present the physical interpretation of the infinite distance limits in the complex
structure moduli space of elliptic K3 surfaces. We begin with a quick review of the geometric
results from our companion paper [1] which refines the classification of infinite distance
limits via Kulikov models in a way suitable for our purposes. The four canonical types of
such geometric infinite distance, Type II.a and II.b [54] and Type III.a and III.b [1] (see
also [39–42]) are then subsequently analysed from the point of view of F-theory.
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Branes Algebra Kodaira Type ord(f) ord(g) ord(∆)
An+1 An In+1 0 0 n+ 1
AnBC Dn I∗n−4 2 3 n+ 2
A5BC2 E6 IV∗ ≥ 3 4 8
A6BC2 E7 III∗ 3 ≥ 5 9
A7BC2 E8 II∗ ≥ 4 5 10

Table 2. Vanishing orders for a Weierstrass model y2 = x3 + fxz4 + gz6 with discriminant
∆ = 4f3 + 27g2 realising the ADE brane configurations of table 1 as singularities in the fiber
according to the Kodaira classification.

3.1 Refined Kulikov models for elliptic K3 surfaces

Infinite distance limits in the complex structure moduli space of an elliptic K3 surface
can be studied within the framework of semi-stable degenerations [46]. For simplicity we
will restrict ourselves to one-parameter degenerations as this turns out to be sufficient for
understanding the asymptotic physics.

A (one-parameter) degeneration X of K3 surfaces is a family of K3 surfaces Xu, where
u ∈ D = {u ∈ C : |u| < 1}. The central fiber of the degeneration, Xu=0, is the degenerate
surface which we aim to study. The degeneration is semi-stable if X0 is a union of surfaces
each appearing with multiplicity one such that the total family X is smooth as a threefold
and the singularities of X0, if there are any, are locally of normal crossing form. By the
important results of [47–49, 62], every degeneration of K3 surfaces can be brought into the
form of a Kulikov model: this means that the degeneration is semi-stable and in addition the
family X is Calabi-Yau. For general K3 surfaces, the Kulikov models enjoy a classification
into models of Type I (at finite distance), Type II and Type III (both at infinite distance).

It is known from the general theory of degenerations of K3 surfaces [46] that the central
fiber X0 of a Type II Kulikov model exhibits two transcendental elliptic curves, γ1 and γ2,
whose calibrated volumes vanish,

vol(γi) =
∫
γi

Ω0 = 0 . (3.1)

Here Ω0 denotes the (2,0) form on the degenerate surface X0. For models of Kulikov
Type III there exists only a single such transcendental elliptic curve of asymptotically
vanishing volume. If we compactify M-theory on such K3 surfaces, we therefore obtain
one or two towers of asymptotically massless BPS particles from M2-branes that wrap the
vanishing tori arbitrarily many times. However, as we will see, in general these particles
form only a subset of the asymptotically massless towers, and sometimes they do not form
the parametrically leading towers. A full understanding of the asymptotic physics therefore
requires a refined geometric picture of the degeneration and an analysis of the nature of
states which become massless in compactifications of M- or F-theory.

Fortunately, if we restrict ourselves to degenerations of elliptically fibered K3 surfaces,
such a geometric picture has been obtained for Type II degenerations in [54] and recently
for Type III degenerations in our companion paper [1], as well as in [39–42]. By blowing
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Figure 3. Monodromy and imaginary junctions for affine Lie algebras ÊN (left) and for the loop
algebra Ê9 (right).

down all exceptional curves in the fiber, one obtains a family Y of Weierstrass models Yu.
In particular, to the degenerate K3 surface X0 one associates a Weierstrass model Y0.

Kulikov models of Type I correspond to the degenerations of the elliptic fiber which lie
at finite distance in the complex structure moduli. The degeneration Y0 is a Weierstrass
model over a single rational curve B0 and has singularities in the elliptic fiber of the familiar
Kodaira-Néron types as listed in table 2.

For the infinite distance degenerations of elliptic Kulikov Types II and III, on the other
hand, the base B0 = ∪Pi=0B

i is a chain of rational curves Bi. The surface Y0 correspondingly
decomposes into a chain of surfaces

Y0 = ∪Pi=0Y
i , (3.2)

where each surface component Y i is a possibly degenerate Weierstrass model over Bi. By
a combination of birational transformations and base changes, elliptic Type II and Type
III Kulikov models can be brought into certain canonical forms, which are distinguished
as follows:

1. Elliptic Type II models [54]: the degeneration X can be brought into the canonical
form where X0 = X1 ∪X2 such that E := X1 ∩X2 is an elliptic curve.

• Type II.a (see also [51, 52]): X1 and X2 are two rational elliptic surfaces, i.e.
elliptic fibrations with 12 singular fibers. The intersection curve E is the smooth
elliptic fiber over the intersection point B1 ∩B2 in the base.

• Type II.b (see also [53]): the base B0 is a non-degenerate rational curve, and
X1 and X2 are both rationally fibered over B0. The intersection X1 ∩X2 is a
ramified double cover of B0, which indeed describes an elliptic curve E.

2. Elliptic Type III models [1, 39–42]: the Weierstrass degeneration Y associated with
X can be brought into a canonical form such that each intermediate surface Y i,
i = 1, . . . , P − 1 appearing in (3.2) is a degenerate Weierstrass model over a rational
base component Bi with generic fibers of Kodaira Type Ini , ni > 0. Over special
points of Bi, the singularity can enhance to an A-type singularity (in the sense of the
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Kodaira classification of table 2).11 Without loss of generality one can assume that at
least one intermediate surfaces are present (i.e. P > 1) and that no special fibers are
located in the intersection loci of the components.

• Type III.a: one or both of the end components Y 0 and Y P are rational elliptic
surfaces. If the end component is not rational elliptic, it is a degenerate Weier-
strass model with In>0 fibers over generic points and precisely two singularities
of D-type (along with possibly extra A-type singularities).

• Type III.b: each of the two end components is a degenerate Weierstrass model
with In>0 fibers over generic points and precisely two singularities of D-type
(along, possibly, with extra A-type singularities).

The family Y of Weierstrass model can be parametrized as

Yu : y2 = x3 + fu(s, t)xz4 + gu(s, t)z6 , (3.3)

with discriminant
∆u = 4f3

u + 27g2
u . (3.4)

For u 6= 0, fu(s, t) and gu(s, t) are homogeneous polynomials of degree 8 and 12, respectively,
in homogenous coordinates [s : t] of the base Bu = P1

[s:t]. The degeneration occurs in the
limit u→ 0. Note that, for notational simplicity, we will hereafter omit the subscript u in
the Weierstrass sections f and g, as well as in the discriminant ∆, of which u-dependence
will be assumed in the context. Then, Kulikov models of Type II.b have the property that
the Weierstrass sections in the limit u→ 0 take the special form

f |u=0 = −3h2 , g|u=0 = 2h3 , (3.5)

while otherwise all vanishing orders respect the minimality bound according to Kodaira’s
classification.12 As detailed in [1], models of Type II.a, III.a and III.b, on the other hand,
are in one-to-one correspondence with Weierstrass models which, for u = 0, acquire one or
several non-minimal fibers. If we choose one of the non-minimal fibers to lie at s = 0, this
implies for the vanishing orders that13

ordY(f, g,∆)|u=s=0 = (4 +m, 6 + n, 12 + k) , m ≥ 0 , n ≥ 0 , k ≥ 0 , (3.6)

with the following correspondence:

• If k = 0, blowups and base changes can bring the model into Kulikov form of Type
II.a.

• If m = 0, n = 0 and k > 0, the model can be brought into Kulikov form of Type III.a
or III.b.

11Note that our characterisation of the singularity enhancements is in the context of the degenerate K3
surface, while the stated feature of generic Ini fibers is observed in the context of the 3-fold Y. Hereafter we
will not explicitly distinguish the contexts unless potential confusions arise.

12The latter condition is satisfied if and only if the degree-4 polynomial h has four distinct roots.
13The classification of vanishing orders is understood modulo base change. This means that one has to

consider the maximal vanishing orders which can be obtained by transforming u→ uk for some integer k ≥ 1.
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• If m > 0 and n > 0 (and hence k > 0), the model can be of Kulikov form of Type I
(finite distance) or Type II/III.

Models of Type III.a with only a single rational elliptic end component require, in
addition to the above non-minimal singularity, precisely one of the two types of tunings
that we will describe below, while Models of Type III.b require the both. The relevant
tunings are as follows:

1. The Weierstrass sections restricted to the curve u = 0 take the form

f |u=0 = −3s4ĥ2 , g|u=0 = 2s6ĥ3 , (3.7)

where ĥ is a polynomial of degree 2 in [s : t].

2. If we denote by f− and g− the parts of f and g consisting only of the terms of degrees
df ≤ 4 and, respectively, dg ≤ 6 in s, whose vanishing orders in u are precisely
(4− df )P and (6− dg)P , then these parts take the form [1]

f− = −3t4(L0u
2P t2+L1u

P st+L2s
2)2 , g− = 2t6(L0u

2P t2+L1u
P st+L2s

2)3 . (3.8)

Here Li ∈ C and the parameter P coincides with the required number of blowups (i.e.
the number of components in (3.2)). For the precise statement see [1].

With this preparation, we are now in a position to analyse the towers of states that
become asymptotically massless in both types of limits. This can be approached either in
the language of M-theory as before, or via duality directly in F-theory, by analysing the
spectrum of branes that wrap the degenerate K3 surface.

3.2 Type II.b Kulikov models as emergent string limits

Let us begin with the Kulikov Type II.b limits, which were first described in this language
in the F-theory literature in [53]. The physics of such limits is a perturbative weak coupling
limit of Sen type [63, 64].

By definition [54], a Type II.b Kulikov model is constructed as a blowup of a singular
elliptic fibration over the base P1

[s:t] for which the generic elliptic fiber has degenerated to a
nodal curve. This degeneration is the result of the collapse of the (1, 0) cycle in the elliptic
fiber, which we denote by SA, while the dual (0, 1) cycle SB of the elliptic fiber survives in
the nodal fiber. Blowing up the node replaces the nodal fiber by a Kodaira Type I2 fiber
consisting of a pair of rational curves intersecting, generically, in two points p1 and p2. See
figure 4 for an illustration. Over four points, p1 and p2 come together to form a double
point. The two intersection points p1 and p2 define a bi-section, i.e. a double cover of the
base branched over the four points where p1 and p2 coincide. The 2-cycle defined by the
bi-section is identified with the elliptic curve E = X1 ∩X2.

To understand the origin of the transcendental 2-cycles γi, i = 1, 2, as advertised
in (3.1), note that the group H1(E,Z) of the intersection curve E = X1 ∩X2 is spanned by
two 1-cycles, which we denote by σ1 and σ2. By suitably combining the collapsed one-cycle
SA with each σi one constructs two homologically non-trivial transcendental 2-cycles with
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Figure 4. Kulikov Type II.b degeneration. Note that the nodes exchange under mondromy around
the singular configuration shown in the center.

the topology of a torus, and these two 2-cycles are the objects γ1 and γ2 whose calibrated
volume (3.1) vanishes in the degenerate situation.

If we compactify M-theory on X0 = X1 ∪X2, we obtain the following asymptotically
massless objects in seven dimensions: first, an M2-brane wrapping the vanishing cycle
SA gives rise to an asymptotically tensionless, fundamental Type II string. This string
is non-BPS because SA is actually homologically trivial. Second, wrapping an M2-brane
arbitrarily many times along either of the two calibrated 2-cycles, γ1 and γ2, yields a tower
of BPS particles. Note that the existence of these BPS particles is guaranteed because the
2-cycles γi have the topology of a torus and can therefore be wrapped arbitrarily often.
The BPS particles are to be identified with the winding states from wrapping the Type
II string along the two 1-cycles σ1 and σ2 of E. The latter sit parametrically at the same
scale as the string excitation tower. The winding tower is of course dual to a corresponding
Kaluza-Klein tower of supergravity modes of the same parametric mass scale. All in all,
the asymptotic spectrum of the Type II.b Kulikov degeneration carries the signature of an
Emergent String Limit as defined in [15].

Note that if it were not for the asymptotically tensionless string obtained by wrapping
an M2-brane along SA, we would have incorrectly characterised the infinite distance limit
as a KK decompactification. However the KK modes form only part of the spectrum, and
due to the higher density of states it is actually the tower of string excitations which is
defining the asymptotic physics as an equi-dimensional weak coupling limit.

From the perspective of F-theory in 8d, this behaviour is of course no surprise. To
realise an I2 fiber over generic points of the base, the vanishing orders of f , g and ∆ of the
Weierstrass model (3.3) must become

ordY(f, g,∆))|u=0 = (0, 0, 2) at generic points of P1
[s:t] . (3.9)

The behaviour of the 10d Type IIB axio-dilaton, τ = C0 + i
gs
, at a generic point of the base

can then be read off from the j-function:

j(τ) ∼ f3

∆ ∼ 1
u2 =⇒ τ → i∞ for u→ 0 . (3.10)
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A convenient way to realise the vanishing orders is to consider the degeneration [63]

fu = −3h2+u η , gu = −2h3+uh η−u
2

12χ , ∆ = −9u2 h2 (η2−hχ)+O(u3) , (3.11)

where h, η and χ are polynomials of degree 4, 8 and 12. In the Type IIB orientifold
interpretation, the limit u → 0 gives rise to an orientifold compactification on the torus
E and the four zeroes of h = 0 correspond to the location of the orientifold planes. If we
disregard the overall factor of u2 in ∆ as

∆ = u2∆′ , (3.12)

the vanishing orders at the orientifold become

ord(f0, g0,∆′0)|h=0 = (2, 3, 2) , (3.13)

where the subscripts indicate that u = 0 has been taken to begin with. Away from these
localised regions, the theory reduces to a weakly coupled, perturbative Type IIB string,
which is non-BPS in 8d since the Kalb-Ramond field B2 is projected out by the orientifold
projection. The string tower appears parametrically at the same scale as the two KK towers
associated with each one-cycle of E, and both scales vanish in units of the 8d Planck scale.

Finally, as remarked in [1], a more general parametrisation of weak coupling limits is
to simply take

fu = −3h2 + uaη , gu = −2h3 + ubρ , (3.14)

for integral a ≥ 1, b ≥ 1 and generic sections η and ρ of suitable degree. In this case, the
general theorems of [54] guarantee the existence of a birational transformation which, when
followed by a suitable base change, brings the fibration into Kulikov form of Type II.b.

3.3 Type II.a Kulikov models as decompactification limits

The spectrum of asymptotically massless states in limits of Kulikov Type II.a is very different.
The two del Pezzo (dP9) surfaces X1 and X2 into which the K3 surface degenerates are
each elliptically fibered over a rational curve, B1 and B2, respectively. In other words, the
base P1

[s:t] of the K3 surface Xu splits for u = 0 into the union of B1 and B2 intersecting
at a single point P = B1 ∩ B2, and the elliptic double curve E = X1 ∩ X2 represents
the common elliptic fiber over P. This geometry was described in the F-theory literature
early on in [51–53]. The two 2-cycles γi can therefore be constructed by fibering the two
one-cycles σi in H1(E,Z) over a 1-cycle Σ that encircles the intersection point P on either
B1 or B2. The geometry is sketched in figure 5.

Viewed as a geometric 1-cycle on B1 or B2, Σ can be slipped off the base sphere by
deforming it to the anti-podal pole and is therefore trivial, but fibering both σi over Σ
near P indeed gives rise to two non-trivial 2-cycles γi. The asymptotic vanishing of their
calibrated volume (3.1) for degeneration parameter u = 0 is an intuitive consequence of the
fact that Σ can be contracted towards the intersection point P.

The seven-dimensional compactification of M-theory on K3 is therefore characterised
by the appearance of two towers of asymptotically massless particles which arise from
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Figure 5. Kulikov Type II.a degeneration. The base degenerates into two P1s that form the bases
of two elliptic del Pezzo surfaces dP9.

M2-branes wrapped any number of times on the two 2-cycles γ1 and γ2. Unlike for limits of
Type II.b, these towers of BPS particles are not accompanied by a tower of excitations from
an asymptotically tensionless string. The reason is that the M2 brane cannot be wrapped
along the 1-cycle Σ on either of the base components, because viewed in isolation Σ can
simply be slipped off B1 or B2.

From the point of the view of the dual F-theory compactification on K3, these two
towers of BPS particles correspond to two towers of asymptotically massless particles in
8d: these arise from string junctions of the form n1 δ1 and n2 δ2, where ni ∈ Z represents
the winding numbers. If we denote by σ1 and σ2 the (1, 0) and (0, 1) cycles on E, then
an M2-brane on γ1 uplifts to a (1, 0) string and the cycle on γ2 uplifts to a (0, 1) string,
each encircling the intersection point P along Σ. The important difference to the M-theory
viewpoint is that in F-theory, it is not possible to freely slip the (1, 0) and (0, 1) strings on
Σ to the other pole of the curves B1 or B2, because the strings would have to cross the 12
7-branes located on either of the two curves.

Nonetheless we can interpret the (1, 0) and (0, 1) strings on Σ as string junctions
encircling the entire configuration of 12 branes on B1 or B2. This makes contact with the
discussion in section 2. The combined monodromy associated with the 12 singular fibers on
a dP9 is unity, and the associated brane configuration would enhance to the double loop
algebra Ê9 if all 12 branes coincide on the dP9. The wrapped strings therefore correspond
precisely to the two junctions δ1 and δ2 of section 2. In fact, as we will discuss in more detail
in section 4.3, the Type II.a Kulikov model is the result of blowing up a singular Weierstrass
model over P1

[s:t], for which a complex structure degeneration enforces the collision of the
12 constituent branes of an Ê9 configuration at up to two points. At these points, the
singularity in the elliptic fiber is non-minimal in the sense of the Kodaira classification, i.e.
the Weierstrass vanishing orders become

ordY(f, g,∆)|u=0 = (≥ 4, 6, 12) or (4,≥ 6, 12) . (3.15)

Prior to blowing up the non-minimal singularity in the base, one obtains two towers of
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asymptotically massless states of the form n1δ1 and n2δ2 localised at the singularity. The
blowup gives a regularisation of the non-minimal singularity by separating the 12 branes in
such a way that the resulting fiber types are of minimal form. This comes at the cost of
degenerating the base into several components. In this regularised geometry, the massless
towers of states are still visible as the same types of string junctions, now encircling the
intersection point P, as described above, or equivalently in M-theory, from the towers of
M2-branes along γ1 and γ2. Note that the situation is symmetric between both components
of the Type II.a Kulikov model and in particular the string junctions on B1 and B2 are
homologous in the junction lattice [65]. The total symmetry algebra of the system in the
infinite distance limit is therefore

G∞ = (Ê9 ⊕ Ê9)/ ∼ , (3.16)

where the quotient identifies the two imaginary roots δi from each of the first and from the
second factor.

These two towers of states are interpreted as two Kaluza-Klein towers in the dual
heterotic string, signalling the decompactification of the two circles of the heterotic torus
T 2

het. We will elaborate on this interpretation in detail in section 4.3. This identifies the
Type II.a limits as decompactification limits from 8d to 10d. This is of course nothing
but the well-known statement that stable degenerations (of Type II.a) realise large volume
limits of the dual heterotic string [51–53]. Clearly, the gauge algebra in the decompactified
theory is simply

G10d = E8 ⊕ E8 , (3.17)

the maximal finite Lie subalgebra of (3.16).

3.4 Type III.a Kulikov models as partial decompactification limits

We now characterise the physics of F-theory on a K3 surface in an infinite distance limit of
Kulikov Type III.a. In such a limit, the theory undergoes a partial decompactification to
nine dimensions. This can be traced back to the appearance of one or two factors of an
Ê9−n affine algebra for some values 1 ≤ n ≤ 9, as we now explain from F-theory.

In models of Type III.a, at least one of the two end components of the degenerate
Weierstrass model Y0 given in (3.2) is a rational elliptic surface, which we will often refer to
as a dP9 surface. As reviewed in section 3.1 such configurations are obtained by suitable
blowups of non-minimal singularities of the type (3.6) with m = n = 0 and k > 0.14

Generically, this gives rise to a chain of surfaces with rational elliptic surfaces on both ends,
Y 0 and Y P . An additional tuning of the form (3.7) or (3.8) results in a configuration where
only one of the end components is rational elliptic.

Let us first assume that there is only one rational elliptic end component, which we
identify w.l.o.g. with the surface Y 0. Its neighbouring surface component Y 1 is a degenerate
fibration over B1 with fibers of Type In1>0 in codimension zero. In the sequel we will
set n1 =: n. The two curves B0 and B1 intersect at a point P. The fiber over P is the

14Recall that the configuration could be of other Kulikov types if k > 0 was achieved by m > 0 and n > 0.
For details see [1].

– 19 –



J
H
E
P
0
6
(
2
0
2
2
)
0
4
2

Figure 6. Rational elliptic end component of a Kulikov Type III.a degeneration intersecting a
neighbouring positive In component from the right.

intersection curve C0,1 = Y 0 ∩ Y 1. This fiber C0,1 is a nodal curve, obtained by collapsing
the (1, 0) cycle SA of the elliptic fiber. See figure 6 for an illustration. If n > 1, then after
blowing up the nodal point, the curve C0,1 is replaced within X0 by a cycle of n intersecting
rational curves intersecting like the nodes of the affine Dynkin diagram of SU(n− 1)

What is important for us is that the SL(2,Z) monodromy picked up upon encircling
the intersection point P along a 1-cycle Σ on B0 is represented by the matrix

MIn =
(

1 −n− 1
0 1

)
. (3.18)

This implies that the dP9 surface Y 0 must generically have (12− n) singular fibers away
from P . The monodromy upon encircling the location of the associated (12− n) 7-branes is

M−1
In = MÊ9−n

, (3.19)

which identifies the 7-branes on Y 0 away from the intersection point P as the constituents of
an Ê9−n configuration. The enhancement to Ê9−n occurs in the original Weierstrass model
prior to blowup as a consequence of the non-minimal singularity (3.6), and the blowup
partially separates the branes. We therefore claim that there is the following dictionary
between affine Ê9−n algebras in F-theory and the geometry of the blowup of a Weierstrass
model with non-minimal singularities:

Ê9−n enhancements
in F-theory

⇐⇒

Rational elliptic end components of a Type III.a
Kulikov Weierstrass model with
(deg(f), deg(g), deg(∆)) = (4, 6, 12− n)
away from the other surface components
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where deg denotes the sum of vanishing orders. By analogy with our discussion of the
Type II.a models in section 3.3, it is now clear that we can construct one independent
elliptic transcendental 2-cycle γ by transporting the (1,0) cycle SA in the elliptic fiber
along the pinching 1-cycle Σ around the intersection point P. This is possible because
the (1, 0) cycle in the elliptic fiber is left invariant by the monodromy MIn upon encircling
P. The calibrated volume of γ in the degenerate K3 surface X0 vanishes. Unlike for a
Type II.a degeneration, the (0, 1) cycle in the elliptic fiber is not left invariant by this
monodromy. This explains why there is only a single, rather than two, homologically
independent transcendental 2-torus of vanishing volume.

M2-branes wrapping γ give rise to a tower of BPS states in the seven-dimensional
M-theory compactification, which uplifts to a tower of BPS states in the 8d F-theory. In
the F-theory language this tower is identified with the tower of string junctions k δ1, k ∈ Z,
where δ1 is a (1, 0) string that encircles the point P. Equivalently, it can be viewed as
a string junction encircling the (12 − n) 7-branes located on the base B0 away from the
intersection point P.

Compared to the Type II.a limit, we therefore encounter only a single tower of asymp-
totically massless BPS particles, corresponding to the single loop enhancement to build
an Ê9−n algebra for n ≥ 1. Such loop algebras are affine Lie algebras of Kac-Moody type.
Furthermore, this tower of BPS states can be interpreted as Kaluza-Klein tower signalling
a decompactification to 9d in the language of the dual heterotic string. We will confirm
this interpretation by a careful match with the dual heterotic side in section 4.4.

If both end components Y 0 and Y P are dP9 surfaces, the total non-abelian part of the
symmetry algebra of the configuration is

G∞ = H ⊕ (Ên0 ⊕ ÊnP )/ ∼ , (3.20)

where the quotient indicates that the two string junctions associated with the imaginary
roots of the two affine algebras are not independent but rather are identified. If only one
end component is a dP9 surface, the second affine factor does not appear. The factor H
refers to the non-abelian symmetry algebra localised on all components with generic fibers
of Type Ik>0. The non-abelian part of the gauge algebra in the 9d decompactification limit
is the maximal finite Lie subalgebra of (3.20), which is given by

G9d = H ⊕ En0 ⊕ EnP . (3.21)

We will give further evidence for this picture in section 4.4.
There is a second difference as compared to the Kulikov Type II.a limit: in a Type

III.a model, the intermediate surface components Y i, i = 1, . . . , P − 1 (and possibly one of
the two end components as well), are Ini surfaces with ni > 0. Since the enhancements at
the intersection of the components are all of Kodaira Type Ik, the generic Ini fibers over the
different components are mutually local with respect to one another. Therefore, the 10d
axio-dilaton coupling vanishes along these components. Moreover there is a (1, 0) string
which is obtained from an M2-brane that wraps the vanishing (1, 0) cycle in the fiber of
the components Y i, with ni > 0. It becomes asymptotically tensionless in units of the 8d
Planck scale, but only locally in the region of the degenerate compactification space.
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Nonetheless, the limit is not an 8d weak coupling limit. First, as just mentioned, the
(1, 0) string becomes tensionless only away from the rational elliptic end component(s), where
the generic fiber is non-degenerate and hence the (1, 0) cycle is not contracted. This already
shows that there does not exist a globally weakly coupled frame in which the (1, 0) string
plays the role of the fundamental string. Second, the mass scale of the tower of states arising
from the string junctions k δ1 vanishes faster than the vanishing rate of the excitations
of the (local) (1, 0) string. This is because the tower of string junctions is composed of
asymptotically tensionless (1, 0) strings winding, in addition, around a vanishing cycle
encircling P. This subtle point justifies the interpretation as a decompactification, rather
than as equidimensional weak coupling limit.

We note that the local weak coupling nature along the surface components away from
the rational elliptic end components manifests itself also in the structure of Kodaira fibers
over special points of the base. As reviewed in section 3.1, it was found in [1] that the
only possible fiber enhancements on the surface components with generic In>0 fibers are to
singularities of A-type or D-type. These are the singularities which are compatible, at least
locally, with weak coupling. On an end component with In>0 fibers, the Dk enhancements
in table 2 can furthermore occur also for values 0 ≤ k < 4: such enhancements are known
to be absent, by Kodaira’s classification, on non-degenerate elliptic surfaces, corresponding
to a non-perturbative obstruction to forming bound states of branes of the form AkBC for
0 ≤ k < 4. In locally weakly coupled regions, on the other hand, no such obstruction should
occur, and this is in perfect agreement with the existence of the corresponding Dk-type
fibers on the weakly coupled surface components. Examples of this phenomenon can be
found in [1].

Finally, in the next subsection we will provide an interpretation of the extra con-
straint (3.7) which distinguishes the Type III.a limits with one or two rational elliptic
end surfaces.

3.5 Type III.b Kulikov models as weak coupling plus decompactification limits

As we now show, the physics of a Kulikov Type III.b limit is that of a weak coupling limit
dual to a perturbative Type IIB orientifold, in combination with a large complex structure
limit for the torus T 2

IIB on which the Type IIB theory is compactified. This leads to an
asymptotic decompactification from 8d to 10d.

First, the codimension-zero Ini>0 fibers in all surface components Y i indicate the
existence of a weakly coupled duality frame that is globally defined on the base B0 in the
infinite distance limit. The Ini singularities in the fibers Y i are induced by the shrinking
of one-cycles, and since the Ini singularities of all components are mutually local with
respect to each other (otherwise the components Y i would intersect each other in fibers
different from Ik type), they are in fact copies of the same one-cycle, SA, that shrinks
in all components. An M2-brane wrapped along SA gives rise to a critical string in the
uncompactified dimensions which is asymptotically tensionless as measured in 7d Planck
units. This string uplifts to the weakly coupled Type IIB string in F-theory, whose tower of
excitations is asymptotically tensionless compared to the 8d Planck scale. In addition, one
finds a tower of massless states from the winding modes of this string along the 1-cycle Σ on
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each base component Bi that shrinks at the intersection of two components. The fibration
of SA over Σ defines one transcendental elliptic curve γ of asymptotically vanishing volume.
The same tower of asymptotically massless states can hence be equivalently understood
in M-theory as the tower of M2-branes wrapping this elliptic curve γ multiple times. It is
clear that the mass scale associated with this latter tower of particles asymptotes to zero
faster than the excitations of the weakly coupled fundamental string from the M2-brane
wrapped on SA alone. This is because

M2
str

M2
11
∼ V11(SA)→ 0 , Mw

M11
∼ V11(SA)× V11(Σ) ∼ V11(γ)→ 0 , (3.22)

such that
Mw
Mstr

∼MstrVol(Σ)→ 0 , (3.23)

where V11(. . .) measures volumes in units of the 11d Planck scale, M11.
In fact, we will identify the tower associated with γ as the winding modes of the weakly

coupled fundamental Type IIB string wrapped on an asymptotically vanishing one-cycle on
T 2

IIB. The vanishing of the one-cycle indicates that the complex structure of T 2
IIB undergoes

an infinite distance limit, in addition to the weak coupling limit τ → i∞. Since the Kähler
volume of the compactification space remains constant in units of the Type IIB string
scale, such a large complex structure limit indicates a complete decompactification to
10d. In addition to the tower of winding states described above, there must thus arise a
tower of supergravity Kaluza-Klein modes associated with the dual 1-cycle of T 2

IIB whose
volume becomes inversely proportional to the one of the shrinking cycle. This tower of
states is not visible as wrapped M2-branes in M-theory and needs to be inferred in a more
indirect manner.

We can understand these statements more clearly in the language of the degenerating
Weierstrass model as follows. Since all components of Y0 have generic fibers of Kodaira
Type Ini>0, we can blow down all but one components to arrive at a (highly singular)
family of Weierstrass models Ŷ, which feature a degenerate central element Ŷ0 whose
codimension-zero fibers are guaranteed to be of type In>0. Therefore its Weierstrass model
can be written in the general form (3.14) for certain η and ρ. At the same time, the fact that
the original degeneration leads to a multi-component central fiber Y0 implies the existence
of non-minimal Kodaira fibers in Ŷ0. They must then occur at the zeroes of h. This follows
from the fact that at each of the four zeroes of h, the degree 8 function f and the degree 12
function g vanish to order 2 and 3, respectively, which leaves no room for additional zeroes
of f and g at different points. A non-minimal Kodaira singularity at one of the zeroes of h
in turn is only possible if at least two zeroes of h coincide on Ŷ0. Since from a Type IIB
perspective the zeroes of h are the locations of the O7-planes, this means that at least one
pair of O7-planes coalesces in the limit. When this happens, one must now distinguish two
qualitatively different situations:

• Generically, i.e., without further tuning of the parameters beyond the described
collision of O7-planes via that of zeros of h, we will be taken away from a uniform
weak coupling limit by introducing strongly coupled localised codimension-one objects
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on the base. This manifests itself in such a way that after performing the necessary
blowups, which bring us back to the Weierstrass family Y, at least one of the end
components of Y0 is not of In type with positive n, but rather is a rational elliptic
surface. That is, the degeneration is of Type III.a. The rational elliptic component is
the one which contains the location of the colliding O7-planes after the blowup and
the axio-dilaton is generically of O(1). The situation is thus best described as a 9d
decompactification limit of the dual heterotic string, as explained in section 3.4.

• In contrast, by a special tuning of the parameters of the Weierstrass model underlying
the family Ŷ, we can remain at weak coupling despite the collision of the O7-planes,
namely if the weak coupling limit is taken at a faster rate than the limit leading to
the collision. This way, the blowup indeed results in a Type III.b degeneration, in
which all surface components of Y0 have generic In>0 fibers. The required tuning is
precisely the additional condition (3.8).

The interpretation of such infinite-distance complex structure limits in terms of weakly
coupled Type IIB strings is suggested by noting that the distance of the O7-planes measures
the length of the 1-cycles of the Type IIB compactification space T 2

IIB. More precisely, the
non-trivial 1-cycles on T 2

IIB correspond to the one-cycles encircling pairs of zeroes of the
section h on the base B0 of Ŷ0 introduced above. Colliding two of these zeroes is therefore
equivalent to a complex structure degeneration of T 2

IIB for which a one-cycle shrinks. To
the extent that the Kähler volume in Type IIB string units is unaffected by the complex
structure degenerations, this leads to a decompactification to 10d, rather than to 9d.

4 Infinite distance limits in the E7 × E8-Weierstrass model

In this section, we systematically analyse a representative class of infinite distance limits
in the complex structure moduli space of an elliptic K3 surface from the point of view
F-theory/ heterotic duality. We will obtain a clear physical interpretation of the infinite
distance limits in the moduli space of F-theory via the explicitly known mirror map to the
heterotic moduli in terms of Siegel modular forms. This illustrates and lends additional
support to our claims of the previous sections concerning the asymptotic physics of the
infinite distance limits.

For concreteness, we consider a one-parameter family (3.3) of K3 surfaces described by
a Weierstrass model over base P1

[s:t] which at a generic point u 6= 0 in moduli space gives
rise to a non-abelian gauge algebra E7 ×E8. This model is sufficiently simple to allow for a
systematic treatment, and at the same time exhibits all qualitative properties of the infinite
distance limits of Kulikov Type II.a and III.a as described in the previous section.15 We
will construct these infinite distance limits by enhancing the exceptional gauge algebras to
loop algebras Ê9−n. This will be achieved by constructing non-minimal singularities in the
Weierstrass model Y corresponding to the vanishing orders (3.6) with m = 0 or n = 0, i.e.,

ordY(f, g,∆)|u=s=0 = (4 +m, 6, 12 + k) or (4, 6 + n, 12 + k) , (4.1)
15The E7 ⊕ E8 algebra is inconsistent with limits of Type II.b or III.b.
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at a point on the base P1
[s:t], which, here, is taken to be s = 0. We will see explicitly how

degenerations with k = 0 are of Type II.a and give rise to complete decompactifications of
the 8d theory to 10d, as can be read off from the appearance of two loop algebras of Type
Ê9. For k > 0, on the other hand, the degenerations will be of Type III.a and we will realise
affine Lie algebras of type (Êm × Ê8)/ ∼ with m = 7, 8. The effective theories will in turn
be interpreted as partial decompactifications to 9d by carefully translating the model into
the dual heterotic frame via the formalism developed in [56] and studied further in [66, 67].
Moreover, depending on the parametrisation of the degeneration, we will find an intricate
structure of various branches leading to different gauge algebras in the effective 9d theory.

After introducing the E7 × E8 Weierstrass model in section 4.1, we will explain how
to systematically construct non-minimal singularities of the form (4.1) in section 4.2 and
outline the structure of the resulting degenerate Kulikov Type II or Type III models. In
sections 4.3 and 4.4 we will illustrate the general picture for a particular parametrisation of
the degeneration. This will lead to different branches of the blowup theory, and we will
analyse the gauge symmetry in the effective 9d theory both within F-theory and from the
perspective of the dual heterotic theory.

4.1 The E7 × E8-Weierstrass model and its heterotic dual

Our starting point is the family of Weierstrass models y2 = x3 + fxz4 + gz6 over P1
[s:t]

defined by the degree 8 and 12 functions16

f = t3s4(a t+ c s) , g = t5s5(d s2 + b s t+ e t2) . (4.2)

For generic values of the complex parameters a, b, c, d, e, the vanishing orders of f , g and
their discriminant ∆ = 4f3 + 27g2 are given by

ord(f, g,∆)|t=0 = (3, 5, 9) , ord(f, g,∆)|s=0 = (4, 5, 10) . (4.3)

This identifies the non-abelian part of the gauge algebra in the 8d compactification of
F-theory on this family of K3 surfaces as E7 ⊕E8, for generic values of the parameters. For
special choices of parameters, the non-abelian gauge algebra can enhance further.

The complex parameters a, b, c, d, e are subject to the 2-parameter family of rescalings

(x, y, z, t, s, a, b, c, d, e) ∼ (λ2τx, λ3τy, z, λσt, s, λ4τ−4σa, λ6τ−6σb, λ4τ−3σc, λ6τ−5σd, λ6τ−7σe)
(4.4)

for arbitrary τ, σ ∈ C∗. All-in-all we are therefore left with a moduli space of complex
dimension three.

This moduli space can be most conveniently characterized in terms of the dual heterotic
string compactification on T 2

het.17 The duality map, which is essentially the mirror map,
has been worked out in detail in [56] and was studied further in [66–68]. In the patch

16The parameters a, b, c, d, e depend on u, which we suppress, and for notational simplicity we also drop
the subscript of fu and gu, as already mentioned.

17We will drop the subscripts from now on when referring to the quantities in the heterotic duality frame.
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e = 1 of moduli space, the remaining four parameters of the K3 Weierstrass model can be
identified as

a = −ψ4(Ω)
48 , b = −ψ6(Ω)

864 , c = −4χ10(Ω) , d = χ12(Ω) , e = 1 . (4.5)

Here ψk and χm are Siegel modular forms18 of genus g = 2 of the indicated weight. They
depend via

Ω :=
(
T V

V U

)
(4.6)

on the Kähler modulus T , complex structure modulus U and Wilson line modulus V of the
dual heterotic string compactified on T 2. For later purposes, we also introduce the variables

qT ≡ e2πiT , qU ≡ e2πiU , qV ≡ e2πiV . (4.7)

Another quantity that will be relevant for us is the discriminant factor

Q(a, b, c, d) ∼ χ2
35
χ10

, (4.8)

where the cusp form χ35 is the single odd generator of the ring M∗(Γ2) of genus g = 2 Siegel
modular forms (A.3). The polynomial Q is defined as follows [56]: for generic values of the
parameters a, b, c, d, the discriminant of the Weierstrass model takes the form

∆ = t9s10∆′ , (4.9)

where ∆′ is a polynomial of degree five in [s : t]. The discriminant of this polynomial factors
further into two polynomials

Discr(∆′) = P (a, b, c, d)×Q(a, b, c, d) . (4.10)

If P (a, b, c, d) = 0, the model acquires an additional Type II Kodaira fiber over some point
on the base, while otherwise whenever Q(a, b, c, d) = 0 has a single zero, there occurs an
I2 singularity, which is characteristic of an SU(2) enhancement.19 Explicitly, one finds
that [56]

Q(a,b,c,d) =−16a6bc3−216a3 b3 c3−729b5 c3+16a5 c4+2700a2 b2 c4−5625abc5

+3125c6+16a7 c2 d+216a4 b2 c2 d+729ab4 c2 d−3420a3 bc3 d+6075b3 c3 d

+4125a2 c4 d+888a4 c2 d2−5670ab2 c2 d2−13500bc3 d2+16a6 d3+216a3 b2 d3

+729b4 d3−2592a2 bcd3+16200ac2 d3+864a3 d4−5832b2 d4+11664d5 .

(4.11)
18Definitions and some of the most relevant properties are reviewed in appendix A.
19Such codimension one singularities are called Humbert surfaces, and if multiple roots of Q(a, b, c, d)

coincide, higher codimension intersections of Humbert surfaces occur that are called Shimura curves or
complex multiplication points. The nomenclature is not important for our purposes.
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4.2 Systematics of affine enhancements in the E7 × E8-Weierstrass model

Our goal is to construct the possible infinite distance limits in the three-dimensional complex
structure moduli space. With the help of two scaling relations it can always be arranged
that the parameters (a, b, c, d, e) take finite values. In this scheme, the infinite distance
limits that are not of weak coupling type20 can be obtained by arranging for non-minimal
Kodaira singularities, i.e. vanishing orders for (f, g,∆) of order (4, 6, 12) or beyond, at
points in codimension one on the base. With all parameters kept finite, there are a priori
three different ways of achieving this in the family (4.2) of Weierstrass models:

1. Non-minimality only at t = 0 requires taking c→ 0 and d→ 0, while keeping e 6= 0.

2. Non-minimality only at s = 0 requires taking e→ 0 while keeping (c, d) 6= (0, 0).

3. Non-minimality both at s = 0 and t = 0 requires c→ 0, d→ 0 and e→ 0.

However, it is easy to see that due to the rescaling symmetry (4.4) these three types
of limits can be partially mapped into one another, at least in certain regimes of moduli
space. Note first that since we are interested in identifying relations between asymptotically
massless towers, it is convenient to express the infinite distance limits as one-parameter
limits. Consider then a general limit in which

c ∼ uγ , d ∼ uδ , e ∼ uε with u→ 0 , γ, δ, ε ≥ 0 . (4.12)

The two-parameter family (4.4) of rescalings contains the one-parameter family (for λτ =
λσ =: λ)

(a, b, c, d, e) ∼ (a, b, λc, λd, λ−1e) . (4.13)
Then taking λ = uε, as long as

γ > ε , δ > ε , (4.14)
we can go to a patch in which c→ 0 and d→ 0 while e stays finite and of order one in the
limit u→ 0. Importantly, we still have the freedom to perform a rescaling which identifies

(a, b, c, d) ∼ (λ4a, λ6b, λ10c, λ12d) (4.15)

without leaving the patch e = 1, in agreement with the modular behaviour of the Siegel
modular forms (4.5).

For concreteness, we will be considering regimes in moduli space which fall into this
class. In the regime of small c and d, the combinations of Siegel modular forms that appear
in (4.5) and (4.11) admit expansions in qT , qU and qV of the form (cf. appendix A)

c ∼ χ10 ∼ qT qU
(
−2 + qV + 1

qV

)
+ . . . ,

d ∼ χ12 ∼ qT qU
(

10 + qV + 1
qV

)
+ . . . ,

4a3 + 27b2 ∼ (ψ3
4 − ψ2

6) ∼ qT + qU + . . . ,

Q ∼ χ2
35/χ10 ∼ q3

T q
3
U (qT − qU )2qV

(
qV + 1

qV

)2
+ . . . .

(4.16)

20Such limits occur by degenerating the elliptic fiber over generic points of the base, as systematised in [1].
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The infinite series of subleading terms in χ10, χ12 as well as the terms in ψ4 and ψ6
underlying the quoted expression for ψ3

4 − ψ2
6 can be ignored as long as

qT
qV
� 1 , qU

qV
� 1 . (4.17)

This condition is consistent with the condition for the modulus of Wilson line to lie within
the fundamental domain given by

Im(U)Im(T ) ≥ (Im(V ))2 . (4.18)

Similarly, the subleading terms for χ2
35/χ10 can be ignored as long as

qT
q2
V

� 1 , qU
q2
V

� 1 . (4.19)

In the regime of small qV , the condition (4.19) is stronger than (4.17) and can therefore be
violated within the fundamental domain. The expansion (4.16) of Q can only be applied
if (4.19) holds.

After these preliminaries we now consider infinite distance limits in the patch where
e = 1 by taking c→ 0 and d→ 0. As it turns out, the physically different infinite distance
limits are distinguished by the relative vanishing order of c and d with respect to the
vanishing of the combination 4a3 + 27b2. This motivates considering the vanishing orders

4a3 + 27b2 ∼ uk , c ∼ un , d ∼ um n ≥ 1,m ≥ 1 , k ≥ 0 , (4.20)

where the value of k coincides with that in (4.1). Models with such vanishing orders require

l = min(n,m) (4.21)

blowups to resolve the non-minimal singularity at t = 0.
As we will see, the physics at infinite distance can be classified as follows:

1. Limits with k = 0 give rise to a Kulikov Type II degeneration of the elliptic K3 surface.
This follows from the fact that in such cases after the blowup both end components
contain 12 branes each, as expected for a Ê9 configuration. Correspondingly, the
expansion of modular forms implies that in this case, qT → 0, qU = O(1) or vice versa,
which amounts to decompactification to 10 dimensions.

2. Limits with k ≥ 1 are of Kulikov Type III, corresponding to a Ê8−N configuration for
N = 0 or N = 1 on the two end components. The expansion of the modular forms is
consistent with the fact that qT → 0 and qU → 0 at a finite ratio, signalling a partial
decompactification to 9 dimensions.
For otherwise generic coefficients, we will find Type III limits with

Im(T ) = (l − 1)Im(U) . (4.22)

Here we made use of the duality symmetry to make sure that, without loss of generality,
Im(T ) ≥ Im(U). For each choice of l, different branches are obtained by special tunings
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of the remaining coefficients, with the following properties: if n > m, the non-abelian
part of the gauge algebra in 9 dimensions always includes an E8 ⊕ E8 factor, which
can be enhanced to E8 ⊕ E8 ⊕ SU(2). If n ≤ m, the non-abelian part of the gauge
group in 9 dimensions can be E8 ⊕ E8 or E8 ⊕ E8 ⊕ SU(2), or E7 ⊕ E8 with possible
enhancement to E7 ⊕ E8 ⊕ SU(2).21

4.3 Type II degenerations

To illustrate the general picture, we consider a class of limits with n = m = 4 for the
parameters defined in (4.20). It turns out convenient to parametrise the coefficients
appearing in (4.2) as

a= a0 , b= 2ia3/2
0

3
√

3
(1+y+b1u)+b2u

2 +O(u3)

c=−a0
(
i
√

3+x
)
u4 +a0pu

5 +O(u6) , d= a
3/2
0 u4 +d1u

5 +O(u6) ,
(4.23)

where the infinite distance limit is enforced by taking u→ 0.
As a warmup, we take all parameters b1, a0, p, x and y to be generic and of order one.

At u = 0, the discriminant factorises as

∆|u=0 = t12s10∆′ . (4.24)

In particular, the Weierstrass vanishing orders (ord(f), ord(g), ord(∆)) at t = 0 are of type
(4, 6, 12), indicating a non-minimal singularity in the fiber.

A Weierstrass model with only minimal singularities is obtained via a sequence of four
blowups,

(t, ei, x, y)→ (tei+1, eiei+1, xe
2
i+1, ye

3
i+1) i = 0, 1, 2, 3 , (4.25)

where we have set e0 = u. After each step the Weierstrass equation exhibits an overall
factor of e6

i+1, and to obtain the proper transform of the Weierstrass equation we divide by
this factor and consider the resulting equation. This amounts to a rescaling (x, y, z, f, g) ∼
(λ2x, λ3y, z, λ4f, λ6g) for λ = ei+1, which does not affect the Calabi-Yau condition. The
process terminates after four steps. The resulting fibration is a Weierstrass model Y0 which
degenerates into a chain of five components,

Y0 = ∪4
i=0Y

i . (4.26)

Each component Y i is an in general degenerate elliptic fibration over a rational base curve

Bi = {ei = 0} , (4.27)

where we have defined e0 = u. Here “degenerate” refers to the fact that the Weierstrass
model may have Kodaira fibers of Type Ini over generic points of Bi, as explained generally
in [1], but apart from this it has only minimal Kodaira fibers over special points of Bi.

21As will be explained at the end of section 4.4, the algebra of maximal enhancement G9d = E7⊕E8⊕SU(3)
occurs outside the patch of moduli space characterised by (4.14).
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These codimension-one singularities can be resolved, but we keep the description as a
Weierstrass model.

After the blowup, the Stanley-Reisner ideal of coordinates that are not allowed to
vanish simultaneously contains in particular the elements

{(e4, e2), (e4, e1), (e4, u), (e4, s), (e3, t), (e3, e1), (e3, u), (e3, s), (e2, u), (e2, t), (e2, s),
(e1, s), (e1, t)(e1, s)(u, t)} ∈ SRI .

(4.28)

To analyse the geometry of the Weierstrass models Y i, we restrict f , g and ∆ to the
individual components by setting ei = 0, and using the Stanley-Reisner ideal (4.28) to set
all coordinates that are not allowed to vanish on this locus equal to one. In particular, for
the discriminant factor ∆′ in (4.24) this gives

∆′|e4=0 = e3P2(e3, t;x, a0) + yQ3(e3, t; y, a0)
∆′|u=0 = e1P1(e1, s;x, a0) + yQ2(e1, s; y, a0)
∆′|ei=0 = 4a3

0y(2 + y) , i = 1, 2, 3 ,
(4.29)

where Pi and Qj are polynomials of indicated degrees in the first variables and we also
indicate their dependence on the parameters of the model. From this we draw the following
conclusions: the fiber over generic points of each base component Bi is of Kodaira Type I0.
The two end components Y 0 and Y 4 have 12 singular fibers away from the intersection with
the other components and hence represent rational elliptic, or dP9, surfaces. The component
Y 4 has a Type III∗ singularity at t = 0, corresponding to an algebra E7, and three more I1
singularities at generic points on B4. Moreover, Y 0 exhibits a Type II∗ singularity at s = 0,
corresponding to an algebra E8, together with 2 more I1 singularities over generic points on
B0. The intermediate components Y i, i = 1, 2, 3, are trivial fibrations over the respective
Bi, and all adjacent components intersect in an elliptic curve.

The degeneration is therefore an example of a Kulikov Type II model22 with symmetry
group

G∞ = Ê9 ⊕ Ê9/ ∼ . (4.30)
As reviewed in section 2, the string junctions associated with the imaginary roots δ1 and δ2
within Ê9 can be interpreted as the Kaluza-Klein towers from the decompactification to 10
dimensions in the heterotic duality picture. Indeed, this can be seen explicitly by applying
the duality map (4.5) in its expanded version (4.16). Up to order one coefficients, one finds

χ10 ∼ χ12 ∼ u4 , ψ3
4 − ψ2

6 ∼ 1 , χ2
35/χ10 ∼ u12 , (4.31)

which indicates a scaling

qT ∼ u , qU ∼ 1 , qV ∼ 1 . (4.32)

This is of course precisely the behaviour T → i∞ with U (and V ) of order one, for the
dual heterotic moduli. It goes of course without saying that the gauge algebra in the 10d
limit of the theory is G10d = E8 ⊕ E8, the gauge algebra of the 10d heterotic string, which
corresponds to the maximal finite Lie algebra within (4.30).

22It is guaranteed that the model can be brought into the stable form of a Type II.a model [54], but we
do not make this further step explicit here.
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4.4 Type III degenerations

To enhance the non-minimal singularity at t = 0 further, we must arrange for 4a3 + 27b2
to vanish as u → 0, which amounts to setting the parameter y = 0 in (4.23). Now the
Weierstrass vanishing orders at t = 0 become (4, 6, 13) in the limit u → 0, and a rich
structure of physically inequivalent branches opens up. The non-minimal singularity can
still be removed by the same blowup procedure as shown in (4.25). The crucial difference is
that now the generic fiber of the intermediate surface components Y i, i = 1, 2, 3, is of Type
Ini>0. This can be inferred from the third line in (4.29), which shows that the discriminant
along the intermediate Bi vanishes if y = 0. This is the hallmark of a Type III.a elliptic
Kulikov model [1].

Let us now discuss a number of specializations:

b1, x generic of O(1). For generic values of the parameters b1, a0, p, x after the four
blowups (4.25), the discriminant of the properly transformed Weierstrass model takes
the form

∆ = e1e2e3t
9s10∆′ , (4.33)

with

∆′|e4=0 = a3
0

(
−12t2x+3e3t

(
−3+8i

√
3x+4x2

)
+4e2

3

(
3i
√

3+9x−3i
√

3x2−x3
))

∆′|e3=0 =−4a3
0(2b1e4 +3e2x)

∆′|e2=0 =−8a3
0b1

∆′|e1=0 =−4a3/2
0

(
2a3/2

0 b1u−3i
√

3e2
)

∆′|e0=0 = 3
(
9e1 +4i

√
3a3/2

0 s
)
.

(4.34)

The geometry is depicted in figure 7. From (4.33) we infer that the intermediate surface
components Y i, i = 1, 2, 3, have I1 singular fibers in codimension zero, i.e. over generic
points of their base Bi. The end components Y 0 and Y 4 are dP9 surfaces intersecting the
adjacent surfaces Y 1 and Y 3 in such an I1 fiber. Away from the respective intersection
points, there are 11 singular fibers, distributed as a III∗ Kodaira fiber (E7) at t = 0 and 2
I1 fibers over generic points of B4 and, respectively, as a II∗ Kodaira fiber (E8) at s = 0
along with one extra I1 fiber on B0. One of the originally twelve 7-branes on each of the
end components has moved to the adjacent component, that is to Y 1 or Y 3, respectively.

Upon encircling the intersection point B0 ∩ B1 clockwise on B0, and likewise the
intersection B3 ∩B4 on B4, one picks up a monodromy

M−1
I1

= MÊ8
=
(

1 1
0 1

)
. (4.35)

This transformation leaves the string junction δ1 = (1, 0) invariant, which can be identified
with the imaginary root of the affine Lie algebra Ê8. This affine algebra is obtained upon
colliding the 11 branes located on B0 and B4 away from the intersection points. The
blowup has separated the 11 branes in such a way as to give rise only to minimal Kodaira
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Figure 7. Kulikov Type III degeneration of E7 × E8 Weierstrass model (4.34) for generic values of
the parameters b1 and x.

singularities in the fiber. The non-abelian part of the symmetry algebra of the theory in
the limit is identified as

G∞ = Ê8 ⊕ Ê8/ ∼ . (4.36)

As explained in section 3.4, n copies of the string junction δ1, for n ∈ Z, give rise to a
tower of massless BPS particles in the effective theory. These play the role of a tower of
Kaluza-Klein modes signalling the decompactification of the dual heterotic theory from
8d to 9d. Furthermore we claim that the non-abelian part of the gauge algebra in the
effectively 9d theory attained in the limit is G9d = E8 ⊕ E8, the maximal non-abelian Lie
algebra within (4.36).

These two statements can be checked explicitly with the help of the dictionary (4.5)
and (4.16), which now gives

χ10 ∼ χ12 ∼ u4 , ψ3
4 − ψ2

6 ∼ u , χ2
35/χ10 ∼ u14 . (4.37)

From the behaviour of ψ3
4 − ψ2

6 in the limit under consideration, we infer that either
qT ∼ u or qU ∼ u. W.l.o.g we take qU ∼ u. Then qT

qV
∼ u3 by inspection of χ10 and χ12.

With these two scaling relations, the behaviour of χ2
35/χ10 shows that altogether

qU ∼ u , qT ∼ u3 , qV = O(1) . (4.38)

The limit hence corresponds to a partial decompactification to 9d, for which

Im(T ) ∼ 3 Im(U) , Im(T )→∞ . (4.39)

The vanishing of the heterotic Wilson line in 9 dimensions is reflected by V = O(1), which is
realised in the present model. On this branch in moduli space, it is not possible to produce
an additional SU(2) factor because this would require that either U = T or 2V = T (or,
after exchange of T and U , 2V = U) in the dual heterotic model, which is incompatible
with (4.38).
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Figure 8. Kulikov Type III degeneration of E7 × E8 Weierstrass model (4.34) for generic value of
the parameter b1 and x = 0. The left shows how for x = 0 one 7-brane from B4 and one from B3

coalesce at the intersection. The right picture shows the result of a base change and blowups. The
intermediate components over B3 up to B6 have generic I2 fibers and are not explicitly drawn.

Correspondingly in F-theory, generating an additional SU(2) factor would require the
collision of two single branes: this is not possible in the Kulikov model realising the branch
under consideration with generic values for the parameters b1 and x, because the two branes
are localised on different components.

x = 0, b1 generic of O(1). A qualitative change occurs if we set the parameter x = 0:
one 7-brane on the base component B4 and the 7-brane on the component B3 both wander
towards the intersection point B3 ∩B4. See figure 8. This has two related effects: first, at
the collision point, it seems at first sight that an additional SU(2) gauge symmetry might
arise. Second, according to our general logic the singularity at t = 0 in the limit u = 0 is of
type Ê7, since the degrees of (f, g,∆) decrease to (4, 6, 10) away from the intersection point.

Concerning the potential SU(2) enhancement, however, we note that the intersection
locus B3 ∩ B4 is a nodal singularity of the base and hence the physics interpretation of
the 7-branes thereon is a priori obscure. To obtain a better understanding we go back
to the degenerate Weierstrass model prior to the blowups and perform a base change
u→ u2, as explained generally in [1]. Such a rescaling of the parameter u cannot change
the interpretation of the physics. Removing the non-minimal singularities in the fiber of
the model after base change now requires a total of 8 blowups with blowup coordinates ei,
i = 1, . . . , 8. One obtains a chain of 9 degenerate Weierstrass models, Y0 = ∪8

i=0Y
i, with

Ini fibers over generic points of the following form:

I0 − I2 − I2 − I2 − I2 − I2 − I2 − I1 − I0 . (4.40)

Here the left end component Y 8 (with base B8 : {e8 = 0}) is intersected by t = 0 and the
right end component Y 0 by s = 0. The base change resolves the relative position of two
7-branes which seem to coalesce for x = 0: in the new model, both branes are located at
two generic points within the base component B7 given by the zeroes of

9e2
6 + 8b1e2

8 = 0 . (4.41)
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This shows that as long as b1 6= 0, the two branes cannot coincide and therefore x = 0 with
b1 6= 0 does not lead to an additional SU(2) factor.

We conclude that for x = 0 the symmetry group in the Kulikov model under considera-
tion is

G∞ = (Ê7 ⊕ Ê8)/ ∼ (4.42)

and the non-abelian part of the gauge group in the partial decompactification limit to 9d is
G9d = E7 × E8.

This behaviour is consistent with the heterotic dual model: the scaling (4.37) of the
parameters of the Weierstrass model remains unchanged by setting x = 0 except for

Q ∼ χ2
35/χ10 ∼ q3

T q
3
U (qT − qU )2qV

(
qV + 1

qV

)2
∼ u15 . (4.43)

Naively, this is compatible with the scaling

qU ∼ u ,
qT
qV
∼ u3 , qV ∼ u1/2 , (4.44)

from which one would conclude that 2V = U (corresponding to an SU(2) enhancement),
but this is too quick: for this solution the convergence condition (4.19) is badly violated and
the expansion (4.43) breaks down. Hence there is no indication of an SU(2) enhancement on
the heterotic side either and we are left with the non-abelian part of the 9d gauge algebra
given by

G9d = E7 ⊕ E8 . (4.45)

b1 = 0, x = O(1) and generic. If, by contrast, we set b1 = 0, while keeping x = O(1)
and non-zero, we enter a new branch because the vanishing order of the discriminant (4.33)
along the component e2 = 0 increases to

∆ = e1e
2
2e3t

9s10∆′ (4.46)

with

∆′|e4=0 = a3
0

(
−12t2x+3e3t

(
−3+8i

√
3x+4x2

)
+4e2

3

(
3i
√

3+9x−3i
√

3x2−x3
))

,

∆′|e3=0 =−12a3
0x,

∆′|e2=0 = 12ia3/2
0

(√
3b2e1e3+ia3/2

0 e2
1x+
√

3e2
3

)
,

∆′|e1=0 = 12i
√

3a3/2
0 .

(4.47)

The 7-brane from the component e3 = 0 has moved onto the component e2 = 0, see
figure 9. This is reflected in a change of vanishing orders of the modular forms to

χ10 ∼ χ12 ∼ u4 , ψ3
4 − ψ2

6 ∼ u2 , χ2
35/χ10 ∼ u16 . (4.48)

Such behaviour requires that the heterotic variables scale as

qT ∼ u2 , qU ∼ u2 , qV = O(1) . (4.49)
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Figure 9. Kulikov Type III degeneration of E7 × E8 Weierstrass model (4.34) for generic value of
the parameter x and b1 = 0.

Again, V = O(1) implies that the Wilson line in 9 dimensions is ineffective and the gauge
algebra is enhanced to G9d = E8 ⊕ E8 in the 9-dimensional limit.

The only way to achieve an additional gauge enhancement along this branch is if the
two roots of ∆′|e2=0 coincide, which occurs for

x = − i
√

3b22
4a3/2

0
, (4.50)

leading to the (non-abelian) symmetry group

G∞ = SU(2)⊕ (Ê8 ⊕ Ê8)/ ∼ =⇒ G9d = SU(2)⊕ E8 ⊕ E8 . (4.51)

Since the two coinciding 7-branes belong to the two different groups of 12 branes on K3,
each associated with a full Ê9 loop algebra, we expect such enhancement to correspond
to the locus where, in heterotic coordinates, T = U . This can be achieved on the branch
under consideration, where qT ∼ qU ∼ u2. By contrast, an enhancement by taking 2V = T

cannot be obtained on this branch, where V and T are separated by two orders in u.
The vanishing order of the discriminant polynomial on the branch with b1 = 0 is

Q ∼ χ2
35
χ10
∼ x2u16

(
9a3/2

0 b22 − 12i
√

3a3
0x− 2i

√
3a3/2

0 b22x− 8a3
0x

2 +O(u)
)
. (4.52)

The polynomial in brackets vanishes for

x = − i
√

3b22
4a3/2

0
or x = − i3

√
3

2 . (4.53)

The first solution indeed corresponds to the SU(2) enhancement locus found above. We
interpret the vanishing orders as indicative of the asymptotic scaling

qT ∼ u2 , qU = qT +O(u5/2) , qV = O(1) . (4.54)
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Figure 10. Kulikov Type III degeneration of E7×E8 Weierstrass model (4.34) for b1 = 0 and x = 0.

Branch b1 = 0, x = 0. Finally, a novel branch opens up for b1 = 0 and x = 0. The
discriminant becomes

∆ = e1e
2
2e

2
3t

9s10∆′ (4.55)

with

∆′|e4=0 = 3ia3
0

(
4
√

3e3 + 3it
)
,

∆′|e3=0 = −3a3/2
0

(
3a3/2

0 e2
2 −

(
4i
√

3d1 + 4a3/2
0 p

)
e2e4 − 4i

√
3b2e2

4

)
,

∆′|e2=0 = 12i
√

3a3/2
0 (b2e1 + e3) ,

∆′|e1=0 = 12i
√

3a3/2
0 ,

∆′|u=0 = 3
(
4i
√

3a3/2
0 + 9e1

)
.

(4.56)

The geometry is depicted in figure 10. Consider first the surface component Y 4. Apart
from the E7 singularity at t = 0, an additional 7-brane is located at 4

√
3e3 + 3it = 0.

The intersection curve Y 4 ∩ Y 3 is an I2 fiber, as required for consistency of the rational
surface Y 4, which exhibits a brane content of total monodromy M−1

I2
= MÊ7

away from the
intersection locus. The two additional 7-branes (which would enhance Ê7 further to Ê9)
are located at two points of B3, given by the vanishing locus of the polynomial ∆′|e3=0.

Similarly, on Y 0 we recognise an E8 singularity at s = 0 along with one more I1 fiber at
a generic position given by 4i

√
3a3/2

0 s+ 9e1 = 0. Consistently with the total monodromy,
the intersection Y 0 ∩ Y 1 is an I1 fiber. The 7-brane which would enhance Ê8 to Ê9 is
located on B2 at b2e1 + e3 = 0.

Let us now analyse the potential SU(2) enhancements from the point of view of
the Weierstrass model. An obvious possibility occurs when the two 7-branes on the base
component B3 coalesce, i.e. when the roots of the polynomial ∆′|e3=0 coincide. By inspection
of ∆′|e3=0, this happens for

3i
√

3a3/2
0 b2 − 3d2

1 + 2i
√

3a3/2
0 d1p+ a3

0p
2 = 0 . (4.57)
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From the previous discussion it is clear that the resulting SU(2) factor embeds into one of
the two perturbative E8 factors, i.e. the SU(2) enhancement is the result of a Wilson line
breaking E8 → E7 ⊕ SU(2), leading altogether to

G9d = E7 ⊕ E8 ⊕ SU(2) . (4.58)

This locus must correspond to the solution 2V = T (or, after exchange symmetry, 2V = U)
on the heterotic side. Note that the scaling of the modular forms

χ10 ∼ χ12 ∼ u4 , ψ3
4 − ψ2

6 ∼ u2(b2 + b3u+O(u2)) ,

χ2
35/χ10 ∼ u18b22

(
3i
√

3a3/2
0 b2 − 3d2

1 + 2i
√

3a3/2
0 d1p+ a3

0p
2 +O(u)

)
.

(4.59)

takes us out of the domain of convergence (4.19) of the expansions. This impedes a simple
comparison with the heterotic dual theory.

The second possible SU(2) enhancement naively occurs if we set b2 = 0. On this
locus, one brane on the base component B3 and the brane on B2 each move towards
the intersection point of both base components. However, we must again be careful in
interpreting this configuration. A base change u→ u2 followed by eight blowups, similar
to the one underlying the configuration (4.40), show that for b2 = 0 no actual gauge
enhancement occurs.

The same conclusion holds also for the putative intersection of both special SU(2) loci,
i.e. for

b2 = 0 , −3d2
1 + 2i

√
3a3/2

0 d1p+ a3
0p

2 = 0 . (4.60)

While naively one would conclude an enhancement to E8 ⊕ E7 ⊕ SU(3), this is an artefact
of the collision of the three branes at the intersection point of two base components. A base
change u→ u6, followed by 24 blowups, reveals that for this special choice of parameters
the gauge algebra remains G9d = E8 ⊕ E7, with no additional enhancement.

Maximal enhancement G9d = E7 ⊕ E8 ⊕ SU(3). The picture just described and
the pattern of non-abelian enhancements do not change qualitatively by further tuning
the vanishing orders of the coefficient b in (4.23) to higher order in u. This raises the
question if the maximal enhancement G9d = E7⊕E8⊕ SU(3) can be achieved as an infinite
distance limit of F-theory. This is possible, but in a regime of moduli space outside the
realm of (4.14). To find a parameterisation of the limit leading to G9d = E7 ⊕ E8 ⊕ SU(3),
we start from the Weierstrass model (4.2) and first tune the coefficients such as to realise
an I3 singularity at a generic point P away from s = 0 or t = 0. To be concrete, let us take
P = {s− t = 0}. Then the I3 singularity is obtained if we take for instance

a =
(−3

16

)1/3
(1− 4u) , c =

(−3
16

)1/3
4u ,

d = u+ u2 , b = 1
6 − u− 2u2 , e = u2 .

(4.61)

In the limit u→ 0 a non-minimal singularity with ord(f, g,∆)|s=u=0 = (4, 6, 13) arises. As
it turns out, to achieve a configuration with no further non-minimalities, one must first
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perform a base change u→ u2, followed by 4 blowups beginning at s = u = 0 and 2 more
blowups beginning at t = u = 0. This leads to a chain of 7 surface components with generic
fibers of the form

I0 − I1 − I2 − I3 − I4 − I2 − I0 , (4.62)

where t = 0 lies on the right end component and s = 0 on the left. The I4-surface contains
the I3 singularity in the fiber over a special point of its base. Altogether the geometry
realises the enhancement G∞ = SU(3) ⊕ (Ê7 ⊕ Ê8)/ ∼, which is interpreted as a gauge
G9d = E7 ⊕ E8 ⊕ SU(3) in the 9d decompactification limit.

5 Maximal non-abelian gauge algebras in 9d from Type III.a Kulikov
models

As an immediate application of the classification of Type III.a Kulikov models in [1] and
their physical interpretation given in section 3.4, we can determine the maximal non-abelian
gauge algebras in the nine-dimensional theories that are obtained as decompactification
limits at infinite distance in the complex structure moduli space. As a consistency check, we
will find a perfect match with the results of [58, 59] (and the previous analysis in [57]), which
analyse the maximal non-abelian enhancements in heterotic string theory compactified on
S1. Note that throughout this work, we are considering F-theory on K3 surfaces without
any non-trivial gauge background turned on, which would reduce the rank of the theory.23

Hence the total rank in the original eight-dimensional setting is r = 18. It decreases to
r = 17 in the nine-dimensional decompactification limit since one of the abelian gauge
groups in eight dimensions corresponds to the KK U(1).

5.1 A-series and D-series

The decompactification limits of F-theory to nine dimensions correspond to two kinds of
Kulikov Type III.a degenerations: either both end surface components Y 0 and Y P are dP9
surfaces with (12 − n1) and (12 − nP−1) 7-branes, respectively, localised away from the
intersection with the neighbouring surface components; or Y 0 is a dP9 surface and Y P is
an In>0 surface with 2 D-type singularities and possibly additonal A-type singularities.

In the first case, the non-abelian part of the symmetry algebra is

G∞ = H ⊕ (Ên ⊕ Êm)/ ∼ , (5.1)

where H refers to a direct sum of A-type Lie algebras and the ranks of the involved E-
type algebras are determined as n = 9 − n1 and m = 9 − nP−1. Indeed, we know from
the discussion of the Type III.a models that the codimension-two singularities on the
intermediate surface components Y i must all be of A type. To determine the maximal
possible non-abelian enhancements in this class of models, we merely need to note that out

23Such rank-reduced setups have been considered recently from the viewpoint of the Swampland program
in [69–72].
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of the total of 24 7-branes (or singular fibers) of the original K3 surface, (n+ 3) constitute
the first Ên factor and (m+ 3) the second Êm. This identifies

G∞ = A17−n−m ⊕ (Ên ⊕ Êm)/ ∼ (5.2)

as the maximal non-abelian symmetry algebra of a Type III.a model, for which the remaining
18 − n −m branes all coincide to form the A17−n−m configuration. Such configurations
realise the maximal enhancement pattern

Gmax
9d = A17−n−m ⊕ (En ⊕ Em) , 0 ≤ n,m ≤ 8 , n 6= 2,m 6= 2 (5.3)

in the asymptotic nine dimensional theory. The reason why we have excluded the values
n,m = 2 is because these do not yield a maximal enhancement. Indeed, recall from (2.10)
that Ê2 yields a gauge algebra A1 + u(1) in 9d, whose non-abelian component agrees with
the gauge algebra associated with Ê1. Therefore the non-abelian gauge algebra of the
configuration with n = 2 can be embedded into one with n = 1.

It remains to analyse the second kind of Type III.a models, where the end component
Y 0 is a dP9 surface with symmetry algebra Êk with k = 9 − n1 and the end component
Y P has generic InP>0 fibers. The maximal non-abelian enhancements occur if both D-type
algebras from Y P and the extra A-type factors from the components different from Y 0

combine into a single D-type algebra. Maximality in particular requires that one of the
D-type configuration consists only of a pair of branes of type B and C, in the notation
of section 2, hence realising the trivial algebra D0. Counting branes thus yields for the
maximal non-abelian symmetry algebras:

G∞ = D17−k ⊕ Êk . (5.4)

This realises the second series for the maximal 9d gauge algebras that can be realized via
geometry:

Gmax
9d = D17−k ⊕ Ek , 0 ≤ k ≤ 8 , k 6= 2 . (5.5)

Recalling that E1 = A1, E2 = A1 ⊕ u(1), E3 = A2 ⊕A1, E4 = A4, E5 = D5, one can check
explicitly that the 44 inequivalent configurations of the A-series (5.3) and the D-series (5.5)
generate the complete list of maximal non-abelian gauge symmetries that can be realized
by the heterotic string compactified on S1 [58].

We note in passing that the same conclusions can also be reached by taking the realisa-
tion of the affine algebras Êk of section 2 as the starting point and explicitly constructing
the possible maximal brane configurations whose total SL(2,Z) monodromy multiplies
to unity.

It is also clear that the series of maximal A-type enhancements can be constructed
explicitly by a generalisation of the procedure that was exemplified for the special case
G∞ = A2⊕ (Ê7⊕ Ê8)/ ∼ at the end of the previous section. Instead of spelling this out for
the other elements of the A-series, let us now sketch the realisation of the maximal D-type
enhancements, which engineers the second type of Tye III.a Kulikov models with only one
rational elliptic end component.
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5.2 Maximal D-series: construction

The second maximal non-abelian series (5.5) with a D17−n⊕Ên enhancement can be realised
along the following lines:

1. The starting point is a singularity with Weierstrass vanishing orders ord(f, g,∆)|t=0 =
(2, 3, 19− n), realising a D17−n enhancement at t = 0.

2. In a second step, one engineers a singularity with non-minimal vanishing orders

ord(f, g,∆)|s=0 = (4, 6, ∗) (5.6)

in an infinite distance limit parametrised as u→ 0 such that at the same time the fiber
over a generic point degenerates to an Ik singularity. This requires a degeneration of
the form (3.7). The infinite distance limit then realises a (local, but not global) weak
coupling limit in which the 10d string coupling vanishes asymptotically at least away
from a non-minimal singularity.

3. The non-minimal singularity at s = 0 in the limit u→ 0 is removed by one or several
blowups, starting at s = u = 0.

After the blowups, the point s = 0 lies on the base of a rational elliptic component
surface. The total degree of (f, g,∆) on this component away from the intersection
point with the other surface components is (4, 6, 3 + n). This indicates that the
blowups have separated the branes associated with a Ên singularity in the limit u→ 0.
The Ên configuration contributes an asymptotically massless tower of BPS states
which we interpret as the Kaluza-Klein tower for the partial decompactification to 9d,
as before.

4. The component containing t = 0, on the other hand, is not a rational elliptic surface
because the elliptic fiber degenerates over every point of the base component. This
behaviour is inherited from the Ik degeneration over generic points of the K3 surface
prior to the blowup. For a maximal symmetry algebra, in addition to the overall
degeneration, the component should exhibit the (2, 3, 19 − n) singularity at t = 0
as well as one more D-type singularity with vanishing orders (2, 3, 2) at a generic
position away from t = 0. As explained at the end of section 3.4, the latter singularity,
which is a D0 fiber, cannot occur at finite distance for an elliptic K3, but is realisable
here due to the local weak coupling nature.

Let us spell this out in more detail for the example of an asymptotic G∞ = D16 ⊕ Ê1
algebra, which realises the maximal non-abelian gauge algebra G9d = D16 ⊕ A1 in the
9d infinite distance limit. Conveniently, the D16 singularity at t = 0 can be engineered
as a global Tate model [73], which is a parametrisation of the functions f and g of the
Weierstrass model as

f = − 1
48(β2

2 − 24β4) , g = − 1
864(−β3

2 + 36β2β4 − 216β6) (5.7)
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for
β2 = a2

1 + 4a2 , β4 = a1a3 + 2a4 , β6 = a2
3 + 4a6 . (5.8)

Each an is a section of the line bundle K−n, where by K we denote the canonical bundle
of the base. In the present case, this means that an is a polynomial of degree 2n in the
homogeneous coordinates [s : t] of the base P1 of the elliptic K3, which therefore can be
parametrised as

an =
2n∑
i=0

an,i t
i s2n−i . (5.9)

A D-type singularity at t = 0 arises if one specialises the an such that they vanish to a
certain order at t = 0, concretely [73]

ord(a1, a2, a3, a4, a6)|t=0 =

(1, 1, k + 1, k + 1, 2k + 1) forD2k+2

(1, 1, k, k + 1, 2k + 1) forD2k+1
. (5.10)

Applied to D16, this means that we must set

a1,0 = 0 , a2,0 = 0 , a3 = 0 , a4 = a4,8t
8 , a6 = 0 , (5.11)

which indeed leads to vanishing orders ord(f, g,∆)|t=0 = (2, 3, 18) as required for D16.
In the next step we engineer a non-minimal singularity with vanishing orders

ord(f, g,∆)|s=0 = (4, 6, ∗) in an infinite distance limit of the form (3.7). To this end we first
parametrise the remaining Tate monomials as

ai,j =
∑
k≥0

a
(k)
i,j u

k (5.12)

and tune
a

(0)
2,3 = −1

2a
(0)
1,1 a

(0)
1,2 , a

(0)
2,4 = −1

4(a(0)
1,2)2 , a

(0)
4,8 = 0 . (5.13)

With this prescription,

f |u=0 = − 1
48 t

2s4p1(s, t)2 , g|u=0 = 1
864 t

3s6p1(s, t)3 (5.14)

for a linear polynomial p1(s, t) = 4a2,1s + ((a(0)
1,1)2 + 4a(0)

2,2)t, while the discriminant takes
the form

∆ = − 1
16(a(1)

4,8)2 t18 u2 ∆̃′ . (5.15)

Note that in the limit u→ 0, the fiber over a generic point on the base degenerates into an
I2 fiber, as intended.

The non-minimal singularity at s = 0 in the limit u→ 0 can be removed by a blowup.
The blowup turns out to be simplified if one performs a base change

u→ u4 , (5.16)

after which
∆ = − 1

16(a(1)
4,8)2 t18 u8 ∆′ . (5.17)
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Figure 11. Kulikov Type III Weierstrass model with D16 × Ê1 enhancement.

For this degeneration, the simple blowup

(s, u)→ (s e1, u e1) (5.18)

gives rise to a Type III.a Kulikov model consisting of two intersecting components. See
figure 11 for an illustration; as before, we replace the coordinate symbol u by e0 after the
blowup. Over the component e0 = 0, the elliptic fiber degenerates as indicated by the
power of e8

0 in the discriminant. The fibration over the component e1 = 0, on the other
hand, is a rational elliptic surface with 12 singular fibers. Of these, 8 singular fibers are
accounted for by the intersection with the component e0 = 0 carrying the I8 singularity.
The remaining 4 singular fibers are located away from intersection point e1 = e0 = 0. Only
the latter correspond to physical 7-branes located at points of the base. More precisely,
over e1 = 0 we can set t = 1 and obtain

f |e1=0 = p4(s, e0) , g|e1=0 = s2p2(s, e0) , ∆|e1=0 = q4(s, e0) , (5.19)

for some polynomials of the indicated degrees. According to our general prescription, the
rational elliptic surface contributes a Ê1 factor to the asymptotic symmetry algebra. This
corresponds to a non-abelian gauge algebra component A1 in the 9d theory at infinite
distance.24

Over the surface patch with base e0 = 0 we have, on the other hand,

f |e0=0 = t2 p2
1(e1, t) , g|e0=0 = t3 p3

1(e1, t) , ∆′|e0=0 = p2
1(e1, t) , (5.20)

where ∆′ is the residual discriminant after factoring out − 1
16(a(1)

4,8)2 t18. Apart from the
(2, 3, 18) singularity at t = 0 we observe a non-minimal singularity with vanishing orders
(2, 3, 2) at p1(e1, t) = 0. Altogether, this component carries 20 of the original 24 7-branes
on K3, complementing the 4 7-branes which form the Ê1 singularity on the dP9 surface
over e1 = 0.

This procedure can be generalised to construct also the remaining maximal enhance-
ments in the D-series, albeit not all of them as degenerations of global Tate models.

24As discussed after (2.5), the 4 singular fibers may in principle lead to an extensioin to ˆ̃E1. We leave it
to future work to clarify this ambiguity.
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6 Emergence of quartic gauge couplings?

We now change tack and comment on the large distance asymptotics of the quartic gauge
couplings in eight dimensions, by mostly making use of known results for the dual heterotic
string. These couplings are the analogs of the well-investigated quadratic gauge couplings
in N = 2 supersymmetric string theories in four dimensions (see, for example, the early
works [74, 75]). Indeed, in eight dimensions it is not the gauge kinetic terms, but rather
the quartic couplings that exhibit logarithmic one-loop corrections: the quadratic gauge
kinetic terms do not receive any quantum corrections and become irrelevant in the UV.
Distinguishing quadratic and quartic terms in eight dimensions may thus shed some light
on the notion of emergence, from the point of view that not only the quadratic terms but
all couplings might be emergent in string theory.

At one loop order, the relevant, bosonic structure of the quartic terms takes the
schematic form

S8d,1−loop
(4) ∼

∫
d8x

√
−G(8)

( 1
g(t)2 [F 4] + θ(t)[F ∧ F ∧ F ∧ F ]

)
, (6.1)

where [∗] summarily denotes the possible gauge and Lorentz contractions pertaining to a
variety of superinvariants. The moduli dependent quantum couplings g(t), θ(t) are known
to be BPS-saturated and one-loop exact in the dual frame of the heterotic string. As such
they can be computed [76–80] by generalizing the methods originally developed in [74, 75]
for four-dimensional theories, and the notions of Borcherds lifts and Kac-Moody algebras
apply here as well. Computations in F-theory geometry were presented in [78, 79, 81], and
for Type I strings e.g. in [76, 77, 80, 82–84].

We will consider here only abelian gauge fields, namely those which arise from the
Kaluza-Klein compactification and which are the superpartners of the moduli t. They have
quite different properties as compared to the gauge fields that are already present in ten
dimensions. As we will see, this is true in particular from the point of view of emergence,
which is why we will focus on them.

We will consider the parity-even couplings that arise from KK reduction of the heterotic
string action in ten dimensions. The part relevant for us reads schematically [85, 86]

S10d ∼
∫
d10x

√
−G(10)

[
e−2φ(10) (

R+H2 +R2 +R4 . . .
)

tree
(6.2)

+
(
R4 +B ∧R ∧R ∧R ∧R+ . . .

)
1−loop

+ . . .

]
.

Here H = dB + ΩL + ΩF is the Chern-Simons corrected three-form field strength, where
ΩL = ω ∧ dω − 2

3ω ∧ ω ∧ ω, and ΩF is the Chern-Simons form for the 10d gauge fields,
which we are not interested in here. The H2 term is related by supersymmetry to the R2

term [87, 88]. Via field redefinitions the latter can be completed into Gauss-Bonnet form

S10d
GB ∼

∫
d10x

√
−G(10)e−2φ(10) (

RmnrsR
mnrs − 4RmnRmn +R2

)
, (6.3)

which avoids higher derivative contributions to the quadratic kinetic terms that otherwise
would lead to unitarity violating poles in the graviton propagator [89].
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At tree-level, the quadratic and quartic gauge couplings arise via KK reduction from
terms linear and quadratic in the Riemann tensor. To illustrate our points and keep the
discussion simple, we restrict ourselves to the sub-sector of abelian gauge fields for the
eight-dimensional theory with generic E8 × E8 × U(1)2 gauge symmetry; including Wilson
lines does not add anything substantial so we leave them out for now. The corresponding
scalar moduli are thus t ∈ {T, U}, in the usual notation.

Upon performing standard KK reduction and choosing a suitable choice of basis for the
gauge fields, one finds from the Ricci scalar and the Gauss-Bonnet term (6.3) the following
quadratic and quartic pieces of the tree-level action for the U(1)T × U(1)U gauge fields:

S8d,class
(2) ∼

∫
d8x

√
−G(8) 1

g2Ms
4F TµνF

U,µν ,

S8d,class
(4) ∼

∫
d8x

√
−G(8) 1

g2

(
− 1

32 t
µ1µ2µ3µ4µ5µ6µ7µ8
8 F Tµ1µ2F

T
µ3µ4F

U
µ5µ6F

U
µ7µ8

)
. (6.4)

Here t8 is the familiar kinematical tensor in eight dimensions [90], and

1
g2 = 1

g2
s

, with 1
g2
s

≡ e−2φ(8) =
(
Mp

Ms

)6
= ImT e−2φ(10)

, (6.5)

is the eight-dimensional string coupling. It coincides with the quartic gauge coupling at
tree level. Above, we exhibited that the kinetic term has a dimensionful coupling and thus
vanishes in the UV. From supersymmetry there are no loop corrections to this term.

There are also corresponding quadratic and quartic derivative terms in the moduli that
we do not consider here. The quadratic term figures, as usual, as the metric on moduli
space, and the familiar statements about distances in moduli space apply [3, 12].

A major difference as compared to N = 2 supersymmetric theories in four dimensions
lies in the structure of the parity-odd terms. From the H2 term one obtains after reduction
dB · (FT ∧AU ) + . . ., which dualizes in eight dimensions to A4 ∧ FT ∧ FU + . . . , where A4
is the four-form dual of the B-field.

Thus there is no dynamical axion field θ at tree-level, and this is as expected as the
dilaton sits in the gravity multiplet in eight dimensions [91]. This is in contrast to four
dimensions, where the dilaton belongs, together with the B-field, to a linear multiplet,
which can be dualized to a vector multiplet that hosts both the dilaton and the axion fields.
In N = 1 language this can be represented by the familiar complexified coupling

S = 1
8π2 θ + i

1
g2
s

. (6.6)

By contrast, in eight dimensions we do not have such a complexified scalar coupling at tree
level to begin with. This is in line with the fact that the corresponding coupling constant
on the F-theory side is a real parameter, namely the Kähler parameter tb = vol(P1) of the
base of the elliptic K3 [52].

Nevertheless, at the one-loop level it is known that parity-even and parity-odd F 4 terms
are related by supersymmetry [92]. This suggests packing the effective, field dependent
couplings in (6.1) together into one complexified parameter

τ1−loop(T, U) = 1
8π2 θ(T, U) + i

1
g(T, U)2 . (6.7)
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This fits together with the fact that the one-loop quartic gauge couplings are given by
covariant derivatives of a holomorphic prepotential, F(t) [78, 80]. That is, their harmonic
part obeys

τ1−loop
ijkl (t)

∣∣
harm.

∼ Fijkl(t) ≡ ∂ti∂tj∂tk∂tlF(t) , t∗ ∈ {T, U} . (6.8)

Further, non-harmonic terms arise from the covariant derivatives which reflect massless
states running in the loop.

However, given our lack of knowledge of a possible superspace formulation of the
eight-dimensional couplings, it is unclear to us to what extent F(t) makes literal sense as a
superspace Lagrangian that would reproduce the one-loop couplings in eq. (6.1). Therefore
we view it simply as a formal generating function of the parity even, one-loop, four point
correlation functions for the time being.

The prepotential takes the familiar form of a “polylogarithmic lift”, and for the geometry
under consideration and positive Weyl chamber given by ImT >ImU , it reads [78, 80]

F(T, U) = − 1
240πU

5 +Q(T, U)− ic(0)ζ(5)
128π6 − i

(2π)6

∑
(n,m)>0

c(nm)Li5(qT nqUm) , (6.9)

where qT = e2πiT and qU = e2πiU . The coefficients are determined by the elliptic genus of
the 10d heterotic string, which is a weight k = −4, meromorphic modular form:

φ−4(q) = 1
η24(q)E4(q)2 =:

∑
n

c(n)qn . (6.10)

Moreover, Q(T, U) denotes certain quartic terms which depend on the particular Weyl
chamber and whose precise form does not matter here.

In terms of the prepotential F(T, U), the one-loop threshold corrections to the quartic
couplings read [78, 80]:25

Imτ1−loop
T 4−sUs(T, U) = − i4DT

4−sDU
sF(T, U) + i

4

( ImU
ImT

)4−2s
D̄s
T̄
D̄4−s
Ū
F̄(T̄ , Ū) , (6.11)

for s = 0, . . . 4. Here

Dj =
(
∂tj + kj

2iImtj

)
(6.12)

is the Serre derivative that maps modular forms of weight kj to modular forms of weight
kj + 2.

Let us now connect to the theme of the present work, where we focus on the infinite
distance degenerations corresponding to Kulikov limits of

Type II.a : ImT →∞, ImU finite , (6.13)
Type III.a : ImT, ImU →∞, ImT > ImU.

25In the string basis. We expect from analogous computations in four dimensions [93] that our conclusions
will not change if we transformed to the supergravity basis.
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For these limits one might expect the corrections (6.11) to display a logarithmic dependence
in qT , corresponding to linear behavior in T (and similarly for qU in the Type III limit,
which we will not consider in the following). This ought to reflect the exponential growth
of integrated-out KK states associated with decompactification to ten dimensions.

Clearly, since from (6.5) we have 1/g2 ∼ ImT , such a behavior occurs already at
the classical level, purely from geometry. In contrast, upon inspection one finds that the
one-loop thresholds (6.11) derived from the prepotential (6.9) do not show such a divergence.

We emphasize that this applies to the specific abelian gauge symmetries we consider,
which arise from KK reduction, and not to non-abelian gauge symmetries that appear
already in ten dimensions; for these, the one-loop quartic thresholds generically do blow up
linearly in the decompactification limit [76, 77].

This special feature of KK-related gauge symmetries sharpens the general question in
what sense couplings can be thought to emerge from integrating out a tower of massive
states at the loop level. It is a well-known fact that in general there is no absolute distinction
between which terms may be called classical and which quantum, as these notions get
mixed up by dualities. The same issue arises for the analogous gauge couplings in N = 2
supersymmetric strings in four dimensions, where one can map from the heterotic to a dual
Type IIA string frame. In this duality frame both the classical and one-loop couplings of
the heterotic string combine into one classical, genus zero preprotential of the Type IIA
string: FII(S, T, U) = Fclass

het (S, T, U) + F1−loop
het (T, U). In this way, the conifold singularity,

which arises at the classical level on the Type II side at finite distance in the moduli
space, reproduces the one-loop correction on the heterotic side [45]. On the other hand, for
the infinite distance limit of the particular correlators we consider, the situation appears
different (in both four26and eight dimensions) in that the singularity arises also on the
heterotic side only at tree level. The situation being similar also for Type I strings, it thus
seems that there is no perturbative duality frame in which the infinite distance singularity
arises at the quantum level.

Concentrating on eight dimensions, we will now try to refine the picture to reconcile it,
at least partially, with the notion of integrating out massive states at the quantum level.
To this end we consider the one-loop correction to the quartic gauge coupling 1/g2, which
is governed by the imaginary part of

FTTUU = ∂T
2∂U

2F(T, U) . (6.14)

This coupling has been already evaluated in [78, 80], and knowing the result we can concisely
rewrite it to fit our purposes. For this we push the quartic derivatives acting on F to a
double derivative acting on the elliptic genus,

φ̃0(q) = (q∂q)2 φ−4(q) =:
∑
n>−1

c̃(n)qn , (6.15)

where q∂q ≡ 1
2πi∂τ . Owing to (p∂p)5Li5(p) = − log(1 − p), this indeed maps back to the

four-point function
FTTUU (T, U) = i

4π2 log ΨTTUU , (6.16)

26See for example the familiar STU -model in four dimensions [75, 93, 94].
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via an exponential Borcherds type of lift (A.16) given by:

ΨTTUU = Exp-lift[φ̃0] =
∏
n,m∈Z

(n,m)>0

(1− qnT qmU )c̃(nm) . (6.17)

The lift subsumes the complexities that arise at intermediate steps when performing the one-
loop modular integral. Note that due to the derivatives, φ̃0(q) is not a modular, but rather
a quasi-modular form involving the Eisenstein series E2(q) = q∂q log η24(q). This is signified
by the tilde. Accordingly one can split φ̃0(q) into a fully modular and a quasi-modular part,

φ̃0(q) = φM0 (q) + φQM0 (q) , (6.18)

φM0 (q) = 1
72 η24(q)

(
41E3

4 + 31E2
6

)
(q) = J(q)− 744 =:

∑
n≥−1

c̃M (n)qn ,

φQM0 (q) = − 1
24 η24(q)

(
5(E3

4 + E2
6)− 8E2E4E6 − 2E2

2E4
2
)

(q) =:
∑
n≥1

c̃QM (n)qn ,

and define the respective lifts

ΨM
TTUU = qT

−1 ∏
n,m∈Z

(n,m)>0

(1− qnT qmU )c̃
M (nm) , (6.19)

ΨQM
TTUU = qT

∏
n,m∈Z

(n,m)>0

(1− qnT qmU )c̃
QM (nm) ,

such that
FTTUU (T, U) = i

4π2 log[J(T )− J(U)] + i

4π2σ(T, U) , (6.20)

with

log[J(T )− J(U)] ≡ log ΨM
TTUU , (6.21)

σ(T, U) := log ΨQM
TTUU .

The first line reflects a classic identity by Borcherds [95] and the second is a definition. At
this point the question arises about the significance of the particular split (6.18), since a
priori there is an ambiguity in adding and subtracting a weight zero modular form between
both terms. We pushed the 1/q pole completely into φM0 (q) so that σ(T, U) is a cusp form
without singularity in the interior of the moduli space. There is an additional ambiguity in
trading a constant between φM0 (q) and φQM0 (q). This translates to an ambiguity of adding
and subtracting a term proportional to log η(T )η(U) between log ΨM

TTUU and log ΨQM
TTUU .

On top of that there is the freedom of trading a factor between ΨM
TTUU in ΨQM

TTUU , such as
shown in eq. (6.19).

We resolved these ambiguities via imposing modular invariance; that is, by requiring
that both ΨM

TTUU and ΨQM
TTUU individually transform with bi-modular weight (0, 0) under

modular transformations in SL(2,Z)T ×SL(2,Z)U . While this may seem ad hoc, it is guided
by the physical intuition that splitting up Ψ makes best sense if both components respect
the underlying modular gauge symmetries individually.
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Putting everything together, the complete one-loop contribution to the quartic cou-
pling (6.11) can thus be rewritten as

Imτ1−loop
TTUU (T, U) = − i4DT

2DU
2F + cc.

= 1
16π2 log[J(T )− J(U)] + 1

16π2σ(T, U)− i

2G(T, U) + cc. , (6.22)

whose non-harmonic part,

G(T, U) = 24
(ImT ImU)2

(
3− 3i (ImT ∂T + ImU ∂U )− (ImT )2∂T

2 − (ImU)2∂U
2 (6.23)

− 3ImT ImU ∂T∂U + i ImT ImU
(
ImT ∂T 2∂U + ImU ∂T∂U 2

) )
F(T, U) ,

arises from the connection pieces of the covariant derivatives (6.12). By construction
it restores the modular SL(2,Z)T × SL(2,Z)U symmetry that is broken by σ(T, U) as a
consequence of the quasi-modular components of φQM0 (q).

It is easy to verify that Imτ1−loop
TTUU (T, U) does indeed not diverge for ImT → ∞, and

thus it seems, at first sight, that the tower of asymptotically massless KK states has not
been integrated out.

In order to understand this apparent clash with expectations, recall that the decompo-
sition in (6.22) is familiar from four dimensions [96, 97]. There the actual string coupling
has an extra one-loop “Green-Schwarz” correction given by (the 4d analog of) −ImG(T, U),
which cancels against the non-harmonic connection term +ImG(T, U) in the one-loop
quadratic gauge coupling. It arises from the duality transformation from the linear to a
vector supermultiplet and compensates the anomalous transformation properties of the
complex axio-dilaton field, S. If we absorb the last two terms of the decomposition (6.22)
into the axio-dilaton S, we thus obtain a holomorphic, modular invariant version of it:
Sinv = S + i

8π2σ(T, U) [96, 97].
In eight dimensions, the situation is different because the dilaton as a member of the

gravity multiplet is a real field, and there is no duality transformation extending it to a
complex field. Nevertheless the last two terms of (6.22) are universal for one-loop amplitudes
and so can be similarly absorbed into a modular invariant (though this time non-harmonic)
string coupling:

1
g2

ren(T, U) := 1
g2
s

+ ∆(T, U) , (6.24)

∆(T, U) ≡ 1
8π2 Reσ(T, U) + ImG(T, U) .

This renormalized coupling has no singularity in the interior of the moduli space and
so makes good sense as a physical coupling; by construction, σ is a cusp form, and the
derivatives in G acting on F yield higher polylogs and so do not produce singularities either.

In terms of this renormalized string coupling, the total tree-level plus one-loop quartic
gauge coupling then takes the form

ImτTTUU (T, U) ≡ 1
g2(T, U) = 1

g2
ren(T, U) + 1

16π2 log |J(T )− J(U)|2 . (6.25)
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Its threshold piece captures not only the finite distance singularity at T = U (plus its
modular images), which arises from charged BPS states becoming massless there, but now
also the infinite distance singularity

1
16π2 log |J(T )− J(U)|2 −→ 1

4π ImT , as T → i∞ , (6.26)

which does reflect an integrating out of asymptotically massless KK states. This is because
it originates from the modular J-functions and not from geometric zero mode terms. This
resonates well with the notion of emergence.

We propose that gren(T, U) in (6.24) is the physically relevant coupling to consider in
this context, even though it is not the standard loop counting parameter in the heterotic
string frame. This is in line with the considerations of refs. [96–98] which apply to four-
dimensional theories. From this point of view, the renormalized coupling defines, via (6.5),
a field-dependent, modular invariant string scale M ren

s (T, U) as follows:

(
Mp

M ren
s (T, U)

)6
=
(
Mp

Ms

)6
+ ∆(T, U) . (6.27)

This is only a mild modification of Ms, despite the fact that hidden in ∆(T, U) is the
infinite distance singularity of σ(T, U). The point is that the latter is subdominant to
the tree-level singularity. More precisely, the singularity of σ(T, U) is the negative of the
singularity of the quartic gauge threshold correction (6.26); both stem from the relative
factor qT in the split (6.19) which was necessary for the individual modular invariance of the
two pieces. Requiring positivity of the right hand side of eq. (6.24) in the decompactification
limit thus imposes the following constraint (up to order one coefficients):( 1

g2
ren(T, U)

)
T→i∞

∼ ImT
(
e−2φ(10) − 1

)
> 0 , (6.28)

which puts the theory to the weak coupling regime at all energies and so is self-consistent
within perturbation theory. This is analogous to the well-known constraint in four dimen-
sions [98] which posits that the tree-level term should always be dominant. It is consistent
with the positivity of the Kähler parameter tb = vol(P1) on the F-theory side upon identi-
fying tb ∼ 1/g2

s − ImT > 0, which is analogous to the map between type II and heterotic
parameters, Tb,II = Shet − Thet in four dimensions [94, 99]. It is also consistent with the
choice of positive Weyl chamber, ie., the quintic term, for the prepotential as in (6.9), and
is fully in line with analogous arguments for the gauge kinetic terms in four dimensions.

The upshot is that (6.28) shows that the classical contribution necessarily dominates
over the one-loop correction in the decompactification limit T → i∞, even after having
renormalized the string coupling such as to have a divergent one-loop contribution in the
first place. Thus the putative emergence of the quartic gauge coupling is at best partial.
This obstacle against emergence in a strong sense, namely that couplings emerge entirely
from integrating out states at the quantum level, has been recognized and addressed before
eg. in [12, 19, 43, 44].
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7 Discussion

In this article we have interpreted the infinite distance limits in the complex structure
moduli space of elliptic K3 surfaces from the point of view of F-theory in eight dimensions.
The geometric classification of such limits in [1] is in a precise one-to-one correspondence
with the possible weak coupling or (partial) decompactification limits, as summarised
in figure 1. In the decompactification limits, the light towers of KK states are encoded
geometrically in M2-branes wrapping vanishing transcendental elliptic curves in M-theory,
or equivalently in string junctions signalling an enhancement of the symmetry algebra of
the theory to a Kac-Moody or loop algebra. Weak coupling limits, on the other hand,
exhibit additional towers of states, be it excitations of a light emergent string or proper
supergravity KK modes.

To corroborate the interpretation of loop algebras as the hallmark of a dual decompact-
ification, we have translated a representative class of models exhibiting such enhancements
into the language of the dual heterotic string, where the mirror map allows for a clear
comparison with the heterotic variables. The upshot of this analysis is that while at first
sight the complex degeneration of the compactification space at infinite distance might
obscure the physics encountered on the boundary of moduli space, one can give, on the
contrary, a very clear interpretation in full agreement with the predictions of the Emergent
String Conjecture [15].

The simplicity of the asymptotic theory in the dual heterotic frame, given by a
compactification on a torus, invites a quantitative analysis of the Emergence Proposal [12, 18–
20, 43, 44], applied to the quartic, BPS saturated couplings of the KK U(1)s of the
eight-dimensional theory. Building on the explicit computation of the 1-loop corrected
quartic couplings in eight dimensions, we have encountered a certain tension, described
generally already in [12, 19, 43, 44], with the idea that all couplings are generated by the
integration of massless towers at infinite distance. Contrary to naive expectations, one
finds a perfect cancellation between the divergent contributions to the 1-loop KK threshold
corrections at infinite distance. However, by interpreting a subsector of these corrections
as contributions to the modular invariant dilaton, one can argue that at least part of the
divergent contributions to the KK couplings are obtained at the 1-loop level, albeit only
the subleading ones.

This observation applies also to four dimensions, despite important differences of the
analysis including the fact that the relevant couplings in eight dimensions are the quartic,
rather than quadratic, gauge couplings. It would be interesting to see to what extent the
findings of [100] about KK compactifications and axionic strings in four dimensions carry
over to eight dimensions, in relation to the parity odd F 4 term in (6.1) (which may couple to
“exotic” instantons [101]). Its axion coupling θ(t) formally gauges a (−1)-form Chern-Weil
symmetry, but as we described, it is not a fundamental field in the eight-dimensional
heterotic string. This seems consistent with [100] who argue that in such a case the massless
tower is given by KK states rather than by an emergent string.
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A Siegel modular forms: definitions and properties

There is much literature on Jacobi and Siegel modular forms, see for example [102–105] for
a selection of mathematical literature and [56, 66, 99, 106, 107] for physical applications
related to our work. Thus we will be very brief and refer to those papers for details; our
main purpose here is to present a collection of formulas and explicit asymptotic expansions
that are useful for our purposes.

Siegel modular forms are special examples of more general automorphic forms, and
have the property that they describe the moduli spaces of genus g Riemann surfaces. Genus
two Siegel forms happen to underlie the breaking of E8 ×E8 to E7 ×E8, which in heterotic
language amounts to switching on a particular Wilson line; a fact that had been observed
in physics first in ref. [106]. As we put particular emphasis on this geometry in the main
text, we concentrate here on g = 2 Siegel forms, with the understanding that most of the
structure carries over to more general Wilson line configurations.

Genus two Siegel forms of weight k, denoted generically by Φk(Ω), are holomorphic
functions on the Siegel upper half-plane, which is isomorphic to the homogeneous domain,

H2 '
{

Ω =
(
T V

V U

)
∈ Mat2(C)

∣∣∣ det ImΩ > 0,Tr ImΩ > 0
}
, (A.1)

equipped with the automorphy property Φk(Ω) = det(CΩ +D)−kΦ((AΩ +B)(CΩ +D)−1)
for

(
A B
C D

)
∈ Γ2 ≡ Sp(4,Z). The analog of the familiar fundamental domain of the modular

group, Γ1 ≡ SL(2,Z), is the Siegel modular threefold obtained by quotienting out

A2 = H2/Γ2 , (A.2)

which is the moduli space of principally polarized abelian surfaces.
Just like ordinary Jacobi forms, the Siegel modular forms for g = 2 form a ring graded

by the weight k that is finitely generated,27

M∗(Γ2) ≡
⊕

Mk(Γ2) = C
[
ψ4, ψ6, χ10, χ12, χ35

]
, (A.3)

where we denote Eisenstein series and cusp forms by ψk = ψk(Ω) and χk = χk(Ω),
respectively. In the following we will provide explicit expressions and a few identities for
the generators of the ring of Siegel modular forms of genus 2.

27There is one relation in that the square of χ35 can expressed in terms of the other generators.
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An important feature of Siegel modular forms, and more general automorphic forms, is
that they can be generated as liftings from ordinary, weak or almost holomorphic Jacobi
forms. Physically this amounts to a map from world-sheet to space-time quantities. Recall
that a Jacobi form of weight k and indexm is a function φk,m(τ, z) : H1×C→ C which obeys:

1. φk,m
(
aτ+b
cτ+d ,

z
cτ+d

)
= (cτ + d)ke

2πimcz2
cτ+d φk,m(τ, z) for

(
a b
c d

)
∈ Γ1,

2. φk,m(τ, z + λτ + µ) = e−2πim(λ2τ+2λz)φk,m(τ, z), for λ, µ ∈ Z,

3. and has a Fourier expansion φk,m(τ, z) = ∑
n≥0

∑
r2≤4nm c(n, r)qnξr with integral

coefficients c, where q ≡ e2πiτ , ξ ≡ e2πiz .

For more details concerning Jacobi forms we refer to [102, 107].
There are two important basic versions of such liftings, both based on Hecke trans-

forms, namely arithmetic (Maaß-Gritsenko) liftings [103, 105] and exponential (Borcherds)
liftings [95]. The arithmetic lifting is provided by the following Hecke operator acting on
index m = 1 Jacobi forms,

V[ ∗ ] : Jk,1 −→ Mk(Γ2) , (A.4)

which maps ordinary Eisenstein series and cusp forms into genus 2 Siegel Eisenstein series
and cusp forms, respectively.

Concretely, one starts from an index m = 1 Jacobi form with even weight k = 2∗ ≥ 0
and consider its integral Fourier expansion

φk,1(τ, z) :=
∑

n≥0, l∈Z
c(n, l)qnξl . (A.5)

Owing to the defining transformation properties of Jacobi forms mentioned above, the
coefficients depend only on the discriminant D = 4n− l2, i.e., c(n, l) = c(D). The action of
the Hecke operator V in (A.4) on the coefficients is then given by

c̃(n,m, l) :=
∑

a|(n,m,l)
ak−1c

(
nm

a2 ,
l

a

)
, (A.6)

where c̃(0, 0, 0) = −B2k/4k c(0) for Eisenstein series (and c̃(0, 0, 0) = 0 for cusp forms). The
image under the lift V is the following Siegel-Maaß form of even weight:

ψk(Ω) = V[φk,1] =
∑

n,m,r∈Z, n,m,≥0
4nm−l2≥0

c̃(n,m, l) qnT qmU qlV , (A.7)

where we denote: qT ≡ e2πiT , qU ≡ e2πiU and qV ≡ e2πiV .
Explictly, for the even generators of Mk we first consider

φ4,1(τ, z) ≡ E4,1(τ, z) = 1
2
(
θ6

2θ
2
2(τ, z) + θ6

3θ
2
3(τ, z) + θ6

4θ
2
4(τ, z)

)
(A.8)

= 1 + q

(
126 + ξ2 + 1

ξ2 + 56ξ + 56
ξ

)
+O(q2)
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and thus

ψ4(Ω) = V[φ4,1] = 1 + 240(qT + qU ) + 2160(qT 2 + q2
U )

+ qT qU

(
240q2

V + 240
q2
V

+ 13440qV + 13440
qV

+ 30240
)

+O(q3) ,
(A.9)

while

φ6,1(τ, z)≡E6,1(τ, z) = 1
2
(
−(θ4

3 +θ4
4)θ6

2θ
2
2(τ, z)+(θ4

4−θ4
2)θ6

3θ
2
3(τ, z)+(θ4

2 +θ4
3)θ6

4θ
2
4(τ, z)

)
= 1+q

(
−330+ξ2 + 1

ξ2 −88ξ− 88
ξ

)
+O(q2) (A.10)

lifts to

ψ6(Ω) = V[φ6,1] = 1− 504(qT + qU )− 16632(qT 2 + qU
2)

+ qT qU

(
−504q2

V −
504
q2
V

+ 44352qV + 44352
qV

+ 166320
)

+O(q3) .
(A.11)

Moreover, for the cusp forms at weights 10 and 12 we consider:

φ10,1(τ, z) = 1
144 (E4,1(τ, z)E6(τ)− E6,1(τ, z)E4(τ)) (A.12)

= q

(
ξ + 1

ξ
− 2

)
+ q2

(
36− 2

ξ2 − 2ξ2 − 16
ξ
− 16ξ

)
+O(q3)

and therefore

χ10(Ω) = V[φ10,1] = qT qU

(
qV + 1

qV
− 2

)
+ qT qU (qT + qU )

(
36− 2

q2
V

− 2q2
V −

16
qV
− 16qV

)
+O(q4) . (A.13)

Finally

φ12,1(τ, z) = 1
144

(
E4,1(τ, z)E2

4(τ)− E6,1(τ, z)E6(τ)
)

(A.14)

= q

(
10 + ξ + 1

ξ

)
+ q2

(
−132 + 10

ξ2 + 10ξ2 − 88
ξ
− 88ξ

)
+O(q3) ,

which yields

12χ12(Ω) = V[φ12,1] = qT qU

(
10 + qV + 1

qV

)
+ qT qU (qT + qU )

(
−132 + 10

q2
V

+ 10q2
V −

88
qV
− 88qV

)
+O(q4) .

(A.15)

Evidently both cusp forms vanish for large ImT and ImU .
Apart from the arithmetic liftings instantiated by the Hecke operator V , there are also

exponential (or Borcherds) liftings that map from Jacobi forms to Siegel modular forms,
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or more general automorphic forms. The starting point is an (in general weak or nearly
holomorphic) Jacobi form of weight zero and index t

φ0,t(τ, z) :=
∑
n,l∈Z

c(n, l)qnξl ,

with integral Fourier coefficients c(n, l) = c(4n − l2). The exponential lift is then the
meromorphic modular form with weight 1

2c(0, 0) given by [105]

χ1/2c(0,0)(Ω) = Exp-lift[φ0,t] = qαT q
β
U q

γ
V

∏
n,m,l∈Z

(n,m,l)>0

(
1− qtnT qmU qlV

)c(nm,l)
, (A.16)

where the positive root condition (n,m, l) > 0 means that n > 0, m, l ∈ Z or n = 0,
m > 0, l ∈ Z or m = n = 0, l < 0. Moreover, α = 1

4
∑
l l

2c(0, l), β = 1
24
∑
l c(0, l) and

γ = 1
2
∑
l>0 lc(0, l). For the Wilson line geometry we consider, only t = 1 will be relevant.

Particularly well established in physics [106, 108] is the cusp form

χ10(Ω) = χ5
2(Ω)

which, besides the arithmetic lifting (A.13), also has a representation as exponential lifting
in terms of the following product

χ5(Ω) = Exp-lift[φ0,1] = (qT qU qV )1/2 ∏
n,m,l∈Z

(n,m,l)>0

(
1− qnT qmU qlV

)c5(4nm−l2)
(A.17)

= (qT qU )1/2
(
√
qV −

1
√
q
V

)(
1− (qT + qU )

(
10 + qV + 1

qV

)
+O(q2)

)
, (A.18)

where
φ0,1(τ, z) ≡ 1

η24(q)φ12,1(τ, z) =:
∑

n≥0, l∈Z
c5(4n− l2)qnξl (A.19)

is one of the standard generators of Jacobi forms.
Moreover one can apply a certain Hecke transformation (denoted by T0(2) in [105]) to

obtain the following nearly holomorphic weight zero, index one Jacobi form

φ
(2)
0,1(τ, z) = (T0(2)− 2)φ0,1(τ, z) (A.20)

= 1
18η24(q)

(
11E2

4E4,1 + 7E6E6,1
)

(τ, z) (A.21)

=:
∑
n,m

c35(n, l)qnξl . (A.22)

This then provides the product representation of the remaining cusp form:

χ35(Ω) = Exp-lift[φ(2)
0,1] = q2

T q
3
UqV

∏
(n,m,l)>0

(
1− qnT qmU qlV

)c35(4nm−l2)
(A.23)

= q2
T q

2
U (qU − qT )

(
qV −

1
qV

)(
1− (qT + qU )

(
70 + q2

V + 1
q2
V

)
+O(q2)

)
.
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One can cancel the zero at V = 0 by considering

χ30(Ω) := χ35(Ω)
χ5(Ω) = Exp-lift[φ(2)

0,1 − φ0,1] (A.24)

=
(
q3
T q

3
UqV

)1/2
(qU − qT )

×
(
qV + 1

qV

)(
1− (qT + qU )

(
60 + q2

V + 1
q2
V

− qV −
1
qV

)
+O(q2)

)

which vanishes for T = U (plus its modular images) only.
Finally we note the useful formula for the discriminant:

∆(Ω) := 1
1728(ψ3

4(Ω)− ψ2
6(Ω)) (A.25)

= qT + qU − 24(qT + qU )2 − qT qU

(
186− 1

q2
V

− q2
V + 28

qV
+ 28qV

)
+O(q2)

This vanishes if both ImT and ImU become large, which characterizes a Kulikov Type
III limit.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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